Migration on Request, a Practical Technique for
Preservation

Phil Mellor!, Paul Wheatley', and Derek Sergeant’

CAMILEON Project*, Edward Boyle Library, The University of Leeds, Leeds LS2
9JT, UK
{P.R.Wheatley, D.M.Sergeant}@leeds.ac.uk

Abstract. Maintaining a digital object in a usable state over time is
a crucial aspect of digital preservation. Existing methods of preserving
have many drawbacks. This paper describes advanced techniques of data
migration which can be used to support preservation more accurately
and cost effectively.

To ensure that preserved works can be rendered on current computer sys-
tems over time, “traditional migration” has been used to convert data
into current formats. As the new format becomes obsolete another con-
version is performed, etcetera. Traditional migration has many inherent
problems as errors during transformation propagate throughout future
transformations.

CAMILEON’s software longevity principles can be applied to a migra-
tion strategy, offering improvements over traditional migration. This new
approach is named “Migration on Request.” Migration on Request shifts
the burden of preservation onto a single tool, which is maintained over
time. Always returning to the original format enables potential errors to
be significantly reduced.

1 Introduction

In a digital library a new problem has surfaced, collections of digital objects
become obsolete and unusable while technology rapidly evolves. Meanwhile, the
field of digital preservation is only just beginning. Surely it is safest to wait for
the advice to mature? However, in doing so many current digital objects that
needed preserving will have already been lost (irretrievably).

Maintaining a digital object in a usable state over time is a crucial aspect of
digital preservation. In order to preserve successfully, action must be taken to
ensure that digital objects can be easily rendered on current computer platforms
over time. Migration has been widely used to move obsolete data into current
data formats. When a data format becomes obsolete, a migration tool is used to
transform the digital object into a data format which can be rendered and used
on a current computer platform. When this format becomes obsolete, another

* Research for this paper was supported in part by the National Science Foundation,
Award #9905935, Digital Library Initiative - International, Emulation Options for
Digital Preservation and by the Joint Information Systems Committee in the UK.

User at time 0 User at time 1 User at time 2

Criginal Migrated Migrated
object object 1 object 2

T T

TIME

Fig. 1. A digital object preserved using traditional migration

transformation is performed, and so on. There are many drawbacks with this
strategy of “traditional migration” (see figure 1). Any errors or omissions from
a transformation will propagate throughout and hence be present in all future
transformations (see figure 2). Existing methods of preserving digital data often
fall short of accurately preserving and authentically rendering an original digital
document. Continually producing new migration tools whenever a transforma-
tion is required and then applying them to possibly very large data holdings is
costly. This paper describes some advanced techniques of data migration which
can be used to support preservation work more accurately and cost effectively.

RS

TIME

Fig. 2. Errors propagating through each conversion step of traditional migration

Traditional migration has been widely used to convert obsolete data into cur-
rent data formats. In the short term this offers a way of keeping digital materials
current, but it is not an effective long term strategy. This research performed
by the CAMIiLEON project[1] has investigated a way of applying migration in a
more sensible and effective way. This new approach is named “Migration on Re-
quest.” The CAMIiLEON project has implemented a real Migration on Request
tool to ensure that this theoretical work is truly practical. This paper explains
this technique and presents findings from the experimental implementation. The
Digitale Bewaring project is an excellent resource about migration [2].

Underpinning this approach is the notion of indefinite retention of an abstract
byte-stream. This means preserving the original data object (not preserving

eight-inch floppy disks and giant reels of half-inch mag tape). These principles
have been adopted from the Cedars project [3], whereby the term “migration”
is only applied to operations which transform the data object [4].

2 Theoretical Basis to Migration on Request

Cedars suggested that, by preserving the original bytestream of a digital object,
preservation work could be performed more effectively [5]. If a bytestream is
preserved unchanged over time, a way of interpreting or rendering that original
format will also be necessary. An obvious problem with this strategy is the short
lifetime of any migration tool designed to perform this task. Previous research
on the CAMIiLEON project has developed techniques for software longevity [6].
While these techniques were originally developed to maintain software emulators
over generations of platform, they equally apply to implementing migration tools.
Combining these methods of software longevity with the principle of always
maintaining the original bytestream, we see a new form of migration taking
shape.

User at time 0 User at time 1 User at time 2
Original Migrated Migrated
object object 1 object 2

Migration Migration

tool 1.0 tool 1.5

TIME

Fig. 3. Applying a Migration on Request tool over time

This foundation work points the way to a practical method of implementing
a more useful migration strategy. Migration on Request shifts the burden of
preservation from handling vast quantities of digital objects to a single tool
for each class of data format in the archive. This tool renders all of the digital
objects and is maintained over time (see figure 3) using the previously mentioned
software longevity techniques. A digital object is simply archived in its original
format. New output modules can be added to the tool to produce newer data
formats as previously supported formats become obsolete. Always returning to
the original digital format enables Migration on Request to significantly reduce
the possibility of errors being introduced during the conversion process (see figure
4). There is always only one transformation step from the original to the current
format. In any case the original is what is retained in the archive.

Sunymnpm

TIME

Fig. 4. Migration on Request may introduce minor errors, but these do not propagate

Migration on Request offers several key benefits over a traditional migration
approach:

— The code which reads in and interprets a particular file format need only be
implemented once.

— Using only one migration step increases migration accuracy.

— Issues of authenticity are greatly simplified as a digital object is preserved
in its original form.

— The modular design of a migration tool makes the implementation of a “re-
versible migration” test much simpler and cheaper.

— The migration tool is only deployed “on request” and so offers massive sav-
ings where a large number of digital objects are preserved.

3 Migration on Request Tool Design

Figure 5 shows how a Migration on Request tool breaks down the elements
required to migrate a digital object. This design is extensible, so as supported
output formats become obsolete new output modules can be added without
having to re-write existing input modules. This provides a major cost saving in
comparison to a traditional migration approach.

The Consultative Committee for Space Data Systems OAIS Reference Model
[7] reminds us that the only way of ensuring a migration step has been completed
without error is by the proof of a reversible migration. If we can convert a
migrated object back to its original form, and it matches the original object
then no data has been lost. With a traditional migration approach the effort
required to implement a reversible migration test effectively doubles the overall
implementation required. On top of that, all this work must be repeated at each
subsequent migration step! With Migration on Request, the modular framework
allows us to make substantial savings in implementation time. The addition of
an input and output module provides support for a new data format with the
opportunity for a reversible migration test. When we add support for subsequent
formats we make use of existing input modules. This represents a cost saving over
the complete re-implementation at each step of a traditional migration process.

The ability to have a number of input as well as output modules means that
one Migration on Request tool can support a number of different input formats.

Format A } Mg\lljl)alﬁjl_TES
\ 4
Intermediate format
Y
OUTPUT
MODULES Format C

Fig. 5. The Migration on Request process

For example, an archive may contain textual data in a number of word processing
formats, which are sufficiently similar for one Migration on Request tool to
support them. Again, we see massive cost savings over traditional migration.
A Migration on Request tool is maintained over time by adding new output
modules as supported output formats become obsolete. These output formats
can be used with all the supported input formats, stripping away all the wasteful
implementation redundancy found in traditional migration.

The modularised design of a migration tool makes it easier to maintain and
provides us with a functional record of the file format in which our preserved
data is maintained.

4 Testing the Theory

The aim was to provide a practical test of a Migration on Request approach. A
successfully working Migration on Request tool would provide strong evidence
that this approach is useful, and also highlight any difficulties which became
apparent during the implementation. It was important to make this test hard
enough to tease out these implementation issues. Since vector graphic formats
are sufficiently complex (unlike text or bitmap graphics), they were chosen as
the focus of this test. This ensures that the Migration on Request strategy is
tested thoroughly before progressing to other classes of digital objects.

Three formats covering a cross section of existing vector formats were cho-
sen for implementation: WMF [8], Draw [9] and SVG [10]. Windows Meta Files
(WMF) were developed by Microsoft. Images are represented by a series of in-
structions that match the calls made by applications to the Windows Graphics

Device Interface. The Draw file was invented by Acorn Computers in the early
1990’s and is commonly used for exchanging data between applications on the
RISC OS platform. In the UK a lot of educational material still exists in this
format. Scalable Vector Graphics (SVG) are a new XML based format devel-
oped by the W30, and is mainly used for web site imagery. Figure 6 shows how
an oversimplified vector diagram of a face is represented in these formats. Sev-
eral vector graphics files, of varying complexities, were used in order to test the
Migration on Request tool.

Draw Representation — group _ path
C header size size
[~ path boundingbox X,y X,y boundingbox x,y
size - path fill black
boundingbox x,y,x,y size line black
fill yellow boundingbox x,y,x,y thickness 0
line black fill black even-odd, undashed, square caps
thickness 1 line black move X,y
even-odd, undashed, square caps thickness 0 line x,y
move X,y even-odd, undashed, square caps line x,y
bezier cx1, cy1, cx2, cy2, X,y move X,y line x,y
bezier cx1, cy1, cx2, cy2, X,y line x,y close path
bezier cx1, cy1, cx2, cy2, X,y line x,y L L endofpath
bezier cx1, cy1, cx2, cy2, X,y line x,y — path
end of path close path size
- L end of path bounding box X,y,X,y
fill none
line black
thickness 0
even-odd, undashed, square caps
Original picture move x,y
WMF Representation line x,y
L end of path
C header
set mapmode
inches create pen
create pen colour black
cqlour black thickness 0
thickness 1 undashed, square caps
undashed, square caps create brush
oreate brush [colour black
[colour yellow plain fill
plain fil rectangle
[set winding rule [points x,y
SVG Representation 0 ’ [rectangle
. points x,y
<svg?) ! !) [select object width, height
<ellipse fill=yellow line=black line-thickness=1 1 move to
X=oo Y=o X=n MY=> ellipse [points x,y
<0>)) centre x,y line to
<rect x=... y=... w=... h=__. fill=black line=black> radii x,y [int
<rect x=... y=... W=... h=... fill=black line=black> delete object dp/°'” s ;:Y
<ig> [’ [e;ete object
<I|n;i>:::m;.sys/lo;. x2=... y2=... line=black line [dzlete object [delete object
</svg> 0

Fig. 6. WMF, Draw, and SVG representations for a simple face

The migration tool was constructed in a modular way. Separate functions
were used to input each format and return an intermediate structure, a hierarchy
of elements such as lines, ellipses and polygons. This structure could be passed
to an output module, but it is likely to contain elements unsupported by the
output format. To solve this the output module passes the structure on to a

series of functions that downgrade or convert any unsupported elements into
ones that the format can handle. In order to minimise the amount of conversion
routines that are needed, a chain of conversions can be applied; for example a
curved path could be converted to a straight line path, and then to a series of
individual lines; there is not need to create a special routine or clause to convert
curved paths directly into individual lines.

5 Data Formats and Their Interpretation

The intermediate format needs to encompass all the features of the input formats.
There is usually more than one way to represent an element, but it is important
that the method of representation does not lose any of the original information.
It should not be a problem whether an ellipse is described with a centre point
and the two radii, or with a bounding box, as the two methods are totally
interchangeable (see figure 7). The intermediate format does not need to cater
for both forms of representation.

Fig. 7. Alternative descriptions of the same ellipse

However, the representation of some objects may be so dissimilar in different
formats that one method in the intermediate format will not encompass them all
without degradation. Therefore it is likely that there will be some ‘duplication’
in the intermediate format.

For example, SVG files have a rectangle element with a ‘rounded edge’ at-
tribute. An ordinary rectangle can be produced by setting this attribute to zero.
WMEF files have both rounded and ordinary rectangle elements, despite also hav-
ing the ability to create ordinary rectangles in the same manner as SVG. Draw
files do not support rounded rectangles; instead a path of lines and curves would
be needed.

The WMF structure is oriented in favour of the implementation of rendering
rather than the content of the graphic itself. This means there are lots of elements
specific to WMF's which are unlikely to be needed by file formats in the future
and would get ignored or ‘flattened out’ by the output modules anyway. WMF
files allow the presence of lots of redundant instructions. For example, a series
of instructions to set the mapping mode to inches, millimetres, then back to

inches again with no objects being drawn in the meantime, would be pointless
but possible. This is just a simple example but the possibilities are tremendously
wasteful. The WMF is basically a simple programming language, and very poor,
inefficient programs can be written with it.

Retaining any of this seemingly redundant information would only serve to
clutter the intermediate format, thereby making it more complex, less intuitive,
and increasing the risk of bugs or incompatibilities that are hard to track down.
It seems reasonable, therefore, that such elements are not made part of the
intermediate format and are dealt with and converted into more suitable repre-
sentations by the WMF input module. The limitation of this approach would be
that reversible migration of WMFs would become impossible.

5.1 Internal Number Representation

The Draw format measures values in OS units (1/180th of an inch), stored as
fixed point 32-bit numbers with an 8 bit fractional part. WMFs offer a choice of
units for a value, which is stored in 16 bits. Furthermore, an offset and scaling
can be applied. SVG numbers are written as a string of ASCII characters, usually
in base 10.

Care needs to be taken when storing such numbers in memory. Errors in
precision can occur when numbers are stored in a floating point representation,
particularly when storing exceptionally large or small numbers. However, the
range of fixed point numbers is more constrained and can cause greater impre-
cision errors, usually through truncation of the fractional part.

There are many different units of measurement that could be used — inches,
millimetres, pixels, and so on. These values need to be kept in their original units
for as long as possible, since unnecessary conversion could lose accuracy.

In our Migration on Request tool a structure is defined to store a unit of
measurement and a value (as either an integer or floating point number). Various
functions can extract the value in different units. The design could go so far as
to simulate various number representations itself, such as 16 and 32 bit integers,
even ASCII strings. This would require a lot of maths routines to be implemented
by hand, such as addition and multiplication, perhaps even square root functions.

6 Reversible Migration

The reversible migration test compares a migrated version of the digital object
to the original digital object. This is done by migrating the migrated version
back into the original format, see figure 8. A Migration on Request tool can be
used to perform all of the migrations required for the reversible migration test.
CAMILEON has performed a reversible migration test successfully with the
Draw format, and a reversible migration was achieved (bar some minor informa-
tion such as user interface preferences). It would even be possible to reversibly
migrate WMF files, if its features were integrated with the intermediate format.
Such features would significantly increase the complexity of the intermediate

format, making the tool harder to maintain. A choice between complexity and
reversibility must be made. It seems unlikely that the rendering structure found
in WMF will also appear in future vector graphic formats, so it seems logical
not to support this style here. ASCII formats such as SVG raise an interesting
quandary. The amount of white space (new lines, spaces etc) is irrelevant to the
information stored in the file, but is often used to indent nested items or to sepa-
rate different sections to enable human readability. For true reversible migration
(using a “diff” tool), this white space would also have to be preserved in the
internal format. Alternatively a parsing tool could be used to remove this non-
essential information before applying the “diff” test. Migration on request cer-
tainly makes the ‘holy grail’ of reversible migration easier to reach than through
conventional migration techniques.

\ 4
Format A Format B } Mg\lglthES
4 A
Intermediate format e Comparison
4 A
Format A Format B } I\/IO(l)JI-DrBIEJgS

Fig. 8. The reversibility test

7 Reliance on Original Evidence

When developing the tool, it was essential to view the output from the migration
tool in a graphics application (rather than a file editor), and compare this with a
rendering of the original file. A simple visual check was used to confirm whether
elements had migrated properly. Although not particularly accurate, this method
allowed obvious errors to be identified quickly.

Imagine a collection of abstract paintings by Mondrian existed only in a
poorly documented, (now) unused vector format. If the colours were mixed up
or some shapes distorted during migration, without a true comparison to the

original, these errors may go unnoticed. Technically it would be possible to ex-
amine each file manually to determine what it would look like, but for large or
complex files this would be an arduous task.

Once the migration tool can be shown to be working correctly, the need for
such evidence is less necessary, but still relevant. Later modifications to the tool
would require all the modules to be tested again for any discrepancies in the
migration. Such modification might be, for example, adding new features to the
intermediate format to support a new input module. Evidence of an original
rendering of test files would again be useful here, perhaps via emulation.

Using the original applications need not be the only way to acquire this
evidence; screenshots, written documents, etc, are other useful sources. These
resources may also have to be preserved as time passes. Implementation of a
Migration on Request tool should be done when the format is still in a usable
form and such evidence can be gathered. This echoes Holdsworth and Wheatleys
observations on the timeliness of emulation for preservation [6].

8 The Evolution of File Formats

In order to prepare any Migration on Request tools for the future, study into
trends of data formats is needed. Vector graphics used to be the preserve of
design and publishing, but it is a reasonable assumption that in a few years
their most widespread deployment will be on the World Wide Web. Designers
of migration tools should concentrate on preserving features that are most likely
to be used in future developments of their format genres.

The development of open standards is interesting. If the trend is to define
and follow standards, then choosing an internal format similar to one of these
standards would be a sensible way forward. SVG seems a good basis for the
intermediate format in a vector migration tool. Unfortunately it seems unlikely
that relying on standards will be sufficient to ensure preservation. The need
to maintain a commercial advantage over competitors has meant in the past
that standards are extended or not adhered to, HTML being a case in point.
We have to accept that standards can change over time and will at some point
become obsolete. Fortunately a Migration on Request strategy can benefit from
the stability and longevity of open standards but is not tied to them. It must
also be remembered that a format is not necessarily a good design just because
it is a standardised format [11].

9 Evaluation

The practical implementation of a Migration on Request tool was a valuable
test of our theoretical strategy. The modular migration tool successfully imports,
converts and exports a number of vector graphic formats. The experiences en-
countered in developing a tool of this kind were useful in raising problem areas
and providing the chance to develop solutions to tackle these difficulties. In par-
ticular, implementing a reversible migration test was not as easy in practice as

was originally thought but this was not a specific problem with Migration on
Request. Ordering of data elements, non-critical information and multiple meth-
ods of representing the same data are problems likely to be encountered with
most data formats, using any migration strategy.

The implementation work showed that the initial development of a Migration
on Request tool is not overly laborious or costly. Over a short to medium term
period Migration on Request should offer major cost savings in comparison to a
traditional migration strategy, even where standard/open formats are utilised.

10 Conclusions

The CAMILEON project has developed a Migration on Request tool which shows
that a preservation strategy of this kind can work in a practical environment.
Migration on Request provides a more accurate and cost effective strategy for
preserving digital objects than traditional migration. Because Migration on Re-
quest relies on the preservation of the original bytestream of a digital object it
can effectively work alongside an emulation strategy. If open source emulation
and Migration on Request tools become available, a digital repository can effec-
tively offer different ways of rendering its digital materials at a very low cost.
The time is right to move forward from the “thinking” to the “doing” and pro-
vide the preservation community with well designed, but cost effective tools for
the preservation of digital materials.

References

1. The CAMILEON Project http://www.si.umich.edu/CAMILEON/

2. Testbed Digitale Bewaring: Migration : Context and Current Status (2001)
http://www.digitaleduurzaamheid.nl/bibliotheek /Migration.pdf

3. Cedars Guide To : Digital Preservation Strategies (2002)
http://www.leeds.ac.uk/cedars/guideto/dpstrategies/

4. Wheatley, P: Migration - a CAMIiLEON discussion paper Ariadne 29 (2001)
http://www.ariadne.ac.uk/issue29/camileon/

5. Holdsworth, D and Sergeant, D M: A blueprint for Representation Information in the
OAIS Model (1999) http://www.personal.leeds.ac.uk/~ecldh/cedars/ieee00.html

6. Holdsworth, D and Wheatley, P: Emulation, Preservation and Abstraction. RLG
Dignews 5,4 http://www.rlg.org/preserv/diginews/diginews5-4.html#feature2

7. Consultative Committee for Space Data Systems: Reference
model for an Open Archival Information System (OAIS) (2001)
http://www.ccsds.org/documents/pdf/ CCSDS-650.0-R-2.pdf

8. GFF Format Summary: Microsoft Windows Metafile O’Reilly’s Encyclopedia of
Graphics File Formats
http://www.oreilly.com/centers/gff/formats/micmeta/download.htm

9. (RISC OS) Programmers Reference Manual: Acorn Computers Technical Publica-
tions 5 (1994)

10. World Wide Web Consortium: Scalable Vector Graphics (SVG) 1.0 Specification
September (2001) http://www.w3.org/TR/SVG/

11. Hedstrom, M and Lee, C: Digital Objects: Definitions, Applications, Implications.
Proc 3rd DLM Forum, Barcelona, May (2002) (forthcoming)

