International Engineering Consortium
White Papers
Echo Cancellation

1. History of Echo Cancellation

The late 1950s marked the birth of echo control in the telecommunications industry with the development of the first echo-suppression devices. These systems, first employed to manage echo generated primarily in satellite circuits, were essentially voice-activated switches that transmitted a voice path and then turned off to block any echo signal. Although echo suppressers reduced echo caused by transmission problems in the network, they also resulted in choppy first syllables and artificial volume adjustment. In addition, they eliminated double-talk capabilities, greatly reducing the ability to achieve natural conversations.

Echo-cancellation theory was developed in the early 1960s by AT&T Bell Labs, followed by the introduction of the first echo-cancellation system in the late 1960s by COMSAT TeleSystems (previously a division of COMSAT Laboratories). COMSAT designed the first analog echo canceller systems to demonstrate the feasibility and performance of satellite communications networks. Based on analog processes, these early echo-cancellation systems were implemented across satellite communications networks to demonstrate the network's performance for long-distance, cross-continental telephony. These systems were not commercially viable, however, because of their size and manufacturing costs.

In the late 1970s, COMSAT TeleSystems developed and sold the first commercial analog echo cancellers, which were mainly digital devices with an analog interface to the network. The semiconductor revolution of the early 1980s marked the switch from analog to digital telecommunications networks. More sophisticated digital interface, multichannel echo-canceller systems were also developed to address new echo problems associated with long-distance digital telephony systems. Based on application-specific integrated circuit (ASIC) technology, these new echo cancellers utilized high-speed digital signal-processing techniques to model and subtract the echo from the echo return path. The result was a new digital echo-cancellation technique that outperformed existing suppression-based techniques, creating improved network performance.

The 1990s have witnessed explosive growth in the wireless telecommunications industry, resulting from deregulation that has brought to market new analog and digital wireless handsets, numerous network carriers, and new digital network infrastructures such as TDMA, CDMA, and GSM. According to the Cellular Telecommunications Industry Association (CTIA), new subscribers are driving the growth of the wireless market at an annual rate of 40 percent. With wireless telephony being widely implemented and competition increasing as new wireless carriers enter the market, superior voice transmission quality and customer service have now become key determining factors for subscribers evaluating a carrier's network. Understanding and overcoming the inherent echo problems associated with digital cellular networks will enable network operators and telcos to offer subscribers the network performance and voice quality they are demanding today.

Industry Events
Broadband World Forum Europe 2009
Paris, France
7 - 9 September 2009
SUPERCOMM
Chicago, IL, USA
October 21 - 23, 2009

Registered Users
Enjoy exclusive access to free On-Line Education and receive the bi-monthly Broadband World eNewsletter.

Newsletter
The NEW Broadband World eNewlsetter delivers the latest industry trends, strategies and insights you need to stay connected in the world of Broadband.
Current
Archive

Newsroom

IEC Corporate Member
Share