DECISION MAKING AND KNOWLEDGE REPRESENTATION IN HALO 3

Max Dyckhoff Bungie, LLC

INTRODUCTION

• Halo 3: First person shooter for Xbox 360, involving combat, driving vehicles and dozens of weapons.

 AI: Provide entertaining and challenging opponents for 10+ hours of gameplay...
...and provide allied support characters, too.

DECISION MAKING BEHAVIOUR TREES KNOWLEDGE REPRESENTATION PERCEPTION MODEL REVIEW

ACTOR CONTROL

• **Problem**: Actors need to operate in the game environment.

• **Behaviours**: Halo 3 uses reactive behaviours to control the actors.

BEHAVIOURS

- Targets
- Projectiles

- Perform actions over time
 - Shoot
 - Move to a point
 - Trigger "actions"
 - Play dialogue

DECISION MAKING

• **Problem**: With all these behaviours to choose from, how do we decide what to do?

DECISION MAKING BEHAVIOUR TREES KNOWLEDGE REPRESENTATION PERCEPTION MODEL REVIEW

GROWING TREES

• Arrange behaviours hierarchically (Directed Acyclic Graph).

NAVIGATING TREES

• **Problem**: Which child do we choose?

• **Desire**: Query children for their *desire* to execute.

DESIRE

 Behaviour performs some operation on the knowledge model and returns a desire to execute.

- Strategies
 - Prioritised
 - Sequential
 - Looping

IMPULSES

- **Problem**: What if the desire is not constant?
- Impulses: Place different trigger conditions to the same behaviour in the right place.

METADATA

- **Problem**: Desire calculations often duplicated.
- **Conditions**: Describe execution conditions.

- Vehicle occupancy, alert status, etc.

SUMMARY

- Easy to understand
- Scales effortlessly
- Quick iteration

- Very hard to debug
- Unprecedented results

DECISION MAKING BEHAVIOUR TREES KNOWLEDGE REPRESENTATION PERCEPTION MODEL REVIEW

GAME ENVIRONMENT

• **Problem**: Actors need to respond to objects in the game world.

• Features: Select what we are interested in, and store relevant information about it.

GAME ENVIRONMENT

A QUESTION OF SCALE

- Halo 3: Dozens of actors and objects in a scene
- **Problem**: n² starts getting really big!

BEHAVIOUR TREES KNOWLEDGE REPRESENTATION PERCEPTION MODEL REVIEW

DECISION MAKING

SHARE INFORMATION

• Group proximate allied actors into *clumps*.

DATA STRUCTURES

 Clump tracks objects using *props*.

• Actor in clump has *reference* to prop.

 Can add (large) tracking data.

PERCEPTION MODEL

- 2D linked list, allowing quick traversal.
- Sparse allocation of tracking data based on importance of prop.

AN EXAMPLE

- Acquire target 1
- Lose sight of target 1
- Search target 1
 - Last known location inspected
 - New search point selected
- Acquire target 2
 - Search deactivated, short-term state discarded
- Target 2 killed
- Search target 1
 - Where do we search?
 - Existing search point used

DECISION MAKING BEHAVIOUR TREES KNOWLEDGE REPRESENTATION PERCEPTION MODEL REVIEW

REVIEW

• Decision making using DAG, "behaviour tree".

- Behaviours specify operating desire
- Impulses can trigger behaviours all over the tree

• Knowledge stored in props.

- Shared between proximate allies
- Individuals optionally store extended information

QUESTIONS?

Max Dyckhoff Bungie, LLC maxd@bungie.com

