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Abstract

Using visual modelling in specifying software is an ongoing research in mathematics and computer science.
One of the important aims of visual modelling is to make it easier for people to produce software
speci�cation and allow them to reason about the speci�cation using diagrammatic reasoning. Reasoning
about diagrams is an error prone and time consuming task which also requires a certain amount of
knowledge about diagrammatic reasoning, to be able to reason about the diagrams. In order to achieve
the aim of making software speci�cation easier for people, it is crucial to have automated systems that can
perform most tasks automatically. In this project, the task of proving diagrams is automated by using a
piece of software that automates the proving process of two diagrams. In this project all the processes
that were involved in producing this piece of software are explained and the important aspects about
the project that are related to computer science, software engineering and mathematics are discussed in
detail.
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1 Introduction

1.1 Brief Introduction

Using diagrams in a formal manner was described by [18] which made diagrams a useful

tool that can be used for logical reasoning. The ability of using diagrams in a formalized

manner makes it possible to produce software speci�cation using diagrams as well. As a

result of this, a great deal of work has been done on diagrammatic reasoning and visual

modelling in the past few years to make this system more practical.

Software speci�cation is very involved with logical statements and logical reasoning. For

instance, if a designer wants to incorporate a constraint on a speci�c class or a function,

he1 has to write a logical statement to demonstrate that there is a constraint. Some-

times it is necessary to have these logical statements to be proved to be correct which

requires an understanding of logical reasoning. The same kind of reasoning is also done

in diagrammatic reasoning in a di�erent manner. For example in diagrammatic logic it

might be necessary to prove that two diagrams d1 and d2 (represented in �gure (1) and

(2)) follow from one another.

Figure 1: d1 Figure 2: d2

In order to prove these diagrams, it it required to apply the unitary diagram proving

algorithm, manually (for a novice user), as described in section 5, However this algorithm

could be implemented as a part of an automated prover to reduce errors that might occur,

make the process faster and allow the user with no knowledge of the algorithm to be able

to prove if the diagrams follow from each other. For example in this case d2 follows from

d1 which means there is a logical proof from d1 to d2. This project's aim is to create a

prover to be used in such circumstances.

In the project section 2 detailed information about the project is given. In section

"Software Speci�cation" 3, software speci�cation is described. The section "Visual Mod-

elling" (4) provides all the necessary background knowledge about this project that was

needed in order to be able to implement this project, is given. The "Design" section

1He has to be read as he or she
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(6) provides all about the design process and what was learnt during the process. The

"Implementation" section (7) discusses the important aspects of the implementation of

this project and the "Testing" section (8), is about how the program was tested.

1.2 Introduction to Reliability

Software reliability arguably is one of the most important issues in software engineering

[4]. The idea of producing 100% reliable software has been in computer science for a long

time. According to ANSI (American National Standards Institute), Software Reliability

is de�ned as: the probability of failure-free software operation for a speci�ed period of

time in a speci�ed environment [4]. Although Software Reliability is de�ned as a proba-

bilistic function, and comes with the notion of time, it must be noted that, it di�ers from

traditional �Hardware Reliability�, �Software Reliability� is not a direct function of time.

Electronic and mechanical parts may become "old" and wear out with time and usage,

but software will not wear-out during its life cycle. Software will not change over time

unless intentionally changed. This makes software reliability a critical point in software

production because software in many cases might last for a long period of time. Not

being certain about the reliability of software will cause problems during the life cycle

of the software and will have signi�cant costs for its maintenance. Therefore there are a

great deal of bene�ts such as saving money over time or having more satis�ed users, in

producing reliable software both for the users and the designers.

In this day and age the importance of computer science is a widely accepted fact.

One reason technology, speci�cally computer science, is signi�cantly important is that all

other sciences such as astronomy, physics and many other sciences depend on computers

to be able to expand and improve themselves. Moreover, computers are one of the most

remarkable tools which can be used to improve the quality of human life and take human-

ity to the next level of growth and expansion. This means in order to improve humanity

and allow other sciences to grow and expand faster, computer science has to improve

and expand. One of the major challenges that currently exists in computer science is

providing reliable and cost e�ective software, fast. This means that producing reliable

software is not an easy task right now which consequently means that, other sciences have

problem in creating reliable software, fast, and concentrate more on their specialized �eld

and spend their time and resources on solving their problem rather than spending their

resources on creating reliable software. As a result of this the progress of evolution of

other sciences and thus humanity cannot be as fast as it could be if creation of reliable

software was cost-e�ective, easy and fast. Therefore having a structured, scienti�c and

mathematical approach towards creating reliable software, fast, is inevitable in computer
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science. This improvement not only improves this science but allows other sciences to

expand as the result of it.

This need for creating reliable software has led many mathematicians, computer scien-

tists and software engineers to create new methods to properly specify and test software.

There are a number of di�erent approaches for specifying software in order to eliminate

potential errors from the design and creating speci�c and non-ambiguous guidelines for

creating functions. These methods have proven to be signi�cantly helpful in creating

reliable software and they are being used mainly on safety critical systems currently.

1.3 Project Objectives

This project aims to create an automated prover for (Euler) diagrams which can prove

the correctness of diagrams which, in the simplest explanation, means that the diagrams

are logically sound and complete (that if a diagram is derived from another diagram,

it follows the logical reasoning rules). This will make the process of speci�cation much

faster and less error prone.The aim of the project is creating a prover for unitary and

compound diagrams.

The advantages that this system has are:

1. This system will save the designer a lot of time in proving the correctness of the

diagrams and allows the designer to spend more time on speci�cation.

2. This system reduces the errors that might occur during the speci�cation process

because it can be used to prove the correctness of each step of the design rather

than doing it when the speci�cation is done.

3. The designer does not have to know the rules of diagrammatic proof. They can just

use the prover to see whether diagrams follow from each other.

Currently there is an automated theorem prover called �Edith� that is a unitary Euler

diagram prover written in Java. Ideally, the ultimate goal of this project is to create

another prover that is for compound diagrams as well as unitary which is open source

and has a better structural design compared to Edith. But because this project is an

experimental (research based) project, the decision of what path to take and what the

�nal deliverable should be, will be decided during the development of the project.
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2 Project

This section is about the project from its beginning to its end. It discusses planning,

objectives and �nal results.

2.1 Objectives

At the beginning of this project, the proposed topic was to create a prover for unitary

diagrams and after the prover was developed and tested completely, then the decision

about what direction the project should take would be decided. There were two directions

the project could have taken:

• Expanding the unitary diagram prover.

• Creating a compound diagram prover for compound diagrams.

The decision that was made, was to implement a compound diagram prover. Because

this project is a research project, all the objectives were not set before starting the project

which means the course of the project could have changed during the development process.

The implications of this are discussed in the next sections. However, the exact objectives

of the project that were decided on are listed below:

• Creating a unitary diagram prover for Euler diagrams.

• "Ideally", creating a compound diagram prover for compound diagrams.

This means that the main objective of this project is creating a unitary diagram prover

and then creating a compound diagram prover if there was enough time available.

2.2 Required Knowledge

To be able to plan and also design and implement such a system there are a number of

subjects that have to be learnt before the start of the project. The required knowledge

are:

• Understanding Euler diagrams

• Unitary diagram proving algorithm

• Understanding diagrammatic reasoning

• Compound diagram proving algorithm

• Practical object oriented design and analysis.
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All the above subjects have to be learnt either before starting or in the course of the

project to be able to design and implement this project. Learning about diagrams was

done using the provided papers by the supervisors and learning about object oriented

programming was done after a long research on designing in the course of the project.

2.3 Planning

As explained earlier the objective of the project at the beginning was to create a prover

for unitary diagrams and then after it was done, deciding what path to take. Because of

this, it was not possible to produce a plan for the entire project before starting it. Also

because of lack of knowledge about the project and the processes that were involved, it

was not possible to produce an accurate plan. Therefore a plan as it is normally expected

of software projects was not produced initially. However, a plan was produced for the

second part of the development of the compound theorem prover. The plan that was

produced for the development of the unitary prover is provided below:

Project Plan for Unitary Prover

Understanding the requirement Start from: 5/10/08 To: 31/10/08

Implementation of the Rules Start from: 5/10/08 To: 31/10/08

Implementing unitary prover algorithm Start from: 1/11/08 To: 30/11/08

Testing Start from: 1/12/08 To: 8/12/08

Writing the documentation Start from: 30/11/08 To: 6/12/08

Of course this plan did not work as it was supposed to, because when it was produced,

there was no knowledge of what processes were going to be involved. So it was purely

based on assumptions and guesses. For instance the testing and �xing the bugs, pro-

gressed until the beginning of January 2009 which means that the project was delayed

for about a month. However for the second part of the project, it was more clear what

processes were going to be involved and also there was an acceptable understanding of

the requirements for the second part of the project. As a result of this, producing a more

accurate plan for the second part of the project was a necessity before carrying on the

research and development for creating a compound theorem prover. Therefore the plan

that is represented in �gure (3) was produced with its corresponding Gantt chart.

Asian, this plan also was inaccurate because of a number of reasons:

• Lack of understanding about software design which is explained in detail in section

6.

• The time that was needed for learning about the subject (diagrammatic reasoning

mainly) took longer than expected.
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Figure 3: Second plan: For development of compound prover
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• Unforeseen problems that occurred with the programming language, namely prob-

lems with memory management (explained in more detail in section 7.

• Misunderstanding a few points about visual modelling. The main cause of this issue

was, unfamiliarity of using academic papers to learn a new subject. For example,

learning the details about diagrams and diagrammatic reasoning requires reading a

number of papers in a correct order to be able understand the subject. Not reading a

paper or not knowing about just one simple point could lead to incorrect conclusions

and therefore incorrect understanding.

• Signi�cantly underestimating the time required for writing the project report. This

single underestimation caused the entire plan to not work out as it was supposed to.

As it is clear, there were a great deal of issues in planning this project. It was ex-

tremely di�cult to predict problems or perform risk analysis for this project. However,

looking back on what was involved in this project, it was impossible to predict the is-

sues that were going to happen and also producing a plan which could in fact be practical.

It is important to note that in the middle of the implementation of the project at

the �rst of March, the implementation was stopped as the supervisors advice to stop

the implementation and proceed to producing the project report. The time that was

estimated for writing the documentation was signi�cantly underestimated and that caused

the planning to not work out. Although the requirements were understood and there

was a relatively a good understanding of what should have been done for implementing

the complete compound prover, lack of time did not allow the compound prover to be

completed.

2.4 Time Management

Both the research and development of this project consumed a great deal of time which

was not expected in the magnitude that it did. On average at least 40-50 hours was spent

on this project each week (for both research and development). The way the time was

spent on this project might have been more than necessary but because of the amount

of learning that was involved in better understanding of visual modelling, diagrammatic

reasoning, logic and software design it seems to be acceptable. On the whole, it is true

that the planning did not work but the way that the time was spent was not the cause

of the failure of the plans.
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2.5 Tasks

The table below shows the tasks that were involved in this project and it shows which

ones of them were completed.

Tasks

Implementation of Restrictive reasoning rules Completed

Implementation of Unitary diagram theorem prover algorithm Completed

Implementation of Compound diagram structure Completed

Implementation of Applying compound diagram rules Completed

Implementation of Compound diagram prover Not Completed

Although the compound prover was not completed, the ability to be able to apply

rules was designed and incorporated in the program.

3 Software Speci�cation

The aim of software speci�cation is to create a (high-level) model serving to specify an

abstract architecture for the required system where its outcome must be understood [12].

Producing reliable software in non-safety critical systems should be as important as

safety critical systems because these systems are going to exists usually for a long period

of time and need to function as expected in that period of time. This reduces maintenance

cost and also makes users more satis�ed. In order to have very reliable software there

must be a clear detailed speci�cation for the entire system. There also has to be a set of

de�ned metrics for creating software because by using these metrics, it will be possible to

measure the reliability of a piece of software and then take action accordingly. The set of

metrics must clearly specify the expectation boundary and the absolute purpose of the

software. Also there should exist a system that can ensure the reliability of the software

automatically because if the current methods evolve to a more complex method they will

discourage engineers to use them as it will make their job (production of reliable software)

even more complex and expensive because of the added workload to the project.

3.1 Formal Languages

Software speci�cation can be written using a number of formal languages such as ML. A

formal language is a set of words i.e. �nite strings of letters or symbols [15]. By using

the words and symbols it is possible to represent di�erent operations which can be used

for specifying a particular operation.
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Formal languages use some symbols such as ∨,∧,∈, λ to describe di�erent parts of

the system. This is just for demonstrating what symbols are included in symbolic logic,

there are many more symbols as well.

3.2 Visual Modelling

As stated in the �formal languages� section using formal languages is generally di�cult

and they are hard to read. This has led to a number of researchers (mainly mathemati-

cians) to look for an easier method of specifying software which o�ers the same level

of formalism and accuracy as formal languages do. The result of this research is using

visual modelling namely diagrammatic modelling, rather than symbolic modelling. Re-

search that is currently being carried out on use of diagrams for software speci�cation

is producing some promising tools that can be used to specify software formally. This

method of speci�cation uses diagrams, mainly Euler/Venn diagrams to represent di�er-

ent aspects of the system that is being speci�ed and, then. by applying diagrammatic

reasoning rules to each diagram the speci�cation can be proved to be correct. For ex-

ample in a speci�cation for a library system, the requirement might have a constraint

that "there exists some �lms in the library" (Film ∩ Library 6= ∅) represented in �gure

(4) and in a particular state of the program there is no �lms available in the library

(Film ∩ Library = ∅) as respresented in �gure(5). Using diagrammatic reasoning it is

not "logical" to be able to reach diagram d2 from d1. Which means that proving that

the diagram provided in �gure(5) follows from the diagram provided in �gure (4) is not

possible using the unitary diagram proving algorithm. Therefore the constraint that was

imposed on this system that the library has some �lms has failed which means that the

speci�cation is not logically sound and complete.

Figure 4: d1 Figure 5: d2

This system has a number of possible advantages which include:

1. Speci�cation can be understood more easily by looking at a number diagrams rather

than reading the symbolic statements that other languages use. For instance the
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diagram provided in �gure (5) can be interpreted asBooks∩Library 6= ∅ or Library∩
Film = ∅. However, by just a simple glance at the diagram both given logical

statements can be understood without reading a single statement.

2. Reading and understanding the speci�cation becomes faster than using symbolic

statements because a picture can say a great deal more compared to a single logical

statement .

3. It is signi�cantly easier and faster to produce the speci�cation using diagrams rather

than using the symbols.

This makes speci�cation relatively easier and faster which is quite a compelling reason

for choosing diagrammatic notation as the speci�cation method as the engineers are after

an easier and faster speci�cation method. These advantages are all arguable, they should

not be treated as proven facts and they are not the only advantages of the diagrammatic

system. Di�erent designers and engineers require di�erent tools in order to produce their

speci�cation. It is a scienti�c fact that di�erent people learn and conceive information

in di�erent manners. Some people learn visually faster and can remember information

visually and this system is just another tool that has to exist for people who are more

comfortable with visual information. This diagrammatic system is still being developed

and there is a great deal left to be discovered in this area. It is too early to judge whether

the diagrammatic system has any particular advantages over symbolic logic and it is

di�cult to have a compelling scienti�c fact for designers in symbolic logic to adopt dia-

grammatic system and use that for their speci�cation work. However it seems that the

diagrammatic system and symbolic logic have to coexist to make an e�cient speci�cation

method. For a more detailed information on diagrammatic system refer to [20].

As explained above in order to use the diagrammatic method it is needed to apply

diagrammatic reasoning rules to diagrams to ensure that the speci�cation is correct log-

ically. This means that the designer has to apply rules to each diagram that is supposed

to follow from another diagram and prove that the meaning the diagrams imply is cor-

rect logically (will be explained in more detail). This is currently done manually by the

designers which is error prone and is a tedious process. For instance when a designer

has speci�ed what should happen after an event in the program has occurred, he has to

represent the starting state of the program in a diagram and also the desired state after

the event has occurred. Then by applying reasoning rules that the diagrammatic system

provides he can prove whether the diagrams truly follow from one another logically. If

not that means the speci�cation has errors in it and therefore the program that is written

based on that speci�cation has bugs in it (only if the program conforms to the speci�ca-
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tion).
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4 Visual Modelling

4.1 Brief Diagrams History

After Shin's [18] work on demonstrating that it is possible to have a sound and com-

plete diagrammatic logic, diagrams have become a valuable tool to be used in logic. One

of the most important reasons that diagrams are used is because they are much more

intuitive to understand compare to symbolic logic. Understanding and using symbolic

logic needs the ability to understand and formulate rigorous arguments. As a result of

this issue symbolic logic is not accessible to a wide range of users i.e. software engineers,

programmers, computer scientists, etc. Software Engineers are used to the idea of using

frameworks such as testing or designing (like patterns) frameworks that are standard

in the industry which they can be used to communicate with other software engineers

in a standard way. Having symbolic logic as a framework is just ine�cient because of

the vast amount of knowledge engineers should have in order to understand the rigorous

arguments and logical statements. Moreover experience has proven that software engi-

neers are more comfortable with visual modelling tools such as the Uni�ed Modelling

Language (UML) because of thier, relatively, user friendliness. Considering these facts

it seems compelling that there is a need of a diagrammatic system that can represent

logical statements. This diagrammatic system has the potential to become the standard

modelling framework in the industry and could be bene�cial to many potential users

due to its rather straightforward, intuitive way of understanding it [19]. Figure 1 below

demonstrates the di�erence between understanding the meaning of a diagram compared

to a symbolic statement. The diagram below can be interpreted in di�erent ways. An

interpretation of it could be �There does not exist any car that is a computer or a PC�

in symbolic logic it is:

¬∃x((Computer(x) ∨ pc(x)) ∧ Car(x))

The shaded areas represent emptiness. The normal form and the shading are explained

in later.

4.2 Overview Of Diagrams

There a number of di�erent diagrams that are used by mathematicians in the area of logic

that are related to sets i.e. Venn diagrams, Euler diagrams, Spider diagrams, Johnston

diagrams, etcetera. These diagrams all have some advantages and disadvantages in dif-

ferent circumstances. Euler diagrams are the main concern here as this project is about

implementing a prover for Euler diagrams.
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Figure 6: An Euler Digram

Figure 7: The normal form of the diagram

4.3 Euler Diagrams

The de�nition of Euler diagrams as described in [8] is Euler diagrams are �nite collections

of simple closed curves (shapes that do not self-intersect) drawn in the plane and may also

contain shading. Euler diagrams consist of contours and zones. The de�nitions regarding

Euler diagrams are:

• A Contour is a closed curve that represents a set. For instance in the diagram below

�A� is a contour.

• A Zone is a region in the plane that is inside cetain contours and outside the rest.

• A Shaded Zone in Euler diagrams means that the speci�c area in the diagram is

empty. In other words the shaded zone means there is no element in that area.

• A Zonal Region is a region that becomes a zone when contours are removed.

For more detail refer to [8].

The diagram below is an example of an Euler diagram.

There might be a slight confusion between Euler diagrams and Venn diagrams because

of their similarities. Venn diagrams can be seen as a special case of Euler diagrams, as
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Figure 8: An Euler Diagram

Venn diagrams must contain all possible zones, whereas Euler diagrams can contain a

subset of all possible zones. In Venn diagrams a shaded zone represents an empty set,

whereas in an Euler diagram the corresponding zone could be missing from the diagram.

This means that as the number of contours increase, Euler diagrams are typically less

visually complex than the equivalent Venn diagram, particularly if the number of non-

empty intersections is small [1].

The intersection of the contours in Euler diagrams means that there might exist com-

mon elements between those particular contours which represent sets. Each Euler dia-

gram has an abstract syntax which describes the diagram using text. This abstract syntax

helps signi�cantly in creation of an automated theorem prover for the diagrams because

it provides a structured framework to be used in describing each diagram while trying to

prove theorems (this will be explained in the later chapters). To give an example of the

abstract syntax, the abstract syntax of the above diagram is written below.

contours = {A,B,C}
zones = {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (AC,B), (ABC, ), (∅, ABC)}
shadedzones = {(A,BC), (B,AC), (C,AB)}

The abstract syntax of the diagram only puts the diagram in textual format and

says nothing else about it. It is still possible to read the abstract syntax as reading the

diagram itself. For instance the zone (A,BC) can be read as inside A and outside B and

C. Zones are put into brackets in the abstract form and the separating comma separates

the inside of the zone with its outside. To clarify, the contour label(s) on the right side of

the comma are the part of the zone that is being considered but just having that is not

enough because the contour(s) might have intersections with other contours that are not

being considered. Therefore it is necessary to state on the left side of the comma what
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contours are not included in the zone.

4.4 Diagrams

There are two types of diagrams in this system:

• Unitary Diagrams: A unitary diagram is just a single (Euler) diagram which is

constructed without the use of any operators.

• Compound Diagrams: A compound diagram is a diagram that is constructed using

the operators ∧ or ∨ or both. The operator ¬ can also be used to represent the

complement of a diagram.

4.5 Notations

The notations that are used in this system are explained below:

• ∨ : This operator is called the "Or" operator.

• ∧ : This operator is called the "And" operator.

• ¬ : This operator is called the "Not" operator. It is used to represent the negation

of its operand (a diagram).

• ↔: This operator means that starting from the left side it is possible to reach the

conclusion on the right side or starting from the right side it is possible to reach the

conclusion on the left side. It means that the statement that has this operator in, is

correct both ways.

For details about di�erent operators and understating set theory refer to [22]

4.6 Reasoning

In order to have a formal diagrammatic system it is necessary to have a set of well de�ned

rules that can be used to prove the correctness of diagrams (that the diagrams are sound

and complete which means they follow all logic behind diagrammatic reasoning) formally.

Because of this reason a number of well de�ned rules are de�ned in a number of di�erent

papers which include [8] and [21]. These rules are signi�cantly helpful in structuring

the process of proving (explained in later sections). By substituting di�erent diagrams
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in di�erent reasoning rules it is possible to prove certain issues about that diagram or

diagrams. This depends on the context in which the diagrams are being considered. For

this project a certain number of rules are used to check if there exists a proof between two

diagrams. In this project the so-called restrictive reasoning rules are used. It is possible

to weaken these rules and have a number of di�erent rules called the �relaxed reasoning

system� [8]. The reason that restrictive reasoning rules are used in this project is because

the ultimate goal of the project is to implement a prover for compound diagrams which

does not require the relaxed reasoning rules to be completed.

4.7 Reasoning Rules

The rules that are used in the prover are :

1. Add Contour

2. Remove Contour

3. Add Shaded Zone

4. Remove Shaded Zone

5. Identity Law

6. Complement Laws

7. De Morgan's Laws

8. Involution

9. Distributivity

10. Idempotency

11. Inconsistency

12. Connecting a diagram

13. Removing a diagram

Each rule is explained with examples below in detail.

4.7.1 Add Contour

This rule simply adds a new contour to the diagram. Provided that the contour is not

already in the diagram. Adding the contour causes each zone to be split into two zones

(one inside and one outside the new contour), and shading is preserved [8]. The �gures
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below demonstrates how a new contour is added. As it is clearly visible the new contour

C is added to the diagram and has split all zones into two zones. The abstract syntax of

�gure 9 before adding is:

contours = {A,B}
zones = {(A,B), (B,A), (AB, ∅), (∅, AB)}
shadedzones = {(AB, ∅)}

Figure 9: Before applying Add contour Figure 10: After applying Add contour

After adding the new contour the abstract syntax becomes:

contours = {A,B,C}
zones = {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (AC,B), (ABC, ), (, ABC)}
shadedzones = {(AB,C), (ABC, )}

4.7.2 Remove Contour

Removing a contour is the reverse process of adding a contour. All the zones that are

involved with that contour will combine with other zones to form a single zone. For all

pairs of zones that have to combine in order to form a single zone which either both

shaded or both nonshaded, the shading is preserved and no new shading is added.[8].

In the abstract syntax all the zones that are created by the add contour rule must be

removed and all the zones that have the contour label that is being removed must be

modi�ed to exclude the contour label.

The diagrams below demonstrate removing of contour C. The abstract syntax of �g-

ure 11 before removing the contour is:

contours = {A,B,C}
zones = {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (AC,B), (ABC, ∅), (∅, ABC)}
shadedzones = {(AB,C), (ABC, ∅)}

After removing contour:

contours = {A,B}
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Figure 11: Before applying remove contour Figure 12: After applying remove contour

zones = {(A,B), (B,A), (AB, ), (, AB)}
shadedzones = {(AB, )}

4.7.3 Add Shaded Zone

Adding a shaded zone adds a missing zone to the diagram and shades it. To clarify,

there are situations that by just looking at the diagram it is not possible to see all the

zones. It is necessary at times (i.e. for proving) to present the diagram in a way that all

zones are visible. The "invisible" (missing) zones can be added to the diagram by this

rule and because they are not visible it means they are empty and therefore they have

to be shaded. However the new diagram that is created as the result of adding the new

missing zone is di�erent from the starting diagram but has a strong relationship with it

i.e. it contains the same zones plus a new zone and the same shaded zones plus that new

zone shaded. If a missing zone is added but it is not shaded the new diagram will not

be the same as the starting diagram. A missing zone means that the zone is not in the

diagram (which in symbolic logic means the set is empty) and is not considered to have

any elements in it. Adding the missing zone and not shading it means the diagram is

modi�ed and does not have a strong relationship with the starting diagram.

The abstract syntax before adding the missing zones represented in �gure 13.

contours = {A,B,C}
zones = {(A,BC), (B,AC), (AB,C), (AC,B), (, ABC)}
shadedzones = {}

After adding the missing zones and shading it represented in �gure 14. Note that this

rule is used three times to ad all missig zones to the diagram.

contours = {A,B,C}
zones = {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (AC,B), (ABC, ), (, ABC)}
shadedzones = {(C,AB), (BC,A), (ABC, )}
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Figure 13: Before applying add shaded zone
Figure 14: After applying add shaded zone (three

times to add all missing zones)

As it is clearly visible in the diagrams, the zones (C,AB), (BC,A), (ABC, ) were not

mentioned in the abstract syntax of �gure 13 and by looking at the diagram (in �gure

14) it is obvious that the zones are missing while the diagram implies that those zones

exist.

4.7.4 Remove Shading from a Zone

This rule is the reverse of the add shaded zone rule. A shaded zone can be removed but

only if there is at least one zone inside each contour in the resulting diagram and the

zone outside all the contours remains [8]. If a missing zone is added to a diagram (which

is shaded) is no longer needed to be shaded i.e. it contains some elements in it, it is

possible to remove the shading from the zone by applying this rule.

Abstract syntax of �gure 15

contours = {A,B}
zones = {(A,B), (B,A), (AB, ∅), (∅, AB)}
shadedzones = {(AB, ∅)}

Figure 15: Before removing shaded zone Figure 16: After removing shaded zone

Abstract syntax of �gure 16

contours = {A,B}
zones = {(A,B), (B,A), (AB, ), (, AB)}
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shadedzones = {}

As it is visible the shading is removed from the zone in �gure 16 and now it means

that zone (AB,C) is not empty any more or "might" contain one or more elements in

it but note that Euler diagrams do not say anything about non-emptiness of zones they

can only talk about about the emptiness of zones.

4.7.5 Identity Law

Identity law says a diagram connected to another empty diagram by an "and (∧)" oper-
ator is equivalent to the diagram itself and vice versa.

d1 ∧�←→ d1

4.7.6 Complement Laws

The complement laws in diagrammatic logic are:

d1 ∨ ¬d1 ←→ �

and

d1 ∧ ¬d1 ←→ ¬�

Figure 17: d1 Figure 18: ¬d1

In the above diagram in �gure 17, A∩B = ∅ and in the diagram in �gure 18, A∩B = ∅.
So (A ∩ B) or (A ∩ B) = ∅. This is meant by d1 ∨ ¬d1 in the above law. Also in ¬d1,

A ∩ B 6= ∅ (it is possible to assert this because of the ¬ operator before d1). Therefore

(A ∩B) and (A ∩B) 6= ∅. This is also is meant by d1 ∧ ¬d1.

Note that the reverse of this law is also correct which is represented by ←→.

4.7.7 De Morgan's Laws

These laws say that if a compound diagram is neglected and the connector between the

diagrams is a ∨ operator is the same as the complement of the �rst diagram connected
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with a ∧ and the complement of the second diagram. Also if a compound diagram is

neglected and the connector between the diagrams is a ∧ operator is the same as the

complement of the �rst diagram connected with a ∨ and the complement of the second

diagram.

¬(d1 ∨ d2)←→ ¬d1 ∧ ¬d2

¬(d1 ∧ d2)←→ ¬d1 ∨ ¬d2

In the compound diagram in �gure 19, d1 says that B ⊆ A and d2 says that A∩C = ∅.
Considering ¬(d1 ∧ d2), d1 ∧ d2 says that B ⊆ A and A ∩ C = ∅. Also ¬(d1 ∧ d2) says

that B * A or A ∩ C 6= ∅ but this is what ¬d1 ∨ ¬d2 tells us.

Figure 19: De Morgan's Law

4.7.8 Involution

This rule states

¬¬d1 ←→ d1

which means that the complement of a complement is the diagram itself.

4.8 Distributivity

The distributivity rule is

d1 ∧ (d2 ∨ d3)←→ (d1 ∧ d2) ∨ (d1 ∧ d3)

d1 ∨ (d2 ∧ d3)←→ (d1 ∨ d2) ∧ (d1 ∨ d3)

Consider the diagrams represented in �gure 20, the diagram d1 tells us that B ⊆ A,

d2 tells us that A ∩ C 6= ∅ and d3 tells us that A ∩ B ∩ C = ∅. Consider d1 ∧ (d2 ∨ d3),

(d2 ∨ d3) says that A ∩ C 6= ∅ or A ∩ B ∩ C = ∅ and d1 tells us that B ⊆ A. However,

B ⊆ A and A ∩ C 6= ∅ or A ∩B ∩ C = ∅ is also meant by (d1 ∧ d2) ∨ (d1 ∧ d3).
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Figure 20: Distributivity Rule Example

4.9 Idempotency

Any diagram connected to itself by an "or" or "and" connector is equivalent to the

diagram itself.

d1 ←→ d1 ∧ d1

d1 ←→ d1 ∨ d1

4.10 Information Weakening Rules

Information weakening rules weaken (or make more general) the informational content

of a diagram. These information weakening rules can only be applied inside an even

number of negation signs. "For example, if d1 can be replcade by d2 by applying one of

the weakening rules then only the second occurrence of d1 can be replaced by d2 in the

compound diagram ¬d1 ∨¬(d3 ∧¬d1)∨¬(d1 ∨ d4)" [21]. For more details on information

weakening rules refer to [21].

4.10.1 Inconsistency

¬�→ d1

4.10.2 Connceting a diagram

d1 → d1 ∨ d2

According to this rule, a diagram can be connected to another diagram using the "or"

connector.

4.10.3 Removing a diagram

d1 ∧ d2 → d1

According to this rule, a diagram can be removed from a compound diagram, if the

connector between them is an "and" connector.
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5 Unitary Diagram Proving Algorithm

Proving that a unitary diagram, d1, follows from another unitary diagram, d2, requires a

structured algorithm that can be followed and say whether a proof exists that d2 follows

from d1. In order to be able to construct an automated prover such an algorithm is

necessary to automate the processs. The algorithm that is desigend for this purpose is

de�ned below in a number of steps.

Suppose that d1 is the premise diagram and d2 is the conclusion diagram.

1. Add all missing zones to d1 using the add shaded zone rule. The new diagram is

called dZ
1 .

2. Find all contour labels in d2 that are not in d1 and add them to dZ
1 using the add

contour rule. The new diagram is called dL
1

3. Repeat the same process for d2. Call the resulting diagrams dZ
2 and dL

2 respectively.

4. Remove shading from zones in dL
1 that are not shaded in dL

2 .

5. Compare the shaded zones in dL
1 and dL

2 .

(a) If there is a shaded zone in dL
2 that is not shaded in dZ

1 (or the shaded zone does

not exist in dL
1 ) then there is no proof which means the d2 does not follow from

d1.

(b) If all shaded zones in dL
2 are also shaded in dL

1 therefore there is a proof.

If there exists a proof, writing the proof is based on the following steps:

1. Starts from the premise in this case d1.

2. The next diagram to be written is dZ
1 .

3. Then the next diagram that has to come after the two previous ones is dL
1 .

4. Remove shading from zones in dL
1 that are not shaded in dL

2 . The diagram that is

produced is called dL−sh
1 , this diagram is the same as dL

2 .

5. Remove contour labels from dL−sh
1 that are not in d2. The resulting diagram is called

dL−sh−L
1 this diagram is the same as dZ

2 .

6. Remove zones from dL−sh−L
1 that are not in d2. The resulting diagram is called

dL−sh−L−Z
1 which is the same as the conclusion which is d2. This means from the

premise the conclusion is reached and therefore d2 follows from d1.

Figure 21 depicts the order the proof should be written.
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Figure 21: The order for writing the proof

5.0.4 Proof Example

To make the algorithm easier to understand an example is provided below that shows

how the algorithm should be applied to reach the desired result. Figure 23 is the premise

diagram and �gure 22 is the conclusion diagram.

Figure 22: Premise Diagram Figure 23: Conclusion Diagram

Starting with the premise, the �rst step as stated above is adding the missing zones

and clearly the zone (AB, ) is missing and needs to be added to the diagram. The re-

sulting diagram is �gure 24. Second step is checking for missing contours that exist in

the conclusion diagram but not in the premise diagram. Obviously contour C is missing

and has to be added to the diagram. The resulting diagram is �gure 25. Considering the

abstract syntax of the diagram, notice that by adding the new contour, new zones are

also created which have to be added to the diagram. Now the zones that exist in this

diagram are {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (CA,B), (ABC, ), (, ABC)}.

Considering the conclusion diagram it is clear that zones {(AB,C), (ABC, )} are miss-

ing and need to be added to the diagram using the add shaded zone rule. Adding the

missing zones to the diagram results in the diagram provided in �gure 26. The second

step is to add the missing contours to the diagram, but clearly there is no missing contour.

Therefore no action is required at this stage. Now the zones that exist in this diagram

are {(A,BC), (B,AC), (C,AB), (AB,C), (BC,A), (CA,B), (ABC, ), (, ABC)}.
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Both diagrams ( dL
1 and dZ

2 ) are in their normal form and can be compared now. By

looking at the shaded zones in dZ
2 and dL

1 , it is obvious that there are no shaded zones

in dZ
2 that are not shaded in dL

1 . Therefore a proof exists for proving d2 follows from d1.

Note that in this special case d1 follows from d2 as well.

Figure 24: dZ
1 - After applying add shaded zone rule

Figure 25: dL
1 - After adding the missing contour

Figure 26: dZ
2 - After adding missing zones

The next step is writing the proof. Following the proof writing algorithm, the proof

is:

1. Starting with d1 in �gure 22.
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2. The next diagram is dZ
1 (�gure 24).

3. The next diagram is dL
1 (�gure 25).

4. Removing shaded zones from dL
1 that are not shaded in dZ

2 is not necessary because

none exist.

5. Removing contour labels from dL
1 that are not in dZ

2 is not necessary because none

exists.

6. Removing zones from dL
1 that are not in d2 is necessary because the zones (AB,C)

and (ABC, ) do not exist in d2. The resulting diagram is d2.

Accoridng to the proof written above, by starting from d1 it is possible to reach d2

after applying each step to the diagrams.
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6 Project Design

In this section the process of designing this project is discussed in detail. Also the

�ndings from the extensive research that was carried out on software design, is provided

in a number of arguments that elaborate on software design.

6.1 Initial Steps

Usually it is expected to start a project by investigating the problem, reviewing available

resources and designing a domain model to illustrate the problem and understanding the

requirements completely. However this is not how this project started which was a very

troublesome mistake. This mistake caused the design of the project to be changed every

week and rewriting the code and changing the way di�erent classes interacted with each

other. Rushing into implementation can possibly be the most time consuming mistake

that was made during the process of this project. This one mistake led to producing

a very inaccurate plan which mostly did not work out the way it was expected. Most

of these problems were because of lack of knowledge in the area of design and problem

solving techniques. However after understating how each step should have been done,

the new techniques were adopted and the strategy of proceeding towards completing the

project changed in the course of implementation.

6.2 Design Methodology and Prioritization

Design methodologies or "software development processes" are di�erent ways that soft-

ware developers can follow to produce their product. There are a number of design

methods that can be used for each project and depending on the speci�c characteristics

of each method and sometimes personal preference one method can be chosen and used.

The popular design methods are extreme programming, agile software development, uni-

�ed process (UP), waterfall method and SCRUM [13].

Also the term design patterns needs to be de�ned before moving on to discussing the

design process of this project. Christopher Alexander says, "Each pattern describes a

problem which occurs over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice" [9].

Extreme Programming or XP for short is a design method that is lightweight, e�cient,

low-risk, �exible, predictable and scienti�c way to develop software [6]. It is distinguished

from other methodologies by

• Its early, concrete, and continuing feedback from short cycles.
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• Its incremental planning approach, which quickly comes up with an overall plan that

is expected to evolve through the life of the project.

• Its ability to �exibly schedule the implementation of functionality, responding to

changing business needs.

• "Its reliance on automated tests written by programmers and customers to monitor

the progress of development, to allow the system to evolve, and to catch defects

early".

• "Its reliance on oral communication, tests, and source code to communicate system

structure and intent".

• "Its reliance on an evolutionary design process that lasts as long as the system lasts".

• "Its reliance on the close collaboration of programmers with ordinary skills".

• "Its reliance on practices that work with both the short-term instincts of program-

mers and the long-term interests of the project".

XP is designed to work with projects that can be built by teams of two to ten program-

mers, that are not sharply constrained by the existing computing environment, and where

a reasonable job of executing tests can be done in a fraction of a day. For more detail

refer to [6].

Agile development methods apply timeboxed iterative and evolutionary development,

adaptive planning, promote evolutionary delivery, and include other values and practices

that encourage agility rapid and �exible response to change. It is not possible to exactly

de�ne agile methods, as speci�c practices vary. However, short timeboxed iterations with

adaptive, evolutionary re�nement of plans and goals is a basic practice various methods

share [13]. The agile principles are

• "Highest priority is to satisfy the customer through early and continuous delivery of

valuable software."

• "Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage".

• "Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter time scale".

• "Business people and developers must work together daily throughout the project".
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• "Build projects around motivated individuals. Give them the environment and sup-

port they need, and trust them to get the job done".

• "The most e�cient and e�ective method of conveying information to and within a

development team is face-to-face conversation".

• "Agile processes promote sustainable development".

• "The sponsors, developers, and users should be able to maintain a constant pace

inde�nitely".

• "Continuous attention to technical excellence and good design enhances agility".

• "The best architectures, requirements, and designs emerge from self-organizing teams".

• "At regular intervals, the team re�ects on how to become more e�ective, then tunes

and adjusts its behaviour accordingly".

For more details refer to [13].

SCRUM is another design method that appears simple, yet has practices that deeply

in�uence the work experience and that capture key adaptive and agile qualities. Scrum's

distinctive emphasis among the methods is its strong promotion of self-directed teams,

daily team measurement, and avoidance of prescriptive process. Some key practices

include [13]:

• Self-directed and self-organizing team

• No external addition of work to an iteration, once chosen

• Daily stand-up meeting with special questions

• Usually 30-calendar day iterations

• Demo to external stakeholders at end of each iteration

6.3 Prioritization Of Non-Functional Aspects

In this project a speci�c design method was not chosen because these design methods are

more concerned about customers and development team and they do not discuss issues

that an individual project has to deal with. But this does not mean that they cannot be

used with individual projects, they can be modi�ed and used with individual projects as

well. However there are a number of issues which are not mentioned with these methods.
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• How one starts the process of designing?

• How can the designer make decisions in order to create an acceptable design?

• In what circumstances does the designer need to use design patterns?

Of course the assumption is that the designer already knows about these issues from

previous experience. But for an amateur designer who does not have the necessary

experience it is a di�cult and time consuming process to make decisions on how to

design a piece of software and how to incorporate the di�erent design aspects such as

extensibility, reuse, etc in the project. However it seems that there is a simple solution to

this problem which is prioritization of non-functional aspects of the design. This means

if the designer has a guideline on the importance of di�erent design aspects for having

a good design he can easily make decisions on how to proceed in di�erent stages of the

design. Some of the non-functional aspects of the design which need to be prioritized are

1. Extensibility : How extensible should the system be?

2. Reusability : Is this code going to be reused in the future?

3. Modularity : How modular should the system be?

4. Size : Is the number of lines of code important?

5. Simplicity : How simple should the design be? also who is going to use this design?

6. Maintainability : How important is the maintainability?

In none of the popular software development processes these points are discussed appar-

ently because the designer is supposed to know these before starting to design. How-

ever by extending these development processes and incorporating the prioritization of

non-functional aspects of designing it simpli�es the process of decision making during

di�erent stages of the design for both amateur and experienced designers. This prioriti-

zation provides the guidelines necessary for whether to use a design pattern and how the

programmer should write the code.

At the start of this project because of lack of understanding of design no guideline was

set before starting the design and this caused the design to change frequently. The main

reason for that was the most important desired outcome for the design was unknown, the

whole point was to have a nearly perfect design which contained all the above points and

was fully compatible with all object oriented design principles. Such a vague, unclear and

inaccurate goal caused the design to change because of gaining more knowledge about

design in general and also the tendency towards using design patterns as it was thought

the more design patterns you use the better your design is. After understanding these
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points and discovering that prioritization of di�erent non-functional aspects of the design

and clearly identifying the most important outcome of the design can change the way

a designer makes decisions, the entire process became much simpler and it was possible

to create the design which was much more stable compare to the other designs which

changed fundamentally every week.

After learning more about design this guideline was produced for this project which

helped signi�cantly to create the more stable design. The guideline for this project is the

below list.

1. The most important outcome in this project is to complete the automated prover for

both unitary and compound diagrams. Therefore the size of the program matters

because writing more code requires more time which in this project time is very

limited. So the �rst important priority is less coding (smaller size).

2. It is very important to have this code maintainable as it might be used later by other

programmers.

3. Modularity. It is important because some of the modules can be used for other

purposes as well because some of them can be helpful in solving other problems i.e.

the binary tree creation module.

4. Extensibility is useful because this code "might" be used in the future to be extended

in order to create a more accurate and e�cient prover. It is important not to confuse

extensibility with maintainability. Extensibility means to extend the program by

adding new features to it but maintainability means that if there is a bug or if a

task that the program is performing needs to be changed, �xing or changing it is

not di�cult and can be done by other programmers as well. Maintainability does

not usually mean introducing new features to the software.

5. Reusability is important if the code is going to be used later on but is not absolutely

necessary. This does not mean reusability is not important in implementation, it

only means it is not absolutely important to make the design reusable so it can be

applied to other problems.

6. Simplicity is important to keep the design simple and understandable however it

is not strictly necessary because the users of the system are mathematicians and

programmers who do not have di�culty understanding the aspects of the design

and the code.

The importance of this prioritization is more conceivable when an amateur designer

wants to decide whether or when to use a design pattern. In the gang of four book [9] the
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bene�ts of each pattern is given clearly and by reading each bene�t if the pattern is rele-

vant to what is needed in the design, the designer might think that using the pattern is a

good idea whether it is necessary or not. As the pattern provides such promising bene�ts.

Therefore the designer decides to use the pattern. However if the designer had a guideline

on what is most important in the design, the process of making decision would be based

on what is necessary rather than what is bene�cial. This will protect the designer from

unnecessary change to the design and therefore the implementation of the software. For

instance in this project there is an algorithm for creating binary trees for constructing

a compound diagram. Designing and implementing this algorithm can use a number of

di�erent patterns which are very bene�cial and there are good reasons why to use them.

These patterns include visitor pattern, template method pattern, strategy pattern and

composite pattern. Each one of these patterns provide a set of very promising bene�ts,

for example a template method pattern de�nes the skeleton of an algorithm in an opera-

tion, deferring some steps to subclasses. Template Method lets subclasses rede�ne certain

steps of an algorithm without changing the algorithm's structure [9]. It is possible to say

that it might be necessary to create the binary tree in a di�erent way as the project is

extended. So it is a good idea to use the template method pattern here. But as stated

above in the guideline for this project the most important outcome is less coding and

completing the program in the short time that is provided for implementation and also

extensibility is priority number 4. Therefore it is not necessary to use this pattern even

though it is bene�cial.

Moreover, prioritization of non-functional aspects of design can solve another problem

in designing which is de�ning what is meant by the relative terms such as "good design"

or "better design" or "bad design". Because the set of guidelines (or list of priorities)

that is created provides the ability to be able to compare and contrast di�erent designs

by checking which design satis�es more of the priorities in the correct order. Therefore

the design that satis�es more of the priorities can be considered as the "better design"

and this reduces the ambiguity of the term "better".

6.4 Design Patterns

Experienced software engineers have built a repository of both general principles and

idiomatic solutions that guide the process of creation of software. Design patterns help

di�erent software engineers from di�erent backgrounds to be able to communicate with

each other in more e�ective way because the software engineers who understand pat-

terns and the design terminology can discuss and explain di�erent problems in a more

general way that everyone else also understands. More accurately, a pattern is a named
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description of a problem and solution that can be applied to new contexts, it provides

guidance on how the problem should be solved in a way that it obeys the important

design principles [14].

The GRASP patterns are a learning aid to help one understand essential

object design, and apply design reasoning in a methodical, rational, explainable

way. This approach to understanding and using design principles is based on

patterns of assigning responsibilities.

The patterns that are used in this project are

• Factory Method: This pattern de�nes an interface for instantiating objects. This

pattern lets the decision of which class to instantiate to the class's subclasses.

• Singleton: Ensures that a class only has one instance and provides global access to

it [9].

• Façade: Provides a general interface to a set of interfaces in a subsystem. This

higher level interface makes the subsystem easier to use.

• Builder: Separate the construction of a complex object from its representation so

that the same construction process can create di�erent representations [9].

6.5 General Responsibility Assignment Software Patterns

One of the signi�cant aspects of objected oriented design is understanding GRASP (Gen-

eral Responsibility Assignment Software Patterns) which helps remarkably in the process

of designing. GRASP explains fundamental principles of object design and responsibility

assignment expressed as patterns. According to [14]

6.6 Prioritazation Of Non-Functional Aspects

In this project a speci�c desig

• Information Expert: Assigning responsibilities should be left for information expert,

the class that has the necessary information to ful�l the responsibility.

• Creator: If any of the following cases is true then there should be a class "ObjectCre-
ator" that creates objects of class "ClassA".

� "ObjectCreator" aggregates "ClassA" objects.

� "ObjectCreator" contains "ClassA" objects.

� "ObjectCreator" records instances of "ClassA" objects.
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� "ObjectCreator" closely uses "ClassA" objects.

� "ObjectCreator" has the initializing data that will be passed to "ClassA" when it

is created (thus "ObjectCreator" is an Expert with respect to creating "ClassA").

• Low Coupling: Assign a responsibility so that coupling remains low. Coupling is

a measure of how strongly one element is connected to, has knowledge of, or relies

on other elements [14]. Classes with strong coupling rely on many other classes,

changing one of the classes that the strongly coupled class rely on will also need

local changes to the strongly coupled class. Therefore it is not desirable to have

strong coupling in the design as much as possible.

• High Cohesion: Cohesion (or more speci�cally, functional cohesion) is a measure

of how strongly related and focused are the responsibilities of an element [14]. An

element with highly related responsibilities, and not a great deal of work to do,

has high cohesion. A class that has numerous responsibilities and performs many

unrelated tasks is undesirable because of (for more detail refer to [14]):

� It is hard to understand.

� It is hard to reuse.

� It is hard to maintain.

� Is constantly a�ected by change.

• Controller: A controller is an internal part of the system that does not have a user

interface and is responsible for dealing with system events. This pattern is provided

to handle system events. For instance when a button is pressed in an application

the event should be sent to the button controller to decided what the next step is.

• Polymorphism: This pattern deals with situations where behaviours vary based

on the type of an object. Assigning responsibilities for the particular behaviour

using polymorphic methods (or operations) makes the program easily changable and

extensible because it is logical to use polymorphism rather than using conditional

if-else statements to vary operations based on types. The word "polymorphism"

means giving the same name to methods in di�erent objects.

• Fabrication: In situations where assigning responsibilities might violate low coupling,

high cohesion, reuse or other important principles of design, it is essential to assign

a highly cohesive set of responsibilities to an arti�cial class that does not represent a

problem domain concept and is just a new concept created to support high cohesion,

low coupling, and reuse. This class that is the product of imagination is called

fabrication.
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• Indirection: This pattern is provided to solve the problem of coupling between ob-

jects. It suggests that responsibilities should be assigned to an intermediate object

to mediate between other components or services rather than directly coupling com-

ponents or services.

• Protected Variations: This pattern protects di�erent elements from the variations

on other elements of the system. By assigning responsibilities to create a stable

interface around them (interface in this case is interpreted in the most general sense,

it does not have the same meaning as Java's interface).

Considering these factors it seems GRASP covers a great deal of important aspects of a

"good" design. Applying these patterns to the design of this project helped tremendously

in reduction of lines of code and also increased the speed of implementation. When

the design is understandable and follows the important principles of design, there is a

relativity high probability that the number of bugs will not be as large as it would be

with a design which does not follow the principles. Certainly this was the case in this

project, after the "better" design was implemented, debugging became easier and some

previous bugs disappeared.

6.7 Domain Model

The domain model is the general model or the conceptual model that describes the various

entities involved in the system and the interactions between each entity in that system.

At the start of the design process this model was not produced as it was assumed that

the problem was clearly understood. Not producing this model caused the design to be

changed again. The model that is produced for this system is provided in �gure 27. As

the model shows the prover uses diagrams and applies various reasoning rules to them

and then if there is a proof it will perform the necessary operations (which is writing the

proof). This is the modelling of the domain at the very basic level.

6.8 Process of Designing

At the start it was decided not to design the entire project up front because it will

undoubtedly be inaccurate and change when the process continues. Each week there

were a few set tasks set by the supervisors to complete for the following week. The �rst

task was implementing the "add contour" rule. The tasks for the �rst few weeks of the

project were implementation of

• Remove Contour

• Remove shaded zone
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Figure 27: Domain Model

• Add shaded zone

• File structure to capture the abstract syntax of a unitary diagram.

The designs that was produced in the second and third weeks of the project did not

comply with object oriented principles because of lack of understanding of object oriented

design and also assuming that contours and zones are primitive data types rather than

objects. This mistake of having zones and contours as primitive data type increased

the size of the program unnecessarily because every time for checking whether or not

a zone or a contour is equal to another zone or contour, it was required to write the

equality check but if they were objects the equality check could have been set as each

object's method and could have been used by just calling the method. Figure 28 and 29

and 30 show the designs produced in the second, third and fourth weeks of the project.

Obviously the �rst month of the project the progress was not as good as it could have

been and the only reason that the progress was not acceptable was mainly because of lack

of understanding of design which it was mentioned repeatedly earlier. Another reason for

frequent change in the design was that when a designer does not know why the design

that he has produced is the way it is, if he �nds a di�erent way that seems to be better

he has no option but to change the design. This was the case for this project in the �rst

two to three months of the project.

After about 6 weeks the project reached to the point where it was ready to check

to see whether a proof exists for two given diagrams. The diagram shown in �gure
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Figure 28: Class Diagram in second week

Figure 29: Class Diagram in third week

31 was the result of the 6 weeks of working on the project. This design provides the

necessary functionality that is needed for the system but it is not necessarily extensible

for the later stages such as incorporating compound diagrams. After about 8 weeks the

project was able to check and write a proof given two unitary diagrams. Although later

it was discovered that the project had a few bugs which caused the proof process to be

incorrect. This bug was discovered after performing a number of tests manually. There

were a number of advantages with this design which are

• It is relatively a loosely coupled system. Every class has its own responsibilities and

not all classes are dependent solely on the other classes.

• Contour and zone classes are added and now they can be treated as objects rather

than primitive types.

• Overall less code is needed compare to the previous designs.

The experience that was gained during designing the �rst part of the program (unitary

diagram proofs) created a compelling reason to learn more about design and object ori-

ented programming before starting the second part of the design for compound diagrams

as there are a lot of patterns and principles that are useful for designing such a system.

This conviction was a compelling reason to learn as much about design as possible in the

time available before starting the second stage of the project. Understanding objected

oriented design principles and also all the 23 patterns included in [9] made the process

even more tricky because understanding more requires more thinking about the design

and also considering all the other available options which are possible. Furthermore the

uncertainty that was created because of not knowing which way is the correct way to
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Figure 30: Class Diagram after the fourth week

proceed with the design consumed a great deal of time. Until the point about the impor-

tance of prioritization of the non-functional aspects of design was discovered which made

decision making about what is the best path to go much easier.

As far as it was understood during the research process designing does not have a

scienti�c approach developed for it yet and it is essential to have useful experience before

starting to design. Unfortunately this practical experience that "experienced" designers

have is not documented anywhere and therefore it is necessary at times to adopt personal

methods that seem to be logical in designing. Even though the personal methods might

not be as e�ective as expected. On the whole, the time that was spent on researching on

designing was very e�ective and opened a new chapter in understanding how designing

should really be. With this understanding the design that is introduced in section 6.9

was the latest class diagram that was designed for this project.

6.9 Class Diagram Explanation

The �nal class diagram that was produced is represented in �gure 32 (all methods and

attributes are removed to �t the diagram in one page, the sourcecode of the program is

provided in the CD-ROM provided). This diagram will probably be changed slightly for

implementing the compound diagrams proof algorithm but currently it seems to be an

acceptable choice. The features in this design are listed below to indicate what advantages

this design has.

• Each class has one major responsibility.

• The system is relatively loosely coupled.
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Figure 31: Class Diagram After 6 weeks

• Indirection is one of the important aspects in design which is obeyed in this design

[14]. Di�erent classes are provided whenever possible to mediate between objects

rather than directly coupling the objects. For instance class "TED" mediates be-

tween di�erent components of the system such as "Prover" and "DiagramLoader".

• Creator pattern is used in the design whenever necessary. For example the creation

of a compound diagram is not done in "TED" but it is done in "CompoundCreator"

class.

• Interfaces are provided so clients are not exposed to the inner parts of the system.

They just interact with the interface.

• A few necessary and useful patterns are used.

• Cohesion in the design is considered carefully and it is achieved to a certain extend.

All classes have focused, manageable and understandable responsibilities which allow

objects to interact with each other easily.

• Fabrication is also used in this design whenever necessary. For instance the class

"DiagramLoader" is provided to achieve low coupling and cohesion.

• Controller pattern is also used in this design to deal with di�erent commands that

the user inputs into the program.
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• Information expert pattern is used to guide how the assignment of responsibilities

should be done.
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Figure 32: Final Class Diagram
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6.10 Classes Explanation

6.10.1 Class: TED (Theorem prover for Eulre Diagrams)

This class is responsible for handling interactions between the user and the system. It

mediates between the user and di�erent parts of the system. For example if the user enters

the command to load a diagram "TED" handles the command by sending a message to

"DiagramLoader" class to load the diagram. In the testing section 8 screen-shots are

provided to show how the program works.

6.10.2 Class: DiagramLoader

A diagram is stored in a �le (which can be a text �le), using the diagram's abstract

syntax. This �le has a speci�c style which needs to be followed exactly. In order to be

able to load the diagram it is necessary to

1. Read the �le.

2. Tokenize the �le.

3. Prepare the attributes for diagram object.

4. Check the syntax.

5. Create the diagram object.

All these operations are necessary to be done in order to be able to create a diagram

object. Of course all of them could have been done in one class, however, following object

oriented design principles each one of these operation should be assigned to speci�c classes

that can ful�l the necessary requirements. As the result of applying these principles the

following classes are essential to be created (which are explained in the next sections).

• DiagramCreator

• LexicalAnalyser

• SyntaxChecker

• Parser

Having designed loading a diagram into memory in this way has the advantages of

• Low coupling

• Correct assignment of responsibilities.

• Altering one of the classes would not a�ect the other parts.

46



• GRASP patterns are used.

• The diagram loading component is independent of other parts of the system which

means that it can be reused.

After all of the necessary prerequisite stages are completed DiagramLoader returns

a diagram to the caller. It is important to notice DiagramLoader can also be seen as

a Facade pattern becuase it hides a number of classes from it's client and handles the

details by itself and returns the desired output to the client.

6.10.3 Class: LexicalAnalyser

LexicalAnalizer in this system is responsible for tokenizing the diagram �le. It is very

similar to a compiler lexical analyser but it does not do the same amount of work.

6.10.4 Class: Parser

This class is responsible for sorting the tokens into di�erent sets which are needed to

complete di�erent attributes of a diagram object.

6.10.5 Class: SyntaxChecker

This class is responsible to check to see whether the abstract syntax of the diagram is

correct or not. If it is not, it will take the necessary actions to inform the user.

6.10.6 Class: DiagramCreator

DiagramCreator as it's name suggests is responsible for creating the diagram object. It

receives the required attributes and then creates the object.

6.10.7 Class: ProofWriter

This class is primarily responsible to save the generated proof to a �le called "proof.txt".

It is called from TED class.

6.10.8 Class: Prover

Prover class is an abstract class that its methods are implemented by UnitaryProver and

CompoundProver. It is provided to be an interface so the clients can use the interface

and not be exposed to the internal parts of the system.
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6.10.9 Class: UnitaryProver

This class implements certain methods of the Prover class and it is only responsible for

unitary diagram proving algorithm.

6.10.10 Class: CompoundProver

CompoundProver is provided to apply the compound diagram proving algorithm. It is

responsible only for proving compound diagrams and it does not have any knowledge of

any other aspects of the program.

6.10.11 Class: UnitaryProverCreator

This class is part of a factory method pattern that is introduced in this design. The factory

method is used to allow subclasses (UnitaryProverCreator and CompoundProverCreator)

decide which prover object should be instantiated. This class implements the factory

method (implementation is discussed in section 7 for creating an object of UnitaryProver.

6.10.12 Class: CompoundProverCreator

Similar to the previous class, this class is also a part of the factory method pattern that

is introduced in this design. This class is responsible for instantiating an object of the

class CompoundProver.

6.10.13 Class: ProverCreator

ProverCreator declares the factory method, which returns an object of type Prover.

Clients will use this class whenever a prover object is needed and this allows it's sub-

classes to determine which type of prover object they should create (UnitaryProver or

CompoundProver). The reason for using a factory method is that it is unknown at

runtime which type of a prover should be used until the user inputs the command for

proving. Also factory method provides �exibility in this design because it allows sub-

classes to rede�ne the way objects of di�erent types (i.e. CompoundProver) are created

by just changing the particular subclass of ProverCreator.

6.10.14 Class: Rules

This class is the superclass of classes UnitaryRule and CompoundRule. As all Com-

poundRules and UnitaryRules are still rules this class is provided to incorporate this

relationship.
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6.10.15 Class: UnitaryRule

This class has all rules that can be applied to unitary diagrams. It is a subclass of Rules

class.

6.10.16 Class: CompoundRule

CompoundRule has all rules that can be applied to compound diagrams. It's primary

responsibility is to let the clients apply di�erent rules.

6.10.17 Class: Traversal

Compound diagrams are represented as binary trees in this system to capture their struc-

ture. It is required to be able to traverse through the binary tree in order to read the tree

structure and perform the necessary operations. This class is provided as an interface

which declares a number of methods that are essential for tree traversal. This interface

is provided because at this stage of the project in-order tree traversal is the only type of

traversal needed, however, it might be necessary in the future to implement pre-order or

post-order tree traversals as well. So by providing this interface the system can be more

extensible and allow extensions to be applied in a more structured way (i.e. implementing

the interface for a pre/post-order traversal).

6.10.18 Class: InorderTreeTraversal

This class's primary responsibility is to traversing the given binary tree in an in-order

fashion. In-order tree traversal is described in section 7.6.

6.10.19 Class: Diagram

Diagram class is the superclass of UnitaryDiagram and CompoundDiagram. Because

both unitary diagrams and compound diagrams are still diagrams, it is acceptable to

provide a class (Diagram Class) that represents this relationship correctly. Therefore this

class is provided to depict this relationship between these diagrams and also if in the

future a di�erent type of diagram needs to be introduced to the system, by extending

this class it can be treated as other diagrams.

6.10.20 Class: UnitaryDiagram

UnitaryDiagram class is the abstraction of a unitary diagram. It captures all attributes

of a diagram's from it's abstract syntax and provides a diagram. This class does not
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perform any processing on the diagram at all, it is only assigned the responsibility of

representing a diagram.

6.10.21 Class: Contour

Contour class as it's name suggests, is the abstraction of a contour. In the �rst designs

contour was not an object but rather a primitive data type (string). According to [14]

anything that can be made into an object, should be made into an object. Also as

explained in the previous sections contours are sometimes need to be compared to each

other or need some action to be performed on them. Clearly these are very compelling

reasons to introduce contours (and zones) as a separate object and doing this did pay o�

during implementation phase as less coding was necessary because Contour class had all

the necessary operations encapsulated in itself which could be used whenever required.

6.10.22 Class: Zone

Similar to the Contour class, this class is an abstraction of zone. Zones also were not

described as objects originally and they were de�ned using primitive data type, string.

As explained in the previous section, not describing zones as objects is not an intelligent

way of designing. Therefore for the same reasons as before this class was introduced and

it's responsibility was set to represent zones.

6.10.23 Class: CompoundDiagram

This class is responsible for holding the compound diagram's binary tree which is created

and passed to it. It has the operations essential for a compound diagram and also it

has operations to display what the compound diagram is. But it does not have the

responsibility of performing any modi�cations to the diagram by itself.

It is important to note that, in this case it is possible to use the composite pattern to

represent a compound diagram, however, according to the priotrization of non-functional

aspects of the design, it was not a crucial necessity to use the pattern, it was possible to

create the tree like structure without using the pattern and also keep the design relatively

simple.

6.10.24 Class: CompoundCreator

As the name says, this class is responsible for creating the CompoundDiagram object. It

uses a number of other classes to construct the binary tree of the compound diagram.
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6.10.25 Class: CompoundTree

CompoundTree is the abstraction of a binary tree. It is important to note that these

binary trees might not always be a proper binary tree (a tree that all nodes apart from

the leaves have two children) because of the "not" (¬) operator only has one child. In

fact this class is created to incorporate the idea of a binary tree as an object. A Binary

tree is a set of linked nodes and it does not need to be contained in another object such as

a tree, but it is easier to understand where there is a class that represents the abstraction

of a tree which can hold the set of nodes. That is the reason why this class is created, to

make the design more understandable.

6.10.26 Class: CompoundNode

CompoundNode is a representation of a node. This class is provided to play the role of

a node in a tree. It has the necessary attributes that allows a node object to be linked

to other node objects. It does not modify or perform any operation on the node in any

way.

6.10.27 Class: DiagramHolder

This class is responsible for storing diagrams and providing a number of operation that

can be applied to that set of diagrams. DiagramHolders are used where it is required

to hold a set of diagrams in a collection e.g. it is necessary to store diagrams after each

operation in the process of prvoing them. Creating this class redueces the size of the

program because the operations that are necessary to be done on a collection of diagrams

does not have to be re-written each time they are needed.

6.10.28 Class: SetMaker

This class is responsible for checking if a C++ standard library Vector's elements are

all unique and if they are not it will make them all unique (by removing the duplicate

elements). In section 7.3 the reason why C++ STL sets where not used instead of vectors.

6.10.29 Class: TreeBuilder

Building a tree (CompoundTree object) is the responsibility of this class. TreeBuilder

uses an ExpressionTokenizer and an In�xToPost�x object to prepare the required raw

data before creating the tree. This class is inspired from the idea of the Builder pattern

which is used to seperate the construction of a complex object from it's representation

so the same construction process can be used to create di�erent representations. By
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seperating the construction of a tree, it is possible to change the process of constructing

a tree without changing any other classes, if it was necessary.

6.10.30 Class: ExpressionTokenizer

As the user needs to input the compound diagram to the system using an expression that

describes the compound diagram, it will be required to tokenize the expression. Because

of this reason this class is provided to ful�l that responsibility.

6.10.31 Class: In�xToPost�x

For processing an expression that is going to be made into a tree, it is required to know

which node is the root node. Finding a root node is not a very straight forward job

because it needs to deal with a lot of checkings but there is a very straight forward way

of �nding the root node and it's left and right children. By converting the expression

into an in�x expression it becomes so easy to spot the root node, it is the last node in

the in�x expression. For example the statement

(d1 ∧ d2) ∨ (¬(d3 ∨ d4))

will be converted to an in�x expression

d1d2 ∧ d3d4 ∨ ¬∨

which does not use any brackets and it takes no e�ort to spot the root node.
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7 Implementation

This section is provided to explain the important aspects of implementation in this

project. It includes all the key information about the implementation of this project

which is useful to be noted. The project's code is on the CD-ROM provided and can be

read if necessary.

7.1 Language

The choice of a language was not a major issue in this project because any objected

oriented language could have been used for this project. It was possible to choose Java

as the programming language because of

1. Having past experience with the language.

2. Low possibility of having language related problems.

3. Not needing to manually perform memory management.

4. Java programs are multi-platform which means they do not need to be recompiled

for running on Windows or Linux.

The advantages that Java has makes it a suitable language for this project, but this

project is an experimental project which means that one of it's most important criteria is

learning. Also because of personal interest in learning new languages, it was decided to

use C++ as the programming language of this project. Although C++ might not seem

to be the best programming language for this project but it has some nice features that

are quite useful which are listed below:

1. Pointers: A pointer is a variable that holds a memory address. This address is the

location of another object (typically another variable) in memory. For example, if

one variable contains the address of another variable, the �rst variable is said to

point to the second [17].

2. E�ciency: Programs written in C++ are normally more e�cient compare to other

languages. Comparing to Java, C++ programs are remarkably faster because there

is no virtual machine in C++.

3. Templates: The template is one of C++'s most sophisticated and high-powered

features. In a generic function or class, the type of data upon which the function or

class operates is speci�ed as a parameter. Thus, it is possible to use one function or

class with several di�erent types of data without having to explicitly recode speci�c

versions for each data type [17].
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The disadvantages of C++ which did a�ect this project were:

1. Memory Management: Because there is no garbage collection in C++, memory

management has to be done manually. For this project not a great deal of memory

management was necessary because pointers were not used very often in the �rst

section of the project. But in the second part were pointers were used, some peculiar

errors happened which wasted at least a couple of weeks of the implementation time

of the project in total.

2. Using C++ standard library is not very user friendly as Java's API or QT's API is.

It is possible to use Boost or QT libraries but they both have a learning curve which

also requires more time.

3. Errors in C++ are not as nice as they could be. It is di�cult at times to spot the

place where the error is coming from. In contrast, errors in Java are more clear and

it is much simpler to spot where the error is coming from.

Currently non-hardware related programming can be often done in any of the popular

object oriented languages available. So it is more of a personal preference the language

that is chosen for a project rather than having compelling facts about why to choose a

speci�c language. Therefore because of personal interest and lack of experience in C++,

it seemed to be a valuable learning experience for this project to choose C++ as the

programming language, as learning is a very important criterion.

7.2 The Editor

The editor that was used for this project was Emacs and it was treated as the primary IDE

(integrated development environment) for the implementation of this project. Choosing

Emacs has its pros and cons, it is an extremely useful text editor but it lacks some of the

functionalities that an IDE like Eclipse has. The advantages of Emacs are

• The ability of using keyboard for almost everything and not using mice. This func-

tionality speeds up programming quite signi�cantly.

• Ability to access the command line using Emacs and not needing to switch between

the command line and the IDE.

• Moving the cursor is very e�cient in Emacs if the correct shortcuts are used.

• Extremely customizable for everything.

and its disadvantages are:
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1. Not being able to treat the whole project as one piece. This means that all classes

are separate from each other and it is not possible to refactor code as easily as it

can be done in Eclipse.

2. Not having debugging tools like Eclipse has, which means that for debugging, com-

mand line has to be used and the programmer has to remember all the commands

which is slightly di�cult.

3. Having no meta-data about the project and the workspace makes it di�cult and

time consuming to set-up the development environment to start implementing each

time.

4. Compiling the project using Emacs is done by using "Make" (there are other tools

as well) which is an automated tool for building C++ code. The "Make�le" has

to be maintained manually which is also an error prone task at times when the

programmer forgets to add the new class to the "make�le" or the order of compiling

classes is incorrect.

The experience that was earned during the implementation of this project suggests,

use a proper IDE for large projects and if the project is not going to be very large use

Emacs.

7.3 Why Vectors?

The collection class that is used in this implementation primarily is STL's(Standard

Library) vector class. This collection class is used because:

• It stores elements in the order that they are added.

• It is possible to access individual elements by their position index.

• It is possible to iterating over the elements in any order.

• It is possible to add and remove elements from its end.

• It does not need to have an iterator object to iterate over elements unlike the STL's

Set collection class.

All the collection objects that are needed for "Diagram" objects are in, reality, math-

ematical sets which means they do not have duplicate elements in them. So it is a

reasonable choice to choose a Set collection class which perfectly matches the require-

ment. However Set class was not used because of not having all the nice features that

Vector class has and as a result of this a class called SetMaker, which is explained in
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Design section, was created to convert a vector object to a set which means to remove

any duplicate elements that might exist in the vector.

7.4 Combination Algorithm

The most challenging part of the implementation was design and implementation of an

algorithm to generate all possible zones from a given set of contour labels. After some re-

search on �nding a well de�ned combination algorithm no standard algorithm was found.

Therefore it was necessary to create an algorithm to create all possible combinations of

zones of a diagram.

Combination in this case means there is no repetitive contour label in any zone. For

example, the zone (ABC,D) is the same as (BCA,D) and does not need to be gener-

ated again. The best way to explain this algorithm is by a visual example. Note that

this algorithm works for generating zones for three or more contour labels. If there are

less than 3 contour labels, the generation process is modi�ed slightly to produce the zones.

The contour labels in this example are {A,B,C,D} and the zones that are going to

be generated are:

{ (A,BCD), (B,CDA), (C,DBA), (D,BCA),

(AB,CD), (AC,BD), (AD,BC), (BC,DA), (BD,CA), (CD,BA),

(ABC,D), (ABD,C), (ACD,B), (BCD,A),

(ABCD, ), (, ABCD)

}

The example given in �gure 33 depicts the stage of the algorithm that is creating

three-label zones like (ABC,C). There are a few points that need to be mentioned about

how this algorithm works:

• At each round that the loop runs, the number of characters that are needed increases
by 1. For example at the �rst round the loop just produces one-label zones e.g.

(A,BCD), at the second round it produces two-label zones e.g. (AB,CD) and so

on.

• The number of rounds that the main loop runs is the same as the number of available

contours.

• By carefully considering the process of creating zones, it becomes clear that in each

round, there are a number of contour labels that are constant for a number of zones.

For example in �gure (33) zones (ABC,D), (ABD,C) have AB in common and

their last label changes. The number of constant contour labels is equal to the

56



Figure 33: Combination Algorithm Example for Contours A, B, C, D

round number minus one. So at each round, round number - 1 contour labels are

needed to be stored and the last contour label has to be retrieved using another

loop.

• First pointer: This pointer which is represented by an "F" in �gure (33) holds the

index of the starting contour label of the constant part.

• Second pointer: This second pointer is represented by an "S" in �gure (33) holds

the index of the last contour label of the constant part.

• Moving pointer: This pointer is is represented by the curly arrow in �gure (33). This

pointer iterates through the collection of contour labels to get the last label that is

needed for completing the zone.

• Using �rst and second pointers makes it possible to create the constant part of the

zone and by using the moving pointer the last contour label can be acquired.
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• When the moving pointer reaches the end of the vector of contour labels:

� If there are more zones left for the current round, the �rst and second pointers

move forward by one. The same process continues.

� If the second pointer also reaches the end of the vector, move to the next round

because there are no more zones left to be generated for the current round.

By nesting all the essential loops in the main loop that runs for the number of available

contour labels, it is possible to generate all the possible zones. However there is a problem

with this algorithm which is it's time complexity. The running time of this algorithm is

not e�cient at all because of the number of loops that will run in each round normally,

are nearly 5 which is considered to be a slow algorithm. But it is possible to improve

the algorithm by reducing the number of loops and improving the time complexity of the

algorithm. According to the prioritization of the non-functional aspects of the system,

e�ciency is not a requirement for this project and therefore it is not necessary to take

any action for making the project more e�cient now.

7.5 Tree Building

As explained in the design section, in order to be able to construct a compound diagram

it is necessary to capture the structure of compound diagrams in a manner that is not

ambiguous and also is easy to use. The standard method of dealing with mathematical

expressions in computer science is using trees and particularly binary trees for arithmetic

expressions. Comparing compound diagram expressions and arithmetic expressions, it

is clear that they are relatively similar with one di�erence. There is no precedence in

compound diagram expressions which means that the connectors (∨,∧) and the "not"

operator (¬) do not have priorities over each other, unlike arithmetic expression which

have precedence between di�erent operators like +,− and ×,÷.

Before starting the implementation of the tree builder it was assumed that there must

exist a well de�ned, standard and objected oriented method for building binary trees

that anyone who needs to have such functionality in their system can simply reuse and

adopt the design. After a lengthy research on the methods of designing and construct-

ing a binary tree, no standard method was discovered which means the assumption was

wrong. Therefore the tree building module was also designed and implemented according

to the guidelines provided in section (6.3). The point about the prioritization of non-

functional aspects of design was understood while designing and implementing this part

of the project because of the numerous ways that were discovered about how to deal with
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trees.

As a matter fact all is needed for constructing a tree is just a node class but in order to

make the design more extensible and more understandable it is possible to have another

class that represents the whole tree which consists of nodes. The tree class can be used

to provide a set of useful functionalities such as

• Identifying the root node.

• Checking the size of the tree.

• Modifying the entire tree.

7.5.1 Expression Tokenizing

In the standard library of C++ there is no class like Java's StringTokenizer available.

So it is necessary to have a tokenizer for tokenizing expressions. The way the tokenizer

works here is based on the following algorithm

1. Read the string character by character.

2. Ignore spaces.

3. If a character matches with one of the pre-de�ned characters:

• If the character itself has to be a token, tokenize it.

• If the character has to be in a speci�c order with some other characters, read

ahead until all are matched. Then tokenize it.

4. Add all tokens to a collection.

7.5.2 In�x to Post�x

The most important part of building a tree is to identifying the root node and �nding

the left and right children of all nodes. There are numerous ways that the root node

can be identi�ed and then discovering all the other nodes with their children.However in

this project one of the most important factors was to implement the code in the most

standard way that is both designed and implemented well. Because of this factor and

after some research on how to implement a tree, an algorithm was found which inspired

the way the in�x to post�x algorithm that is used in this project was implemented.

The found algorithm is called the Shunting-yard algorithm, this algorithm was created by

Edsger W. Dijkstra the renowned computer scientist, to convert mathematical equations

speci�ed in in�x notation to Reverse Polish notation (RPN) or post�x notation, refer to
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[7] and [2]. The algorithm is called "shunting yard" because the way it works resembles

a rail road shunting yard. The algorithm is explained below in detail.

In this algorithm there are

• An output queue which stores the operands and operators for the post�x expression

that is being created.

• An operator-stack that is used for keeping operators and brackets while reading the

tokens.

According to [2] the algorithm works as described below:

• If the current token is an operand, then write it to the output queue.

• If the token is an operator, then:

1. while token's precedence is less than or equal to precedence of the operator on

top of the operator-stack : pop the top operator from the operator-stack and

write it to output.

2. Push the token onto the operator-stack.

• If the token is '(', then push it onto the operator-stack (with precedence - 1).

• If the token is ')', then:

1. While the top of the operator-stack is not a '(' :

� Pop the top operator from the operator-stack and write it to output.

� If the operator-stack becomes empty, then a bracket-balancing error has

occurred.

2. Pop the '(' o� the operator-stack; discard it and the token.

• Repeat the steps for all tokens that exist.

• Until the operator-stack is empty:

� Pop the top operator from the operator-stack and write it to output.

� If the top of the operator-stack is a '(' , then a bracket-balancing error has

occurred.

To clarify the algorithm an example is provided to make it more understandable. The

example in �gure (34) demonstrates how the algorithm performs di�erent operations to

produce the in�x expression.
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Figure 34: Shunting-yard Algorithm Example

Now that the expression is in reverse Polish notation it is obvious the root node is "*"

and it's children are "8" and "+".

As explained before there is a di�erence between arithmetic expressions and the com-

pound diagram expression. So it is not necessary to check for operator precedence. Also

the algorithm that is implemented here uses a vector instead of a queue because it is

much easier to deal with vectors than queues.

7.5.3 Tree Building

As stated earlier the rightmost operator is the root node in a post�x expression. Therefore

in order to build the tree it is necessary to proceed from left to right to get all node objects

instantiated properly before instantiating the root node. The tree building algorithm is

as follows

• There is a node stack that holds nodes while the parent and children.
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• Go through all nodes from left to right.

• If a token is an operand (a diagram)

1. Create a leaf node with the diagram as it's payload.

2. Push the node object onto the node stack.

• If the token is a binary operator i.e. ∧,∨:

� If the token is the last token (it is the root):

1. Create the root node with the current token as it's payload.

2. Set the top of stack as it's left child.

3. Pop it from stack.

4. Set the top of stack as it's right child.

5. Pop from stack.

� Else

1. Create a node with the current token as it's payload.

2. Set the top of stack as it's left child.

3. Pop it from stack.

4. Set the top of stack as it's right child.

5. Pop from stack.

6. Push the node onto the stack.

• If the token is a unary operator i.e. ¬:

� If the token is the last token (it is the root):

1. Create the root node with the current token ("NOT") as it's payload.

2. Set the top of stack as it's left child.

3. Pop it from stack.

� Else

1. Create a node with the current token ("NOT") as it's payload.

2. Set the top of stack as it's left child.

3. Pop it from stack.

4. Push the node onto the stack.

In order to make the process easier to understand an example is provided to clarify

the algorithm. The example below shows how the expression ((d1 ∧ d2) ∨ ((d3 ∧ (¬d4)))

is made into a tree. The process of making the post�x expression is exactly the same as
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the example in �gure (34) the only di�erence is that there is no checking for precedence.

The post�x expression of this expression is d1d2 ∧ d3d4¬ ∧ ∨. The process of how the

tree is built is provided in �gure (35) so the process can be observed visually. After the

process is completed the tree is generated which is represented in �gure (36).

Figure 35: Tree Building Process Example

7.6 In-order Tree Traversal

A traversal of a tree T is a systematic way of accessing, or visiting, all the nodes of T

[10]. There are three di�erent, well known, algorithms for traversing a tree which are

listed below:

• Preorder: In preorder traversal of a tree T, the root of T is accessed �rst and then

the sub trees rooted at its children are traversed recursively [10].

• Postorder: This algorithm is the opposite of the preorder traversal, as it recursively
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Figure 36: The Completed Tree

traverses the sub trees rooted at the children of the root �rst, and then visits the

root [10].

• Inorder: This traversal is for binary trees mainly. The way the algorithm works is

that a node is visited between the recursive traversals of its left and right sub trees

[10].

For more details please refer to [10].

After constructing a binary tree it is essential to develop an algorithm to be able to

search the tree or to just re-construct the original expression. In this case it is necessary

to implement an inorder tree traversal because it is required to visit each node in the same

manner that the expression is read, from left to right. At this stage of the project, inorder

traversal seems to be the only necessary algorithm for iterating through the expression

tree, however, in the future there might be necessary to implement preorder or postorder

algorithms as well. Because of this, a superclass Traversal is created so it can be extended

in the future, if necessary. The �gure (37) depicts inorder traversal in action and also

algorithm below describes way inorder algorithm works:

• Start with the root node.

• If node has left child:

� If node is a leaf:Do the necessary operation.

� Else if the node is not a leaf recursively get the left node of the current node.

• If node has right child:
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� If node is a leaf:Do the necessary operation.

� Else if the node is not a leaf recursively get the right node of the current node.

• If node is a leaf: Do the necessary operations.

Figure 37: Inorder Tree Traversal

The essence of the algorithm is that it recursively calls itself whenever it is visiting an

internal node (any node of a tree that has child nodes and is thus not a leaf node) until

it reaches a leaf node and then it starts to go upwards. After recursively reaching all the

left nodes of the internal node, it recursively calls itself to reach the right leaf of the right

child. By performing this operation recursively it can reach all nodes. The pseudo code

of the algorithm and the actual C++ code of the algorithm are provided below:

Pseudo code:

1

2 ino rde r (CompoundNode ∗node ) : \\ s t a r t s with the root node

3

4 i f node has a l e f t c h i l d then

5 ino rde r ( l e f t node )

6

7 I f node has a r i g h t ch i l d then

8 ino rde r ( r i g h t node )
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Implementation of the algorithm:

1 void Ino rde rTrave r sa l : : t r a v e r s e (CompoundNode ∗node )
2 {

3 i f ( node−>i sL e a f ( ) )

4 cout << "Node Payload : " << node−>getPayload ( ) . getLabe l ( ) << endl ;

5

6 i f ( node−>hasLe f t ( ) )

7 {

8 i f ( node−>i sL e a f ( ) )

9 {

10 cout << "Node Payload : " << node−>getPayload ( ) . getLabe l ( ) << endl ;

11 }

12

13 else i f ( ! node−>i sL e a f ( ) )

14 {

15 t r av e r s e ( node−>getLe f t ( ) ) ; \\ r e c u r e s i v e c a l l

16 }

17 }

18

19 i f ( node−>hasRight ( ) )

20 {

21 i f ( node−>i sL e a f ( ) )

22 {

23 cout << "Node Payload : " << node−>getPayload ( ) . getLabe l ( ) << endl ;

24 }

25

26 else i f ( ! node−>i sL e a f ( ) )

27 {

28 cout << "Gett ing the Right node : " << node−>getType ( ) << endl ;

29 t r av e r s e ( node−>getRight ( ) ) ; \\ r e c u r e s i v e c a l l

30 }

31 }

32 }

7.7 Applying Rules

In order to be able to apply a rule to a compound diagram, it is necessary to know

whether it is possible to apply the rule, then, applying the rule. The method that can be

used to check if a rule can be applied to a diagram is as follows:

Consider a rule i.e. DeMorgan's Law ¬(d1 ∨ d2). The structure of this rule is drawn in

a tree as shown in �gure 38. It is clear from the picture that the operators Not and Or

are in a speci�c order which means Not is the parent and Or is the child. All rules when

are converted to post�x notation have the operators in a speci�c order which means if a

compound diagram has the exact same pattern of operators (in the same order) it means

that the rule can be applied to that diagram. The way this algorithm works for trying
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to apply a rule to a compound diagram is as described below:

Figure 38: DeMorgan's law's tree structure

• Get the prede�ned rule patten (the order in which the operators should be).

• Iterate through the tree,

• If the pattern is matched: it is possible to apply the rule.

1. Get the compound diagram's post�x notation.

2. Find the operators that match the pattern in the correct order.

3. Replace them as necessary.

4. Recreate the tree structure of the compound diagram.

This method of checking if a rule is appliable and then applying it is done in the rules

class.
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8 Testing

Testing is a process of technical investigation, performed on behalf of stakeholders, that

is intended to reveal quality-related information about the product with respect to the

context in which it is intended to operate [3]. This includes the process of running a

program with the intent of �nding errors. Testing can never prove the correctness of a

piece of software completely: it can only provide some assurance for the customers and

developers that the parts of the software that are tested, provide the functionality that is

expected, in the context that they were tested. The process of creating error-free software

applications requires technical sophistication in the analysis, design, and implementation

of that software and proper test planning, as well as robust automated testing tools [11].

There testing methods that are used in this project are:

• Black-Box Testing

• Unit Testing

As explained earlier there are two parts in this project:

• Unitary Prover

• Compound Prover

which both have di�erent strategies towards testing. The �rst part which is the unitary

prover, was mostly tested based on Black-Box testing strategy as it was not as complex

as the compound part. The implementation of the second part of the project was mostly

done by unit tests which were written for each speci�c component. Similar to other

sections of this project, lack of understating of testing and its use before starting to

test, was the reason why other methods of testing were not used. For instance white-

box (the method that tests every single path in the program) testing could have been

used in situations where knowing how the program behaves under di�erent circumstances

was important or test driven development (which the programmer writes the test before

implementing the class to reduce misunderstandings in the requirement and know exactly

what should each function do) could have been helpful because it helps the programmer

understand what each function should do before starting to implement them and therefore

reduce the possibility of mistakes during implementation. However, as stated earlier

because of lack of understanding and limited time, more elaborate methods of testing

were not applied. How this project was tested is explained in later sections.
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8.1 Black-Box Testing

Black box testing is a method of testing which treats the software as a "black box"

without any knowledge of how its internal components work [11]. In this method the

tester inputs valid and invalid input to the program and observes the behaviour of the

software. If the desired results are not produced, it means that there is a bug which has

to be �xed. The advantages of black-box testing are:

• It is more e�ective on larger units of code compared to white-box testing.

• Tester needs no knowledge of the implementation of the software.

• The programmer and tester can be independent from each other.

• Tests are done in a way as if the user is using the system.

• Tests can be prepared when the speci�cation is completed.

• It is faster compared to white-box testing.

There a number of disadvantages as well which are:

• It is possible to only test a small number of inputs. It is impossible to test everything.

• Without unambiguous speci�cation, it is hard to design the tests because the tester

does not know exactly what is the output of each input supposed to be.

• May leave many possible program paths untested.

For more details refer to [11] and [16]. The advantages that black-box testing has made

it a suitable choice for a testing strategy for this project. The way black-box testing is

used, is explained in section 8.3.

8.2 Unit Testing

Unit testing tests a small software unit at a time, which is typically performed by the indi-

vidual programmer who implemented the unit. Depending on the di�erent programming

languages used, this unit may test a function, a procedure, or a subroutine in traditional

programming languages such as C or PASCAL, or a method in object-oriented languages

such as C++ or Java. In unit testing usually the main focus is the implementation de-

tails which is normally used with white-box testing [23]. It is not always necessary to use

white-box testing on each unit, it is possible to use black-box testing on each method as

well. For instance, it is possible to test a method only by passing it the parameters it

needs and check whether or not it produces the desired output [23]. Of course it does not

prove anything that the method is correct but it provides satisfactory evidence for the

time begin that the method works. For more details on unit testing please refer to [23].

There are a great deal of reasons why to use unit tests, some of them are listed below:
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• Unit testing is a documentation for the system because programmers can have a

look at each unit test to understand what each unit does and how it can be used.

• Unit tests that are used in test-driven development can take the place of formal

design because each unit test can be treated as an element which describes what

each class is supposed to do.

• Code refactoring becomes easier because if a module changes and causes a problem

it can be quickly identi�ed and �xed. After refactoring if the unit test passes, it

means that the system is still working as the unit test expects it.

For more detail on unit tests refer to [5].

Clearly using unit testing is an acceptable choice of testing because it is logical to

divide testing process into smaller, manageable units that can provide the assurance that

each small unit works properly. Obviously for large projects the number of unit tests

that are required is signi�cantly enormous and it will be very di�cult to manage that

great deal of unit tests. Because of this issue there are a number of frameworks that

are provided to manage and run unit tests automatically which are remarkably helpful

in the process of testing. One of the most well-known testing frameworks is JUnit which

is for Java programs. It provides an environment for tests to be written in and then are

automatically compiled and run by JUnit and at the end of the process it informs the

tester whether or not a test �lled.

As this project is written in C++, JUit was not possible to be used and it was necessary

to use a framework that can be used with C++ code. The framework that is used in this

project is CPPUnit which is like JUnit but it is for C++.

8.3 Unitary Theorem Proving Testing

The unitary diagram theorem prover is tested using black-box strategy which is testing

the functionality of the system as a whole. As it is depicted in �gure (39) the black-box

is the prover, the inputs are di�erent diagram �les and the output is the produced proofs.

Applying black-box testing was done as follows:

1. Create a number of di�erent unitary diagrams.

2. Write the proof manually for at least 10 di�erent pairs of diagrams.

3. Test each one of them with the program.

4. If they all produce the correct answer, it seems the program is behaving correctly.
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Figure 39: Black Box Testing

The disadvantage with this method was that it was very time consuming and di�cult

to perform the tests as no automation was done. It would have made much more sense

if the tests were automated and black-box testing would have been used with unit tests.

8.3.1 Tested Diagrams

The diagrams that were produced for testing this part of the project are represented in

�gure (40).

Some tests are provided in sections below so it can be observed how the process of

testing works.

8.3.2 Test 1: d7 → d1

Testing to see if d7 follows from d1 is represented below and demonstrated with screenshots
of the program. The abstract syntax of the diagram from �le "d1" is:

1 l a b e l = d1 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (BC,A) , (B,AC) , (C,AB) , (AB,C) , (AC, B) , (ABC, ) , ( , ABC) } ;

4 shaded−zones = {(AC, B) , (BC,A) } ;

and for �le "d7" is:

1 l a b e l = d7 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , ( , ABC) } ;

4 shaded−zones = { (AB,C) , (C,AB) } ;

1. No zone is missing from d1. No action required.

2. Zones (AC,B), (BC,A), (ABC, ) are missing from d7 which are needed to be added.

The new diagram is called dsh7.

3. Now the shaded zones in dsh7 are {(AC,B), (BC,A), (ABC, ), (AB,C), (C,AB)}.

4. There are no missing contours.

5. It is clear that all d1 shaded zones are a subset of dsh7 which means a proof exists.
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Figure 40: Test Diagrams

72



6. But a proof from d1 to d7 does not exist as not all shaded zones from dsh7 exists in

d1. So d1 9 d7.

The series of screen shots that are provided below demonstrate how the program can

be used to prove that there is a proof from d7 → d1.

Figure 41: Loading diagrams into the program

Figure 42: Running "prove" command

Note that the diagram details that are shown in the "command line" in �gure (43) are

not part of the proof. They are just there to show the user what the program is currently

doing. If a proof exists, a message will be shown that a proof exists and then it is saved in

the �le called "proof.txt" in the current folder (where the executable �le of the program

is).
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Figure 43: Running the proof algorithm and generating the "proof.txt" �le

The generated proof that is saved in "proof.txt" is demonstrated below:

1 Genrated Proof :

2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Label : d7

4

5 Contours : { A , B , C }

6

7 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , ( , ABC) }

8

9 ShadedZones : { (AB , C) , (C , AB) }

10

11

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 Label : d7−ASZ−ASZ−ASZ
14

15 Contours : { A , B , C }
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16

17 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , ( , ABC) , (AC , B) , (BC

, A) , (ABC , ) }

18

19 ShadedZones : { (AB , C) , (C , AB) , (AC , B) , (BC , A) , (ABC , ) }

20

21

22 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 Label : d7−ASZ−ASZ
24

25 Contours : { A , B , C }

26

27 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , ( , ABC) , (AC , B) , (BC

, A) }

28

29 ShadedZones : { (AB , C) , (C , AB) , (AC , B) , (BC , A) }

30

31

32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 Label : d7−ASZ
34

35 Contours : { A , B , C }

36

37 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , ( , ABC) , (AC , B) }

38

39 ShadedZones : { (AB , C) , (C , AB) , (AC , B) }

40

41

42 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 Label : d1

44

45 Contours : { A , B , C }

46

47 Se l e c t ed Zones : { (A , BC) , (BC , A) , (B , AC) , (C , AB) , (AB , C) , (AC , B) , (ABC

, ) , ( , ABC) }

48

49 ShadedZones : { (AC , B) , (BC , A) }

8.3.3 Test 2: d4 9 d10

This test is provided to test the absence of a proof for diagrams d4 and d10. Note that

only the �nal screenshot is provided to show the �nal result. The abstract syntax of d4

is:

1 l a b e l = d4 ;

2 contours = {A, B} ;

3 zones = {(AB, ) , (A,B) , (B,A) , ( , AB) } ;

4 shaded−zones = { ( A , B ) } ;

and the abstract syntax of d10 is:

1 l a b e l = d10 ;

2 contours = {A, B, C} ;
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3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (AC, B) , (BC, A) , (ABC, ) , ( , ABC) } ;

4 shaded−zones = { (ABC, ) } ;

1. No missing zones are needed to be added to d4.

2. No missing zones are needed to be added to d10.

3. Adding missing contour "C" to d4. The resulting diagram is called dL
4 .

4. Now the abstract syntax of the diagram dL
4 is:

1 contours = {A, B, C} ;

2 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (AC, B) , (BC, A) , (ABC, ) , ( , ABC)

} ;

3 shaded−zones = {(A,BC) , (AC, B) } ;

5. Because the shaded zone in d10 is not a subset of the shaded zones in d4 there is no

proof for these two diagrams.

The screen-shot of the result of this test is provided in �gure (44).

Figure 44: Proving d4 → d10 : No proof exists
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8.3.4 Test 3: d6 9 d5

There is no proof for d6 → d5 or d5 → d6. The process is shown below:

The abstract syntax of d5:

1 l a b e l = d5 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (BC, A) , ( , ABC) } ;

4 shaded−zones = { (B,AC) } ;

and the abstract syntax of d6 is:

1 l a b e l = d6 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (AC, B) , (BC, A) , (ABC, ) , ( , ABC) } ;

4 shaded−zones = { (A,BC) , (B,AC) , (C,AB) } ;

1. No missing zones are needed to be added to d6.

2. Missing zones (AC,B), (ABC, ) are needed to be added to d5. The resulting diagram

is called dsh5.

3. There are no missing contours in either diagrams.

4. Because the shaded zone in dsh5 is not a subset of the shaded zones in d6 there is

no proof for these two diagrams.

The screenshot of the result of this test is provided in �gure (45). Also to depict that

d5 → d6 does not follow, the result screenshot is represented in �gure (46).

8.3.5 Test 4: d13 → d12

The abstract syntax of d12:

1 l a b e l = d12 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (AC, B) , (BC, A) , (ABC, ) , ( , ABC) } ;

4 shaded−zones = { (B,AC) , (C,AB) } ;

and the abstract syntax of d13 is:

1 l a b e l = d13 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , ( , ABC) } ;

4 shaded−zones = { (B,AC) , (C,AB) } ;

1. Missing zones (AB,C), (AC,B), (BC,A), (ABC, ) are needed to be added to d13.
The resulting diagram is called dsh13. The abstract syntax of the diagram is repre-
sented below:
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Figure 45: Proving d6 → d5 : No proof exists

1 Label : d13−ASZ−ASZ−ASZ−ASZ
2 Contours : { A , B , C }

3 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) , (AB , C) , (AC , B) ,

(BC , A) , (ABC , ) }

4 ShadedZones : { (B , AC) , (C , AB) , (AB , C) , (AC , B) , (BC , A) , (ABC , ) }

2. No action is necessary to be done on d12.

3. There are no missing contours in either diagrams.

4. Because the shaded zone in d12 are all shaded in dsh13 as well, there is a proof for

these two diagrams.

The screenshot of the result of this test is provided in �gure (47). The proof from the

�le "proof.txt" is also shown below:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Label : d13

3

4 Contours : { A , B , C }

5
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Figure 46: Proving d5 → d6 : No proof exists

6 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) }

7

8 ShadedZones : { (B , AC) , (C , AB) }

9

10

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Label : d13−ASZ−ASZ−ASZ−ASZ
13

14 Contours : { A , B , C }

15

16 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) , (AB , C) , (AC , B) , (BC

, A) , (ABC , ) }

17

18 ShadedZones : { (B , AC) , (C , AB) , (AB , C) , (AC , B) , (BC , A) , (ABC , ) }

19

20

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 Label : d13−ASZ−ASZ−ASZ
23

24 Contours : { A , B , C }

25

26 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) , (AB , C) , (AC , B) , (BC

, A) }
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27

28 ShadedZones : { (B , AC) , (C , AB) , (AB , C) , (AC , B) , (BC , A) }

29

30

31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 Label : d13−ASZ−ASZ
33

34 Contours : { A , B , C }

35

36 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) , (AB , C) , (AC , B) }

37

38 ShadedZones : { (B , AC) , (C , AB) , (AB , C) , (AC , B) }

39

40

41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 Label : d13−ASZ
43

44 Contours : { A , B , C }

45

46 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , ( , ABC) , (AB , C) }

47

48 ShadedZones : { (B , AC) , (C , AB) , (AB , C) }

49

50

51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 Label : d12

53

54 Contours : { A , B , C }

55

56 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , (AC , B) , (BC , A) , (ABC

, ) , ( , ABC) }

57

58 ShadedZones : { (B , AC) , (C , AB) }

8.3.6 Test 5: d16 → d5

The abstract syntax of d16:

1 l a b e l = d16 ;

2 contours = {A, B, C, D} ;

3 zones = {( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD) ,

(AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) } ;

4 shaded−zones = {(B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) } ;

and the abstract syntax of d5 is:

1 l a b e l = d5 ;

2 contours = {A, B, C} ;

3 zones = {(A,BC) , (B,AC) , (C,AB) , (AB,C) , (BC, A) , ( , ABC) } ;

4 shaded−zones = { (B,AC) } ;

1. Missing zones (AC,BD), (ABC,D), (ACD,B), (ABCD, ) are needed to be added

to d16. The resulting diagram is called dsh16.
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Figure 47: Proving d13 → d12 : Proof exists

2. Missing zones (AC,B), (ABC, ) are needed to be added to d5. The resulting diagram

is called dsh5.

3. The missing contour "D" is added to d5. The resulting diagram is called dL
5 .

4. Because the shaded zone in dL
5 is a subset of shaded zones in dsh16, there is a proof

for these two diagrams.

The screenshot of the result of this test is provided in �gure (48). The proof from the

�le "proof.txt" is also shown below:

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 Label : d16

3

4 Contours : { A , B , C , D }

5

6 Se l e c t ed Zones : { ( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD)

, (AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) }

7

8 ShadedZones : { (B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) }

9

10

11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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12 Label : d16−ASZ−ASZ−ASZ−ASZ
13

14 Contours : { A , B , C , D }

15

16 Se l e c t ed Zones : { ( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD)

, (AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) , (AC , BD)

, (ABC , D) , (ACD , B) , (ABCD , ) }

17

18 ShadedZones : { (B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) , (

AC , BD) , (ABC , D) , (ACD , B) , (ABCD , ) }

19

20

21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 Label : d16−ASZ−ASZ−ASZ
23

24 Contours : { A , B , C , D }

25

26 Se l e c t ed Zones : { ( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD)

, (AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) , (AC , BD)

, (ABC , D) , (ACD , B) }

27

28 ShadedZones : { (B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) , (

AC , BD) , (ABC , D) , (ACD , B) }

29

30

31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 Label : d16−ASZ−ASZ
33

34 Contours : { A , B , C , D }

35

36 Se l e c t ed Zones : { ( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD)

, (AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) , (AC , BD)

, (ABC , D) }

37

38 ShadedZones : { (B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) , (

AC , BD) , (ABC , D) }

39

40

41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 Label : d16−ASZ
43

44 Contours : { A , B , C , D }

45

46 Se l e c t ed Zones : { ( , ABCD) , (A , BCD) , (B , ACD) , (C , ABD) , (D , ABC) , (AB , CD)

, (AD , BC) , (BC , AD) , (BD , AC) , (CD , AB) , (ABD , C) , (BCD , A) , (AC , BD)

}

47

48 ShadedZones : { (B , ACD) , (D , ABC) , (AD , BC) , (BC , AD) , (BD , AC) , (BCD , A) , (

AC , BD) }

49

50

51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 Label : d5−ASZ−ASZ−AC
53
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54 Contours : { A , B , C , D }

55

56 Se l e c t ed Zones : { (A , BCD) , (AD , BC) , (B , ACD) , (BD , AC) , (C , ABD) , (CD , AB)

, (AB , CD) , (ABD , C) , (BC , AD) , (BCD , A) , ( , ABCD) , (D , ABC) , (AC , BD)

, (ACD , B) , (ABC , D) , (ABCD , ) }

57

58 ShadedZones : { (B , ACD) , (BD , AC) , (AC , BD) , (ACD , B) , (ABC , D) , (ABCD , ) }

59

60

61 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 Label : d5−ASZ−ASZ
63

64 Contours : { A , B , C }

65

66 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , (BC , A) , ( , ABC) , (AC

, B) , (ABC , ) }

67

68 ShadedZones : { (B , AC) , (AC , B) , (ABC , ) }

69

70

71 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 Label : d5−ASZ
73

74 Contours : { A , B , C }

75

76 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , (BC , A) , ( , ABC) , (AC

, B) }

77

78 ShadedZones : { (B , AC) , (AC , B) }

79

80

81 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 Label : d5

83

84 Contours : { A , B , C }

85

86 Se l e c t ed Zones : { (A , BC) , (B , AC) , (C , AB) , (AB , C) , (BC , A) , ( , ABC) }

87

88 ShadedZones : { (B , AC) }

All these �ve tests where provided to demonstrate how the testing phase for "unitary

prover" part of the project was done. More tests have been performed as well but in

order to save space they are not added to this documentation. Overall strategy of all the

tests is the same, the only di�erence is what diagrams have been used to be tested.

8.4 Compound Diagram Phase Testing

The lessons that were learnt about testing from the �rst part of the project made the

choice of using unit tests an essential necessity. Having to manually run the tests every

time a change has been made was a very time consuming task and as the second part
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Figure 48: Proving d16 → d5 : Proof exists

of the project is relatively larger than the �rst part, it is crucial to save as much time

as possible and automate as many tasks as possible. Therefore the implementation of

the second part of the project was done by using unit tests with CPPUnit framework.

In the subsections below the unit test for each component is provided and explained. It

is important to note that all the unit tests perform testing based on black-box testing

strategy which means that they test the functionality of the class as a whole to ensure that

it ful�ls the responsibility it was assigned to, but they do not test every single function

in the class individually.

8.4.1 Unit Test 1: ExpressionTokenizer

The responsibility of the ExpressionTokenizer is to tokenize a given compound diagram
expression and return a vector of string tokens. The unit test for this class is provided
below.

1 #include "Express ionTokenizerTest . h"

2

3 CPPUNIT_TEST_SUITE_REGISTRATION ( Express ionTokenizerTest ) ;

4
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5 void Express ionTokenizerTest : : setUp ( )

6 {

7 e = " (d1 and d2 ) and not d3" ; // s t r i n g expre s s ion

8 }

9

10 void Express ionTokenizerTest : : expre s s i onToken i ze rTes t ( )

11 {

12 Express ionTokenizer ∗ t ok en i z e r = new Express ionTokenizer ( e ) ;

13 tokens = token i ze r−>token i z e ( ) ;

14

15 cout<< "\n Disp lay ing tokens " << endl ;

16 token i z e r−>displayTokens ( ) ; // pr in t a l l tokens

17

18 CPPUNIT_ASSERT( tokens . s i z e ( ) > 0) ; // a s s e r t the s i z e o f tokens i s g r ea t e r than zero

19 }

This unit test although simple but tests whether or not the expression was tokenized

and by displaying the tokens it is possible to check that tokens are tokenized properly.

Of course it is possible to make the test more elaborate but because of the simplicity of

the task it was not necessary to test the output more. However, it is possible to test that

all tokens that are returend are matched with the actual tokens in expression.

8.4.2 Unit Test 2: In�xToPost�x

The task of this class is to get the tokens and convert the given expression which is in in�x

notation to post�x notation. In the set-up function the necessary objects are instantiated

and then the test is run. In this unit test the last node that is returned by In�xToPost�x

is checked to be a "NOT" node. If it is, there is a high probability that this class has

done its job correctly. The code for this test is represented below:

1 #include " I n f i xPo s t f i xTe s t . h"

2 CPPUNIT_TEST_SUITE_REGISTRATION ( In f i xPo s t f i xTe s t ) ;

3

4 void I n f i xPo s t f i xTe s t : : setUp ( )

5 {

6 //d1 d2 and d3 not and not −−−> po s t f i x

7 e = "not ( ( d1 and d2 ) and ( not d3 ) ) " ;

8

9 Express ionTokenizer ∗ t ok en i z e r = new Express ionTokenizer ( e ) ;

10 tokens = token i z e r−>token i z e ( ) ;

11 }

12

13 void I n f i xPo s t f i xTe s t : : i n f i xPo s t f i xT e s t ( )

14 {

15 In f i xToPos t f i x ∗ i n f i x 2 p o s t = new I n f i xToPos t f i x ( tokens ) ;

16 cout << "Disp lay ing Po s t f i x : " << endl ;

17

18 i n f i x 2po s t−>d i s p l a yPo s t f i x ( ) ;

19 vector<s t r i ng> po s t f i x = in f i x 2po s t−>ge tPo s t f i x ( ) ;

20
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21 CPPUNIT_ASSERT( po s t f i x . s i z e ( ) > 0) ;

22

23 // the l a s t node i s a NOT node fo r t h i s express ion , check i t

24 CPPUNIT_ASSERT( po s t f i x [ p o s t f i x . s i z e ( ) −1] == "NOT" ) ;

25 }

8.4.3 Unit Test 3: CompoundNode

Before starting the implementation of the TreeBuilder it is necessary to be certain that

the CompoundNode class works correctly. So the test below was written to ensure that

this class performs its primitive functionality properly.

1 #include "CompoundNodeTest . h"

2

3

4 CPPUNIT_TEST_SUITE_REGISTRATION (CompoundNodeTest ) ;

5

6 void CompoundNodeTest : : setUp ( )

7 {

8 p = new CompoundNode( "AND" , true ) ;

9 n1 = new CompoundNode(p , "and" ) ;

10 n2 = new CompoundNode(p , "and" ) ;

11 a = new CompoundNode(d1 , " l e a f d1" ) ;

12 b = new CompoundNode(d2 , " l e a f d2" ) ;

13 c = new CompoundNode(d3 , " l e a f d3" ) ;

14 d = new CompoundNode(d4 , " l e a f d4" ) ;

15

16 dEmpty . s e tLabe l ( "empty" ) ;

17 d1 . s e tLabe l ( "d1" ) ;

18 d2 . s e tLabe l ( "d2" ) ;

19 d3 . s e tLabe l ( "d3" ) ;

20 d4 . s e tLabe l ( "d4" ) ;

21 }

22

23 void CompoundNodeTest : : tearDown ( )

24 {

25

26 }

27

28 void CompoundNodeTest : : compoundNodeTest ( )

29 {

30

31 p−>se tL e f t ( n1 ) ;

32 p−>setRight ( n2 ) ;

33 n1−>se tL e f t ( a ) ;

34 n1−>setRight (b) ;

35 n2−>se tL e f t ( c ) ;

36 n2−>setRight (d) ;

37

38 cout << "\n" << p−>getType ( ) << p−>isRoot ( ) << endl ;

39 cout << "Roots Le f t : " << p−>getLe f t ( )−>getType ( ) << endl ;

40 cout << "Roots Right : " << p−>getRight ( )−>getType ( ) << endl ;
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41

42 cout << "R−>Left−>Lef t : " << p−>getLe f t ( )−>getLe f t ( )−>getType ( ) << endl ;

43 cout << "R−>Left−>Lef t : " << p−>getLe f t ( )−>getRight ( )−>getType ( ) << endl ;

44 cout << "R−>Right−>Lef t : " << p−>getRight ( )−>getLe f t ( )−>getType ( ) << endl ;

45 cout << "R−>Right−>Right : " << p−>getRight ( )−>getRight ( )−>getType ( ) << endl ;

46 cout << n1−>getType ( ) << endl ;

47 cout << n2−>getType ( ) << endl ;

48 cout << a−>getType ( ) << endl ;

49 cout << b−>getType ( ) << endl ;

50 cout << c−>getType ( ) << endl ;

51 cout << d−>getType ( ) << endl ;

52

53 CPPUNIT_ASSERT (p−>hasLe f t ( ) == true ) ;

54 CPPUNIT_ASSERT (p−>hasRight ( ) == true ) ;

55 }

The test succeeds which means setting the left and right children of a node works as

expected.

8.4.4 Unit Test 4: TreeBuilder

This class is responsible for constructing a tree object. The task of creating a tree object
is an important task which needs more elaborate testing compared to the previous tests.
The test for this class is �rst creating a compound diagram expression and, then, building
the tree for it by running the "builder" function of TreeBuilder class and then checking
whether the root node is correct and it carries the right payload. Also checking to ensure
that the CompoundTree object's nodes are not empty means that the nodes are set in
the object.

1 #include "TreeBui lderTest . h"

2 CPPUNIT_TEST_SUITE_REGISTRATION ( TreeBui lderTest ) ;

3

4 void TreeBui lderTest : : setUp ( )

5 {

6 e = " ( . . / d/d1 and . . / d/d2 ) and ( . . / d/d3 or . . / d/d4 ) " ; // expres s ion

7 }

8 void TreeBui lderTest : : t r e eBu i ld e rTe s t ( )

9 {

10

11 cout << "\ nStar t ing Tree Bui lder . . . " << endl ;

12 TreeBui lder bu i l d e r ( e ) ;

13 bu i l d e r . bu i ld ( ) ;

14 cout <<"Bui ld ing Ended . . . " << endl ;

15 CompoundTree t r e e = bu i l d e r . getTree ( ) ;

16

17 CompoundNode ∗ root = t r e e . getRoot ( ) ;

18

19 cout << "Root Node : " << root−>getType ( ) << endl ;

20

21 CPPUNIT_ASSERT( root−>getType ( ) . s i z e ( ) > 0) ;

22 CPPUNIT_ASSERT( t r e e . getNodes ( ) . s i z e ( ) > 0) ;

23 }
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8.4.5 Unit Test 5: TreeTraversal

This class is tested by creating a tree based on a de�ned expression and then running the
traversal method of the TreeTraversal class to verify it does traverse the tree. Also by
asserting getExpression() method of this class, returns the same expression as the de�ned
expression means that it produces the correct result. The test case is written below:

1 #include " InorderTraver sa lTes t . h"

2 CPPUNIT_TEST_SUITE_REGISTRATION ( InorderTraver sa lTes t ) ;

3

4 void Inorde rTraver sa lTes t : : setUp ( )

5 {

6 e = " ( . . / d/d1 and . . / d/d2 ) and ( . . / d/d3 or . . / d/d4 ) " ;

7 TreeBui lder bu i l d e r ( e ) ;

8 bu i l d e r . bu i ld ( ) ;

9

10 t r e e = bu i l d e r . getTree ( ) ;

11

12 root = t r e e . getRoot ( ) ;

13

14 }

15

16 void Inorde rTraver sa lTes t : : tearDown ( )

17 {

18 delete root ;

19 }

20

21 void Inorde rTraver sa lTes t : : i no rde rTrave r sa lTes t ( )

22 {

23 i = new Ino rde rTrave r sa l ( ) ;

24 i−>t rav e r s e ( root ) ;

25 cout<< "Traver sa l f i n i s h e d " <<endl ;

26 s t r i n g s = i−>getExpres s ion ( ) ;

27

28 CPPUNIT_ASSERT( s == " (d1 AND d2 ) AND (d3 OR d3 ) " ) ;

29 }

8.4.6 Unit Test 6: Rules

The test below was done for testing the DeMorgan's law (¬(d1 ∨ d2)→ ¬d1 ∧ ¬d2). The

result of the test is given in �gure 49 which as it is shown, it succeeded in �nding that

the rule is applicable and then produced the new compound diagram statement. Also

the rule ¬(d1 ∧ d2)→ ¬d1 ∨ ¬d2 was tested as well which produced the same result and

succeeded. The diagram expression that was used in this test is ¬((d1 ∨ d2) ∨ (d3 ∧ d4))

and the result that was produced was d1d2 ∨ d3d4 ∧ ¬¬∧ in post�x notation.

1 #include "CompoundRulesTest . h"

2

3

4 CPPUNIT_TEST_SUITE_REGISTRATION (CompoundRulesTest ) ;

5
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6 void CompoundRulesTest : : setUp ( )

7 {

8 e = "not ( ( d1 or d2 ) or ( d3 and d4 ) ) " ;

9

10 Express ionTokenizer ∗ t ok en i z e r = new Express ionTokenizer ( e ) ;

11

12 tokens = token i z e r−>token i z e ( ) ;

13

14 }

15

16 void CompoundRulesTest : : tearDown ( )

17 {

18

19 }

20

21 void CompoundRulesTest : : compoundRulesTest ( )

22 {

23 In f i xToPos t f i x ∗ i n f i x 2 p o s t = new I n f i xToPos t f i x ( tokens ) ;

24

25 cout << "Disp lay ing Po s t f i x " << endl ;

26

27 i n f i x 2po s t−>d i s p l a yPo s t f i x ( ) ;

28

29 vector<s t r i ng> po s t f i x = in f i x 2po s t−>ge tPo s t f i x ( ) ;

30

31 CompoundRules r ;

32

33 bool b = r . deMorganOr ( p o s t f i x ) ;

34 i f (b)

35 r . d i sp l ayResu l t ( ) ;

36

37 CPPUNIT_ASSERT( po s t f i x . s i z e ( ) > 0) ;

38

39 // the l a s t node i s a NOT node fo r t h i s express ion , check i t

40 CPPUNIT_ASSERT( po s t f i x [ p o s t f i x . s i z e ( ) −1] == "NOT" ) ;

41

42 CPPUNIT_ASSERT( r . ge tResu l t ( ) . s i z e ( ) > 0) ; // ru l e i s app l i ed

43

44 }

After running all tests the output of CPPUnit shows that none of the tests failed. The

screenshot of running the tests is represented in �gure (50).

8.5 Testing DeMorgan's Law Application

This test shows how the user can start the program and apply DeMorgan Law ¬(d1∨d2)→
¬d1 ∧ ¬d2 or ¬(d1 ∧ d2)→ ¬d1 ∨ ¬d2. The �gure 51 shows the screen after the user has

entered the command "help". Figure 52 and 53 show the result after applying the rule

on the expressions ¬((d1 ∨ d2) ∨ (d3 ∧ d4)) and ¬((d1 ∨ d2) ∧ (d3 ∧ d4)) respectively.
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Figure 49: Test of applying DeMorgan's law passed

9 Conclusion

This project was a huge learning experience, both in scienti�c aspects and also under-

standing of how software projects should be dealt with. Putting all the mistakes in one

word, it can be said the only mistake was having wrong, faulty or inaccurate assumptions.

One of the most important reasons why this project did not follow as it was planned was

because of faulty assumptions which were based on improper justi�cations of di�erent

matters. Making assumptions without knowing about the subject can be troublesome in

later stages of work. However, at times there is no choice other than assuming a num-

ber of issues to be true and then proceeding with the work which of course there is no

guarantee that is going to succeed. Also underestimation of tasks can lead to signi�cant

problems such as not meeting the deadline. In this project the amount of time that each

task was supposed to take was remarkably underestimated which led to stopping the

implementation and producing the report.

During the course of this project a great deal of knowledge was gained about logic and

software speci�cation, modelling and reliability. The knowledge that was gained suggests

that software reliability through mathematical techniques is an absolute necessity for

expansion of computer science and software engineering. In this day and age where

dependency on computers is more than ever, having reliable software is very desirable.
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Figure 50: Output of running unit tests

In order to make software reliability easier and more accessible by more engineers, it

is essential to automate the process as much as possible and develop better techniques

to allow engineers to produce reliable software faster. It was learnt that there is still a

signi�cant amount of work needed to be done to achieve that goal.

9.1 Lessons Learnt

As mentioned above, a large number of subjects and issues were learnt during this project,

but to name a few speci�c ones, the list below is provided:

• Always listen to your supervisors and do not make assumptions about anything

unless there is a rational explanation.

• Always ensure that the requirements is understood correctly before moving to design

or implementation.

• Using test driven development and unit tests is very logical when dealing with large

project.
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Figure 51: Help's command result

Figure 52: Application of DeMorgan's Or
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Figure 53: Application of DeMorgan's And
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• Designing software products should not be treated as a scienti�c research as there

is no scienti�c (factual) way of designing software.

• When dealing with mathematical projects make sure that the subject is understood

correctly without any personal assumptions added to it.

9.2 Future Work

This project needs to be continued to complete the compound prover in the future. There

are also a number of other tasks which should be done in the future which are listed below:

1. Combination algorithm time complexity should be calculated and reduced to make

the algorithm more e�cient.

2. Combination algorithm should be made more generic so it can be used in other

situations as well.

3. Completing the factory method after the compound prover is implemented.

4. Increase the user-friendliness of the program.

5. Incorporating the so-called relaxed reasoning rules in the prover.

Note that the source code of the program is available on:

Launchpad https://launchpad.net/ spadidar and the compiled code is available on

http://www.bubbleneblua.com/downloads .

In the provided CD-ROM, the source code, Windows version, Linux version, the version

control logs, all Latex material used and a u are provided.
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