he image on the cover is an artist's concept of one of the two NASA Mars Exploration Rovers, Spirit and Opportunity. Spirit landed on Mars at Gusev Crater January 4, 2004 (UTC), and Opportunity landed on the opposite side of the planet at Eagle Crater on Meridiani Planum January 25, 2004. The rovers were originally planned to operate for 90 Martian days (called sols). They have surprised even their designers with their longevity and accomplishment, as 2009 marks the fifth anniversary of the rovers' successful exploration on the surface of Mars. Learn more about the mission and its findings at marsrovers.jpl.nasa.gov. Credit: NASA/JPL-Caltech #### Notes on calendar format and symbols A Martian Year: Earth is the third planet from the Sun and Mars is the fourth. Mars travels farther around the Sun in its orbit than Earth does. For this reason, a Mars year is longer than an Earth year. A Mars year is 687 Earth days long, almost two Earth years. And for this reason, this one-Martian-year February 1, 2009 calendar covers two Earth years. Each page of this calendar has a diagram showing the relative positions of Earth and Mars at that time in their journeys around the Sun. A Martian Day: Mars rotates on its axis similarly to Earth, but a little more slowly, so a Mars day is a little longer than an Earth day. The Mars day, which we call a "sol," takes 24 hours, 39-1/2 minutes. The red and blue numbers in the calendar squares indicate how many sols have passed since Spirit (designated "A" and shown in red type) and Opportunity ("B" in blue type) landed on Mars. Those dates were January 4, 2004, for Spirit and January 25, 2004, for Opportunity. For example, on January 1, 2009, the numbers A1777 and B1757 mean that this date marks the 1777th sol that MER-A (technical name for Spirit) has spent on Mars and the 1757th sol for MER-B (Opportunity). You will notice that because a sol is slightly longer than a day, about every 36 days, the calendar skips an Earth day in counting the sols for each of the rovers. This way, the days and sols can stay synchronized on the calendar. **Day of Year:** The number in the top right corner of each calendar square is the consecutive day of year (DOY) number, commonly used in space mission operations as a shorthand way of giving the date. **Martian seasons:** The L_S number on the first day of each month is the Mars solar longitude. Imagine looking down on the solar system from a position "above" the Sun's north pole. If you draw a line from the Sun to Mars, the position of Mars at its northern vernal equinox is assigned 0° solar longitude. As Mars travels around the Sun through 360°, it experiences seasons just as Earth does. - Northern Spring/Southern Autumn start at 0° - Northern Summer/Southern Winter start at 90° - Northern Autumn/Southern Spring start at 180° - Northern Winter/Southern Summer begin at 270° **Mission Objective:** The objective of the Mars Exploration Rover Mission is to determine the water, climatic, and geologic history of two sites on Mars where evidence has been preserved of past and persistent water activity that may have supported life. **Science Instruments:** Spirit and Opportunity have "eyes" (powerful stereoscopic imagers) and an "arm" with powerful instruments attached that can be maneuvered like hands. The **Panoramic cameras (Pancam)** are the most capable cameras ever sent to the surface of another planet. They sit atop a mast that allows the cameras to rotate in a complete circle. The cameras can also tilt vertically from straight up to straight down. Each of the Pancams has a filter wheel that allows it to make images in only certain wavelengths of light—a capability that allows certain details of the scene to be more easily discerned. The **Miniature Thermal Emission Spectrometer (Mini-TES)** analyzes infrared light, which is a part of the spectrum that humans cannot see, but we feel as heat. The Mini-TES identifies rock-forming minerals, even some that are coated with dust. It collects data on the heat-holding properties of rocks and soils. It can also point upward and measure the varying temperatures of the Martian atmosphere from the surface up to 10 kilometers (6.2 miles). The **Rock Abrasion Tool (RAT)**, about the size of a 12-ounce soda can, brushes and grinds rocks to clean away dust and other surface deposits. Once the undersurface is exposed, the rover's spectrometers can find out their composition and search for ancient evidence of water on Mars. The **Alpha Particle X-ray Spectrometer** measures the chemical composition of Martian rocks and soil. It works by bombarding the material in question with energetic alpha particles and X-rays from the synthetic radioactive element curium-244. The emitted X-ray energy has a particular spectrum, or fingerprint, which the spectrometer measures to identify the element. The **Mössbauer Spectrometer** also measures the chemical composition of materials, specializing in different kinds of iron-bearing rocks and soils. Placed directly up against the target material, the spectrometer illuminates it with gamma particles emitted by the radioactive element cobalt-57. The particles interact with the targeted material, and characteristics of the radiation reflected back into the spectrometer reveal the presence, amount and types of iron-bearing minerals. The **Microscopic Imager**, like the RAT and the spectrometers, is located on the turret or "fist" of the rover arm. It is a combination of microscope optics and a camera that provides detailed images on the small-scale features of Martian rocks and soils. The Microscopic Imager has allowed scientists to characterize the undersurface of rocks. When able to see beneath the outer, weathered coating and layers of dust, scientists can better determine how the rocks formed. We have arrived! NASA/JPL/Cornell # January 2009 # February 2009 | SUNDA | Y | MONE | DAY | TUES | DAY | WEDNE | SDAY | THURS | DAY | FRID | AY | SATI | JRDAY | SUND | AY | MONE | DAY | TUES | DAY | WEDNE | SDAY | THUR | SDAY | FRID | AY | SATUI | RDAY | |---------------------------------|-------------|-----------------------|-----|----------------|-----|----------------|------|--|-----|----------------|----|----------------|-------|------------------------------------|-----|----------------|-----|----------------|-----|----------------|------|----------------|------|----------------|----|----------------|------| | | | | | | | | | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 32 | 2 | 33 | 3 | 34 | 4 | 35 | 5 | 36 | 6 | 37 | 7 | 38 | | | | | | | | | | L _S =183.4°
A1777
B1757 | | A1778
B1758 | | A1779
B1759 | | L _S =201.5° A1807 B1787 | | A1808
B1788 | | A1809
B1789 | | A1810
B1790 | | A1811
B1791 | | A1812
B1792 | | A1813
B1793 | | | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 10 | 10 | 8 | 39 | 9 | 40 | 10 | 41 | 11 | 42 | 12 | 43 | 13 | 44 | 14 | 45 | | Spirit's
5th Ear
Annivers | th | A1780
B1760 | | A1781 | | A1782
B1761 | | A1783
B1762 | | A1784
B1763 | | A1785
B1764 | | A1786
B1765 | | A1814
B1794 | | A1815
B1795 | | A1816
B1796 | | A1817 | | A1818
B1797 | | A1819
B1798 | | A1820
B1799 | | | 11 | 11 | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 15 | 46 | 16 | 47 | 17 | 48 | 18 | 49 | 19 | 50 | 20 | 51 | 21 | 52 | | A1787
B1766 | | A1788
B1767 | | A1789
B1768 | | A1790
B1769 | | A1791
B1770 | | A1792
B1771 | | A1793
B1772 | | A1821
B1800 | | A1822
B1801 | | A1823
B1802 | | A1824
B1803 | | A1825
B1804 | | A1826
B1805 | | A1827
B1806 | | | 18 | 18 | 19 | 19 | 20 | 20 | 21 | 21 | 22 | 22 | 23 | 23 | 24 | 24 | 22 | 53 | 23 | 54 | 24 | 55 | 25 | 56 | 26 | 57 | 27 | 58 | 28 | 59 | | A1794
B1773 | | A1795
B1774 | | A1796
B1775 | | A1797
B1776 | | A1798
B1777 | | A1799
B1778 | | B1779 | | A1828
B1807 | | A1829
B1808 | | A1830
B1809 | | A1831
B1810 | | A1832
B1811 | | A1833
B1812 | | A1834
B1813 | | | 25 | | 26 | 26 | 27 | 27 | 28 | 28 | 29 | 29 | 30 | 30 | 31 | 31 | D1007 | | B1000 | | 51003 | | BIOIO | | DIOTI | | DIOIZ | | DIOIS | | | Opportun
5th Ear
Annivers | ity's
th | | | | | | | 6 | A1800
B1780 | | A1801
B1781 | | A1802
B1782 | | A1803
B1783 | | A1804
B1784 | | A1805
B1785 | | A1806
B1786 | | | MI. | | | | | | | | | | | | | After exiting its protective landing system, the Mars rover Spirit turned to capture this spectacular view of its landing site, the floor of Gusev Crater. The lander platform was named the Columbia Memorial Station in honor of the Space Shuttle Columbia and its crew. In the background are the Columbia Hills, about 3 kilometers (2 miles) away. They were among the first destinations of Spirit's long journey. On January 4, 2009, its 5th Earth-year anniversary on Mars, Spirit had logged a total of approximately 7.5 km (4.7 miles). On Opportunity's 5th anniversary, January 25, 2009, it had logged 13.6 km (8.5 miles) on Meridiani Planum on the opposite side of the planet. February 1, 2009 Blueberry surprise NASA/JPL/USGS ## **March 2009** # **April 2009** | SUND | AY | MONE | PAY | TUE | SDAY | WEDNE | SDAY | THUR | SDAY | FRI | DAY | SATUR | DAY | SUND | AY | MONE | DAY | TUESDA | Y V | WEDNES | DAY | THURSI | DAY | FRID | AY | SATU | RDAY | |--|----|----------------|-----|--------------------|------|----------------|------|--------------------|------|----------------|-----|----------------|-------|----------------|-----|--------------------|-----|-------------------|-----|--|-----|--------------------|-----|--------------------|-----|----------------|------| | 1 | 60 | 2 | 61 | 3 | 62 | 4 | 63 | 5 | 64 | 6 | 65 | 7 | 66 | | | | | | | 1 | 91 | 2 | 92 | 3 | 93 | 4 | | | L _S =218.6°
A1835
B1814 | | B1815 | | A1836
B1816 | | A1837
B1817 | | A1838
B1818 | | A1839
B1819 | 18 | A1840
B1820 | | | | | | | | L _S =238.0°
A1865
B1844 | | A1866
B1845 | | A1867
B1846 | | A1868
B1847 | | | 8 | 67 | 9 | 68 | 10 | 69 | 11 | 70 | 12 | 71 | 13 | 72 | 14 | 73 | 5 | 95 | 6 | 96 | 7 | 97 | 8 | 98 | 9 | 99 | 10 | 100 | 11 | 101 | | A1841
B1821 | | A1842
B1822 | | A1843
B1823 | | A1844
B1824 | | A1845
B1825 | | A1846
B1826 | | A1847
B1827 | | A1869
B1848 | | A1870
B1849 | | A1871
B1850 | | B1851 | | A1872
B1852 | | A1873
B1853 | | A1874
B1854 | | | 15 | 74 | 16 | 75 | 17 | 76 | 18 | 77 | | 78 | 20 | 79 | 21 | 80 | 12 | 102 | | 103 | | | | 105 | 16 | 106 | | 107 | | 108 | | A1848 | | A1849 | | A1850 | | A1851 | | A1852 | | A1853 | | A1854 | | A1875 | | A1876 | | A1877 | | A1878 | | A1879 | | A1880 | | A1881 | | | B1828
22 | 81 | B1829 | 82 | B1830
24 | 83 | B1831 | 84 | B1832
26 | 85 | B1833 | 86 | 28 | 87 | 19 | 109 | B1856
20 | 110 | 21 1 | | B1858
22 | 112 | B1859
23 | 113 | B1860
24 | 114 | 25 | 115 | | | | | | | | | | | | | | | | S | | | | Mars
Perihelio | n | | | | | | | | | | A1855
B1834 | | A1856
B1835 | | A1857
B1836 | | A1858
B1837 | | A1859
B1838 | | A1860
B1839 | | A1861
B1840 | 74.31 | A1882
B1862 | | A1883
B1863 | | A1884
B1864 | | A1885
B1865 | | A1886
B1866 | | A1887
B1867 | | A1888
B1868 | | | 29 | 88 | 30 | 89 | 31 | 90 | | | | | | | | | 26 | 116 | 27 | 117 | 28 | 118 | 29 | 119 | 30 | 120 | | | | | | A1862
B1841 | | A1863
B1842 | Co. | A1864
B1843 | | | | | | | | | | A1889
B1869 | | A1890 | | A1891
B1870 | | A1892
B1871 | | A1893
B1872 | | | | | | | | | 1 | | | | 100 | 10 | | | ASTON | 24 | 1 | -64 | Ass | | | | | | | | | | | | | | This image from Opportunity's Microscopic Imager on sol 13 shows round, blueberry-shaped formations in the Martian soil near a part of the rock outcrop at Meridiani Planum called Stone Mountain. The "blueberries" averaged 5 millimeters (about .2 inch) in diameter. Measurements by the spectrometers onboard Opportunity indicated that the berries were composed largely of gray hematite. The presence of this particular mineral form of iron oxide strongly hints that water played a significant role in Mars' past. Getting under the surface NASA/JPL-Caltech/Cornell ## **May 2009** ## **June 2009** | SUN | DAY | MON | DAY | TUE | SDAY | WEDNE | SDAY | THURS | SDAY | FRIDA | Y | SATUR | RDAY | SUND | AY | MOND | ΑY | TUES | DAY | WEDNE | SDAY | THURS | DAY | FRID | AY | SATU | RDAY | |-----------------------------|----------------------|----------------|------|----------------|------|----------------|------|-------------------------------|-----------|--|-----|----------------|------|----------------|-----|--|-----|----------------|-----|-------------------------|------|----------------|-----|----------------|-----|----------------|------| | | | | | | | | | | | 1 | 121 | 2 | 122 | | | 1 | 152 | 2 | 153 | 3 | 154 | 4 | 155 | 5 | 156 | 6 | 157 | | | | | | | | | | | 4 | L _S =257.0°
A1894
B1873 | â | A1895
B1874 | | | | L _S =276.6°
A1924
B1904 | | A1925
B1905 | | A1926 | | A1927
B1906 | | A1928
B1907 | | A1929
B1908 | | | 3 | 123 | 4 | 124 | 5 | 125 | 6 | 126 | 7 | 127 | 8 | 128 | 9 | 129 | 7 | 158 | 8 | 159 | 9 | 160 | 10 | 161 | 11 | 162 | 12 | 163 | 13 | 164 | Spir
launch
in 20 | ned | | | | | | | | A1896
B1875 | | A1897
B1876 | | A1898
B1877 | | A1899
B1878 | | A1900
B1879 | | A1901
B1880 | | A1902
B1881 | | A1930
B1909 | | A1931
B1910 | | A1932
B1911 | | A1933
B1912 | | A1934
B1913 | | A1935
B1914 | | A1936
B1915 | | | 10 | 130 | 11 | 131 | 12 | 132 | 13 | 133 | 14 | 134 | 15 | 135 | 16 | 136 | 14 | 165 | 15 | 166 | 16 | 167 | 17 | 168 | 18 | 169 | 19 | 170 | 20 | 171 | | A1903
B1882 | | A1904
B1883 | | A1905
B1884 | | A1906
B1885 | | A1907
B1886 | | A1908
B1887 | | B1888 | | A1937
B1916 | | A1938
B1917 | | A1939
B1918 | | A1940
B1919 | | A1941
B1920 | | A1942
B1921 | | A1943
B1922 | | | 17 | 137 | 18 | 138 | 19 | 139 | 20 | 140 | 21 | 141 | 22 | 142 | 23 | 143 | 21 | 172 | 22 | 173 | 23 | 174 | 24 | 175 | 25 | 176 | 26 | 177 | 27 | 178 | | | | | | | | | | South
Mai
Sumr
Solst | rs
mer | A Com | | | | | | | | | | | | | | | | | | | A1909
B1889 | | A1910
B1890 | | A1911
B1891 | | A1912
B1892 | | A1913
B1893 | | A1914
B1894 | | A1915
B1895 | | A1944
B1923 | | B1924 | | A1945
B1925 | | A1946
B1926 | | A1947
B1927 | | A1948
B1928 | | A1949
B1929 | | | 144 | 24
A1916
B1896 | 25 | 145 | 26 | 146 | 27 | 147 | 28 | 148 | 29 | 149 | 30 | 150 | 28 | 179 | 29 | 180 | 30 | 181 | | | | | | | | | | A1923
B1903
31 | | A1917
B1897 | Fig. | A1918
B1898 | | A1919
B1899 | | A1920
B1900 | | A1921
B1901 | | A1922
B1902 | | A1950
B1930 | | A1951
B1931 | 70 | A1952
B1932 | | | | | | | | | | Captured on Sol 86 of Spirit's mission on Mars, this false-color Pancam image of the rock Mazatzal demonstrates the range of operations the Rock Abrasion Tool (RAT) can perform. On the right, a RAT brushing operation removed overlying surface material for the spectrometers and, on the left, a mosaic of brushing operations cleaned a larger area for analysis with the Mini-Thermal Emission Spectrometer. The bright spot in the center highlights the area where the RAT abraded away the rock exterior so that contact spectrometers could analyze the un-weathered interior. June 1, 2009 NASA/JPL/Cornell # **July 2009** # August 2009 | SUNE | DAY | MONI | DAY | TUES | DAY | WEDNE | SDAY | THUR | SDAY | FRID | AY | SATU | RDAY | SUN | DAY | MONI | DAY | TUES | DAY | WEDNESDA | Y THUR | SDAY | FRID | AY | SATU | RDAY | |----------------|-----|-----------------------|-----|----------------|-----|--|------|----------------|------|----------------|-----|----------------|------|--------------------|-----------------------|--------------------|-----------------------|----------------|-----|-------------------------------------|----------------|------|----------------|-----|---|------| | | | | | | | 1 | 182 | 2 | 183 | 3 | 184 | 4 | 185 | | | | | | | | | | | | 1 | 213 | | | | | | | | L _S =295.0°
A1953
B1933 | o | A1954
B1934 | 4 | A1955
B1935 | | A1956
B1936 | | | | | | | | | | | | | L _S =313.3
A1983
B1963 | 0 | | 5 | 186 | 6 | 187 | 7 | 188 | 8 | 189 | 9 | 190 | 10 | 191 | 11 | 192 | 2 | 214 | 3 | 215 | 4 | 216 | 5 21 | ⁷ 6 | 218 | 7 | 219 | 8 | 220 | | | | | | | | Opport
launch
in 20 | ned | A1957
B1937 | | A1958
B1938 | | A1959
B1939 | | A1960
B1940 | | A1961
B1941 | | A1962
B1942 | | A1963 | | A1984
B1964 | | A1985
B1965 | | A1986
B1966 | | A1987
B1967 | A1988
B1968 | | A1989
B1969 | | A1990
B1970 | | | 12 | 193 | 13 | 194 | 14 | 195 | 15 | 196 | 16 | 197 | 17 | 198 | 18 | 199 | 9 | 221 | 10 | 222 | 11 | 223 | 12 ²² | 4 13 | 225 | 14 | 226 | 15 | 227 | | A1964
B1943 | | A1965
B1944 | | A1966
B1945 | | A1967
B1946 | | A1968
B1947 | | A1969
B1948 | C | A1970
B1949 | | A1991
B1971 | | A1992
B1972 | | A1993
B1973 | X. | A1994
B1974 | A1995
B1975 | | A1996
B1976 | | A1997
B1977 | | | 19 | 200 | 20 | 201 | 21 | 202 | 22 | 203 | 23 | 204 | 24 | 205 | 25 | 206 | 16 | 228 | 17 | 229 | 18 | 230 | 19 ²³ | 20 | 232 | 21 | 233 | 22 | 234 | | A1971
B1950 | | A1972
B1951 | | A1973
B1952 | | A1974
B1953 | | A1975
B1954 | | A1976
B1955 | | A1977
B1956 | | A1998
B1978 | | A1999 | | A2000
B1979 | | A2001
B1980 | A2002
B1981 | | A2003
B1982 | | A2004
B1983 | | | 26 | 207 | 27 | 208 | 28 | 209 | 29 | 210 | 30 | 211 | 31 | 212 | | | 235
A2012 | 23 A2005 B1984 | 236
A2013 | 24 A2006 B1985 | 25 | 237 | 26 Spirit's 3rd Martiar Anniversary | 21 | 239 | 28 | 240 | 29 | 241 | | A1978
B1957 | | A1979
B1958 | | A1980
B1959 | | A1981
B1960 | | B1961 | | A1982
B1962 | | | | B1991
30 | 242 | B1992
31 | 243 | A2007
B1986 | | A2008
B1987 | A2009
B1988 | | A2010
B1989 | | A2011
B1990 | | In the top panorama (taken sols 117-123), Opportunity overlooks Endurance Crater. Before the rover plunged in, mission planners wanted to make sure it would be able to get out again. The second image shows the planned "escape hatch." The intrepid rover ventured into the crater and began to explore. By the time it rolled up to the base of Burns Cliff at the southeastern portion of the crater and began taking the images in the bottom wide-angle panorama, it was sol 287. Opportunity entered the crater on sol 133 and exited on sol 315. August 1, 2009 A trail of holes ## September 2009 ## October 2009 | SUNI | DAY | MONI | DAY | TUES | SDAY | WEDNI | ESDAY | THUR | SDAY | FRID | AY | SATU | RDAY | SUNI | DAY | MONDA | Υ | TUESDA | Y V | WEDNESD | AY | THURSD | AY | FRID | AY | SATUR | RDAY | |----------------|-----|----------------|-----|---|------|-----------------------------------|-------------------|----------------|------|----------------|-----|----------------|------|----------------|-----|---|----------|-----------------|-----|------------------------------|-----|--|-----|----------------|-----|----------------|------| | | | | | 1 | 244 | 2 | 245 | 3 | 246 | 4 | 247 | 5 | 248 | | | | | | | | | 1 | 274 | 2 | 275 | 3 | 276 | | | | | | L _S =330.8
A2014
B1993 | 30 | A2015
B1994 | | A2016
B1995 | | A2017
B1996 | | B1997 | | | | | | | | | | L _S =346.8°
A2043
B2022 | | A2044
B2023 | | A2045
B2024 | | | 6 | 249 | 7 | 250 | 8 | 251 | 9 | 252 | 10 | 253 | 11 | 254 | 12 | 255 | 4 | 277 | 5 | 278 | 6 2 | 79 | 7 2 | 280 | 8 | 281 | 9 | 282 | 10 | 283 | | A2018
B1998 | | A2019
B1999 | | A2020
B2000 | | A2021
B2001 | | A2022
B2002 | | A2023
B2003 | | A2024
B2004 | | A2046
B2025 | | A2047
B2026 | | A2048
B2027 | | 3 <mark>2049</mark>
32028 | | A2050
B2029 | | A2051
B2030 | | A2052
B2031 | | | 13 | 256 | 14 | 257 | 15 | 258 | 16
Opporti
3rd Ma
Annive | unity's
artian | 17 | 260 | 18 | 261 | 19 | 262 | 11 | 284 | 12 | 285 | 13 ² | 286 | 14 | 287 | 15 | 288 | 16 | 289 | 17 | 290 | | A2025
B2005 | | A2026
B2006 | | A2027
B2007 | | A2028
B2008 | | A2029
B2009 | | A2030
B2010 | | A2031
B2011 | | A2053
B2032 | | B2033 | | A2054
B2034 | | A2055
32035 | | A2056
B2036 | | A2057
B2037 | | A2058
B2038 | | | 20 | 263 | 21 | 264 | 22 | 265 | 23 | 266 | 24 | 267 | 25 | 268 | 26 | 269 | 18 | 291 | 19 | 292 | 20 2 | 93 | 21 | 294 | 22 | 295 | 23 | 296 | 24 | 297 | | A2032
B2012 | | A2033
B2013 | | A2034
B2014 | | A2035
B2015 | | A2036 | | A2037
B2016 | | A2038
B2017 | | A2059
B2039 | | A2060
B2040 | | A2061
B2041 | | A2062
32042 | | A2063
B2043 | | A2064
B2044 | | A2065
B2045 | | | 27 | 270 | 28 | 271 | 29 | 272 | 30 | 273 | | | | | | | 25 | 298 | 26
Souther
Mars
Autumn
Equino | rn
al | 27 3 | 300 | 28 | 301 | 29 | 302 | 30 | 303 | 31 | 304 | | A2039
B2018 | | A2040
B2019 | | A2041
B2020 | | A2042
B2021 | | | | | | | | A2066
B2046 | 100 | A2067
B2047 | | A2068
B2048 | | A2069
32049 | | A2070
B2050 | | A2071
B2051 | | A2072 | | This false-color view from Opportunity's Pancam (taken on sol 173) shows the first seven holes that the rover's Rock Abrasion Tool (RAT) dug on the inner slope of Endurance Crater. The false color allows the holes to be much more visible than they would be in a natural-color image. Note that the sky on Mars is not really blue, as it appears in this image. The rover was about 12 meters (about 39 feet) down into the crater, with the Pancam looking back toward the rover's tracks. The tailings around the holes show evidence of fine-grained red hematite similar to what was observed months earlier in Eagle Crater outcrop holes. October 1, 2009 Pale hints of past water NASA/JPL-Caltech/Cornell ### November 2009 ## December 2009 | SUNI | PAY | MONE | DAY | TUES | DAY | WEDNE | SDAY | THURS | SDAY | FRIDAY | 1 | SATUR | DAY | SUND | AY | MOND | AY | TUES | DAY | WEDNES | SDAY | THURS | DAY | FRID | AY | SATU | RDAY | |--|-----|----------------|-----|----------------|-----|----------------|------|----------------|------|-----------------------|-----|----------------|-----|-----------------------|-----|----------------|-----|---|-----|--------------------|------|----------------|-----|-----------------------|-----|----------------|------| | 1 | 305 | 2 | 306 | 3 | 307 | 4 | 308 | 5 | 309 | 6 | 310 | 7 | 311 | | | | | 1 | 335 | 2 | 336 | 3 | 337 | 4 | 338 | 5 | 339 | | L _S =2.6°
A2073
B2052 | | A2074
B2053 | | A2075
B2054 | | A2076
B2055 | | A2077
B2056 | | A2078
B2057 | | A2079
B2058 | | | | | | L _S =17.1°
A2102
B2082 | | A2103
B2083 | | A2104
B2084 | | A2105
B2085 | | A2106
B2086 | | | 8 | 312 | 9 | 313 | 10 | 314 | 11 | 315 | 12 | 316 | 13 | 317 | 14 | 318 | 6 | 340 | 7 | 341 | 8 | 342 | 9 | 343 | 10 | 344 | 11 | 345 | 12 | 346 | | A2080
B2059 | | A2081
B2060 | | A2082
B2061 | | A2083
B2062 | | A2084
B2063 | | A2085
B2064 | | A2086
B2065 | | A2107
B2087 | | A2108 | | A2109
B2088 | | A2110
B2089 | | A2111
B2090 | | A2112
B2091 | | A2113
B2092 | | | 15 | 319 | 16 | 320 | 17 | 321 | 18 | 322 | 19 | 323 | 20 | 324 | 21 | 325 | 13 | 347 | 14 | 348 | 15 | 349 | 16 | 350 | 17 | 351 | 18 | 352 | 19 | 353 | | A2087
B2066 | | A2088
B2067 | | A2089
B2068 | | A2090
B2069 | | B2070 | | A2091
B2071 | | A2092
B2072 | | A2114
B2093 | | A2115
B2094 | | A2116
B2095 | | A2117 B2096 | | A2118
B2097 | | A2119
B2098 | | A2120
B2099 | | | 22 | 326 | 23 | 327 | | 328 | 25 | 329 | 26 | 330 | 27 | 331 | 28 | 332 | 20 | 354 | 21 | 355 | 22 | 356 | 23 | 357 | 24 | 358 | 25 | 359 | | 360 | | A2093
B2073 | | A2094
B2074 | | A2095
B2075 | | A2096
B2076 | | A2097
B2077 | | A2098
B2078 | | A2099
B2079 | | A2121
B2100 | | A2122
B2101 | | A2123
B2102 | | A2124
B2103 | | A2125
B2104 | | A2126
B2105 | | B2106 | | | 29 | 333 | 30 | 334 | B2073 | | B2070 | | B2077 | | B2076 | | B2079 | 7 | 27 | 361 | 28 | 362 | 29 | 363 | | 364 | 31 | 365 | B2103 | | B2100 | | | A2100
B2080 | | A2101
B2081 | | | | | | C | | | | | | A2127
B2107 | | A2128
B2108 | | A2129
B2109 | | A2130
B2110 | | A2131
B2111 | | | | | | In both the above images, Spirit's wheels have churned up light-toned soil lying just beneath the Martian surface soil in Gusev Crater. In the top image, taken by the Pancam on Spirit's sol 788, the bright soil is confirmed by Spirit's instruments to have a salty chemistry dominated by iron-bearing sulfates. In the bottom image, taken on sol 1202, the light-colored soil is found to be predominantly silica. These two minerals share a likely origin in water. While sulfates can form in several ways, water is involved in most. The deposits of nearly pure silica in Gusev Crater may have formed when volcanic steam or hot water (or maybe both) percolated through the ground. Such deposits are found around hydrothermal vents like those in Yellowstone National Park. **December 1, 2009** # January 2010 # February 2010 Dynamic dunes | SUN | DAY | MOND | AY | TUESI | DAY | WEDNE | SDAY | THURS | SDAY | FRIDA | Υ | SATUR | DAY | SUNE | DAY | MONE | DAY | TUES | SDAY | WEDNI | ESDAY | THUR | SDAY | FRID | AY | SATU | RDAY | |----------------------|-----------------------|-----------------------------|-----|----------------|-----|----------------|------|----------------|------|---|----|-----------------------|-----|----------------|-----|-----------------------|-----|----------------|------|----------------|-------|-----------------------|------|----------------|----|----------------|------| | | | | | | | | | | | 1 | 1 | 2 | 2 | | | 1 | 32 | 2 | 33 | 3 | 34 | 4 | 35 | 5 | 36 | 6 | 37 | | | | | | | | | | | | L _S =31.5°
A2132
B2112 | | A2133
B2113 | | | | L _S =45.5° | | A2163
B2143 | | A2164
B2144 | | A2165
B2145 | | A2166
B2146 | | A2167
B2147 | | | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 7 | 38 | 8 | 39 | 9 | 40 | | 41 | 11 | 42 | 12 | 43 | 13 | 44 | | | | Spirit
6th Ea
Anniver | rth | A2134
B2114 | | A2135
B2115 | | A2136
B2116 | | A2137
B2117 | | A2138
B2118 | | A2139
B2119 | | A2140
B2120 | | A2168
B2148 | | A2169
B2149 | | A2170
B2150 | | A2171
B2151 | | A2172
B2152 | | A2173
B2153 | | A2174
B2154 | | | 10 | 10 | 11 | 11 | 12 | 12 | 13 | 13 | 14 | 14 | 15 | 15 | 16 | 16 | 14 | 45 | 15 | 46 | 16 | 47 | 17 | 48 | 18 | 49 | 19 | 50 | 20 | 51 | | A2141
B2121 | | A2142
B2122 | | A2143
B2123 | | A2144
B2124 | | A2145 | | A2146
B2125 | | A2147
B2126 | | A2175
B2155 | | A2176
B2156 | | A2177
B2157 | | A2178
B2158 | | A2179
B2159 | | A2180
B2160 | | A2181 | | | 17 | 17 | 18 | 18 | 19 | 19 | 20 | 20 | 21 | 21 | 22 | 22 | 23 | 23 | 21 | 52 | 22 | 53 | 23 | 54 | 24 | 55 | 25 | 56 | 26 | 57 | 27 | 58 | | A2148
B2127 | | A2149
B2128 | | A2150
B2129 | 7 | A2151
B2130 | | A2152
B2131 | | A2153
B2132 | | A2154
B2133 | | A2182
B2161 | | A2183
B2162 | | A2184
B2163 | | A2185
B2164 | | A2186
B2165 | | A2187
B2166 | | A2188
B2167 | | | 24
A2162
B2141 | 24 A2155 B2134 | | th | 26 | 26 | 27 | 27 | 28 | 28 | 29
Mars
Oppositi | | 30 | 30 | 28 | 59 | | | | | | | | | | | | | | 31 | 31 | A2156
B2135 | | A2157
B2136 | | A2158
B2137 | | A2159
B2138 | | A2160
B2139 | | A2161
B2140 | | A2189
B2168 | | | | | | | | | | | | | | The top image is the view from Opportunity on sol 211 of the dune field within Endurance Crater. The dust (a lighter color) accumulates near the dune crests, while hematite-rich spherules (like the "blueberries" in the March-April 2009 image), which appear blue against the scene in this false color version, tend to rest in troughs with more gradual slopes. The bottom panorama from Opportunity (taken from sols 456 to 464), shows Purgatory Dune in which the rover was stuck for over a month. These wind-blown sand and dust features are constantly changing, reaffirming the dynamic nature of the Martian environment. ## March 2010 ## **April 2010** | SUNE | DAY | MOND | AY | TUES | SDAY | WEDNE | SDAY | THURS | SDAY | FRIDA | ΑY | SATUR | DAY | SUNE | PAY | MONI | DAY | TUESE | DAY | WEDNES | DAY | THURSDAY | , | FRIDAY | , | SATU | RDAY | |----------------|-----|---|----|----------------|------|----------------|------|----------------|------|----------------|----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|----------------|-----|--|------------|------------|-----|----------------|------| | | | 1 | 60 | 2 | 61 | 3 | 62 | 4 | 63 | 5 | 64 | 6 | 65 | | | | | | | | | 1 9 | 1 2 | ! | 92 | 3 | 93 | | | | L _S =57.9°
A2190
B2169 | | A2191
B2170 | | A2192
B2171 | | A2193
B2172 | | A2194
B2173 | | A2195
B2174 | | | | | | | | | | L _S =71.4°
A2220
B2199 | A2:
B2: | 221
200 | | A2222
B2201 | | | 7 | 66 | 8 | 67 | 9 | 68 | 10 | 69 | 11 | 70 | 12 | 71 | 13 | 72 | 4 | 94 | 5 | 95 | 6 | 96 | 7 | 97 | 8 98 | 9 | | 99 | 10 | 100 | | A2196
B2175 | | A2197
B2176 | | A2198
B2177 | | A2199
B2178 | | B2179 | | A2200
B2180 | | A2201
B2181 | | A2223
B2202 | | A2224
B2203 | | A2225
B2204 | | A2226
B2205 | | A2227
B2206 | A2: | 228
207 | | A2229
B2208 | | | 14 | 73 | 15 | 74 | 16 | 75 | 17 | 76 | 18 | 77 | 19 | 78 | 20 | 79 | 11 | 101 | 12 | 102 | 13 | 103 | 14 | 104 | 15 109 | 5 1 | 6 | 106 | 17 | 107 | | A2202
B2182 | | A2203
B2183 | | A2204
B2184 | | A2205
B2185 | | A2206
B2186 | | A2207
B2187 | | A2208
B2188 | | A2230
B2209 | | A2231
B2210 | | A2232
B2211 | | A2233
B2212 | | A2234
B2213 | A2: | 235
214 | | B2215 | | | 21 | 80 | 22 | 81 | 23 | 82 | 24 | 83 | 25 | 84 | 26 | 85 | 27 | 86 | 18 | 108 | 19 | 109 | 20 | 110 | 21 | 111 | 22 112 | 2 2 | 3 | 113 | 24 | 114 | | A2209
B2189 | | A2210
B2190 | | A2211
B2191 | | A2212
B2192 | | A2213
B2193 | | A2214
B2194 | | A2215
B2195 | | A2236
B2216 | | A2237
B2217 | | A2238
B2218 | | A2239
B2219 | | A2240
B2220 | A2: | | | A2242
B2222 | | | 28 | 87 | 29 | 88 | 30
Ma | | 31 | 90 | | | | | | | 25 | 115 | 26 | 116 | 27 | 117 | 28 | 118 | 29 11
Spirit
surpasses
Viking | 9 3 | 0 | 120 | | | | A2216
B2196 | | A2217 | | A2218
B2197 | | A2219
B2198 | | | | | | | | A2243
B2223 | | A2244
B2224 | | A2245
B2225 | | A2246
B2226 | | Lander 1
in longevity
A2247
B2227 | | 248
228 | | | | This self-portrait of Spirit, taken on its Sol 586, shows the solar panels still gleaming in the Martian sunlight and carrying only a thin veneer of dust even two years after the rover landed and began exploring the red planet. Spirit's Pancam took this mosaic of images as part of a mammoth undertaking that resulted in the largest panorama ever acquired by Spirit at the time. This image is a subset of that panorama, showing just the rover. The vertical projection used here produces the best view of the rover deck itself, though it distorts the ground and antennas somewhat. This image is an approximate true-color rendering that combines images taken through the camera's 600-nanometer, 530-nanometer, and 480-nanometer filters. April 1, 2010 Martian sunset NASA/JPL/Texas A&M/Cornell # May 2010 ## **June 2010** | SUN | DAY | MON | IDAY | TUESI | DAY | WEDNE | SDAY | THURSDA | Y F | RIDAY | SATU | RDAY | SUNE | DAY | MONI | DAY | TUES | DAY | WEDNE | SDAY | THUR | SDAY | FRID | AY | SATU | RDAY | |-----------------------|-----------------------|-----------------------|----------------------|----------------|-----|----------------|------|---|------------------|-------|---|------|----------------|-----|----------------|-----|---|-----|----------------|------|----------------|------|----------------|-----|----------------|------| | | | | | | | | | | | | 1 | 121 | | | | | 1 | 152 | 2 | 153 | 3 | 154 | 4 | 155 | 5 | 156 | | | | | | | | | | | | | L _s =84.5°
A2249
B2229 | o | | | | | L _S =98.3°
A2279
B2259 | | A2280
B2260 | | A2281
B2261 | | A2282
B2262 | | A2283
B2263 | | | 2 | 122 | 3 | 123 | 4 | 124 | 5 | 125 | 6 12 | ²⁶ 7 | 127 | 8 | 128 | 6 | 157 | 7 | 158 | 8 | 159 | 9 | 160 | 10 | 161 | 11 | 162 | 12 | 163 | | A2250
B2230 | | A2251
B2231 | | A2252
B2232 | | A2253
B2233 | | A2254 | A225
B223 | | A2256
B2235 | | A2284
B2264 | | A2285
B2265 | | A2286
B2266 | | A2287
B2267 | | A2288
B2268 | | A2289
B2269 | | A2290 | | | 9 | 129 | 10 | 130 | 11 | 131 | 12 | 132 | Southern
Mars
Winter
Solstice | ³³ 14 | 134 | 15 | 135 | 13 | 164 | 14 | 165 | 15 | 166 | 16 | 167 | 17 | 168 | 18 | 169 | 19 | 170 | | A2257
B2236 | | A2258
B2237 | | A2259
B2238 | | A2260
B2239 | | A2261
B2240 | A226
B224 | | A2263
B2242 | | A2291
B2270 | | A2292
B2271 | | A2293
B2272 | | A2294
B2273 | | A2295
B2274 | | A2296
B2275 | | A2297
B2276 | | | 16 | 136 | 17 | 137 | 18 | 138 | 19 | 139 | 20 14
Opportunity
surpasses
Viking Land
1 in longevit | er | 141 | 22 | 142 | 20 | 171 | 21 | 172 | 22 | 173 | 23 | 174 | 24 | 175 | 25 | 176 | 26 | 177 | | A2264
B2243 | | A2265
B2244 | | A2266
B2245 | | A2267
B2246 | | A2268
B2247 | A226
B224 | | A2270
B2249 | | A2298
B2277 | | A2299
B2278 | | A2300
B2279 | | A2301
B2280 | | A2302
B2281 | | A2303
B2282 | | A2304
B2283 | | | 143
A2277
B2257 | 23 A2271 B2250 | 144
A2278
B2258 | 24
A2272
B2251 | 25 | 145 | 26 | 146 | 27 14 | 20 | | 29 | 149 | 27 | 178 | 28 | 179 | 29 | 180 | 30 | 181 | | | | | | | | 30 | 150 | 31 | 151 | B2252 | | A2273
B2253 | | A2274
B2254 | A227
B225 | | A2276
B2256 | | A2305
B2284 | | A2306
B2285 | | A2307
B2286 | | A2308
B2287 | | | | | | | | Spirit captured this stunning view as the Sun sank below the rim of Gusev Crater on Mars around 6:07 in the evening of Spirit's sol 489. This small panorama of the western sky was obtained using the Pancam's 750-nanometer, 530-nanometer, and 430-nanometer color filters. This filter combination allows false-color images to be generated that are similar to what a human would see, but with the colors slightly exaggerated. In this image, the bluish glow in the sky above the Sun would be visible to us if we were there, but the redness of the sky farther from the sunset is exaggerated. Other images have shown that the twilight glow is visible for up to two hours before sunrise or after sunset. The long Martian twilight is caused by sunlight scattered around to the night side of the planet by abundant high-altitude dust. June 1, 2010 Sol companion NASA/JPL # **July 2010** # August 2010 | SUN | DAY | MON | DAY | TUES | SDAY | WEDNE | SDAY | THURS | DAY | FRID | AY | SATU | RDAY | SUNI | DAY | MON | DAY | TUES | SDAY | WEDN | ESDAY | THUR | SDAY | FRID | AY | SATU | RDAY | |----------------|-----|----------------|-------|----------------|------|-----------------------|------|---------------------------------|-----|----------------|-----|----------------|------|--|-----|----------------|-----|----------------|------|-----------------------|-------|----------------|------|----------------|-----|----------------|------| | | | | | | | | | 1 | 182 | 2 | 183 | 3 | 184 | 1 | 213 | 2 | 214 | 3 | 215 | 4 | 216 | 5 | 217 | 6 | 218 | 7 | 219 | | | | | | | | | | L _S =111.8°
B2288 | | A2309
B2289 | | A2310
B2290 | | L _S =126.3°
A2339
B2318 | 0 | A2340
B2319 | | A2341
B2320 | | A2342
B2321 | | A2343
B2322 | | A2344
B2323 | | B2324 | | | 4 | 185 | 5 | 186 | 6 | 187 | 7 | 188 | 8 | 189 | 9 | 190 | 10 | 191 | 8 | 220 | 9 | 221 | 10 | 222 | 11 | 223 | 12 | 224 | 13 | 225 | 14 | 226 | | A2311
B2291 | | A2312
B2292 | | A2313
B2293 | | A2314
B2294 | | A2315
B2295 | | A2316
B2296 | | A2317
B2297 | | A2345
B2325 | | A2346
B2326 | | A2347
B2327 | | A2348
B2328 | | A2349
B2329 | | A2350
B2330 | | A2351
B2331 | | | 11 | 192 | 12 | 193 | 13 | 194 | 14 | 195 | 15 | 196 | 16 | 197 | 17 | 198 | 15 | 227 | 16 | 228 | 17 | 229 | 18 | 230 | 19 | 231 | 20 | 232 | 21 | 233 | | A2318
B2298 | | A2319
B2299 | | A2320
B2300 | | A2321
B2301 | | A2322
B2301 | | A2323
B2303 | | A2324
B2304 | | A2352
B2332 | | A2353
B2333 | | A2354
B2334 | N. | A2355
B2335 | | A2356
B2336 | | A2357
B2337 | | A2358
B2338 | | | 18 | 199 | 19 | 200 | 20 | 201 | 21 | 202 | 22 | 203 | 23 | 204 | 24 | 205 | 22 | 234 | 23 | 235 | 24 | 236 | 25 | 237 | 26 | 238 | 27 | 239 | 28 | 240 | | A2325
B2305 | | A2326
B2306 | | A2327 | | A2328
B2307 | | A2329
B2308 | | A2330
B2309 | | A2331
B2310 | | A2359
B2339 | | A2360
B2340 | | A2361
B2341 | | A2362
B2342 | | A2363 | | A2364
B2343 | | A2365
B2344 | | | 25 | 206 | 26 | 207 | 27 | 208 | 28 | 209 | 29 | 210 | 30 | 211 | 31 | 212 | 29 | 241 | 30 | 242 | 31 | 243 | | | | | | | | | | A2332
B2311 | | A2333
B2312 | Para. | A2334
B2313 | | A2335
B2314 | | A2336
B2315 | | A2337
B2316 | | A2338
B2317 | | A2366
B2345 | | A2367
B2346 | | A2368
B2347 | | | | | | | | | | Opportunity takes a picture of its own shadow as it continues its descent into Endurance Crater. With the Sun low on the horizon, the rover's rear-facing, black-and-white Hazard Avoidance Camera, or Hazcam, easily picks out details of the surface texture and the rover's own tracks in the loose soil. The rovers have two pairs of Hazcams—front and back—to support automated navigation, scanning the immediate land-scape for obstacles that may hinder or damage it. The image was taken on sol 180 (July 26, 2004), a date that marks the achievement of fully double the rover's primary 90-sol mission. Ripples all around NASA/JPL-Caltech/Cornell # September 2010 ## October 2010 | SUNI | DAY | MON | DAY | TUE | SDAY | WEDNE | ESDAY | THUR | SDAY | FRID | DAY | SATUR | RDAY | SUN | IDAY | MON | DAY | TUES | DAY | WEDNE | SDAY | THUR | SDAY | FRID | AY | SATU | RDAY | |----------------|-----|-----------------------|-----|-----------------------|------|---|-------|----------------|------|----------------|-----|----------------|------|----------------|----------------------|-----------------------|-----|----------------|-----|-----------------------|------|----------------|------|---|-----|----------------|------| | | | | | | | 1 | 244 | 2 | 245 | 3 | 246 | 4 | 247 | | | | | | | | | | | 1 | 274 | 2 | 275 | | | | | | | | L _S =141.4
A2369
B2348 | 0 | A2370
B2349 | | A2371
B2350 | | A2372
B2351 | | | | | | | | | | | | L _S =156.7
A2398
B2378 | 0 | A2399 | | | 5 | 248 | 6 | 249 | 7 | 250 | 8 | 251 | 9 | 252 | 10 | 253 | 11 | 254 | 3 | 276 | 4 | 277 | 5 | 278 | 6 | 279 | 7 | 280 | 8 | 281 | 9 | 282 | | A2373
B2352 | | A2374
B2353 | | A2375
B2354 | | A2376
B2355 | | A2377
B2356 | | A2378
B2357 | | A2379
B2358 | | A2400
B2379 | | A2401
B2380 | | A2402
B2381 | | A2403
B2382 | | A2404
B2383 | | A2405
B2384 | | A2406
B2385 | | | 12 | 255 | 13 | 256 | 14 | 257 | 15 | 258 | 16 | 259 | 17 | 260 | 18 | 261 | 10 | 283 | 11 | 284 | 12 | 285 | 13 | 286 | 14 | 287 | 15 | 288 | 16 | 289 | | A2380
B2359 | | A2381
B2360 | | B2361 | | A2382
B2362 | | A2383
B2363 | | A2384
B2364 | | A2385
B2365 | | A2407
B2386 | | A2408
B2387 | | A2409
B2388 | X. | A2410
B2389 | | A2411
B2390 | | A2412
B2391 | | A2413
B2392 | | | 19 | 262 | 20 | 263 | 21 | 264 | 22 | 265 | 23 | 266 | 24 | 267 | 25 | 268 | 17 | 290 | 18 | 291 | 19 | 292 | 20 | 293 | 21 | 294 | 22 | 295 | 23 | 296 | | A2386
B2366 | | A2387
B2367 | | A2388
B2368 | | A2389
B2369 | | A2390
B2370 | | A2391
B2371 | | A2392
B2372 | | A2414
B2393 | | A2415
B2394 | | A2416
B2395 | | A2417
B2396 | | B2397 | | A2418
B2398 | | A2419
B2399 | | | 26 | 269 | 27 | 270 | 28 | 271 | 29 | 272 | 30 | 273 | | | | | 297
A2427 | 24
A2420
B2400 | 25 | 298 | 26 | 299 | 27 | 300 | 28 | 301 | 29 | 302 | 30 | 303 | | A2393
B2373 | | A2394
B2374 | | A2395
B2375 | | A2396
B2376 | | A2397
B2377 | | | | | | B2407
31 | 304 | A2421
B2401 | | A2422
B2402 | | A2423
B2403 | | A2424
B2404 | | A2425
B2405 | | A2426
B2406 | | This view at the edge of Erebus Crater is a false-color composite 360-degree panorama from frames taken by Opportunity's Pancam on Sols 652 through 663. The mosaic is presented as a vertical projection, providing a true-to-scale overhead view of the rover deck and nearby surrounding terrain. The view here shows outcrop rocks, sand dunes, and other features out to a distance of about 25 meters (82 feet) from the rover. The view shows examples of the dunes and ripples that Opportunity crossed as it drove on the Meridiani plains. October 1, 2010 Toward autonomy: navigation and data capture ## **November 2010** ### December 2010 | SUNI | DAY | MONI | DAY | TUES | SDAY | WEDNI | ESDAY | THUR | SDAY | FRID | AY | SATU | IRDAY | SUN | DAY | MON | DAY | TUES | DAY | WEDN | ESDAY | THUR | SDAY | FRID | DAY | SATUI | RDAY | |----------------|-----|--|-----|----------------|------|-----------------------|-------|-----------------------|------|----------------|-----|------------------------|--------|----------------|-----|-----------------------|-----|-----------------------|-----|---|-------|----------------|------|----------------|-----|----------------|------| | | | 1 | 305 | 2 | 306 | 3 | 307 | 4 | 308 | 5 | 309 | 6 | 310 | | | | | | | 1 | 335 | 2 | 336 | 3 | 337 | 4 | 338 | | | | L _S =173.4°
A2428
B2408 |) | A2429
B2409 | | A2430
B2410 | | A2431
B2411 | | A2432
B2412 | | A2433
B2413 | | | | | | | | L _S =190.3
A2457
B2437 | 0 | A2458
B2438 | | A2459
B2439 | | A2460
B2440 | | | 7 | 311 | 8 | 312 | 9 | 313 | 10 | 314 | 11 | 315 | 12 | 316 | 13 | 317 | 6 | 339 | 6 | 340 | 7 | 341 | 8 | 342 | 9 | 343 | 10 | 344 | 11 | 345 | | | | | | | | | | | | | | Sout
Mars \
Equi | /ernal | | | | | | | | | | | | | | | | A2434
B2414 | | A2435
B2415 | | A2436 | | A2437
B2416 | | A2438
B2417 | | A2439
B2418 | | A2440
B2429 | | A2461
B2441 | | A2462
B2442 | | A2463
B2443 | | A2464
B2444 | | A2465
B2445 | | A2466
B2446 | | A2467
B2447 | | | 14 | 318 | 15 | 319 | 16 | 320 | 17 | 321 | 18 | 322 | 19 | 323 | 20 | 324 | 13 | 346 | 13 | 347 | 14 | 348 | 15 | 349 | 16 | 350 | 17 | 351 | 18 | 352 | A2441
B2420 | | A2442
B2421 | | A2443
B2422 | | A2444
B2423 | | A2445
B2424 | | A2446
B2425 | | A2447
B2426 | | A2468
B2448 | | A2469
B2449 | | A2470
B2450 | X. | A2471
B2451 | | A2472 | | A2473
B2452 | | A2474
B2453 | | | 21 | 325 | 22 | 326 | 23 | 327 | 24 | 328 | 25 | 329 | 26 | 330 | 27 | 331 | 20 | 353 | 20 | 354 | 21 | 355 | 22 | 356 | 23 | 357 | 24 | 358 | 25 | 359 | A2448
B2427 | | A2449
B2428 | | A2450
B2429 | | A2451
B2430 | | A2452
B2431 | | A2453
B2432 | | B2433 | | A2475
B2454 | | A2476
B2455 | | A2477
B2456 | | A2478
B2457 | | A2479
B2458 | | A2480
B2459 | | A2481
B2460 | | | 28 | 332 | 29 | 333 | 30 | 334 | | | | | 63 | | | | 27 | 360 | 27 | 361 | 28 | 362 | 29 | 363 | 30 | 364 | 31 | 365 | | | | A2454
B2434 | | A2455
B2435 | | A2456
B2436 | | | | 0 | | | | | | A2482
B2461 | | A2483
B2462 | | A2484
B2463 | | A2485
B2464 | | A2486
B2465 | | A2487
B2466 | | | | NASA's twin Mars Exploration Rovers have grown smarter as they've grown older. The top image from Opportunity shows the tracks left by a drive executed with more onboard autonomy than ever before. Opportunity was testing a navigational capability called "Field D-star," which enables the rover to plan optimal long-range drives around any obstacles in order to travel the most direct, safe route to a destination. Opportunity and its twin, Spirit, acquired this capability in their third year on Mars. The bottom image is one frame of a movie taken by Spirit's navigation camera of a passing Martian dust devil. How did the rover know a dust devil was passing? It—and Opportunity—had acquired some new artificial intelligence software called "autonomous sciencecraft" that enabled it to recognize and capture just such a transient event without any commands from Earth. **December 1, 2010** #### **Mars Exploration Rovers Quick Facts** Launch vehicles: Boeing Delta II Launch date: Spirit—June 10, 2003 UTC Opportunity—July 7, 2003 UTC Arrival date: Spirit— January 4, 2004 UTC Opportunity—January 25, 2004 UTC Landing site: Spirit—Gusev Crater (14.57°S, 175.47°E) Opportunity—Eagle Crater on Meridiani Planum (1.95°S, 354.47°E) Landing technology: Atmospheric entry aeroshell, backshell with parachute and retro rockets, and airbags to cushion landing. Mission objective: Assess the history of environmental conditions at sites that may once have been wet and favorable to life. Duration of primary mission: 90 Martian days (sols) Duration of primary plus extended mission: Over five years Total distance covered in first five years: Spirit—7.5 kilometers (4.7 miles) Opportunity—13.6 kilometers (8.5 miles) One day Martian driving record: Opportunity, 140.9 meters (462 feet) on April 30, 2004 Number of images sent to Earth: Over 220,000 Amount of data returned: More than 36 gigabytes National Aeronautics and Space Administration **Jet Propulsion Laboratory**California Institute of Technology Pasadena, California #### **Mars Exploration Rovers Project Management** John Callas, JPL, Pasadena, CA Project Manager Bruce Banerdt, JPL, Pasadena, CA **Project Scientist** Diana Blaney, JPL, Pasadena, CA **Deputy Project Scientist** Steven Squyres, Cornell University, Ithaca, NY Athena Science Payload Principal Investigator Ray Arvidson, Washington University, St. Louis, MO Deputy Athena Science Payload Principal Investigator The aeroshell protects the rover from fiery temperatures as it enters the Martian atmosphere. (Artist's rendering) For more information, visit marsrovers.jpl.nasa.gov and mars.jpl.nasa.gov.