

Ethanol from Corn: Just How Unsustainable Is It?

Tadeusz W. Patzek

Civil and Environmental Engineering, U.C. Berkeley Lawrence Berkeley National Laboratory

Ethanol From Corn: ... - p.1/61

Acknowledgements...

- 6 This work was supported by U.C. Berkeley, as the Spring 2003 Freshman Seminar CE24
- We thank Prof. DAVID PIMENTEL of Cornell for the critique and several reviews of the evolving work, and kind words of encouragement
- 6 We thank Prof. CLAYTON J. RADKE of U.C. Berkeley and Mr. MATTHEW SMALL of the U.S. EPA for their critique and suggestions of numerous improvements

Spring 2003 CE24 Freshman Class...

Ethanol From Corn: ... – p.3/61

Professor DAVID PIMENTEL, the world-famous agricultural expert from Cornell University, author of the CRC *Handbook of Energy Utilization in Agriculture* (1990), the monograph *Food, Energy, and Society* (1996), and dozens of papers on the subject of energy efficiency of agriculture

MICHAEL WANG, CHRISTOPHER SARICKS and MAY WU, authors of the 1997 Argonne National Laboratory Report: *Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from the U.S. Midwestern Corn*

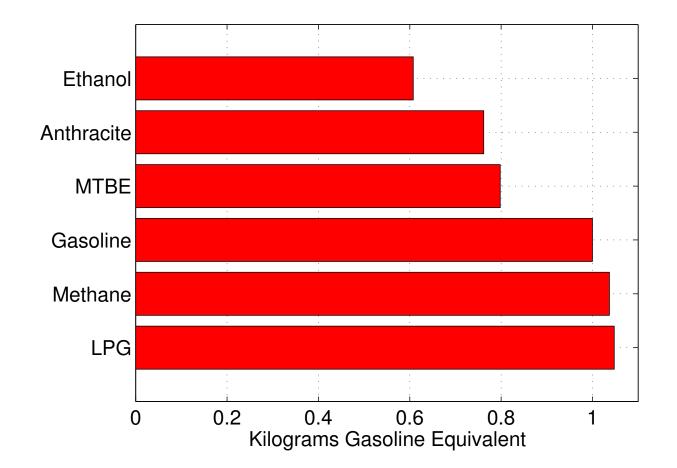
HOSEIN SHAPOURI, JAMES DUFFIELD and MICHAEL WANG, authors of the 2002 USDA Report: *The Energy Balance of Corn Ethanol: An Update*

YOURS TRULY, *definitely* not an agricultural expert, but a chemical engineer and physicist well-trained in thermodynamics and mathematical modeling of physicochemical processes

Corn Highlights...

- 6 The largest U.S. crop, \sim 70 million acres, yield \sim 130 bushels/acre
- 6 U.S. produces 44% of world's corn, Canada 1%
- 99% of U.S. corn fields is fertilized
- Requires more fertilizer than any other crop
- 6 Erodes soil 18 times faster than it can reform
- 6 Corn needs 40-65 cm water, 15% is irrigated
- § \$10 billion in corn price subsidies (Oxfam)
- 6 U.S. goal: Produce 5 billion gallons of ethanol from corn annually

Ethanol From Corn...


- Is a complex engineered bio-system with a myriad of energy inputs and outputs
- Just collecting the major inputs and outputs is a lengthy and tedious process, full of potential inconsistencies
- 6 Making sense of the collected numbers is even more difficult
- 6 Various scientific opinions are prone to error of judgement and manipulation

- 6 The process complexity turns-off the public and politicians
- In my opinion, today most analytic errors have been removed, and we have arrived at solid conclusions about the overall efficacy of the corn-ethanol production process
- One should continue filtering out errors in reporting and disinformation

Fuel Energy Contents...

1 gallon of ethanol = 0.65 gallons of gasoline

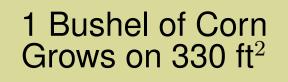
Talk Outline...

- Major energy inputs to corn production
- Major energy inputs to ethanol production
- 6 Overall energy balance of ethanol production
- Some environmental impacts of ethanol production
- 6 Ethanol subsidies
- 6 Known air quality issues with gasohol EtOH-10

Energy Inputs to Corn Production...

- 6 Nitrogen fertilizers (all fossil energy)
- 6 Phosphate, Potash, and Lime (some fossil energy)
- 6 Herbicides and Pesticides (all fossil energy)
- 6 Fossil Fuels (diesel, gasoline, LPG, NG)
- 6 Electricity (mostly fossil energy)
- 6 Transportation (all fossil energy)
- 6 Corn Seeds and Irrigation (some fossil energy)
- 6 Machinery, roads, silos, plants (mostly fossil energy)
- 6 Labor (some fossil energy)

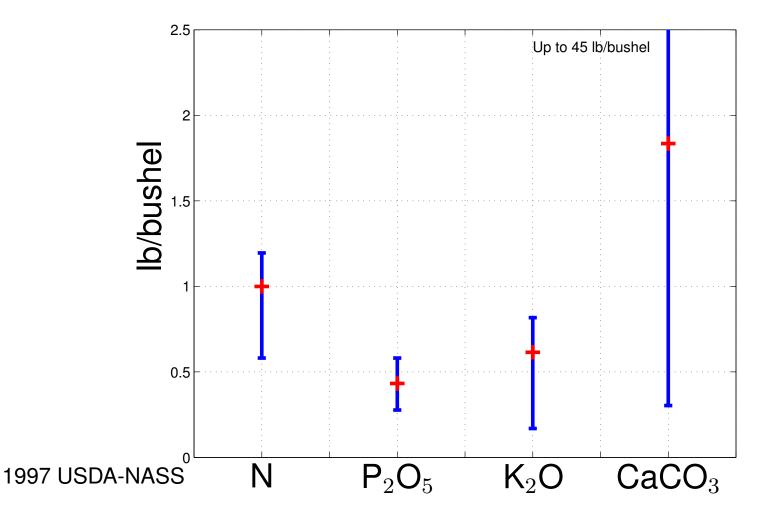
1 Bushel of Corn Is...



25.4 kg or 56 pounds of corn kernels with 15% moisture content ${\sim}8$ gallons

Ethanol From Corn: ... - p.13/61

1 Bushel Takes **32** m²...



18 ft \approx 6 m

Ethanol From Corn: ... - p.14/61

Fertilizer Uptake Per Bushel...

Nitrogen Fertilizer...

- 6 Is produced exclusively from **natural gas**
- Its production requires twice as much energy as steel
- 6 Energy required to produce different nitrogen fertilizers must be expressed relative to the content of elemental nitrogen, N
- 6 All fertilizers must be transported, the most popular ones must be granulated
- 6 The USDA estimates of energy cost of nitrogen fertilizers (*e.g.*, Shapouri *et al.*, 2002) are too low

Ammonia, NH₃

- Is obtained from N₂ and H₂ in the Haber-Bosch process
- 6 Hydrogen is produced by steam-reforming methane
- $^{\rm 6}$ To produce, purify, compress, and transport methane, ${\sim}10\%$ of its feed: 1500 BTU/lb N

Ammonia, NH₃ (82% N):

6 Total energy consumption is

"30 Years Old"55 GJ/tN = 23,700 Btu/lb N"Modern Europe"43 GJ/tN = 18,500 Btu/lb N"Best Possible"38 GJ/tN = 16,300 Btu/lb N

Source: ERNST WORRELL et al. Energy Use and Energy Intensity of the U.S. Chemical Industry, LBNL-44314, April 2000

G. KONGSHAUG Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production, Hydro Agri Europe, Norway, 1998

Urea, CO(NH₂)₂ (45% N):

- 6 Obtained from NH₃ and CO₂: $2NH_3+CO_2 \rightarrow CO(NH_2)_2+H_2O$
- 6 Total energy per 1 lb of N is

"30 Years Old" Ammonia + 10 GJ/tN = 30,000 Btu/lbN "Modern Europe" Ammonia + 9 GJ/tN = 22,300 Btu/lb N "Best Possible" + 7.2 GJ/tN = 16,300 Btu/lb N

Source: G. KONGSHAUG Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production, Hydro Agri Europe, Norway, 1998

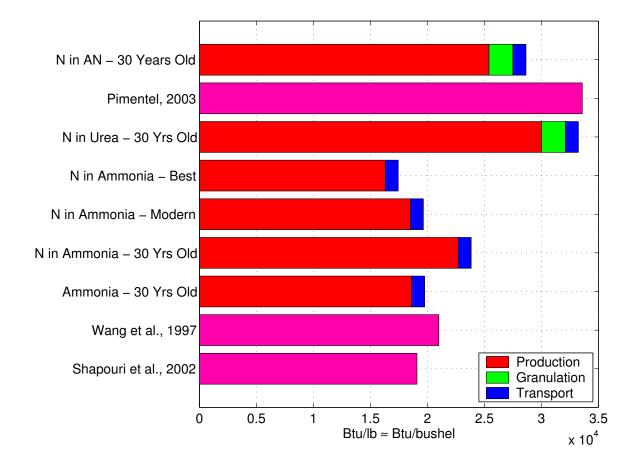
Ammonium Nitrate, NH₄NO₃ (35% N):

- 6 Is obtained from nitric acid HNO₃ and ammonia NH₃: $NH_3+HNO_3 \rightarrow NH_4NO_3$
- Nitric acid is obtained by burning ammonia over catalysts to produce NO_x
- 6 Total energy per 1 lb of N is

"30 Years Old" Ammonia + 4GJ/tN = 25,400 Btu/lb N

Source: ERNST WORRELL *et al. Energy Use and Energy Intensity of the U.S. Chemical Industry*, LBNL-44314, April 2000

Other Nitrogen Fertilizer Costs...


Urea and Ammonium Nitrate must be granulated, packaged and transported

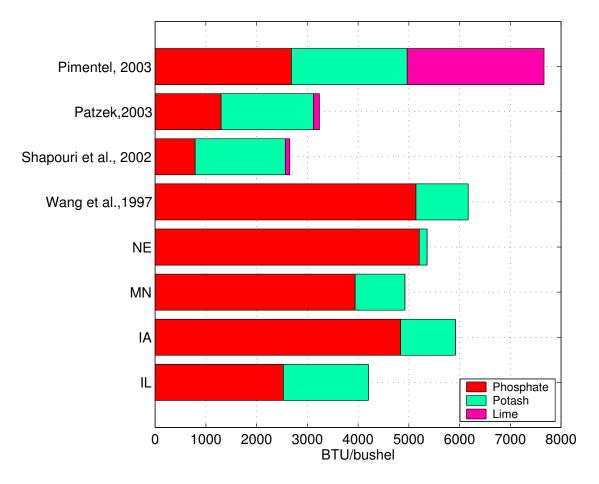
- 6 Energy requirement of granulation is 3.2-5 GJ/metric tonne or 2,100 Btu/lb fertilizer (~10% of their energy content)
- ⁶ The granulated fertilizer must be packaged and transported to the farmer (another \sim 5% of energy expenditure, or 1,100 Btu/lb fertilizer

Sources: ERNST WORRELL *et al. Energy Use and Energy Intensity of the U.S. Chemical Industry*, LBNL-44314, April 2000 DENIS LAUCHARD, MARIE-ASTRID KORDEK, Kaltenbach-Thuring S.A., France MICHAEL WANG *et al.* Argonne National Lab, 1997

Energy in Nitrogen Fertilizer...

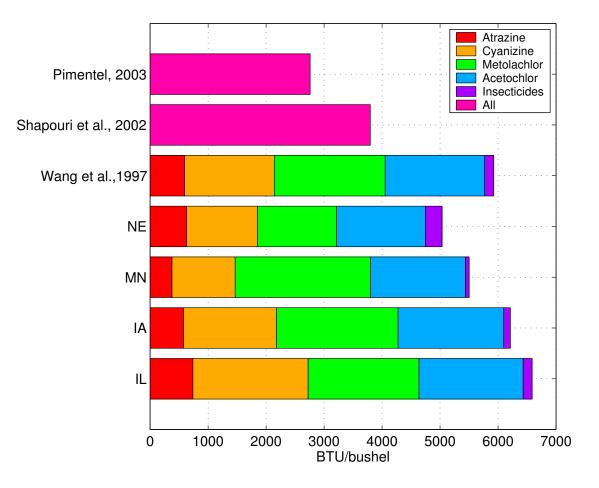
Energy in P, K, Ca...

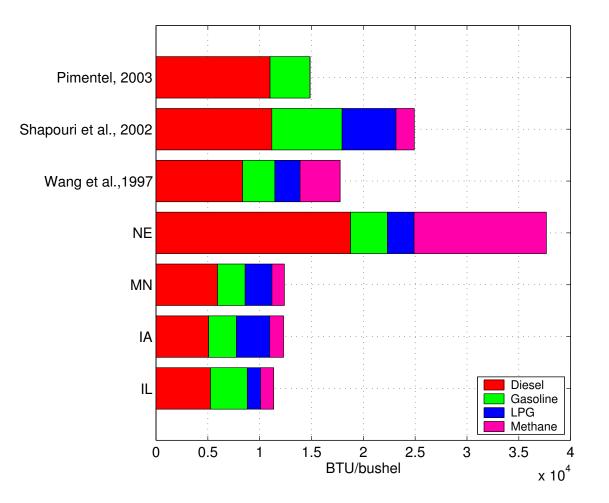
6 Total energy consumption is

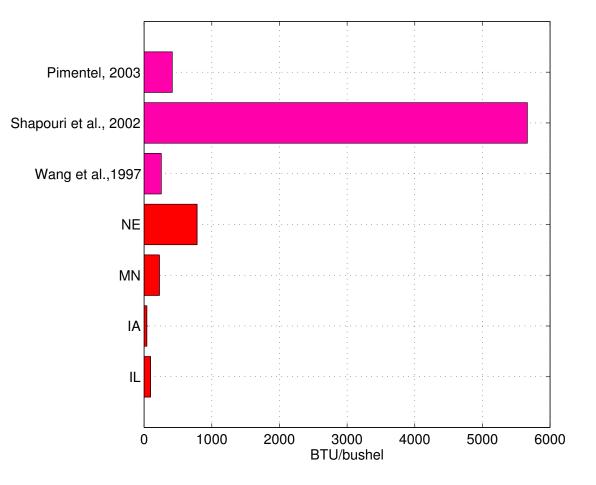

Phosphate6.7 GJ/t = 2,600 Btu/lbPotash6.7 GJ/t = 2,600 Btu/lbHydrated Lime0.04 GJ/t = 17 Btu/lb

Source: Energy and Environmental Profile of the U.S. Mining Industry, Vol 9, *Limestone & Crushed Rock*, U.S. DOE, 2002

G. KONGSHAUG Energy Consumption and Greenhouse Gas Emissions in Fertilizer Production, Hydro Agri Europe, Norway, 1998


Energy in P, K, Ca...


Energy in Herbicides/Insecticides...


Fossil Fuel Energy in Corn...

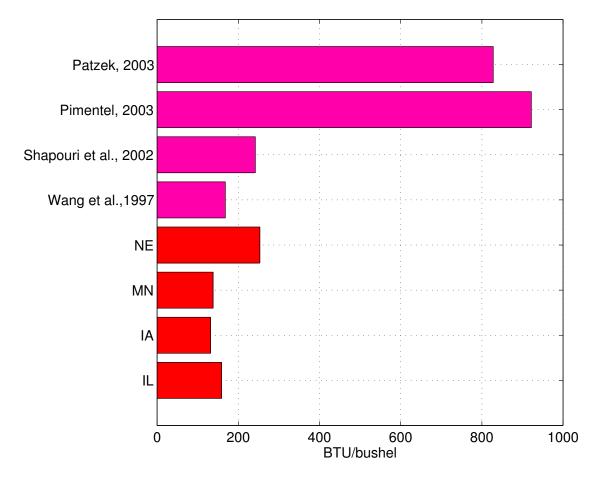
Energy in Electricity...

Energy in Corn Seeds...

- Seed rate 23,000 (Corn Belt) 30,000 (West) kernels per acre (p. 255)
- Mean weight of 1000 corn kernels is 332 g (p. 202)
- 6 Caloric value of corn kernels with 13-15% moisture is 6,500 Btu/lb

$$\frac{23\frac{1000}{\text{acre}} \times 332\frac{\text{g}}{1000}}{454\frac{\text{g}}{\text{lb}} \times 132\frac{\text{bushel}}{\text{acre}}} \times 6{,}500\frac{\text{Btu}}{\text{lb}} = 828 \text{ Btu/bushel}$$

Source: Corn Chemistry and Technology, AACC, 2003


Energy in Corn Seeds...

Bottom line:

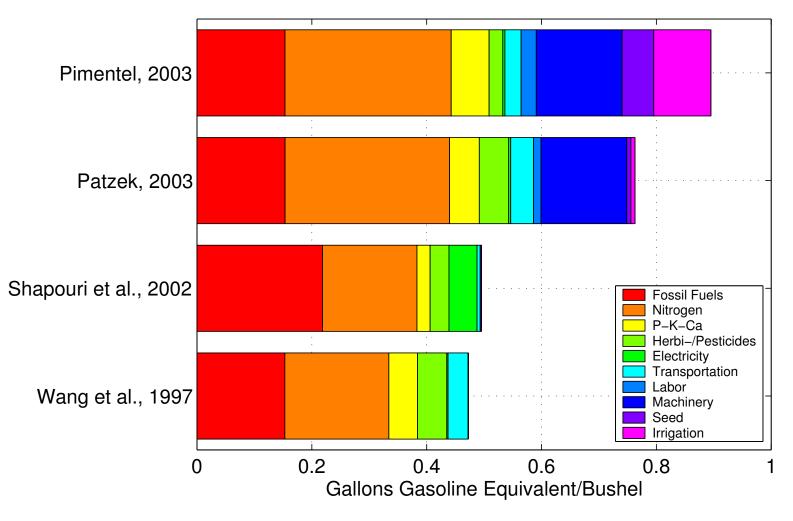
- I have used the lowest seed grain density of 23,000 kernels/acre
- 6 PIMENTEL (2003) and SHAPOURI *et al.*. (2002) used 25,500 kernels/acre
- 6 Consequently, SHAPOURI *et al.*'s estimate should agree exactly with PIMENTEL's; instead, it is 4 times lower

Energy in Corn Seeds...

Energy in Irrigation...

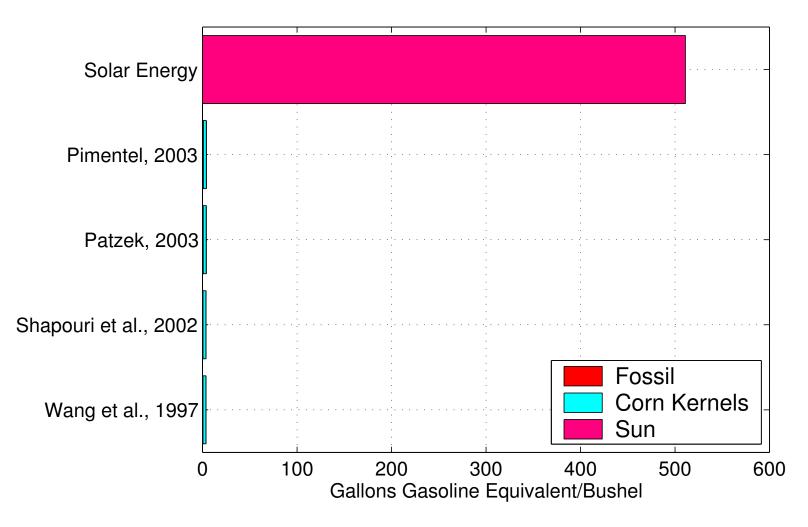
- 6 Only 15% of 132 bushels/acre crop is irrigated
- On average 8.1 cm of water is used per acre (Pimentel, 2003)
- Water is pumped on average from depth of 100 m
- 6 Pump efficiency, *etc.* is 0.75

$$\begin{array}{l} 0.081 \text{ m} \times 10,000 \frac{\text{m}^2}{\text{ha}} \times 0.4047 \frac{\text{ha}}{\text{acre}} \times 1000 \frac{\text{kg}}{\text{m}^3} \times \\ \times 100 \text{ m} \times 9.81 \frac{\text{m}}{\text{s}^2} / 0.75 = 4.2877 \times 10^7 \text{ J/acre} \\ = 308 \text{ Btu/bushel} \end{array}$$


Energy in Labor...

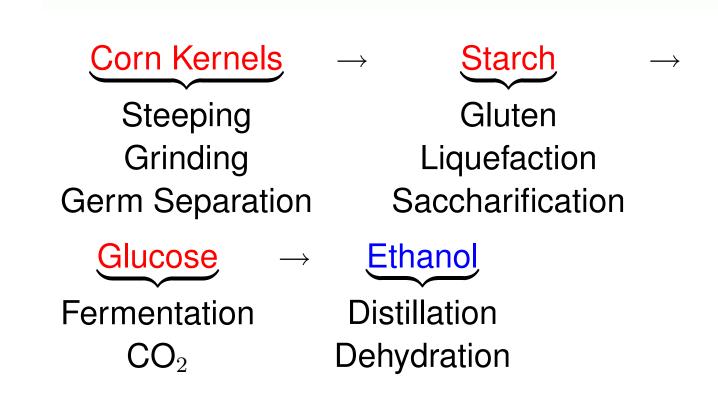
- Labor time is 6.2 hrs/day/ha in a growth season of 120 days (USDA-NASS, 1999)
- 6 A physical worker is on 4,000 kcal/day diet
- 6 Crop yield is 132 bushels/acre

$$4 \times 10^{6} \text{ cal/day} \times 4.186 \frac{\text{J}}{\text{cal}} \times \frac{6.2 \text{ hr/ha}}{24} \text{ hr} \times 0.4047 \frac{\text{ha}}{\text{acre}} \times \frac{1}{132} \frac{\text{acre}}{\text{bushel}} \times 123 \text{ day} = 1.6 \text{ MJ/bushel} = 1500 \text{ Btu/bushel}$$


Fossil Energy Inputs into Corn...

Solar Energy Input into Corn...

Summary of Energy Inputs...

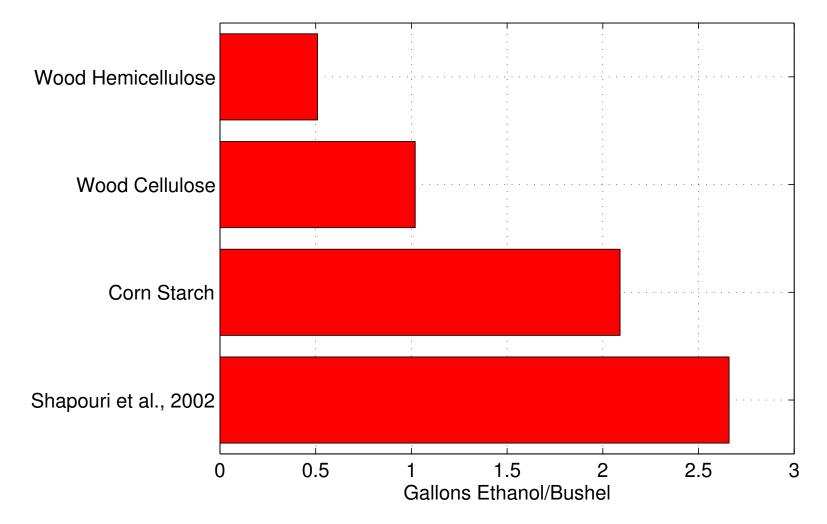

- WANG et al. (1997) and SHAPOURI et al. (2002) omit certain energy inputs (machinery, irrigation, labor) and underestimate others in different combinations (nitrogen fertilizer, lime, seeds, herbicides/pesticides)
- 9 PIMENTEL (2003) seems to overestimate the energy content of corn seeds, and the energy cost of irrigation

Summary of Energy Inputs...

- The estimates of fossil energy inputs range from 0.47 gallons of gasoline equivalent (GGE)/bushel (WANG) to 0.89 GGE/bushel (PIMENTEL)
- 6 My estimate is 0.76 GGE/bushel
- 6 Solar energy is *not* the limiting factor in corn production: soil, water, and dissolved nutrients are

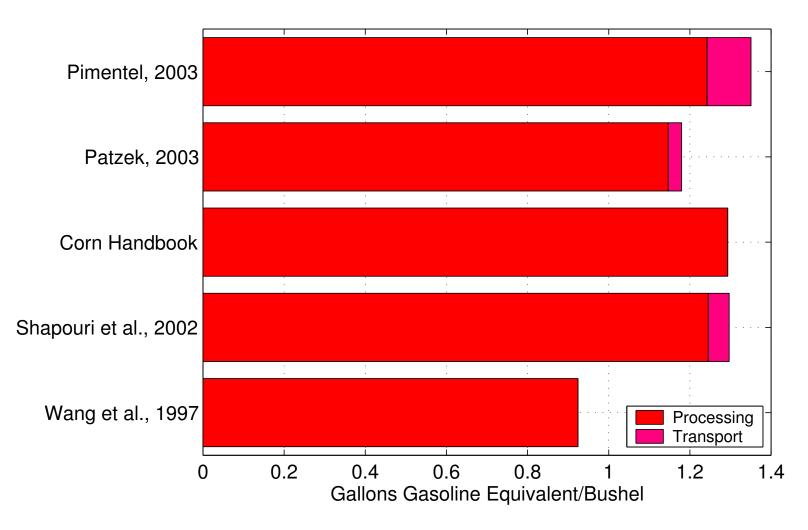
Corn to Ethanol...

 $(CH_2O)_6 \rightarrow 2C_2H_5OH + 2CO_2$ 1/2 glucose goes to CO_2


Accounting Problems...

- 6 66-68% of wet-milled corn kernels is starch
- Starch is hydrolized and converted to glucose with 90-100% efficiency
- Glucose is fermented to industrial beer with 51% efficiency (chemistry) and yield efficiency of 77-88%
- 6 Beer is distilled and dewatered with 100% efficiency
- 6 To get to 2.66 gallons of ethanol per bushel of corn, the maximum efficiency of each step must be achieved

Conversion of Corn to Ethanol...

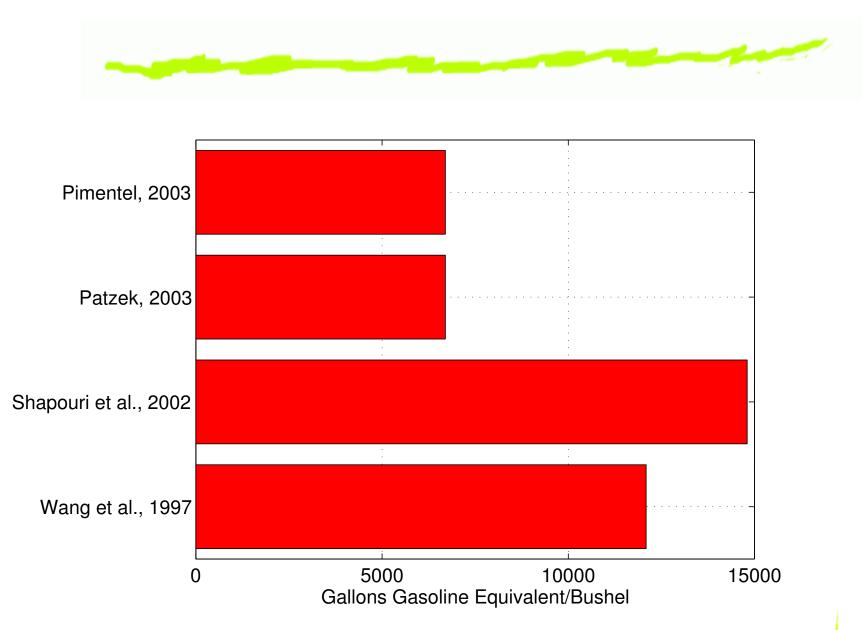

For Sale: Tucumcari Plant...

- Produces 8,220 gallons of ethanol per day, running at 110% 115%
- 6 Uses **200,000** lbs of grain per day
- In Plant efficiency is 2.3 gallons of ethanol per bushel of corn

Energy Inputs to Ethanol...

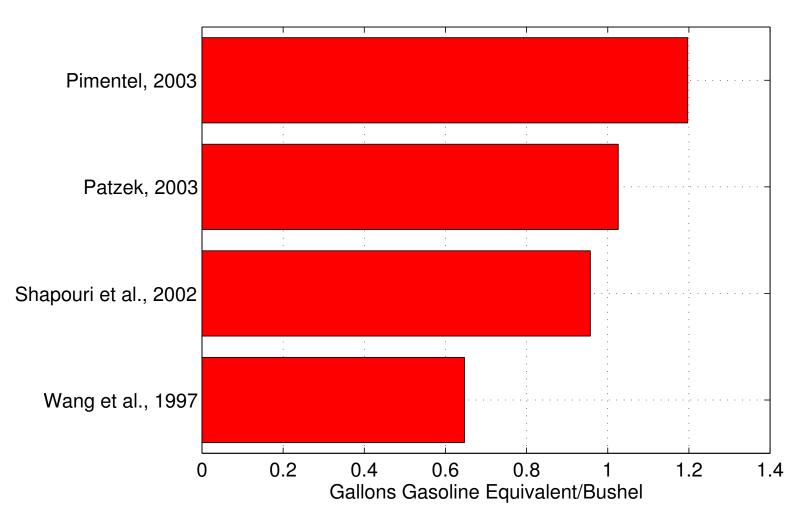
Raw Corn Products...

On dry mass basis:

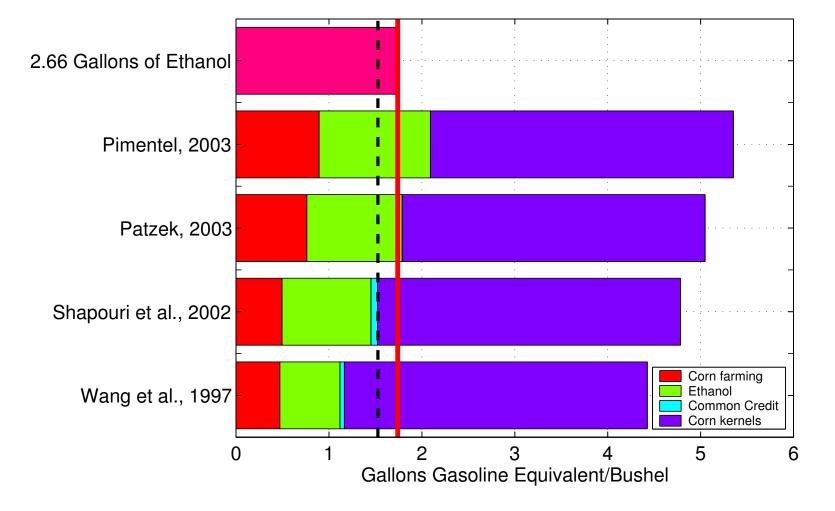

- 6 Starch, 66%
- 6 Oil, **3.9**%
- 6 Gluten feed (21% protein), 24%
- 6 Gluten meal (60% protein), 5.7%
- 6 Losses, 0.4%

Energy Credits...

- WANG et al., 30% of energy inputs (10-year average market value)
- SHAPOURI et al., 14,804 Btu/gal of ethanol (replacement of soybean meal with corn gluten feed and meal)
- PATZEK and PIMENTEL, 6,700 Btu/gal of ethanol (replacement of distiller's dried grain (30% protein, 8% fat) in dry milling; soybean replacement is not clear)


Energy Credits to Ethanol...

Ethanol From Corn: ... – p.44/61


Net Energy Inputs to Ethanol...

Overall Energy Balance...

Bottom Line...

Ethanol production from corn is a fossil-energy-losing proposition:

- Given a reasonable ethanol plant output, 2.3 gallons of ethanol/bushel (86% of theoretical efficiency), 3 out of 4 estimates predict fossil energy losses in ethanol production, excluding the energy in corn kernels
- 6 The estimates by SHAPOURI et al. (2002) are in some ways more accurate than those by WANG et al. (1997), but still too low
- My estimates agree most with those by PIMENTEL (2003)

How Much Water?

Ethanol production is water-intensive. Per 1 gallon of ethanol, one needs:

- 6 38-45 liters (10-12 gal) for corn fractionation (p. 450)
- ⁶ 75-95 liters (20-25 gal) in fermentation (p. 697)
- 6 The total is 113-140 liters (30-37 gal) of water per 1 gallon of ethanol!

Source: Corn Chemistry and Technology Handbook, 2002

And How Much Waste?

According to the *Corn Chemistry and Technology Handbook*:

- A wet milling plant can generate as much waste as a medium-size city (p. 470)
- 5-day BOD of waste water is 1,000-2,000 mg/L
- Waste content is 0.35 lb BOD₅/bushel

Court Settlement...

12 Minnesota ethanol plants agreed to each spend \$2 million per plant, pay penalties \$29,000-\$39,000, and limit

- Volatile organic compounds by 2,400 4,000 tons per year
- 6 Carbon monoxide emissions by 2,000 tons per year
- 6 Nitrogen oxides emissions by 180 tons per year
- 6 Particulate matter by 450 tons
- 6 Other hazardous air pollutants by 250 tons

CAT LAZAROFF - ENS, 3 Oct 2002

So What Have We Achieved?

We have

- 6 Burned more fossil fuels than the energy content of the ethanol from corn
- 6 Degraded and eroded soil on millions of acres
- 6 Polluted surface and groundwater with nitrates, herbicides, pesticides, and ethanol waste
- 6 Polluted air with CO, NO_x , SO_2 , VOC, *etc.*
- 6 Continued to waste **\$ billions** of taxpayers' money
- 6 Devised a terrible solution of air quality problems

Federal Ethanol Subsidies...

- U.S. pays its corn farmers \$10 billion a year in subsidies (8.6% cropland for ethanol)
- 6 Federal excise taxes per gallon of fuel: \$0.184 for gasoline and \$0.132 for EtOH-10 (10 vol% ethanol)
- 6 Relative to gasoline, federal tax breaks per 1 gallon of ethanol are

$$10 \times (\$0.184 - \$0.132) = \$0.52$$

Source: Corn subsidies, OXFAM; Excise Taxes, REUTERS, Washington, Nov. 15, 2003

State Ethanol Subsidies...

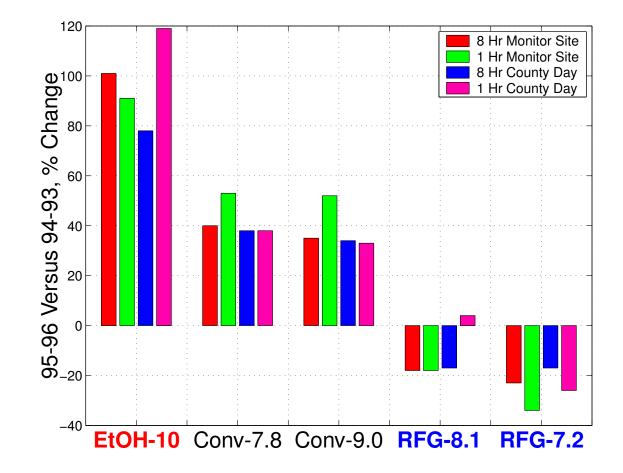
- State excise taxes per gallon of fuel:
 - Gasoline \$0.075 in Georgia, up to \$0.36 in Connecticut;
 - EtOH-10 0\$ in Arizona, up to \$0.2535 in West Virginia
- MN offers a \$0.20 tax subsidy on EtOH-10. The state's
 13 ethanol plants receive up to \$3 million a year

2002 Ethanol By the Numbers...

2.3-2.66 gallons	of ethanol from 1 bushel of corn
2.13 billion gallons/yr	of ethanol produced in the U.S.
1.38 billion GGE/yr	as ethanol produced in the U.S.
1.44 billion GGE/yr	burned to produce this ethanol
1.1 %	of U.S. automobile fuel from ethanol
6 million acres	of U.S. land growing corn for ethanol
57 million acres	for 10% U.S. automobile fuel energy
\$1.1 billion/yr	in federal subsidies for ethanol
\$0.87 billion	in corn-for-ethanol price subsidies

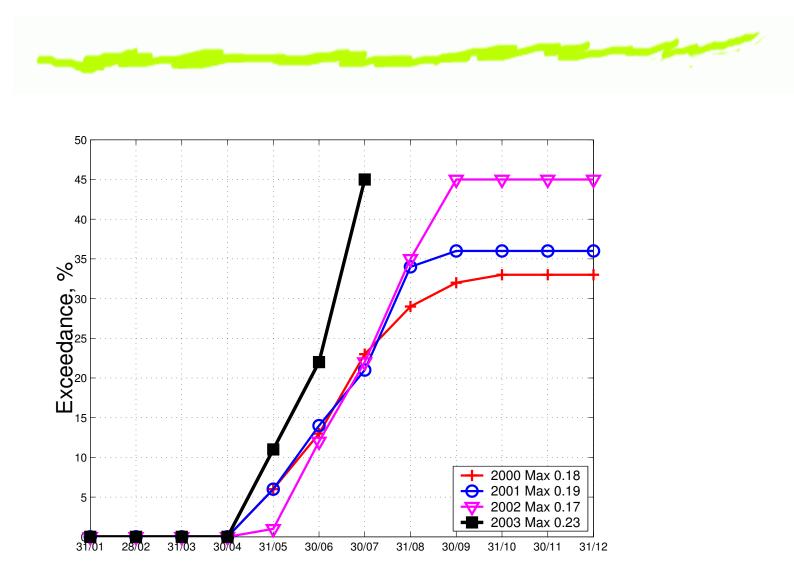
GGE = Gallons of Gasoline Equivalent

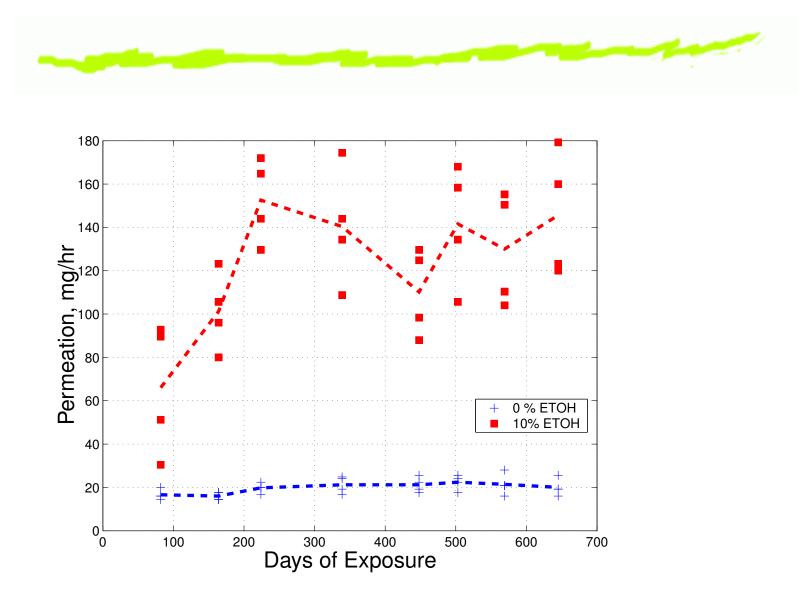
Unsafe Experiment?...



Unbeknownst to us, a gigantic experiment with our lungs and pockets has started:

- Over 70% of gasoline produced in Southern California has switched from MTBE to ethanol
- 6 The Federal ozone level exceedances in Southern California have jumped up
- 6 10 vol% ethanol blends have a 70-point poorer driveability index than MTBE or hydrocarbon blends
- 6 EtOH-10 gasoline blends have 6 times higher permeation emissions

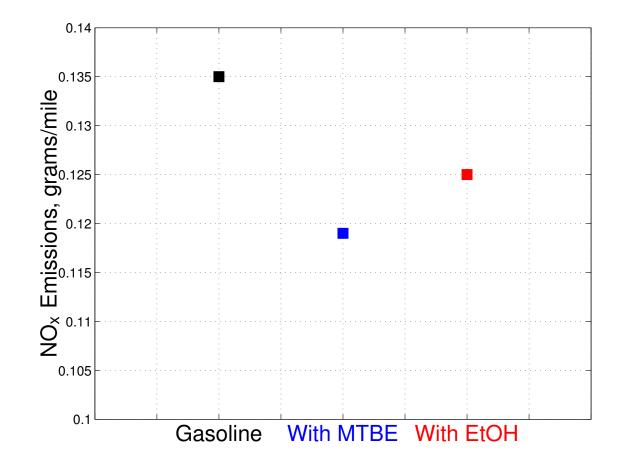

Higher Ozone Levels...


US-CA, Source: US EPA, CAL HODGE, President of A 2nd Opinion, Inc.

1-Hour Ozone Exceedance...

Source: CAL HODGE, President of A 2nd Opinion, Inc.

6-Fold Increase of VOC...



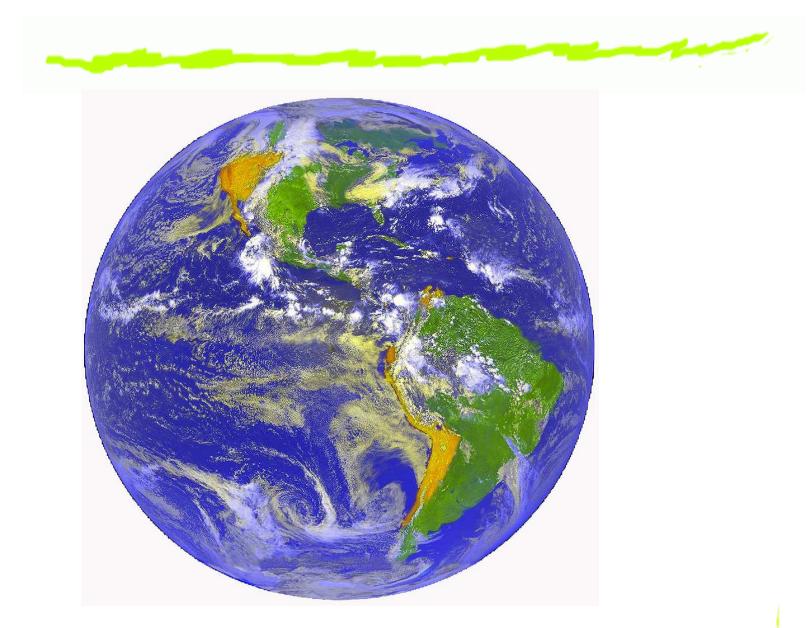
Source: CAL HODGE, President of A 2nd Opinion, Inc.

Ethanol From Corn: ... – p.58/61

Source: CAL HODGE, President of A 2nd Opinion, Inc.

Ethanol From Corn: ... - p.59/61

And the Winners Are...



• Archer Daniel Midlands Co.

6 CARGILL, INC.

6 A. E. STANLEY

And The Looser Is...

