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2.3. Relations

2.3.1. Relations. Assume that we have a set of men M and a set
of women W , some of whom are married. We want to express which
men in M are married to which women in W . One way to do that is by
listing the set of pairs (m,w) such that m is a man, w is a woman, and
m is married to w. So, the relation “married to” can be represented
by a subset of the Cartesian product M ×W . In general, a relation R

from a set A to a set B will be understood as a subset of the Cartesian
product A × B, i.e., R ⊆ A× B. If an element a ∈ A is related to an
element b ∈ B, we often write aR b instead of (a, b) ∈ R.

The set

{a ∈ A | aR b for some b ∈ B}
is called the domain of R. The set

{b ∈ B | aR b for some a ∈ A}
is called the range of R. For instance, in the relation “married to”
above, the domain is the set of married men, and the range is the set
of married women.

If A and B are the same set, then any subset of A × A will be a
binary relation in A. For instance, assume A = {1, 2, 3, 4}. Then the
binary relation “less than” in A will be:

<A= {(x, y) ∈ A× A | x < y}
= {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} .

Notation: A set A with a binary relation R is sometimes represented
by the pair (A,R). So, for instance, (Z,≤) means the set of integers
together with the relation of non-strict inequality.

2.3.2. Representations of Relations.

Arrow diagrams. Venn diagrams and arrows can be used for rep-
resenting relations between given sets. As an example, figure 2.8 rep-
resents the relation from A = {a, b, c, d} to B = {1, 2, 3, 4} given by
R = {(a, 1), (b, 1), (c, 2), (c, 3)}. In the diagram an arrow from x to y
means that x is related to y. This kind of graph is called directed graph
or digraph.
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Figure 2.8. Relation.

Another example is given in diagram 2.9, which represents the di-
visibility relation on the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.
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Figure 2.9. Binary relation of divisibility.

Matrix of a Relation. Another way of representing a relation R

from A to B is with a matrix. Its rows are labeled with the elements
of A, and its columns are labeled with the elements of B. If a ∈ A
and b ∈ B then we write 1 in row a column b if aR b, otherwise we
write 0. For instance the relation R = {(a, 1), (b, 1), (c, 2), (c, 3)} from
A = {a, b, c, d} to B = {1, 2, 3, 4} has the following matrix:

1 2 3 4

a
b
c
d


1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0


2.3.3. Inverse Relation. Given a relation R from A to B, the

inverse of R, denoted R−1, is the relation from B to A defined as

bR−1 a ⇔ aR b .
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For instance, if R is the relation “being a son or daughter of”, then
R−1 is the relation “being a parent of”.

2.3.4. Composition of Relations. Let A, B and C be three sets.
Given a relation R from A to B and a relation S from B to C, then
the composition S ◦ R of relations R and S is a relation from A to C
defined by:

a (S ◦ R) c ⇔ there exists some b ∈ B such that aR b and b S c .

For instance, if R is the relation “to be the father of”, and S is the
relation “to be married to”, then S ◦R is the relation “to be the father
in law of”.

2.3.5. Properties of Binary Relations. A binary relation R on
A is called:

1. Reflexive if for all x ∈ A, xRx. For instance on Z the relation
“equal to” (=) is reflexive.

2. Transitive if for all x, y, z ∈ A, xR y and y R z implies xR z.
For instance equality (=) and inequality (<) on Z are transitive
relations.

3. Symmetric if for all x, y ∈ A, xR y ⇒ y Rx. For instance on Z,
equality (=) is symmetric, but strict inequality (<) is not.

4. Antisymmetric if for all x, y ∈ A, xR y and y Rx implies x = y.
For instance, non-strict inequality (≤) on Z is antisymmetric.

2.3.6. Partial Orders. A partial order, or simply, an order on a
set A is a binary relation “4” on A with the following properties:

1. Reflexive: for all x ∈ A, x 4 x.
2. Antisymmetric: (x 4 y) ∧ (y 4 x) ⇒ x = y.
3. Transitive: (x 4 y) ∧ (y 4 z) ⇒ x 4 z.

Examples:

1. The non-strict inequality (≤) in Z.

2. Relation of divisibility on Z+: a|b ⇔ ∃t, b = at.
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3. Set inclusion (⊆) on P(A) (the collection of subsets of a given
set A).

Exercise: prove that the aforementioned relations are in fact partial
orders. As an example we prove that integer divisibility is a partial
order:

1. Reflexive: a = a 1 ⇒ a|a.

2. Antisymmetric: a|b ⇒ b = at for some t and b|a ⇒ a = bt′ for
some t′. Hence a = att′, which implies tt′ = 1 ⇒ t′ = t−1. The
only invertible positive integer is 1, so t = t′ = 1 ⇒ a = b.

3. Transitive: a|b and b|c implies b = at for some t and c = bt′ for
some t′, hence c = att′, i.e., a|c.

Question: is the strict inequality (<) a partial order on Z?

Two elements a, b ∈ A are said to be comparable if either x 4 y
or y 4 x, otherwise they are said to be non comparable. The order
is called total or linear when every pair of elements x, y ∈ A are com-
parable. For instance (Z,≤) is totally ordered, but (Z+, |), where “|”
represents integer divisibility, is not. A totally ordered subset of a par-
tially ordered set is called a chain; for instance the set {1, 2, 4, 8, 16, . . . }
is a chain in (Z+, |).

2.3.7. Hasse diagrams. A Hasse diagram is a graphical represen-
tation of a partially ordered set in which each element is represented
by a dot (node or vertex of the diagram). Its immediate successors are
placed above the node and connected to it by straight line segments. As
an example, figure 2.10 represents the Hasse diagram for the relation
of divisibility on {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Question: How does the Hasse diagram look for a totally ordered
set?

2.3.8. Equivalence Relations. An equivalence relation on a set
A is a binary relation “∼” on A with the following properties:

1. Reflexive: for all x ∈ A, x ∼ x.
2. Symmetric: x ∼ y ⇒ y ∼ x.
3. Transitive: (x ∼ y) ∧ (y ∼ z) ⇒ x ∼ z.
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Figure 2.10. Hasse diagram for divisibility.

For instance, on Z, the equality (=) is an equivalence relation.

Another example, also on Z, is the following: x ≡ y (mod 2) (“x is
congruent to y modulo 2”) iff x−y is even. For instance, 6 ≡ 2 (mod 2)
because 6− 2 = 4 is even, but 7 6≡ 4 (mod 2), because 7− 4 = 3 is not
even. Congruence modulo 2 is in fact an equivalence relation:

1. Reflexive: for every integer x, x−x = 0 is indeed even, so x ≡ x
(mod 2).

2. Symmetric: if x ≡ y (mod 2) then x − y = t is even, but
y − x = −t is also even, hence y ≡ x (mod 2).

3. Transitive: assume x ≡ y (mod 2) and y ≡ z (mod 2). Then
x− y = t and y− z = u are even. From here, x− z = (x− y) +
(y − z) = t + u is also even, hence x ≡ z (mod 2).

2.3.9. Equivalence Classes, Quotient Set, Partitions. Given
an equivalence relation ∼ on a set A, and an element x ∈ A, the
set of elements of A related to x are called the equivalence class of
x, represented [x] = {y ∈ A | y ∼ x}. Element x is said to be a
representative of class

[x]. The collection of equivalence classes, represented A/∼ = {[x] |
x ∈ A}, is called quotient set of A by ∼.

Exercise: Find the equivalence classes on Z with the relation of
congruence modulo 2.

One of the main properties of an equivalence relation on a set A
is that the quotient set, i.e. the collection of equivalence classes, is
a partition of A. Recall that a partition of a set A is a collection of
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non-empty subsets A1, A2, A3, . . . of A which are pairwise disjoint and
whose union equals A:

1. Ai ∩ Aj = ∅ for i 6= j,

2.
⋃

n An = A.

Example: in Z with the relation of congruence modulo 2 (call it
“∼2”), there are two equivalence classes: the set E of even integers and
the set O of odd integers. The quotient set of Z by the relation “∼2”
of congruence modulo 2 is Z/∼2 = {E, O}. We see that it is in fact a
partition of Z, because E ∩O = ∅, and Z = E ∪O.

Exercise: Let m be an integer greater than or equal to 2. On Z
we define the relation x ≡ y (mod m) ⇔ m|(y − x) (i.e., m divides
exactly y − x). Prove that it is an equivalence relation. What are the
equivalence classes? How many are there?

Exercise: On the Cartesian product Z × Z∗ we define the relation
(a, b) R (c, d) ⇔ ad = bc. Prove that R is an equivalence relation.
Would it still be an equivalence relation if we extend it to Z× Z?


