Carson Hydrogen Power Project

An EDISON INTERNATIONAL® Company

California Energy Commission May 29, 2007 Sacramento, CA Workshop on Clean Coal Technology and Carbon Capture and Storage

Project Drivers

- Unique circumstances support application of Hydrogen power with CO₂ capture in Carson, California:
 - □ 13,000 tons/day of petcoke produced in LA Basin
 - □ Sited in LA load pocket, natural gas is marginal fuel
 - □ Ample recycled water available
 - □ Low-GHG power sources needed to meet AB32, procurement cap
 - □ Potential for CO₂ enhanced oil recovery
 - □ Steam & hydrogen from gasification add value; alternate fuel is natural gas
 - Awarded \$90 million tax credit under EPAct of 2005

• Unique challenges too:

- □ BACT in LA Basin is natural gas CCGT emissions first IGCC to achieve
- Urban/industrial setting
- □ Unclear legal/regulatory framework for CO₂ storage & long-term liability

What is petcoke?

- Petroleum coke is an unavoidable solid byproduct that remains after all useful liquids have been extracted from crude oil
 - □ Still contains a significant amount of energy

Quite different from coal:

	PRB Coal	Petcoke
Moisture	30%	4%
Volatile matter	31%	9%
Fixed Carbon	33%	86%
Total Ash	5%	<1%
Sulfur	<1%	4-6%

- Only IGCC allows the high level of sulfur removal needed to meet stringent local emission limits with petcoke
 - Consequently, nearly all LA Basin petcoke is currently exported to Asia where it is combusted under less stringent emission controls

Conceptual Overview

Environmental Design Considerations

• Air Quality

- □ Eliminates truck & ship transport of petcoke to/thru Port of Long Beach
- \Box More expensive Rectisol AGR to achieve ultra-low H₂S in fuel gas
 - Required to meet natural gas BACT
 - Minimizes PM10 production in SCR
- Syngas filtration to capture particulates in fuel
- □ Sulfur recovery unit tailgas recycle to eliminate emission
- □ All non-emergency process vents have emission control equipment

• Waste Streams

- Recycled water used for all plant requirements
- □ ZLD for process wastewater stream
- □ Fluxant selected to allow slag use for metals recovery

CO₂ Sales or Storage

- \Box CO₂ capture equal to ~90% of carbon in fuel
- Stored in depleted oil/gas field or saline aquifer; potential enhanced oil recovery

Low GHG Emissions a Necessity in CA

CO₂ Emissions, lb/MWh

Regional CO₂ Storage Capacity

According to 2005 DOE Report:

- >1 billion tonnes of CO₂ storage capacity in local California oilfields
- **57 billion barrels of stranded oil resource; 5-10% technically recoverable via CO₂ EOR**
- CH2P's technical studies underway to determine local formations most suitable for storage & EOR
- Our studies include:
 - Recovery potential
 - Reservoir characterization for safe long-term sequestration
 - □ Feasibility of pipeline routes
 - □ Effective monitoring techniques

Reported Construction Costs

• Duke Cliffside – 2 x 800 MW PC

- □ \$3 billion (90-100% increase since 2002)
- Xcel Big Stone II 630 MW supercritical PC
 - □ \$1.6 billion

Duke Edwardsport – 630 MW coal IGCC

- □ \$2 billion
- Excelsior Mesaba 600 MW coal IGCC
 - □ \$2.3 billion

FutureGen – 275 MW coal IGCC w/CCS

- □ \$1.5 billion (technology development platform)
- Carson Hydrogen Power 450 MW petcoke IGCC w/CCS & polygen
 - □ ~\$2 billion (early commercial demonstration)
 - Includes sales tax, offsite linears, owner's costs; each of the above on different basis – can't compare

Technology Learning Curve for FGD

Figure 3. Capital and O&M cost trends of wet limestone FGD systems at a standard new coalfired power plant,⁵ including studies conducted during the period of early commercial application.

- Complicated by global construction & commodity escalation

EPRI Technology Cost Learning Curve

 Initial commercial demonstrations will require public policy support to advance learning curve bp

Sponsors and Participants

 BP – Global leader in decarbonized fuels projects, including gasification projects and CO₂ sequestration

- \Box CO₂ EOR experience
- □ C0₂ Capture Project, In Salah and others

• Edison International/Edison Mission Energy - Pioneer in IGCC:

- □ 120 MW Cool Water IGCC in CA, 1st commercial scale IGCC
- □ 528 MW ISAB IGCC in Italy, 1st large scale deployment of IGCC
- GE Energy Leading provider of IGCC technology/equipment/services
 - >2500 MW operating IGCCs worldwide
- Fluor One of the world's largest EPC contractors
 - Leader in the design of clean coal, carbon capture, power generation
- West Basin Water District Nationally recognized water recycler
 - CHPP will reuse treated wastewater provided by West Basin

12

bb

FLUOR

Simplified Process Flow Diagram

bp

DISON

An EDISON INTERNATIONAL® Com