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Objectives of the course

After completing the course the student understands the theoretical backgrounds of the various
methods of adjustment calculus, optimization, estimation and approximation as well as their
applications, and is able to apply them in a practical situation.

The subjects to be treated are: free adjustment and constrainment to given point, the concepts
of datum and datum transformation, similarity and affine transformations between datums, the
use of a priori information, Helmert-Wolf blocking and stacking of normal equations, stochastic
processes and Kalman filtering, measurement of shape, monitoring of deformations and 3D co-
ordinate measurement; various approximation, interpolation and estimation methods and least
squares collocation.
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Chapter 1

Free network and datum

Literature:

[Kal98b, s. 67-71, 141-150]

[Lan89]

[Lei95, s. 130-135]

[Coo87, s. 206-215, 311-321]

[SB97, s. 405-430]

[Lei95, s. 130-135]

[Baa73] partly.

1.1 Theory

A free network is a network, that is not in any way connected with external fixed points or a
higher order (already measured) network.

Write the observation equations as follows

ℓ+ v = Ax. (1.1)

Here ℓ is the vector of observations, v that of residuals and x that of the unknowns, and A is
the design matrix.

Let us assume, that for certain values of the vector x , i.e., ci, i = 1 . . . r:

Aci = 0.

Then we call the subspace of the space of observation vectors1 x which is spanned by the vectors
ci, having a dimensionality of r, the null space of A. The number r is called the rank defect of
the matrix A2. Cf. [Kal98b, s. 68]. In this case the rank of the A matrixis less than its number
of columns (or unknowns).

This produces the following situation:

If x is the least squares solution of equation (1.1), then also every x +
∑r

i=1 α
ici is,

with the same residuals. Here the coefficients αi are arbitrary.

1A so-called abstract vector space
2The rank of a matrix is the number of its linearly independent rows or columns. Generally it is either the

number of rows or the number of columns, whichever is smaller; for the design matrix it is thus the number
of columns. If he rank is less than this, we speak of a rank defect.
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Chapter 1 Free network and datum

1

4
5

3

6

2

h24

h45

h35

h34

h14
h12

h13

h16

h36

Figure 1.1: An example of a levelling network

1.2 Example: a levelling network

What do these null space vectors look like in realistic cases?

As an example, a levelling network. The network points i and j, heights Hi and Hj . As a
measurement technique, levelling can only produce differences between heights, not absolute
heights. Therefore the observation equations look as follows:

ℓk + vk = Hi −Hj.

Let the geometry of a levelling network be according to Figure 1.1. In this case the observation
equations are

ℓ1 + v1 ≡ h12 + v1 = H2 −H1,

ℓ2 + v2 ≡ h24 + v2 = H4 −H2,

ℓ3 + v3 ≡ h14 + v3 = H4 −H1,

ℓ4 + v4 ≡ h13 + v4 = H3 −H1,

ℓ5 + v5 ≡ h16 + v5 = H6 −H1,

ℓ6 + v6 ≡ h34 + v6 = H4 −H3,

ℓ7 + v7 ≡ h35 + v7 = H5 −H3,

ℓ8 + v8 ≡ h36 + v6 = H6 −H3,

ℓ9 + v9 ≡ h45 + v6 = H5 −H4.
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1.3 Fixing the datum

Written in matrix form:

ℓ + v =




−1 1 0 0 0 0

0 −1 0 1 0 0

−1 0 0 1 0 0

−1 0 1 0 0 0

−1 0 0 0 0 1

0 0 −1 1 0 0

0 0 −1 0 1 0

0 0 −1 0 0 1

0 0 0 −1 1 0







H1

H2

H3

H4

H5

H6




.

As can be easily verified, we obtain by summing together all columns of the matrix:
[

0 0 0 0 0 0 0 0 0
]T
.

Thus we have found one c vector: c =
[

1 1 1 1 1 1
]T

. Every element represents one

column in the A matrix.

The rank defect of the above A matrix is 1 and its null space consists of all vectors αc =[
α α α α α α

]T
.

In a levelling network, adding a constant to the height Hi of each point i does not
change a single one of the levelling’s observed quantities.

This is called the datum defect. Numerically the datum effect will cause the network adjust-
ment’s normal equations to be not solvable: the coefficient matrix is singular 3.

Every datum defect is at the same time an invariant of the observation equations, i.e., the left
hand side does not change, even if we added to the vector of unknowns an element

∑r
i=1 α

ici
of the null space of matrix A. In the example case, adding a constant to all heights is such an
invariant.

1.3 Fixing the datum

We just saw, that if the design matrix has a rank defect r, then there exist Rr different but
equivalent solutions x, that differ from each other only by an amount equal to the vector c ∈ Rr.

• Each such solution we call a datum.

• The transformation from such a datum to another one (example case: adding a constant
to all heights in a network) we call a datum transformation or S-transformation4.

• We can eliminate the datum defect by fixing r unknowns (arbitrarily and/or sensibly) to
chosen values.

In our example case we can fix the datum, e.g., by fixing the height value in Helsinki harbour
to mean sea level at the beginning of 1960, as we described earlier. . .

3Without special precautions, the program will probably crash on a zerodivide.
4S for similarity.
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Chapter 1 Free network and datum

1.3.1 Constraints

Let us start from
Aci = 0, i = 1, . . . , r

(i.e., the null space of the matrix A is r-dimensional). Let us form the matrix

C =
[

c1 c2 · · · ci · · · cr−1 cr

]
.

Now we may write the above condition as

AC = 0.

Now study the matrix5

Ã =

[
A

CT

]
.

Calculate

ÃC =

[
A

CT

]
C =

[
AC

CTC

]
=

[
0

CTC

]
6= 0.

In other words: the adjustment problem described by Ã has no rank defect.

Such an adjustment problem is, e.g.:

[
ℓ

k

]
+

[
v

0

]
=

[
A

CT

]
x.

Forming the normal equations6:

[
AT C

] [
P 0

0 I

][
ℓ+ v

k

]
=
[
AT C

] [
P 0

0 I

][
A

CT

]
x,

in which the normal matrix

Ñ =
[
AT C

] [ P 0

0 I

][
A

CT

]
=

= ATPA+ CCT .

Here N = ATPA is the normal matrix of the original adjustment problem. The term CCT is
new and represents the so-called inner constraints (Cf. [Kal98b, ss. 69-71]). As the solution we
obtain

x̂ =
[
ATPA+ CCT

]−1
[
AT C

] [
P 0

0 I

][
ℓ+ v

k

]
=

=
[
ATPA+ CCT

]−1 [
ATPℓ+ Ck

]
.

5In the publication [Kal98b] the matrix CT is called E.

6Observe from the form of the weight matrix P̃ =

[
P 0

0 I

]
, that the formal additional observation vector

khas been given the formal weight matrix I (unit matrix) and that we have assumed ℓ and k to be statistically
independent.
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1.3 Fixing the datum

The most important change is the term added to the normal matrix, CCT , which makes it in-
vertable, i.e., Ñ−1 exists even if N−1 would not exist. This is why the literature also speaks about
(Tikhonov-)regularization7. The other change is the extra term Ck added on the observation
side.

Example: in the case of the above mentioned levelling network c =
[

1 1 1 1 1 1
]T

and

the observation equations extended with the inner constraint:

[
ℓ + v

k

]
=




−1 1 0 0 0 0

0 −1 0 1 0 0

−1 0 0 1 0 0

−1 0 1 0 0 0

−1 0 0 0 0 1

0 0 −1 1 0 0

0 0 −1 0 1 0

0 0 −1 0 0 1

0 0 0 −1 1 0

1 1 1 1 1 1







H1

H2

H3

H4

H5

H6




.

Here we can see that the added condition fixes the sum (or equivalently, the average) of the
heights of all the network’s points to the given value k, i.e.

6∑

i=1

Hi = k.

This way of fixing yields the network solution in the “centre-of-gravity datum”. The choice of
the constant k (more generally: the vector of constants k) is arbitrary from the viewpoint of
the “goodness” of x̂ but it fixes it to certain numerical values.

1.3.2 Another approach: optimization

In the publication [Kal98b] on pages 69-71 as well as in publication [Coo87] the following
approach is presented, however in an unclear fashion. Therefore here it is presented again.

The least squares solution of the adjustment problem

ℓ+ v = Ax

is obtained by minimizing literally the (weighted) square sum of residuals:

ϕ = vTQ−1v = (Ax − ℓ)T Q−1 (Ax − ℓ) = xTATQ−1Ax − xTATQ−1ℓ− ℓTQ−1Ax + ℓTQ−1ℓ.

7. . . or “ridge regression”. The terminology is somewhat confusing.
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Chapter 1 Free network and datum

Differentiating with respect ot each x8 yields

∂ϕ

∂x
= xTATQ−1A+ ATQ−1Ax −ATQ−1ℓ− ℓTQ−1A + 0,

which must vanish (stationary point). This happens if

ATQ−1Ax-ATQ−1ℓ = 0,

(because then also xTATQ−1A−ℓTQ−1A = 0) which is precisely the system of normal equations.

Let us again study both the observation equations and the constraint equations:
[
ℓ

k

]
+

[
v

0

]
=

[
A

CT

]
x.

This can be interpreted as a minimization problem with “side conditions”, i.e., a minimization
problem with so-called Lagrange9 multipliers. Let us write the quantity to be minimized as
follows:

ϕ = (Ax − ℓ)T Q−1 (Ax − ℓ) + λT
(
CTx − k

)
+
(
CTx − k

)T
λ,

where λ is the (length r) vector of Lagrange multipliers. Minimizing the expression ϕ minimizes
both the square sum of residuals and satisfies the additional conditions CTx = k.

Differentiation with respect toxyields

∂ϕ

∂x
= xTATQ−1A+ ATQ−1Ax −ATQ−1ℓ− ℓTQ−1A + λTCT + Cλ

which again must vanish. This is achieved by putting

ATQ−1Ax − ATQ−1ℓ+ Cλ = 0

i.e., the normal equations
ATQ−1Ax + Cλ = ATQ−1ℓ.

Combining this with the constraint equation CTx = k yields
[
ATQ−1A C

CT 0

][
x

λ

]
=

[
ATQ−1ℓ

k

]
.

Here now the Lagrange multipliers are along as unknowns, and furthermore this set of equations
looks deceptively like a set of normal equations. . . the matrix on the left hand side is invertible,
albeit not particularly pretty.

The background for this acrobatics is the wish to find a form of the normal equations which
allow the use of the generalized inverse or Moore-Penrose10 inverse, also in the case that
there is a rank defect. No more on this here.

8This is allowed, because

∂xi

∂xj
= δi

j =





1 i = j,

0 i 6= j,

(Kronecker delta) where x =
[

x1 · · · xi · · · xm

]T
; or in “vector/matrix language”

∂x

∂x
= I.

After this we apply the chain rule.
9Joseph-Louis (Giuseppe Lodovico) Lagrange (1736-1813), French (Italian) mathematician.
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lagrange.html.

10Cf. http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html
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1.3 Fixing the datum

1.3.3 Interpreting constraints as minimising a norm

The use of constraints as presented in part1.3.1 can be interpreted as minimizing the following
expression:

ϕ = (Ax − ℓ)T Q−1 (Ax − ℓ) +
(
CTx − k

)T (
CTx − k

)
.

On the right hand side of this expression we see what are mathematically two norms, and in
the literature we speak of minimum norm solution. It is typical for using inner constraints,
that the solution obtained is not “deformed” by the use of the constraints, e.g., when fixing a
levelling network in this way, the height differences between points do not change. The only
effect is to make the solution unique.

We can replace the above expression by:

ϕ = (Ax − ℓ)T Q−1 (Ax − ℓ) + λ
(
CTx − k

)T (
CTx − k

)
,

where λ can be chosen arbitrarily, as long as λ > 0. The end result does not depend on λ, and
we may even use ϕ = limλ↓0 ϕ (λ), yielding still the same solution.

In fact, any choice that picks from all equivalent solutions xjust one, is a “legal” choice. E.g.

ϕ = (Ax − ℓ)T Q−1 (Ax − ℓ) + xTx

is just fine. Then we minimize the length of the x vector ‖x‖ =
√

xTx. A more general case is
the form

(Ax − ℓ)T Q−1 (Ax − ℓ) + λxTGx,

in which G is a suitably positive (semi-)definite matrix.

If in the earlier equation we choose k = 0, we obtain

ϕ = (Ax − ℓ)T Q−1 (Ax − ℓ) + λxTCCTx,

which belongs to this group: G = CCT .

1.3.4 More generally about regularization

Similar techniques are also used in cases, where A isn’t strictly rank deficient, but just very
poorly conditioned. In this case we speak of regularization. This situation can be studied in
the following way. Let the normal matrix be

N = ATQ−1A.

saadaIf the matrix is regular, it will also be positive definite, ie., all its eigenvalues will be
positive. Also, according to theory, will the corresponding eigenvectors be mutually orthogonal.
Therefore, by a simple rotation in x space, we may get N “on principal axes”11:

N = RTΛR,

where Λ is a diagonal matrix having as elements the eigenvalues λi, i = 1, m (m the number of
unknowns, i.e. the length of the vector x.)

If the matrix N is not regular, then some of its eigenvalues are zero. Their number is precisely
the rank defect of the matrix A. Adding a suitable term G to N will fix this singularity.

11You do remember, don’t you, that a rotation matrix is orthogonal, i.e. RRT = RT R = I or R−1 = RT .
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Chapter 1 Free network and datum

If some of the eigenvalues of N are instead of zero only very small, we speak of a poorly
conditioned matrix12. Often it is numerically impossible to invert, or inversion succeeds only
by used double or extended precision numbers. A good metric for the invertability of a matrix
is its condition number

κ = λmax/λmin,

The ratio between the largest and the smallest eigenvalue. Matlab offers the possibility to
compute this number. The smaller, the better.

1.4 Other examples

1.4.1 Distance measurement

If we have a plane network, in which have been measured only ranges (distances), then the
observation equations are of the form:

ℓk + vk =

√
(xi − xj)

2 + (yi − yj)
2.

As we can easily see, increasing all x values — including both xi and xj — with a constant
amount will not change the right hand side of this equation. The same with y. In other words:

Shifting (translating) all points over a fixed vector
[

∆x ∆y
]T

in the plane does

not change the observation equations.

There is still a third invariant: the expression
√

(xi − xj)
2 + (yi − yj)

2 is precisely the distance

between points i and j, and it does not change even if the whole point field were to be rotated
by an angle α, e.g., about the origin.

If we write the vector of unknowns in the form
[
· · · xi yi · · · xj yj · · ·

]T
, then the c

vectors take on the form:

c1 =




...

1

0
...

1

0
...




, c2 =




...

0

1
...

0

1
...




, c3 =




...

−yi
+xi

...

−yj
+xj

...




.

Here c1 and c2 represent the translations in the xand y directions and c3 the rotation around
the origin (let us assume for simplicity, that α is small).

The general datum transformation vector is now

r∑

i=1

αici = ∆x · c1 + ∆y · c2 + α · c3.

The rank defect r is 3.
12The whole adjustment problem is called ill-posed.
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1.4 Other examples

1.4.2 About the scale

If we measure, instead of distances, ratios between distances — which is what happens in
reality if we use a poorly calibrated distance measurement instrument13 — we will have, in
addition to the already mentioned three datum defects, a fourth one: the scale. Its c vector is

c =
[
· · · xi yi · · · xj yj · · ·

]T
.

In this case the datum defect is four. It is eliminated by fixing two points or four co-ordinates.

The whole C matrix is now

C =




...
...

...
...

1 0 −yi xi
0 1 +xi yi
...

...
...

...

1 0 −yj xj
0 1 +xj yj
...

...
...

...




.

Cf. [Kal98b, s. 70].

1.4.3 Angle measurement

If we have measured in the network also angles, the amount of datum defects does not change.
Also angle measurements are invariant with respect to translation, rotation and (where appro-
priate) scaling.

1.4.4 Azimuth measurement

A rather rare situation. If we have measured absolute azimuths (e.g., with a gyrotheodolite),
there will not be a datum defect associated with rotation. All the azimuths in the network will
be obtained absolutely from the adjustment.

1.4.5 The case of space geodesy

In this case we measure, in three dimensions, (pseudo-)ranges. We may think that the datum
defect would be six: three translations (components of the translation vector) and three rotation
angles in space.

However,

1. if the measurements are done to satellites orbiting Earth, we obtain as the implicit origin
of the equations of motion the centre of mass of the Earth. I.e., the three dimensional
translation defect disappears.

13Often the poorly known effect of the atmosphere (propagation medium) on signal propagation has a similar
effect as poor calibration. Therefore it is a good idea to make the scale into an unknown in the network
sides are long.
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Chapter 1 Free network and datum

2. if the measurements are done at different times of the day, then the Earth will have
rotated about its axes between them. This direction of the Earth’s rotation axis (two
parameters) will then appear in the observation equations, and two of the three rotation
angles disappear, if the measurements are done between stations on the Earth’s surface
and satellites orbiting in space.

Only one datum defect is left: the rotation angle around the Earth’s rotation axis.

1.4.6 Very long baseline interferometry (VLBI)

In this case the measurement targets in space are so far away, that the centre of mass of the
Earth does not appear in the observation equations. There are four datum defects: a translation
vector (i.e., the position vector of the origin of the co-ordinate system) of three components,
and a rotation angle about the rotation axis of the Earth.

10



Chapter 2

Similarity transformations
(S-transformations) and criterion matrices

Literature:

[Kal98b, s. 67-71, 141-150]

[Str82]

[Lei95, s. 130-135]

[Coo87, s. 206-215, 311-321]

[SB97, s. 405-430]

[Baa73] partially.

2.1 Complex co-ordinates and point variances

As we saw already earlier, we can advantageously express plane co-ordinates as complex num-
bers:

z = x+ iy,

where (x, y) are plane co-ordinates. Now also variances can be written complexly: if the real-
valued variance and covariance definitions are

Var (x) ≡ E
{
(x− E {x})2} ,

Cov (x, y) ≡ E {(x−E {x}) (y −E {y})} ,

we can make corresponding definitions also in the complex plane:

Var (z) ≡ E {(z − E {z}) (z − E {z})} ,
Cov (z,w) ≡ E {(z − E {z}) (w − E {w})} .

Here, the overbar means complex conjugate, i.e., if z = x+ iy, then z = x− iy.

We can see by calculating (remember that i2 = −1), that

Var (z) = Var (x) + Var (y) .

In other words, the point variance m2
P ≡ m2

x+m
2
y = Var (x)+Var (y) is the same as the complex

variance Var (z)(which thus is real valued), and the covariance between the co-ordinates x and
y of the same point vanishes.
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Chapter 2 Similarity transformations (S-transformations) and criterion matrices

2.2 S-transformation in the complex plane

If given are the co-ordinates of the point field (xi, yi), we can transform them to the new co-
ordinate system using a similarity transformation, by giving only the co-ordinates of two points
in both the old and the new system. Let the points be A and B, and the co-ordinate differences
between the old and the new system

δzA = z′A − zA,

δzB = z′B − zB.

Here we assume z′A, z
′
B to be exact, i.e., the points A and B act as datum points, the co-ordinates

of which are a matter of definition and not the result measurement and calculation.

Then we can compute the correction to the co-ordinates of point zi as the following linear
combination of the corrections for points A and B:

δzi =
zi − zA

zB − zA
δzB +

zi − zB

zA − zB
δzA.

We define zAB ≡ zB − zA, zAi ≡ zi − zA etc. and write in matric form:

z′i =
[

1 ziB

zAB

zAi

zAB

]



zi

δzA
δzB


 =

=
[

1 − ziB

zAB
− zAi

zAB

]



zi

zA − z′A
zB − z′B


 . (2.1)

Note that the sum of elements of the row matrix on the left hand side vanishes :

1 − ziB

zAB
− zAi

zAB
= 0.

2.3 Standard form of the criterion matrix

The precision effects of an S-transformation can be studied theoretically. Let us start by assum-
ing, that the network has been measured by a method of which we know the precision behaviour.
Instead of the true precision, we then often use a so-called criterion variance matrix [Baa73],
which describes in a simple mathematical fashion the spatial behaviour of the point field pre-
cision.

The classification of geodetic networks into orders based upon precision may be considered a
primitive form of the criterion variance idea.

A simple rule is, e.g., that the so-called relative point mean error between two points has to be
a function of the distance separating the points, and that it does not depend upon the direction
between them, and also not on the absolute location of the points. Suitable such so-called
homogeneous and isotropic spatial variance structures can be found in the literature.

Often, following the Delft school, we use as the criterion matrix – some sort of idealized variance
matrix, close to what we would get as the variance matrix in a regular, well designed network
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2.3 Standard form of the criterion matrix

– the following expression1:

Var (z) = α2, (2.2)

Cov (z,w) = α2 − 1

2
σ2 (z −w) (z − w) =

= α2 − 1

2
σ2 ‖z −w‖2 . (2.3)

Here, the value α2 nis arbitrary; it is always positive. One can imagine, that it is very large,
larger than 1

2
σ2 ‖z −w‖2 anywhere in the area of study, and represents the local (close to the

origin) uncertainty in co-ordinates caused by the use of very remote fixed points.

Intuitively, one can imagine a network made up of triangles, all of the same size, where
all sides have been measured with equal precision, and the edge of the network is allowed
to travel to infinity in all directions. The edge points are kept fixed. Then

α2 → ∞,

but before that

Cov (z,w) → Var (z) − 1

2
σ2 ‖z − w‖2 .

See figure. 2.1)

After this definition, we can calculate the relative variance matrix between two points A and
B:

Var (zAB) = Var (zA) + Var (zB) − 2Cov (zA, zB) =

= 2α2 − 2α2 + σ2zABzAB = +σ2zABzAB.

We see that α2 has vanished from this and the variance obtained is directly proportional to the
second power of the inter-point distance:

zABzAB = (xB − xA)2 + (yB − yA)2 .

This is also a real number, i.e., there is no correlation between the co-ordinates x and y and
the error ellipses are circles.

2.3.1 A more general form

A more general form of the criterion function is an arbitrary function of the inter-point distance:

Var (z) = α2,

Cov (z,w) = α2 − 1

2
σ2f (‖z −w‖) ,

e.g.,

Cov (z,w) = α2 − 1

2
σ2 ‖z −w‖2ν ,

where ν is a constant to be chosen. In practice, values 0.5...1.0 are suitable.

1An alternative structure producing the same end results would be

Var (z) = σ2zz

Cov (z,w) =
1

2
σ2 (zw + zw) =

1

2
σ2 (zz + ww) − 1

2
σ2 [(z− w) (z − w)] =

=
1

2
(Var (z) + Var (w)) − 1

2
σ2 [(z − w) (z − w)] .

The aesthetic advantage of this alternative is, that we have no need for an arbitrary α2. However, the
aestetic weakness is that it contains the absolute point location z. The problem has only changed place.
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Chapter 2 Similarity transformations (S-transformations) and criterion matrices

Figure 2.1: A regular triangle network extending in all directions to infinity

2.4 S-transformation of the criterion matrix

The criterion matrix of the point field zi, zA, zB can be written as follows:

Var







zi

zA

zB





 =




Var (zi) Cov (zi, zA) Cov (zi, zB)

Cov (zA, zi) Var (zA) Cov (zA, zB)

Cov (zB, zi) Cov (zB, zA) Var (zB)


 =

=




α2 α2 − 1
2
σ2ziAziA α2 − 1

2
σ2ziBziB

α2 − 1
2
σ2ziAziA α2 α2 − 1

2
σ2zABzAB

α2 − 1
2
σ2ziBziB α2 − 1

2
σ2zABzAB α2


 .

Because in the formula 2.1 the co-ordinates zA and zB are exact, we may now write directly
the propagation law of variances:

Var (z′i) =
[

1 − ziB

zAB
− zAi

zAB

]
Var







zi

zA

zB










1

− ziB

zAB

− zAi

zAB


 . (2.4)

Here the aforementioned variance matrix has been pre-multiplied by the coefficients of equation
2.1 as a row vector, and post-multiplied by the same coefficients transposed (i.e., as a column
vector) and complex conjugated. This is the complex version of the propagation law of variances.

In practice, because of the structure of the coefficient matrix (the row sums vanish), the α2

term may be left out from all elements, and we obtain

Var (z′i) = σ2
[

1 − ziB

zAB
− zAi

zAB

]



0 −1
2
ziAziA −1

2
ziBziB

−1
2
ziAziA 0 −1

2
zABzAB

−1
2
ziBziB −1

2
zABzAB 0







1

− ziB

zAB

− zAi

zAB


 .
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2.5 S-transformations as members of a group

i

iAB

iBA

AiB

A

ziA

ziB

zAB

B

Figure 2.2: The quantities used in defining the criterion variance matrix

Careful calculation yields:

Var (z′i) =
1

2
σ2

[
ziAziA

{
ziB

zAB
+

ziB

zAB

}
+ ziBziB

{
ziA

zAB
+

ziA

zAB

}
+
(
ziAziB + ziAziB

)]
.

Geometric interpretation: firstly we see, that this is real valued. Also:

ziAziA = ‖ziA‖2 ,

ziBziB = ‖ziB‖2 ,

ziA

zAB
+

ziA

zAB
= 2ℜ

{
ziA

zAB

}
= −2

‖ziA‖
‖zAB‖

cos ∠iAB,

ziB

zAB
+

ziB

zAB
= 2ℜ

{
ziB

zAB

}
= +2

‖ziB‖
‖zAB‖

cos ∠iBA,

ziAziB + ziAziB = 2ℜ{ziAziB} = 2 ‖ziA‖ ‖ziB‖ cos ∠AiB.

So:

Var
(
z′i
)

= σ2

[
‖ziA‖2 ℜ

{
ziB

zAB

}
+ ‖ziB‖2 ℜ

{
ziA

zAB

}
+ ℜ{ziAziB}

]
=

= σ2

[
‖ziA‖2 ‖ziB‖

‖zAB‖
cos ∠iBA − ‖ziB‖2 ‖ziA‖

‖zAB‖
cos ∠iAB + ‖ziA‖ ‖ziB‖ cos ∠AiB

]
=

= σ2 ‖ziA‖ ‖ziB‖
‖zAB‖

[‖ziA‖ cos ∠iBA − ‖ziB‖ cos ∠iAB + ‖zAB‖ cos ∠AiB] .

See figure 2.2.

2.5 S-transformations as members of a group

In mathematics a group G is defined (cf. http://mathworld.wolfram.com/Group.html) as a
set with the following properties:
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Chapter 2 Similarity transformations (S-transformations) and criterion matrices

1. If A and B are two elements in G , then the product AB is also in G (closure)

2. Multiplication is associative, i.e., for all A,B,C in G, (AB)C = A (BC)

3. There is an identity element I so that IA = AI = A ∀A∈ G

4. There must be an inverse of each element: for each element A ∈ G, B = A−1so that
AA−1 = A−1A = I.

The set of all invertible S-transformations (between two local datums) forms such a group.

2.5.1 The S-transformation from“infinity” to a local datum

The above described transformation of points from an “infinity datum” to a local datum can
be generalized. Equation (2.4) for one point zi can be written, e.g., for three different points
zi, zP , zQ, so that we can compute, in addition to the variances, also the covariances between
the points.

The formula looks then like this:

Var







z′i
z′P
z′Q





 =




1 − ziB

zAB
− zAi

zAB

1 −zPB

zAB
−zAP

zAB

1 −zQB

zAB
−zAQ

zAB


Var







zi

zP

zQ

zA

zB










1

1

1

− ziB

zAB
−zPB

zAB
−zQB

zAB

− zAi

zAB
−zAP

zAB
−zAQ

zAB



.

The matrix featuring here may also be called

S
(AB)
(∞) =




1 − ziB

zAB
− zAi

zAB

1 −zPB

zAB
−zAP

zAB

1 −zQB

zAB
−zAQ

zAB


 .

This matrix is rectangular and not invertible. This only illustrates the fact, that a datum once
transformed from “infinity” to a local datum (AB) cannot be transformed back again. The
above transformation equation is

Var
(
z(AB)

)
= S

(AB)
(∞) Var

(
z(∞)

) [
S

(AB)
(∞)

]†
,

where the symbol †, the so-called hermitian2, designates the combination of transpose and
complex conjugate.

2.5.2 The S-transformation between two local datums

Within a local network, there are always many alternatives for choosing the point pair A,B
that act as datum points. It is even possible to transform a co-ordinate set that already refers to

2Charles Hermite, 1822-1901, French mathematician.
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hermite.html.
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2.5 S-transformations as members of a group

datum points A,B to some other datum point pair P,Q. That can be done as follows, starting
from equation 2.1:




z′′i

z′′A − z′A
z′′B − z′B


 =




1 − ziQ

zPQ
− zPi

zPQ

0 −zAQ

zPQ
−zPA

zPQ

0 −zBQ

zPQ
−zPB

zPQ







z′i

z′P − z′′P
z′Q − z′′Q


 .

Here we also obtain the corrections of the“old”datum points A and B, i.e., z′′A−z′A and z′′B−z′B,
to the new ′′ system, where we have as given co-ordinates z′′P and z′′Q.

It is advantageous to use the following notation:




z
(PQ)
i

z
(PQ)
A − z

(AB)
A

z
(PQ)
B − z

(AB)
B


 =




1 − ziQ

zPQ
− zPi

zPQ

0 −zAQ

zPQ
−zPA

zPQ

0 −zBQ

zPQ
−zPB

zPQ







z
(AB)
i

z
(AB)
P − z

(PQ)
P

z
(AB)
Q − z

(PQ)
Q


 . (2.5)

Here we have as given as the datum definition in the (AB) system the co-ordinates z
(AB)
A , z

(AB)
B

(left hand side) and in the (PQ) system, z
(PQ)
P , z

(PQ)
Q . The matrix is often called

S
(PQ)
(AB) ≡




1 − ziQ

zPQ
− zPi

zPQ

0 −zAQ

zPQ
−zPA

zPQ

0 −zBQ

zPQ
−zPB

zPQ


 .

These transformation matrices form a mathematical group:

S
(PQ)
(UV ) · S

(UV )
(AB) = S

(PQ)
(AB) ,(

S
(PQ)
(AB)

)−1

= S
(AB)
(PQ) ,

S
(AB)
(AB) = I.

i.e.,

1. transformations can be applied successively from the system (AB) through the system
(UV ) to the system (PQ);

2. the transformation (AB) → (PQ) has an inverse transformation (PQ) → (AB);

3. the trivial transformation S
(AB)
(AB) also belongs to the group; it may be replaced by the unit

matrix I because then on the right hand side, z
(AB)
A − z

(AB)
A = z

(AB)
B − z

(AB)
B = 0.3

Using this symbolism, we obtain
z(PQ) = S

(PQ)
(AB)z

(AB),

where

z(PQ) ≡




z
(PQ)
i

z
(PQ)
A − z

(AB)
A

z
(PQ)
B − z

(AB)
B


 ≡




z
(PQ)
i

∆z
(PQ)
A

∆z
(PQ)
B


 , z(AB) ≡




z
(AB)
i

z
(AB)
P − z

(PQ)
P

z
(AB)
Q − z

(PQ)
Q


 ≡




z
(AB)
i

∆z
(AB)
P

∆z
(AB)
Q


 ,

3More precisely, the matrix of the trivial transformation is




1

−1

−1


; however, from the viewpoint of

variance propagation this is equivalent with a unit matrix.
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where the “delta quantities” ∆z
(AB)
P etc. are defined according to the pattern !computed minus

fixed by the datum definition”.

All S-transformations are similarity transformations that preserve angles and ratios of lengths.
Also the transformation formed by two successive S-transformations is again a similarity trans-
formation, and so is the inverse of an S-transformation. This means that all operations defined
for the group produce again a group member.

2.5.3 The case of several i-points

This formalism of S transformation matrices can easily be interprested – as it should be – more
generally, if we let the point number i represent several points, i = 1, . . . , n. Then

S
(AB)
(∞) =




In×n

[
− ziB

zAB

]
i=1,...,n

[
− zAi

zAB

]
i=1,...,n

1 −zPB

zAB
−zAP

zAB

1 −zQB

zAB
−zAQ

zAB


 ,

where the square bracketed expressions ([·]i=1,...,n) are column vectors of length nSimilarly

S
(PQ)
(AB) ≡




In×n

[
− ziQ

zPQ

]
i=1,...,n

[
− zPi

zPQ

]
i=1,...,n

O1×n −zAQ

zPQ
−zPA

zPQ

O1×n −zBQ

zPQ
−zPB

zPQ


 ,

where O1×n is a row vector of length n full of zeroes.

2.6 The S-transformation of variances

The variances are transformed in the following way:

Var
(
z(PQ)

)
= S

(PQ)
(AB)Var

(
z(AB)

) [
S

(PQ)
(AB)

]†
,

where

z(PQ) =




z
(PQ)
i

∆z
(PQ)
A

∆z
(PQ)
B


 , z(AB) =




z
(AB)
i

∆z
(AB)
P

∆z
(AB)
Q


 , ja

[
S

(PQ)
(AB)

]†
=




1 0 0

− ziQ

zPQ
−zAQ

zPQ
−zBQ

zPQ

− zPi

zPQ
−zPA

zPQ
−zPB

zPQ


 .

Here, the delta quantities are ∆z
(PQ)
A = z

(PQ)
A −z

(AB)
A , ∆z

(AB)
P = z

(AB)
P −z

(PQ)
P , etc. As reference

value we always use the location that was fixed for the datum point when defining the datum.

2.7 Harjoitukset
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Chapter 3

The affine S-transformation

3.1 Triangulation and the finite elements method

The finite elements method is a way to discretize partial differential equations, such as are used,
e.g., in statics, structural mechanics, geophysics, meteorology and astrophysics. The domain of
computation is divided up into simple parts, finite elements, that have common border lines,
surfaces and nodes. The we define base functions having value 1 in only one nodal point, and
value 0 in all other nodal points. Inside the element, the base functions are simple, e.g., linear
functions. Across border lines or surfaces, they are continuous.

The differential equations that are to be solved are now discretized, taking on a form reminiscent
of normal equations (Ritz-Galerkin), making possible the solving for the unknowns, i.e., the
function values at the nodes.

The most common element is the triangle, in which case we use as base functions linear functions
of the co-ordinates. The surface of the Earth may be suitably divided into triangles using so-
called Delaunay triangulation.

3.2 Bilinear affine transformation

In the publication [Ano03] it is proposed to use for the plane co-ordinate transformation between
the Gauß-Krüger projection co-ordinates of ETRS-89 and the ykj co-ordinate system, a triangle-
wise affine transformation.

Inside each triangle, the affine transformation can be written in the form

x(2) = ∆x+ a1x
(1) + a2y

(1)

y(2) = ∆y + b1x
(1) + b2y

(1)

where
(
x(1), y(1)

)
are the point co-ordinates in ETRS-GK27, and

(
x(2), y(2)

)
are the co-ordinates

of the same point in ykj. This transformation formula has six parameters: ∆x, ∆y, a1, a2, b1
ja b2. If, in the three corners of the triangle, are given both

(
x(1), y(1)

)
and

(
x(2), y(2)

)
, we can

solve for these uniquely.

The transformation formula obtained is inside the triangles linear and continuous across the
edges, but not differentiable: the scale is discontinuous across triangle edges. Because the
mapping is not conformal either, the scale will also be dependent upon the direction considered.

A useful property of triangulation is, that it can be locally “patched”: if better data is available
in the local area – a denser point set, whose co-ordinate pairs

(
x(i), y(i)

)
, i = 1, 2 are known

– then we can take away only the triangles of that area and replace them by a larger number
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Chapter 3 The affine S-transformation

of smaller triangle, inside which the transformation will become more precise. This is precisely
the procedure that local players, like municipalities, can use to advantage.

The equations above can also be written in vector form:

[
x(2)

y(2)

]
=

[
∆x

∆y

]
+

[
a1 a2

b1 b2

][
x(1)

y(1)

]
.

Generally the co-ordinates in the (1)and (2) datums are close to each other, i.e.,
[

∆x ∆y
]T

are small. In that case we may write the shifts

δx ≡ x(2) − x(1) = ∆x+ (a1 − 1)x(1) + a2y
(1),

δy ≡ y(2) − y(1) = ∆y + b1x
(1) + (b2 − 1) y(1).

If we now define

∆x ≡
[

∆x

∆y

]
, A =

[
a11 a12

a21 a22

]
≡
[
a1 − 1 a2

b1 b2 − 1

]
,

we obtain shortly

δx = ∆x + Ax(1).

Let there be a triangle ABC. Then we have given the shift vectors of the corners

δxA = ∆x + Ax
(1)
A ,

δxB = ∆x + Ax
(1)
B ,

δxC = ∆x + Ax
(1)
C .

Write this out in components, with ∆x,A on the right hand side:

δxA = ∆x+ a11x
(1)
A + a12y

(1)
A

δyA = ∆y + a21x
(1)
A + a22y

(1)
A

δxB = ∆x+ a11x
(1)
B + a12y

(1)
B

δyB = ∆y + a12x
(1)
B + a22y

(1)
B

δxC = ∆x+ a11x
(1)
C + a12y

(1)
C

δyC = ∆y + a21x
(1)
C + a22y

(1)
C

or in matrix form



δxA
δyA
δxB
δyB
δxC
δyC




=




1 0 x
(1)
A 0 y

(1)
A 0

0 1 0 x
(1)
A 0 y

(1)
A

1 0 x
(1)
B 0 y

(1)
B 0

0 1 0 x
(1)
B 0 y

(1)
B

1 0 x
(1)
C 0 y

(1)
C 0

0 1 0 x
(1)
C 0 y

(1)
C







∆x

∆y

a11

a21

a12

a22




,

from which they can all be solved.
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3.3 Applying the method of affine transformation in a local situation

C

A

B

p   = C = ω(∆          )ABP

ω(∆          )ABC

p   = B ω(∆          )APC

ω(∆          )ABC
= 

p   = A

= ω(∆          )PBC

ω(∆          )ABC

= 

P

Figure 3.1: Computing barycentric co-ordinates as the ratio of the surface areas of two triangles

Let us write the coordinates (x, y) as follows:

x = pAxA + pBxB + pCxC ,

y = pAyA + pByB + pCyC,

with the additional condition pA + pB + pC = 1. Then also

δx = pAδxA + pBδxB + pCδxC , (3.1)

δy = pAδyA + pBδyB + pCδyC. (3.2)

The triplet
(
pA, pB, pC

)
is called the barycentric co-ordinates of point P See figure 3.1.

They can be found as follows (geometrically pA = ω(∆BCP )
ω(∆ABC)

etc., where ω is the surface area of

the triangle) using determinants:

pA =

∣∣∣∣∣∣∣

xB xC x

yB yC y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

, pB =

∣∣∣∣∣∣∣

xC xA x

yC yA y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

, pC =

∣∣∣∣∣∣∣

xA xB x

yA yB y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

.

These equations can be directly implemented in software.

3.3 Applying the method of affine transformation in a local

situation

askeleetIf we wish to apply the method proposed in the JHS on the local level, we go through
the following steps:

1. Construct a suitable triangulation for the area. Choose from the national triangulation
a suitable set of triangles covering the area. Divide up the area in sufficiently small
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Chapter 3 The affine S-transformation

triangles, and formulate the equations for computing the co-ordinate shifts of the corner
points of the triangles.

2. Study the error propagation in the chosen geometry and find it to be acceptable.

3. The transformation formulas, coefficients and all, are implemented in software.

The best would be an implementation in which the processing is distributed: the co-ordinates
find a server and transformation software suitable for them. A denser and more precise solution
is found for some municipalities, for other, the national solution will do. On the Internet, this
would be implementable in the frame of an RPC based architecture (e.g., XML/SOAP).

3.4 A theoretical analysis of error propagation

The precision behaviour of the method can be studied by simulating the computation of co-
ordinates with synthetic but realistic-looking errors. We can also use real observational material,
from which we can leave out one point at a time, and investigate how well this approximation
method succeeds in reproducing this point’s co-ordinate shifts (cross-validation).

On the other hand we can also investigate the problem theoretically. We can start from the
knowledge that the “old” network, from which the ykj co-ordinates originate, was measured
by traditional triangulation and polygon measurements that have a certain known precision
behaviour1. Todellisen Instead of the true precision, we often use a so-called criterion variance
matrix [Baa73], which describes in a simple mathematical way the spatial behaviour of the
precision of the point field.

3.4.1 Affine transformations

In the same way as for similarity transformations, we can treat the error propagation of affine
transformations formally.

If we have three points A,B,C the co-ordinates of which are given, then the co-ordinate cor-
rection of an arbitrary point zi can be written as follows (complexly):

z′i = zi + pAi (z′A − zA) + pBi (z′B − zB) + pCi (z′C − zC) .

Again in matrix form:

z′i =
[

1 −pAi −pBi −pCi
]



zi

zA − z′A
zB − z′B
zC − z′C


 .

Here again z′A, z
′
B, z

′
C are the fixed co-ordinates given as the (ABC) datum definition.

We write the affine datum transformations again in the familiar form2 (equation 2.5):

1Compared to them, GPS measurements can be considered absolutely precise.
2Change of notation: z → z(ABC) and z′ → z(PQR).
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3.4 A theoretical analysis of error propagation

Figure 3.2: Error propagation in triangles of different sizes. Only qualitatively.
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Chapter 3 The affine S-transformation




z
(PQR)
i

z
(PQR)
A − z

(ABC)
A

z
(PQR)
B − z

(ABC)
B

z
(PQR)
C − z

(ABC)
C


 =




1 −pPi −pQi −pRi
0 −pPA −pQA −pRA
0 −pPB −pQB −pRB
0 −pPC −pQC −pRC







z
(ABC)
i

z
(ABC)
P − z

(PQR)
P

z
(ABC)
Q − z

(PQR)
Q

z
(ABC)
R − z

(PQR)
R


 .

Here all elements (p values) are, otherwise than in the case of a similarity transformation
(S-transformation), all real valued.

Let us again write symbolically:

S
(PQR)
(ABC) ≡




1 −pPi −pQi −pRi
0 −pPA −pQA −pRA
0 −pPB −pQB −pRB
0 −pPC −pQC −pRC


 ,

where the p values are computed as explained before:

pPA =
ω (∆QRA)

ω (∆PQR)
=

∣∣∣∣∣∣∣

xQ xR xA
yQ yR yA
1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xP xQ xR
yP yQ yR
1 1 1

∣∣∣∣∣∣∣

,

etc. For humans, this is hard, but not for computers.

Also affine transformations form a mathematical group. Two successive affine transformations
(ABC) → (UVW ) → (PQR) produce again an affine transformation, the inverse transforma-
tion of (ABC) → (PQR), i.e., (PQR) → (ABC) does so as well, and the trivial tramnsforma-
tion (ABC) → (ABC) does also.

3.4.2 The affine transformation and the criterion matrix

We start again from the standard form of the criterion matrix 2.2, 2.3:

Var (z) = α2,

Cov (z,w) = α2 − 1

2
σ2 (z − w) (z −w) .

Propagation of variances yields

Var (z′i) =
[

1 −pAi −pBi −pCi
]
Var (zi, zA, zB, zC)




1

−pAi
−pBi
−pCi


 =

=
[

1 −pAi −pBi −pCi
]
·

·




α2 α2 − 1
2
σ2ziAziA α2 − 1

2
σ2ziBziB α2 − 1

2
σ2ziCziC

α2 − 1
2
σ2ziAziA α2 α2 − 1

2
σ2zABzAB α2 − 1

2
σ2zACzAC

α2 − 1
2
σ2ziBziB α2 − 1

2
σ2zABzAB α2 α2 − 1

2
σ2zBCzBC

α2 − 1
2
σ2ziCziC α2 − 1

2
σ2zACzAC α2 − 1

2
σ2zBCzBC α2







1

−pAi
−pBi
−pCi
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3.5 The case of height measurement

Note that again, the sum of elements of this row vector, 1 − pAi − pBi − pCi = 0 and α2 drops
out of the equation. We obtain

Var (z′i) = σ2
[

1 −pAi −pBi −pCi
]
·

·




0 −1
2
ziAziA −1

2
ziBziB −1

2
ziCziC

−1
2
ziAziA 0 −1

2
zABzAB −1

2
zACzAC

−1
2
ziBziB −1

2
zABzAB 0 −1

2
zBCzBC

−1
2
ziCziC −1

2
zACzAC −1

2
zBCzBC 0







1

−pAi
−pBi
−pCi


 =

= −1

2
σ2
[

1 −pAi −pBi −pCi
]
·

·




0 ‖ziA‖2 ‖ziB‖2 ‖ziC‖2

‖ziA‖2 0 ‖zAB‖2 ‖zAC‖2

‖ziB‖2 ‖zAB‖2 0 ‖zBC‖2

‖ziC‖2 ‖zAC‖2 ‖zBC‖2 0







1

−pAi
−pBi
−pCi


 .

Unfortunately we cannot readily make this formula neater. This is no problem, however, for
the computer.

3.5 The case of height measurement

In height measurement, the quantity being studied is a scalar, h, which nevertheless is a function
of location z. Therefore we may write h (z).

In the case of height measurement we know, that the relative or inter-point errors grow with the
square root of the distance between the points (because the measurement method is levelling).
For this reason it is wise to study the more general case where the error is proportional to some
power ν of the distance, which thus generally is not ν = 1 but ν = 0.5.

Then we can (still in the case of location co-ordinates) define the standard form of the criterion
matrix as follows:

Var (z) = α2,

Cov (z,w) = α2 − 1

2
σ2 (z − w)ν (z −w)ν =

= α2 − 1

2
σ2 ‖z − w‖2ν .

We again obtain for the relative variance

Var (zAB) = Var (zA) + Var (zB) − 2Cov (zA, zB) =

= 2α2 − 2α2 + σ2 (zABzAB)ν = +σ2 (zABzAB)ν .

Let us apply this now to height measurement. We obtain (ν = 0.5)

Var (∆hAB) = σ2 ‖zAB‖

and
σ∆hAB

= σ
√

‖zAB‖,
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Chapter 3 The affine S-transformation

as is well known.

In realistic networks, however, due to the increased strength brought by the network adjustment,
also in the case of location networks ν < 1, and for levelling networks we may have v < 0.5.
The values given here are however a decent first approximation.

In the case of GPS measurements we know, that the relative precision of point locations can
be well described by a power law of the distance with an exponent of ν ≈ 0.5 (the so-called
Bernese rule-of-thumb).

26



Chapter 4

Determining the shape of an object
(circle, sphere, straight line)

(More generally: building and parametrizing models in preparation for adjustment)

Literature:

[Kal98b, s. 140-143]

[Kal98a]

[Kra83]

[Nor99a]

[SB97, s. 441-444]

[Lei95, s. 123-130]

4.1 The general case

Let be given a figure in the plane, on the edge of which

f (x, y) = 0.

Edge points of this figure have been measured n times:

(xi, yi) , i = 1, . . . , n

Let us assume, that the shape of the figure depends on exterior parameters aj , j = 1, . . . , m.
I.e.,

f (x, y; aj) = 0.

Let us call the observations (xi, yi) , i = 1, . . . , n. We construct approximate values that are
sufficiently close to the observations, and for which holds

f
(
x0
i , y

0
i ; a

0
j

)
= 0.

Now we can write the Taylor expansion:

f (xi, yi; aj) = f
(
x0
i , y

0
i ; a

0
j

)
+
∂f

∂x

∣∣∣∣
x=x0

i

∆xi +
∂f

∂y

∣∣∣∣
y=y0i

∆yi +

m∑

j=1

∂f

∂aj
∆aj ,

where
∆xi = xi − x0

i ,∆yi = yi − y0
i ,∆zi = zi − z0

i ja∆aj = aj − a0
j .
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Chapter 4 Determining the shape of an object (circle, sphere, straight line)

This expression must vanish.

This is how we obtain our final observation equation

∂f

∂xi
∆xi +

∂f

∂yi
∆yi +

m∑

j=1

∂f

∂aj
∆aj = 0.

Here, the two left hand side terms constitute a linear combination of the edge point observations
(xi, yi) which is computable if the partial derivatives of the edge function f (x, y; aj) with respect
to x and y can be computed. The same for the elements of the design matrix df

daj
.

More generally, if we had, instead of a curve, a surface in three-dimensional space, we would
obtain as observation equations:

∂f

∂xi
∆xi +

∂f

∂yi
∆yi +

∂f

∂zi
∆zi +

m∑

j=1

∂f

∂aj

(
aj − a0

j

)
= 0.

If the observations (xi, yi) have the same weight (and are equally precise in the x and y direc-
tions), we must still require, that

‖∇f‖ =

√(
∂f

∂xi

)2

+

(
∂f

∂yi

)2

is a constant, in other words, does not depend on the values of xi and yiOnly then are the
variances of the “replacement observable” ℓ ≡ ∂f

∂xi
∆xi + ∂f

∂yi
∆yi the same, and one may use a

unit matrix as the weight coefficient matrix.

4.2 Example: circle

The equation for the circle is
x2 + y2 = r2,

where r is the circle’s radius. The equation for a freely positioned circle is

(x−X)2 + (y − Y )2 = r2,

where (X, Y ) are the co-ordinates of the circle’s centre.

The function f is
f (x, y; aj) = (x−X)2 + (y − Y )2 − r2

and the vector aj :

a =



X

Y

r


 .

Partial derivatives:

∂f

∂x
= 2 (x−X) ,

∂f

∂y
= 2 (y − Y ) ,

∂f

∂a1
= −2 (x−X) ,

∂f

∂a2
= −2 (y − Y ) ,

∂f

∂a3
= −2r.

These partial derivatives are evaluated at suitable approximate values X0, Y 0, r0.
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4.2 Example: circle

x

y

1

4

3

2

We get as observation equations
(
x0
i −X0

)
∆xi +

(
y0
i − Y 0

)
∆yi −

(
x0
i −X0

)
∆X −

(
y0
i − Y 0

)
∆Y − r0∆r = 0,

from which the linearized unknowns ∆X,∆Y and ∆r (corrections to the assumed approximate
values) can be solved if the number of equations exceeds three.

Let the following observation points be given: (4, 4) , (1, 4) , (4, 2) and (3, 1) . Let the starting or
approximate values be X0 = Y 0 = 2,r0 = 2. We obtain approximate values for the observations
as follows. From the figure we see, that

x0
i = X0 + r0 cosϕ0

i ,

y0
i = Y 0 + r0 sinϕ0

i ,

where ϕ is the direction angle. Graphically we obtain suitable values for ϕ, and thus

i ϕ0 xi yi x0
i y0

i ∆xi ∆yi x0
i −X0 y0

i − Y 0

1 45◦ 4 4 3.414 3.414 0.586 0.586 1.414 1.414

2 120◦ 1 4 1.000 3.732 0.000 0.268 -1.000 1.732

3 0◦ 4 2 4.000 2.000 0.000 0.000 2.000 0.000

4 −45◦ 3 1 3.414 0.586 -0.414 0.414 1.414 -1.414

Thus we obtain

(
x0
i −X0

)
∆xi +

(
y0
i − Y 0

)
∆yi =




1.657

0.464

0.000

−1.171


 ,

and we get for our observation equation



1.657

0.464

0.000

−1.171


 =




1.414 1.414 2

−1.000 1.732 2

2.000 0.000 2

1.414 −1.414 2







∆X

∆Y

∆r


 .

Solving this by means of Matlabin/Octave yields ∆X = 0.485,∆Y = 0.966,∆r = −0.322, and
thus X = 2.485, Y = 2.966, r = 1.678. This solution was drawn into the graphic. As can be
seen is the solution for r rather poor, which undoubtedly is due to nonlinearity together with
poor starting values. Iteration would improve the solution.
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Chapter 4 Determining the shape of an object (circle, sphere, straight line)

4.3 Exercises

If we wish to determine a straight line going through a point cloud, we have the following
regression alternatives:

• Traditional linear regression:

yi + vi = a+ bxi,

minimizes s ≡∑i v
2
i by means of the variables a, b.

Esim.E.g., calculating a: demand

∂s

∂a
= 0 =

∂

∂a

∑

i

(a+ bxi − yi)
2 = 2n (a+ bx− y) ,

where x, y are the co-ordinates of the centre of mass of the n measured points (xi, yi) If
we choose the origin or our co-ordinates such that

x = y = 0

(so-called barycentric co-ordinates), it follows that 2na = 0 ⇒ a = 0. In other words,
the regression line goes through the centre of mass of the measured points.

• Interchange the roles of x and y and perform a regression of x with respect to y:

yi = a + b (xi + wi) ,

minimize
∑
w2
i .

• Orthogonal regression:

yi − ui
√

1 − b2 = a+ b (xi + bui) ,

minimize
∑
u2
i .

1. Prove that also when regressing x with respect to y, the regression line goes through the
centre of mass of the measured points.

Answer: s =
∑
w2
i is to be minimized. Calculate in the same way

ds

da
=

d

da

∑
w2
i =

∑ d

da

(
yi − a− bxi

b

)2

=

= 2 · −1

b
·
∑

i

(
yi − a− bxi

b

)
= −2n

b2
(y − a− bx) ;

in barycentric co-ordinates x = y = 0 this becomes zero iff (if and only if):

2na

b2
= 0 ⇒ a = 0.

(A requirement in this case is, that b 6= 0.)

2. The same proof in the case of orthogonal regression.
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4.3 Exercises

Answer: Minimize s =
∑
u2
i .

ds

da
=

d

da

∑

i

(
a+ bxi − yi

b2 +
√

1 − b2

)2

=

= 2 · 1

b2 +
√

1 − b2
·
∑

i

a + bxi − yi

b2 +
√

1 − b2
=

=
2n

(
b2 +

√
1 − b2

)2 (a+ bx− y) ,

which again vanishes in the case of x = y = 0 iff a = 0. In this case there are no
restrictions on b, i.e., this will work even if b = 0 or b = 1 or in-between those values.

3. In the figure are drawn the lines found by the three different regression methods. Identify
them according to the above classification.

3
2

1

Answer: The least tilted line is the traditional regression. The middle one is the orthog-
onal regression.The steepest line is the regression of x with respect to y.

31



Chapter 4 Determining the shape of an object (circle, sphere, straight line)

32



Chapter 5

3D network, industrial measurements with
a system of several theodolites

Literature:

[Nor99b]

[Nor99a]

[Kär93]

[SB97, s. 363-368]

[Sal95, ss. 17-31]

5.1 Three dimensional theodolite measurement (EPLA)

We describe here the method according to the model of Cooper and Allan. In this method, we
observe with theodolites that are oriented with respect ot each other, the point P .

In this method, the distance in space between the lines AP and BP is minimized. The directions
of these lines are represented by the unit vectors p and q, respectively; the inter-theodolite
vector is b. These vectors are now, with the origin in point A and the X axis along AB:

b =



xB
0

zB


 ,

p =




sin ηA cos ∠A

sin ηA sin ∠A

cos ηA


 , q =




− sin ηB cos ∠B

sin ηB sin ∠B

cos ηB


 .

Now the closing vector is
e = −λp + b + µq,

where we choose the multipliersλ and µ so as to minimise the length or norm of e. Then, the
best estimate of point P will be the centre point of e, i.e.

xP =
1

2
(λp + b + µq) .

Below we provide an example of how to do the computation in an approximate fashion.
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z

y

P

x

A

b

ηA

∠A

ηB

B

B′
∠B

λp

µq

Figure 5.1: Cooper & Allan method

5.2 Example

The point P is observed using two theodolites from two standpoints. The co-ordinates of the
standpoints A,B in the co-ordinate frame of the factory hall:

x (m) y (m) z (m)

A 9.00 12.40 2.55

B 15.45 16.66 2.95

The angle measurements are the following:

Horizontal (gon) ∠ Vertical η (gon)

A 61.166 14.042

B 345.995 9.081

The measurements are done in a local co-ordinate system defined by the theodolites. See the
figure. We minimize the length of the vector

e ≡ −λp + b + µq

. p and q are unit vectors.

Approximative method:

1. Compute at first only the horizontal co-ordinates x, y of point P in the local co-ordinate
frame defined by the theodolites.

2. Compute the parameters λ ja µ.
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5.3 Different ways to create the scale

3. Compute the length ‖e‖of the vertical difference vector e .

Answer: let us first compute the projection of b = AB:n upon the horizontal plane:

‖b⊥‖ =

√
(15.45 − 9.00)2 + (16.66 − 12.40)2 =

√
41.6025 + 18.1476 = 7.7298 m.

In the horizontal plane triangle ABP is

∠P = 200 − 61.166 − (400 − 345.995) = 84.829 gon.

The sine rule:

AP⊥ = AB⊥

sin ∠B

sin ∠P
= 7.7298

0.75016

0.97174
= 5.9672 m.

This distance is in the horizontal plane. In space AP = AP⊥/ cos ηA = 6.1510 m = λ.

Now, using the vertical angle

zP = zA + AP⊥ tan ηA = 2.55 + 5.9672 tan14.042 gon = 3.8880 m.

BP⊥ = AB⊥

sin ∠A

sin ∠P
= 7.7298

0.81965

0.97174
= 6.5200 m.

Again, this distance is in the horizontal plane. In space BP = BP⊥/ cos ηB = 6.6028 m =
µ.

zP = zB +BP⊥ tan ηB = 2.95 + 6.5200 tan9.081 gon = 3.8864 m.

So
‖e‖ = zP,B − zP,A = 3.8864 − 3.8880 = −1.6 mm.

Co-ordinates in the system defined by the theodolite (origin point A, x axis direction AB,
z axis up):

xP = AP⊥ cos ∠A = 5.9672 · 0.5729 m = 3.4184 m

yP = AP⊥ sin ∠A = 5.9672 · 0.81965 m = 4.8910 m

zP =
1

2
(zP,1 + zP,2) − zA = 3.8872 m− 2.55 m = 1.3372 m

We must note that this is an approximate method, which is acceptable only if the vertical angles
η are close to 100g. Of course also an exact least squares solution is possible.

5.3 Different ways to create the scale

• By knowing the distance between the theodolite points A,B

• By using a known scale rod or staff

• By including at least two points the distance between which is known, into the measure-
ment set-up.
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Chapter 6

Deformation analysis

Literature:

[Aho01]

[FIG98, s. 191-256]

[Kal98b, s. 95-101]

[Coo87, s. 331-352]

[VK86, s. 611-659]

6.1 One dimensional deformation analysis

The simplest case is that, where the same levelling line or network has been measured twice:

hi (t1) , i = 1, . . . , n

hi (t2) , i = 1, . . . , n

and the corresponding variance matrices of the heights are available: Q (t1) and Q (t2).

Obviously the comparison is possible only, if both measurements are first reduced to the same
reference point of datum. E.g., choose the first point as the datum point:

h
(1)
1 (t1) = h

(1)
1 (t2) (= some known value, e.g., 0)

After this the variance matrices for both measurement times or epochs are only of size (n− 1)×
(n− 1), because now point 1 is known and no longer has (co-)variances.

Q(1) (t1) =




q
(1)
22 q

(1)
23 · · · q

(1)
2n

q
(1)
32 q

(1)
33 · · · q

(1)
3n

...
...

. . .
...

q
(1)
n2 q

(1)
n3 · · · q

(1)
nn


 ,

and the same for Q(1) (t2). Here

q
(k)
ii = Var

(
h

(k)
i

)
,

q
(k)
ij = Cov

(
h

(k)
i , h

(k)
j

)
.

Now, calculate the height differences between the two epochs and their variances, assuming
that the masurements made at times t1 and t2 are statistically independent of each other:

∆h
(1)
i = h

(1)
i (t2) − h

(1)
i (t1) , i = 2, . . . , n;
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Chapter 6 Deformation analysis

Q
(1)
∆h∆h = Q(1) (t1) +Q(1) (t2) .

After this it is intuitively clear that the following quantity has the χ2
n−1 distribution:

E =
[
∆h(1)

]T [
Q

(1)
∆h∆h

]−1

∆h(1).

Statistical testing uses this quantity. Here

∆h(1) =




∆h
(1)
2

∆h
(1)
3

...

∆h
(1)
n




is the vector of height differences.

6.2 Two dimensional deformation analysis

This goes in the same way as in the one dimensional case, except that

1. the co-ordinates are treated as complex numbers, and

2. there are two datum points, the co-ordinates of which are considered known.

So, if there are n points, then the size of the variance matrix is now (n− 2)× (n− 2). Also the
variance matrix is complex valued.

The testing variate is

E =
[
d(AB)

]† [
Q

(AB)
dd

]−1

d(AB),

where d is the complex vector of all co-ordinate differences:

d(AB) =




x
(AB)
3 (t2) − x

(AB)
3 (t1) + i

[
y

(AB)
3 (t2) − y

(AB)
3 (t1)

]

x
(AB)
4 (t2) − x

(AB)
4 (t1) + i

[
y

(AB)
4 (t2) − y

(AB)
4 (t1)

]

x
(AB)
n (t2) − x

(AB)
n (t1) + i

[
y

(AB)
n (t2) − y

(AB)
n (t1)

]



.

AB is the chosen datum or starting point for both epochs t1 and t2. The other points are
numbered 3, 4, . . . , n. The symbol † signifies both transposition and complex conjugate, the so
called hermitian:

A† ≡ AT = A
T
.

Warning

In Cooper’s book [Coo87, s. 335] there is an error under equation (9.52), the right equation is
(inverse, not transpose):

Ω = d̂tQ−1
d d̂.
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6.3 Example

Let the adjusted co-ordinates xi (t1) , i = 1, . . . , 4 of the deformation network from the first
measurement epoch be the following:

Point x (m) y (m)

1 1234.123 2134.453

2 2224.045 2034.487

3 2232.495 975.456

4 1148.865 879.775

and the co-ordinates of the second measurement epoch xi (t2) , i = 1, . . . , 4 be the following:

Point x (m) y (m)

1 1234.189 2134.485

2 2224.004 2034.433

3 2232.451 975.497

4 1148.929 879.766

Intermezzo: so we are computing:

d x y

1 -0.066 -0.032

2 +0.041 +0.054

3 +0.044 -0.041

4 -0.064 +0.009

dTd =
4∑

i=1

[
{xi (t2) − xi (t1)}2 + {yi (t2) − yi (t1)}2

]
= 0.017771m2

(Similarly with complex numbers:

d†d =

4∑

i=1

{zi (t2) − zi (t1)} {zi (t2) − zi (t1)} = 0.017771m2,

as can be verified by computation. Here zi ≡ xi + iyi and zi = xi − byi.)

Let the precisions (mean co-ordinate errors) of the co-ordinates of the first epoch be xi (t1)
ja yi (t1) m0,1 = ±5 cm, and the precisions of the co-ordinates of the second measurement
xi (t2) , yi (t2) tarkkuudet m0,2 = ±1 cm. The variance matrices of the co-ordinate vectors are
thus Q1 = m2

0,1I and Q2 = m2
0,2I.
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1. Compute the mean value m0 of a single co-ordinate difference ∆x = x (t2)−x (t1). Prop-
agation of variances yields

m2
0 = m2

0,1 +m2
0,2 = (25 + 1) cm2 = 26 cm2.

Now the variance matrix of co-ordinate differences is

Q = Q1 +Q2 = m2
0I.

From this still m0 =
√

26cm = 5.1cm = 0.051m.

2. Compute the deformation’s testing variate

E = dTQ−1d =
dTd

m2
0

.

Here d = x2 − x1 is the shift vector, i.e., the vector of co-ordinate differences between the
epochs. Because we assume that both co-ordinate sets are given in the same, common
datum, the starting points of which nevertheless belong to the set 1 − 4, we may assume
that all co-ordinates are free. In that case the number of degrees of freedom is h = 2n = 8,
where n is the number of points. The variance matrix of the co-ordinates of the shift vector
d is m2

0I.

Answer:

E = 1
0.0026m2

(
dTd

)
= 0.017771m2

0.0026m2 = 6.835.

3. The quantity E is distributed according to the χ2
8 distribution. If the limit value of this

distribution for a significance level of 95% is 15.51 (cf. [Coo87] page 355), has in this case
a deformation probably taken place?

Answer: No, it has not. 6.835 < 15.51.

4. If, however, the assumed precisions were m0,1 = m0,2 = ±1cm, would then, at a signifi-
cance level of 95%, probably a deformation have taken place?

Answer: Yes, it would. m2
0 = (1 + 1) cm2 = 0.0002m2 ja E = 1

0.0002m2

(
dTd

)
= 0.017771m2

0.0002m2 =
88.9 > 15.51.

6.4 Stress/strain tensor and affine deformation

We start from the known formula for the affine transformation:

x(2) = ∆x+ a1x
(1) + a2y

(1),

y(2) = ∆y + b1x
(1) + b2y

(1).

Now we apply this, instead of to the relationship between two different datums, to the relation-
ship between a given point field seen at two different epochs t1and t2:

x (t2) = ∆x+ a1x (t1) + a2y (t1) ,

y (t2) = ∆y + b1x (t1) + b2y (t1) ,
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6.4 Stress/strain tensor and affine deformation

Figure 6.1: The strain tensor’s two main components

or in matrix form: [
x

y

]
(t2) =

[
∆x

∆y

]
+

[
a1 a2

b1 b2

][
x

y

]
(t1) .

Now we define the scaling and rotation parameters:

m =
1

2
(a1 + b2) ,

θ =
1

2
(b1 − a2) ,

allowing us to write

[
a1 a2

b1 b2

]
=

[
m 0

0 m

]
+

[
0 −θ
θ 0

]
+

[
1
2
(a1 − b2)

1
2
(b1 + a2)

1
2
(b1 + a2) −1

2
(a1 − b2)

]
.

The rightmost matrix is symmetric and we may write it as

S =

[
1
2
(a1 − b2)

1
2
(b1 + a2)

1
2
(b1 + a2) −1

2
(a1 − b2)

]
=

[
sxx sxy
sxy syy

]
.

This matrix is called the strain tensor. It describes how the shape of a little square of Earth
surface deforms, and is thus the only “intrinsic” descriptor of deformation (The parameter m
describes the change in surface area; θ describes rotational motion which neither changes surface
area nor shape.).

The tensor has two main components which are at an angle of 45◦ to each other: 1
2
(sxx − syy) =

1
2
(a1 − b2) (“principal strain”) describes elongation in the x direction together with compression

in the y direction – or the opposite if negative –, while sxy = 1
2
(b1 + a2) (“shear strain”) describes

extension in the 45◦ direction together with compression in the orthogonal −45◦ direction.

This is easily generalized to three dimensions, where there are three principal strains and three
shear strains. Also, the analysis can be done over a whole area, using a Delaunay triangulation
of the set of measured points. Sometimes this has been done to study crustal deformations
after a seismic event.
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Chapter 7

Stochastic processes and time series

Kirjallisuutta:

[San81, s. 31-46]

[Pap65]

7.1 Definitions

A stochastic process is a stochastic variable, the domain of which is a function space.

A stochastic variable x is a recipe for producing realizations x1, x2, x3, . . . xi, . . . Every realization
value has a certain probability of happening. If we repeat the realizations or “throws” often
enough, the long-term percentage of that value happening tends towards the probability value.

First example E.g., throwing a die: the domain is {1, 2, 3, 4, 5, 6} and the probability of real-
ization is p1 = p2 = · · · = p6 = 1

6
eli n. 16%.

Second example angle measurement with a theodolite: the domain is R, all real values1 and
the probability distribution is

p (x) =
1

σ
√

2π
e−

1

2(
x−µ

σ )
2

,

where σ is the mean error (standard deviation) of the distribution, and µ its expectancy.
Here is is assumed, that the distribution is normal, i.e., the Gaussian bell curve.

In this case we speak of probability density and not the probability of a certain realiza-
tion value x. The probability of a realization falling within a certain interval [x1, x2} is
computed as the integral

p =

∫ x2

x1

p (x) dx.

The stochastic process x (t) is now a stochastic variable, the realizations of which are functions
x1 (t) , x2 (t) , x3 (t) , . . . , xi (t) , . . .

The argument t is usually time, but can also be, e.g., place (ϕ, λ) on the Earth’s surface.

A time series is a series obtained from a stochastic process by specializing the argument t to
more or less regularly spaced, chosen values tj , j = 1, 2, . . . In other words, a stochastic process
that is regularly measured.

A stochastic process — or a time series – is called stationary if its statistical properties do not
change, when the argument t is replaced by the argument t+ ∆t.

1More precisely: all rational values Q.
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7.2 Variances and covariances of stochastic variables

Let us remember the definitions of the variance and covariance of stochastic variables:

Var (x) ≡ E
{
(x− E {x})2}

Cov
(
x, y
)

≡ E
{
(x− E {x})

(
y − E

{
y
})}

and correlation:

Corr
(
x, y
)
≡

Cov
(
x, y
)

√
Var (x)

√
Var

(
y
) .

The correlation is always between -100% and 100%.

7.3 Auto- and cross-covariance and -correlation

Studying stochastic processes is based on studying the dependencies between them. The auto-
covariance function of a stochastic process describes the internal statistical dependency of one
process:

Ax (t1, t2) = Cov {x (t1) , x (t2)} =

= E {(x (t1) − E {x (t1))}) (x (t2) − E {x (t2))})} .

Similarly we can define the cross covariance function between two different processes:

Cxy (t1, t2) = Cov
{
x (t1) , y (t2)

}
=

= E
{
(x (t1) −E {x (t1))})

(
y (t2) −E

{
y (t2))

})}
.

In case the processes in question are stationary, we obtain

Ax (t1, t2) = Ax (∆t) ,

Cxy (t1, t2) = Cxy (∆t) ,

where ∆t = t2 − t1.

Autocorrelation is defined in the following way2:

Corrx (∆t) ≡ Ax (t1, t2)√
Ax (t1, t1)Ax (t2, t2)

=
Ax (∆t)

Ax (0)
.

Here one sees, that if ∆t = 0, the autocorrelation is 1, and otherwise it is always between −1
and +1.

Cross-correlation is defined in the following non-trivial way:

Corrxy (∆t) ≡ Cxy (∆t) /
√
Ax (0)Ay (0)

all the time assuming stationarity.

Remember that
Ax (0) = Var (x (t)) = E

{
(x (t) − E {x (t)})2} .

Because3

|E {(x (t1) −E {x (t1))}) (x (t2) − E {x (t2))})}| ≤
≤
√
E
{
(x (t1) − E {x (t1))})2}E

{
(x (t2) − E {x (t2))})2},

the cross correlation is always between −1 and +1, and is 1 if both ∆t = 0 and x = y.

2Note that in the book [Pap65] an entirely different definition od auto- and cross-correlation is used!
3Why? Eric Weisstein gives the following proof (http://mathworld.wolfram.com/StatisticalCorrelation.html):
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7.4 Estimating autocovariances

7.4 Estimating autocovariances

This is done in roughly the same way as variance estimation in general. If we have, of the
stochastic process x (t), realizations xi (t) , i = 1, . . . , n, then an unbiased estimator (stationar-
ity assumed) is:

Âx (∆t) ≡ 1

n− 1

n∑

i=1

lim
T→∞

1

T

∫ T

0

[(xi (t) − x (t)) (xi (t+ ∆t) − x (t+ ∆t))] dt,

where

x (t) ≡ 1

n

n∑

i=1

xi (t) .

Again assuming the process x (t) to be stationary4, and that we have available n process real-
izations xi (tj) , i = 1, . . . n; j = 1, . . . , m or time series, we may construct also from those an
estimator. Nevertheless, either

• it must be assumed that the arguments tj are equi-spaced, i.e., tj+1 − tj = δt, or

• all possible values for ∆t must be classified into classes or “bins” [0, δt), [δt, 2δt), [2δt, 3δt),
. . .

Let us choose the first alternative. Then we can compute

Âx (kδt) ≡ 1

n− 1

n∑

i=1

1

m− k − 1

m−k∑

i=1

[(xi (tj) − x (tj)) (xi (tj+k) − x (tj+k))] .

Let be given the stochastic quantities x ja y — which may be values of the stochastic process x (t1) ja
x (t2), or values from two different processes x (t1) ja y (t2) — define normalized quantities:

ξ =
x√

Var (x)
, η =

y√
Var

(
y
) .

Silloin

Cov
(
ξ, η
)

=
Cov

(
x, y
)

√
Var (x) Var

(
y
) = Corr

(
x, y
)
.

The following variances must be positive:

0 ≤ Var
(
ξ + η

)
= Var

(
ξ
)

+ Var
(
η
)

+ 2 · Cov
(
ξ, η
)
,

0 ≤ Var
(
ξ − η

)
= Var

(
ξ
)

+ Var
(
η
)
− 2 · Cov

(
ξ, η
)
.

Also

Var
(
ξ
) Var (x)√

(Var (x))
2

= 1, Var
(
η
)

= 1.

It follows that

0 ≤ 2 + 2 · Cov (ξ, η) ,

0 ≤ 2 − 2 · Cov (ξ, η) ,

i.e.,
−1 ≤ Cov

(
ξ, η
)

= Corr
(
x, y
)
≤ 1.

4. . . and so-called ergodic.
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Chapter 7 Stochastic processes and time series

So we use for computing every autocovariance value only those argument values of the process,
that have a suitable distance between them. The problem is, that we can compute these
autocovariances only for those discrete values 0, δt, 2δt, . . ..

The other mentioned approach has the same problem through the back door: the size of the
classes is finite.

Remark. In case we have a stochastic process of place (ϕ, λ) and not of time, we use bins
according to the spherical distance ψ. This is common practice in gravity field theory.
The often made assumption corresponding to stationarity is homogeneity (the statistical
properties of the process do not depend on place) and isotropy (don’t depend either on
the compass heading between two points P,Q, but only on the angular distance ψAB.

7.5 Autocovariance and spectrum

Let us assume a stationary stochastic process x (t),which at the same time is noise, i.e., its
expectancy vanishes:

E {x (t)} = 0.

The Fourier transform of the autocovariance of this process is:

S (ω) =

∫ +∞

−∞

Ax (t) e−iωtdt. (7.1)

This function is called PSD or Power Spectral Density. Another formula for computing it is

S (ω) = lim
T→∞

1

2T

∣∣∣∣
∫ T

−T

x (t) e−iωtdt

∣∣∣∣
2

, (7.2)

i.e., the long term “average power” on different frequencies ω. This formula can be used for
empirically computingS, if from the process itself x (t) we have available a realization xi (t).
The former formula is used if we have rather a closed expression for the auto covariance.

The inverse Fourier equation for computing Axfrom S (ω) is

Ax (t) =
1

2π

∫ +∞

−∞

S (ω) eiωtdω.

Proofs can be found in the book [Pap65].

Dimensional analysis

One can say that the dimension of process x (t) is, e.g., [length]. In equation 7.1 we then
have for the dimension of Ax (t) [length]2, and for the dimension of S (ω)[length]2 [time]. Also
according to equation 7.2 the dimension is ([length] × [time])2 / [time].
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Chapter 8

Variants of adjustment theory

8.1 Adjustment in two phases

Often we run into the situation, where a local network must be connected to “given” fixed
points. This is a special case of the previous section, where ℓ1 are the observations in the local
network and ℓ2 are the co-ordinates of the points given by the higher order network. Let x2 be
the co-ordinate unknowns of which there also exist “given” co-ordinates.

The observation equations are now

ℓ1 + v1 = A1x̂1 + A2x̂2

ℓ2 + v2 = I x̂2

– i.e., the A matrix is

A =

[
A1 A2

0 I

]
.

The variance matrix is

Q =

[
Q1 0

0 Q2

]
.

Here Q2 is the variance matrix of the given points. We get as the solution

x̂ =
(
ATQ−1A

)−1
ATQ−1ℓ ,

where

ATQ−1A =

[
AT1Q

−1
1 A1 AT1Q

−1
1 A2

AT2Q
−1
1 A1 AT2Q

−1
1 A2 +Q−1

2

]

and

ATQ−1ℓ =

[
AT1Q

−1
1 ℓ1

AT2Q
−1
1 ℓ1 +Q−1

2 ℓ2

]
,

and thus [
AT1Q

−1
1 A1 AT1Q

−1
1 A2

AT2Q
−1
1 A1 AT2Q

−1
1 A2 +Q−1

2

][
x̂1

x̂2

]
=

[
AT1Q

−1
1 ℓ1

AT2Q
−1
1 ℓ1 +Q−1

2 ℓ2

]
.

From this we see that generally the adjusted ℓ̂2 = x̂2differs from the original value ℓ2!

Generally this is not acceptable.

The co-ordinates of a higher-order network may not change as the result of the
adjustment of a lower-order network!
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How to solve this quandary?

One proposed solution is the so-called pseudo-least squares method (Baarda).

Put in front of the matrix Q2 a coefficient α, so
[
AT1Q

−1
1 A1 AT1Q

−1
1 A2

AT2Q
−1
1 A1 AT2Q

−1
1 A2 + α−1Q−1

2

][
x̂1

x̂2

]
=

[
AT1Q

−1
1 ℓ1

AT2Q
−1
1 ℓ1 + α−1Q−1

2 ℓ2

]
.

Now, let α → 0, i.e, assume the given points to be infinitely precise.

Multiply the last row with α:

[
AT1Q

−1
1 A1 AT1Q

−1
1 A2

αAT2Q
−1
1 A1 αAT2Q

−1
1 A2 +Q−1

2

][
x̂1

x̂2

]
=

[
AT1Q

−1
1 ℓ1

αAT2Q
−1
1 ℓ1 +Q−1

2 ℓ2

]
.

Now let α → 0: [
AT1Q

−1
1 A1 AT1Q

−1
1 A2

0 Q−1
2

][
x̂1

x̂2

]
=

[
AT1Q

−1
1 ℓ1

Q−1
2 ℓ2

]

or (multiply the last row with Q2):
[
AT1Q

−1
1 A1 AT1Q

−1
1 A2

0 I

][
x̂1

x̂2

]
=

[
AT1Q

−1
1 ℓ1
ℓ2

]
.

As can be seen do the now given co-ordinates no longer change: x̂2 = ℓ2.

The solution x̂1 is obtained from the following normal equations:
(
AT1Q

−1
1 A1

)
x̂1 = AT1Q

−1
1 ℓ1 − AT1Q

−1
1 A2ℓ2 = AT1Q

−1
1 (ℓ1 − A2ℓ2) .

If we look closer at this equation, we see that it tells that x̂1 is a linear combination of the

observations
[
ℓ1 ℓ2

]T
: thus we may write

x̂1 = L1ℓ1 + L2ℓ2,

where

L1 =
(
AT1Q

−1
1 A1

)−1
AT1Q

−1
1 ,

L2 =
(
AT1Q

−1
1 A1

)−1
AT1Q

−1
1 (−A2) .

The true variance of x̂1 will now be, according to the propagation law:

Qbx1bx1
= L1Q1L

T
1 + L2Q2L

T
2 =

(
AT1Q

−1
1 A1

)−1 (
AT1Q

−1
1 A1 + AT1A2Q

−1
2 AT2A1

) (
AT1Q

−1
1 A1

)−1
,

after some simplifications.

Note that this is bigger than the “naively” computed variance

Q∗
bx1bx1

=
(
AT1Q

−1
1 A1

)−1
,

which does not consider that the given co-ordinates, even though these were assumed“errorless”
for the sake of computing the co-ordinates, nevertheless contain error which will propagate into
the local solution x̂1.

So:

• We compute the estimates of the unknowns using the “wrong” variance matrix;

• and then we compute the variances of those estimators “right”, using the propagation law
of variances.
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8.2 Using a priori knowledge in adjustment

8.2 Using a priori knowledge in adjustment

Sometimes we estimate unknowns from observations, even though we already know“something”
about those unknowns. E.g., we estimate the co-ordinates of points from geodetic observations,
but those co-ordinates are already approximately known, e.g., read from a map (we have found
the points to be measured, haven’t we!) The measurement was planned using approximate
co-ordinates, so apparently they already exist.

Let there be for the unknowns a priori values and variance matrix

x, Qxx

and let the observation equations be
ℓ+ v = Ax̂.

Let the variance matrix of the vector of observations be

Qℓℓ

and let the values of observations and a priori unknowns be statistically independent from each
other. Then we may extend the observation equations:

[
ℓ

x

]
+

[
v

vx

]
=

[
A

I

]
x̂.

If we define formally

Ã ≡
[
A

I

]
, Q̃ ≡

[
Qℓℓ 0

0 Qxx

]
, ℓ̃ ≡

[
ℓ

x

]
,

the solution is

x̂ =
[
ÃT Q̃−1Ã

]−1

ÃT Q̃−1ℓ̃ =

=
[
ATQ−1

ℓℓ A+Q−1
xx

]−1 [
ATQ−1

ℓℓ ℓ+Q−1
xxx
]
.

If we are talking about linearized observation equations, and in the linearization the same
approximate values have been used as are being used now as a priori values (i.e., x0 = x, in
other words, ∆x = x − x0 = 0), we obtain

∆̂x =
[
ATQ−1

ℓℓ A+Q−1
xx

]−1
ATQ−1

ℓℓ ∆ℓ+Q−1
xx∆x =

[
ATQ−1

ℓℓ A+Q−1
xx

]−1
ATQ−1

ℓℓ ∆ℓ.

The variance matrix of the unknowns after adjustment (a posteriori) is, based on the propaga-
tion law

Qbxbx =
[
ATQ−1

ℓℓ A +Q−1
xx

]−1 [
ATQ−1

ℓℓ (Q∆ℓ∆ℓ)Q
−1
ℓℓ A +Q−1

xx (Q∆x∆x)Q
−1
xx

] [
ATQ−1

ℓℓ A+Q−1
xx

]−1
=

=
[
ATQ−1

ℓℓ A +Q−1
xx

]−1
,

because Var (∆ℓ) = Q∆ℓ∆ℓ = Qℓℓ and Var (∆x) = Q∆x∆x = Qxx.

Sometimes this method is used in order to stabilize unstable observation or normal equations.
The name for this is Tikhonov-regularization or ridge regression. Inverting the above matrix
may be impossible, e.g., if the matrix A has a rank defect. Then, adding the matrix Q−1

xx makes
its inversion possible.

Often it is assumed that
Q−1
xx = αI,

where α is called a regularization parameter. When this is done just in order to stabilize the
equations, it should be remembered, that it means adding information to the solution. If this
information does not really exist, the result of the adjusttment will be too optimistic about the
precision.
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8.3 Stacking of normal equations

Let us assume, that we have available the mutually independent observations ℓ1 ja ℓ2 which
depend on the same unknowns x. The observation equations are

ℓ1 + v1 = A1x̂

ℓ2 + v2 = A2x̂

and the variance matrices of the observations are Q1 and Q2. Then the joint variance matrix is

Q =

[
Q1 0

0 Q2

]

and the joint system of equations

ℓ+ v = Ax̂ ,

where ℓ =

[
ℓ1
ℓ2

]
, v =

[
v1

v2

]
and A =

[
A1

A2

]
. The system of normal equations reads

(
ATQ−1A

)
x̂ = ATQ−1ℓ

i.e., (
AT1Q

−1
1 A1 + AT2Q

−1
2 A2

)
x̂ =

(
AT1Q

−1
1 ℓ1 + AT2Q

−1
2 ℓ2

)
, (8.1)

from which we see, that the total solution is obtained by summing up both the normal matrices
ATQA and the normal vectors ATQ−1ℓ. The procedure is called Normals stacking.

In GPS computations this principle is exploited; the results of the adjustment of GPS networks
are often distributed in a compact “normals” form. Those can then be easily combined. SINEX
= Software Independent EXchange format.

If, of the elements of the vector of unknowns x , only a small part depends on both observation
vectors ℓ1 and ℓ2, we can exploit this to solve the system of equations 8.1 efficiently in phases
(Helmert-Wolf blocking). More generally there exist so-called sparse matrix algorithms that
exploit the special situation where the elements of the matrices A and Q vanish for the most
part.

8.4 Helmert-Wolf blocking

8.4.1 Principle

Often, a large adjustment problem can be naturally divided into small parts. E.g., the adjust-
ment of a large international triangulation network can be executed in this way, that firstly
we adjust every country separately; then the border point co-ordinates obtained are fed into a
continental adjustment; and the corrections at the border points obtained from that are again
propagated back into every country’s internal points.

This procedure was used, e.g., in the European ED50 triangulation adjustment, as well as in
the NAD (North American Datum) adjustment in North America.

The theory is the following: let there be two classes of unknowns,
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8.4 Helmert-Wolf blocking

1. ”global” unknowns x̂e on which observations ℓ1, ℓ2, . . . , ℓn in all countries 1, 2, . . . , n de-
pend, i.e., the “top level”, “European” unknowns;

2. ”local”unknowns x̂i, i = 1, 2, . . . n on which only depend observations ℓi in a single country
i.

Then the observation equations are1




ℓ1
ℓ2
...

ℓn


+




v1

v2
...

vn


 =




A1 B1

A2 B2

. . .
...

An Bn







x̂1

x̂2
...

x̂n

x̂e



.

From this we obtain the normal equation system:




AT1Q
−1
1 A1 AT1Q

−1
1 B1

AT2Q
−1
2 A2 AT2Q

−1
2 B2

. . .
...

ATnQ
−1
n An ATnQ

−1
n Bn

BT
1 Q

−1
1 A1 BT

2 Q
−1
2 A2 · · · BT

nQ
−1
n An

∑n
i=1B

T
i Q

−1
i Bi







x̂1

x̂2
...

x̂n

x̂e




=




AT1Q
−1
1 ℓ1

AT2Q
−1
2 ℓ2
...

ATnQ
−1
n ℓn∑n

i=1B
T
i Q

−1
i ℓi




where Qi ≡ Qℓiℓi is the variance matrix of the observations ℓi — we assume that the observations
of different “countries” ℓi, ℓj don’t correlate.

Note that the above normal matrix is “arrow shaped” (ց), i.e., a “bordered main diagonal ma-
trix”. Such matrices occur often in adjustment theory and make possible a simplified treatment.

In more symbolic form: [
NII NIE

NEI NEE

][
xI
xE

]
=

[
bI
bE

]
,

where the definitions of the various sub-matrices and -vectors are clear.

This matric equation represents two equations:

NIIxI +NIExE = bI ,

NEIxI +NEExE = bE.

Multiply the first equation with the matrix NEIN
−1
II and subtract it from the second, in order

to eliminate the “local” unknowns xi, i = 1, . . . , n:

(
NEE −NEIN

−1
II NIE

)
xE = bE −NEIN

−1
II bI , (8.2)

the so-called reduced system of normal equations, from which we obtain x̂E. Written open:

(∑n
i=1B

T
i

(
Ii −Q−1

i Ai
(
ATi Q

−1
i Ai

)−1
ATi

)
Q−1
i Bi

)
xE =

=
(∑n

i=1B
T
i

(
Ii −Q−1

i Ai
(
ATi Q

−1
i Ai

)−1
ATi

)
Q−1
i ℓi

)
.

1Note the “normals stacking” is a special case of this: Ai = 0, i = 1, . . . , n and the xi do not exist.
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Chapter 8 Variants of adjustment theory

After that, by substituting into the first equation:

NIIxI = bI −NIEx̂E,

i.e., the local solutions. Written out:



AT
1Q

−1
1 A1

AT
2Q

−1
2 A2

. . .

ATnQ
−1
n An







x1

x2
...

xn


 =




AT1Q
−1
1 (ℓ1 −B1x̂E)

AT2Q
−1
2 (ℓ2 −B2x̂E)

...

ATnQ
−1
n (ℓn −Bnx̂E)


 ,

so, the individual solution of a country is obtained nicely separated:
(
ATi Q

−1
i Ai

)
xi = ATi Q

−1
i (ℓi − Bix̂E) , (8.3)

from which we obtain the estimators x̂i, i = 1, . . . , n.

The major advantage of Helmert-Wolf is, that the new normal equations (8.2, 8.3) have only

the size of the vectors xE or xi, i = 1, . . . n, and not of the whole system,
[

x1 x2 · · · xn xE

]T
.

This matters because the computational work required for solving the whole csystem of equa-
tions (like also the work of inverting a matrix) is proportional to the third power of its size!

8.4.2 Variances

The variance matrix of the whole vector of unknowns
[

xI xE

]T
is the inverse N−1 of the

normal matrix

N ≡
[
NII NIE

NEI NEE

]

This inverse matrix is

N−1 =

[
N−1
II +N−1

II NIEQENEIN
−1
II −N−1

II NIEQE

−QENEIN
−1
II QE

]
,

QE ≡
(
NEE −NEIN

−1
II NIE

)−1
,

which we can easily verify by multiplication N ·N−1 = I.

It follows that the variances of the least-squares estimators are:

Var (x̂E) = QE;

Var (x̂I) = N−1
II +N−1

II NIEQENEIN
−1
II .

Because NII (and thus also N−1
II ) is a block diagonal matrix

NII =




AT1Q
−1
1 A1

AT2Q
−1
2 A2

. . .

ATnQ
−1
n An


 ,

we may write separately for each local block i = 1, . . . , n:

Var (x̂i) =
(
ATi Q

−1
i Ai

)−1
+
(
ATi Q

−1
i Ai

)−1
NiEQENEi

(
ATi Q

−1
i Ai

)−1
=

=
(
ATi Q

−1
i Ai

)−1
+
(
ATi Q

−1
i Ai

)−1
ATi Q

−1
i BiQEB

T
i Q

−1
i Ai

(
ATi Q

−1
i Ai

)−1
.
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mx

my

√
λ1

√
λ2

Figure 8.1: The parameters of the error ellipse.

With the global adjustment, correlation is introduced between the internal unknowns of different
country blocks i 6= j However, computing all covariances Cov (x̂i, x̂j), even if possible, is rarely
sensible or useful. The savings of Helmert-Wolf are mostly achieved by not computing
them.

8.4.3 Practical application

In international co-operation it has been the habit of sending only the “buffer matrices” of
country i,

(
BT
i

(
Ii −Q−1

i Ai
(
ATi Q

−1
i Ai

)−1
AT
i

)
Q−1
i Bi

)

and (
BT
i

(
Ii −Q−1

i Ai
(
ATi Q

−1
i Ai

)−1
ATi

)
Q−1
i ℓi

)
,

to the international computing centre, which in turn sends the vector x̂E and variance matrix
QE computed by it, back to the individual countries.

Among the major advantages of theHelmert-Wolf method are still, that

1. the amounts of data to be processed at one time remain small

2. Also local observational material can be tested separately before its use in a “jumbo
adjustment”, and remove from them possible gross errors

3. The greater part of the computation, consisting of national/provincial/regional/per-different-
epoch partial adjustments, can be executed independently from each other, e.g., parallelly.
Helmert-Wolf is the perfect example of parallel processing!

8.5 Intersection in the plane

8.5.1 Precision in the plane

Intersection from two known points is a good example for error propagation, It is also a good
example for optimization, because optimization of the result can be done in at least three
different ways, which all three in different ways make sense.
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We start from the error ellipse (figure 8.1), which describes the precision of determination of

the co-ordinates (x, y) in the plane. If the variance matrix of the vector x̂ ≡
[
x y

]T
is

Σbxbx =

[
m2
x mxy

mxy m2
y

]
,

the formula for the error ellipse is
x̂TΣ−1

bxbx x̂ = 1.

The matrix Σbxbx has two eigenvalues, λ1 and λ2, the square roots of which are the major and
minor semi-axes of the ellipse, see figure.

The size of the error ellipse can now be determined in the following different ways:

1. The radius of the circle inside which the ellipse fits. This is the minimization of the
expression Max (λ1, λ2), i.e., the largest eigenvalue of the matrix must be made as small
as possible. This so-called minimax optimization corresponds in practice to so-called
tolerance, i.e., the error may not exceed a pre-set value.

2. The mean point error, mP ≡
√
m2
x +m2

y =
√
λ1 + λ2. The trace of the variance matrix

Σbxbx, i.e., the sum of the main diagonal elements. This corresponds to minimizing the
diagonal of the rectangle within which the error ellipse fits (“television screen size in
inches”).

3. Minimize the matrix determinant det (Σbxbx). This corresponds to minimizing the quantity√
λ1λ2,i.e., the surface area of the ellipse.

8.5.2 The geometry of intersection

Let, for simplicity, the co-ordinates of the points A,B be (−1, 0) and (+1, 0). From these points
have been measured directions to the point P with a constant precision. If the co-ordinates of
point P are (x, y), the observation equations will be:

α = arctan

(
y

x+ 1

)
,

β = arctan

(
y

x− 1

)
.

We linearize:

dα =
1

1 +
(

y
x+1

)2 ·
(

1

x+ 1
dy − y

(x+ 1)2dx

)
,

dβ =
1

1 +
(

y
x−1

)2 ·
(

1

x− 1
dy − y

(x− 1)2dx

)
.

After simplifying:

dα =
1

(x+ 1)2 + y2
((x+ 1) dy − ydx) ,

dβ =
1

(x− 1)2 + y2
((x− 1) dy − ydx) .
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The A matrix is

A =

[
x+1

(x+1)2+y2
−y

(x+1)2+y2

x−1
(x−1)2+y2

−y

(x−1)2+y2

]
=

[
1
a
cosα −1

a
sinα

1
b
cosβ −1

b
sin β

]
,

where a =
√

(x+ 1)2 + y2 ja b =
√

(x− 1)2 + y2.

The normal matrix:

N = ATA =

=

[ (
cosα
a

)2
+
(

cos β
b

)2 − sinα cosα
a2

− sinβ cos β
b2

− sinα cosα
a2

− sinβ cos β
b2

(
sinα
a

)2
+
(

sinβ
b

)2
]
.

The determinant:

detN =

(
cos2 α sin2 α

a4
+

cos2 α sin2 β

a2b2
+

cos2 β sin2 α

a2b2
+

cos2 β sin2 β

b4

)
−

−
(

cos2 α sin2 α

a4
+

cos2 β sin2 β

b4
+ 2

sinα sin β cosα cosβ

a2b2

)
=

=
cos2 β sin2 α + cos2 α sin2 β − 2 sinα sin β cosα cosβ

a2b2
=

=

(
sinα cos β − cosα sin β

ab

)2

=

(
sin (α− β)

ab

)2

.

Compute the inverse matrix using Cramèr’s rule:

Σbxbx = N−1 =
1

detN

[
sin2 α
a2

+ sin2 β
b2

sinα cosα
a2

+ sinβ cos β
b2

sinα cosα
a2

+ sinβ cos β
b2

cos2 α
a2

+ cos2 β
b2

]
.

The trace of this matrix is

(Σbxbx)11 + (Σbxbx)22 =
a2b2

sin2 (α− β)

(
sin2 α

a2
+

sin2 β

b2
+

cos2 α

a2
+

cos2 β

b2

)
=

=
a2b2

sin2 (α− β)

(
1

a2
+

1

b2

)
=

(a2 + b2)

sin2 (α− β)
.

Here still a2 + b2 = (x− 1)2 + (x+ 1)2 + 2y2 = 2 (x2 + y2 + 1).

Geometrically:

1. The curves sin (α− β) =constant are circles going through A and B.

2. The curves a2 + b2 =constant, i.e., x2 + y2 =constant, are circles also, but around the
origin (0, 0).

3. Because of this, the value a2+b2 = 2 (x2 + y2 + 1) is minimized2 on the curve sin (α− β) =constant,
when x = 0.

Conclusion:

The optimal point is located on the y axis or symmetry axis, i.e., x = 0.

2Assumption: the angle γ > 90◦. We shall see that this is the case.
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y

A(−1, 0)
B(1, 0)

β

xα

γ

Figure 8.2: Intersection in the plane

8.5.3 Minimizing the point mean error

Let us still compute where. For a point on the y axis it holds that

α = arctan y = 180◦ − β,

i.e.,
sin (α− β) = sin (2α− 180◦) = − sin 2α.

Now

(Σbxbx)11 + (Σbxbx)22 =
(a2+b2)

sin2(α−β)
=

2 (y2 + 1)

sin2 2α
=

2 (y2 + 1)

(2 sinα cosα)2 =

=
2 (y2 + 1)

(
2 y√

y2+1
· 1√

y2+1

)2 =
(y2 + 1)

3

2y2
.

Require now that this derivative vanish, i.e., a stationary point :

d

dy

(y2 + 1)
3

2y2
=

1

2

d

dy

(
y4 + 3y2 + 3 + y−2

)
=

= 2y3 + 3y − 1y−3 =
2y6 + 3y4 − 1

y3
= 0.

This can be done as follows:
2y6 + 3y4 − 1 = 0

Matlab yields (verify by substitution!):

y1,2 = ±1

2

√
2

y3,4 = ±i
y5,6 = ±i

56



8.5 Intersection in the plane

Of these, only the real values are of interest:

y =
1

2

√
2 ⇒ α = arctany = 35◦.2644.

Then β = 180◦ − 35◦.2644 = 144◦.7356 and γ = 109◦.4712.

This result, which required so much work, has further interest: it is precisely the angle between
chemical bonds between atoms in, e.g., a diamond crystal or a methane molecule. . .

8.5.4 Minimizing the determinant

Alternatively we may minimize det (Σbxbx) (or its square root), i.e., the geometrical mean of Σbxbx’s
eigenvalues,

√
λ1λ2 (when minimizing the trace amounts to minimizing there arithmetical mean,

1
2
(λ1 + λ2) ). Then we compute first

a2b2 =
[
(x+ 1)2 + y2

] [
(x− 1)2 + y2

]
.

When x = 0, this is

a2b2 =
(
y2 + 1

)2
.

Then also, just like before

sin2 (α− β) = sin2 2α =

(
2

y√
y2 + 1

· 1√
y2 + 1

)2

and we obtain as the final result

det (Σbxbx) =

(
sin (α− β)

ab

)−2

=
(y2 + 1)

4

4y2
,

the stationary points of which we seek.

Matlab3 yields the solution

y1,2 = ±1

3

√
3,

the other solutions are imaginary ±i. From this α = arctan y = 30◦.

8.5.5 “Minimax”optimization

As the third alternative we minimize the biggest eigenvalue, i.e., we minimize max (λ1, λ2). On
the axis x = 0 we have a = b and sinα cosα = − sin β cosβ, i.e., the form of the matrix N is:

N =
2

a2

[
sin2 α 0

0 cos2 α

]
=

2

y2 + 1

[
y2

y2+1
0

0 1
y2+1

]
.

Because α = arctan y, it follows that sinα = y√
y2+1

and cosα = 1√
y2+1

, and a2 = y2 + 1.

The eigenvalues of this matrix are thus

µ1 =
2y2

(y2 + 1)2
, µ2 =

2

(y2 + 1)2

3Use symbolic computation. First define the function f (y), then its derivative (diff function), and finally,
using the solve function, its zero points.
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B(1, 0)

x

A(−1, 0)

y

α

35◦.2644

45◦

30◦

Minimoidaan λ1 + λ2

Minimax, max(λ1, λ2)

Minimoidaan λ1 · λ2

Figure 8.3: Three different optimal solutions for intersection

and the eigenvalues of the inverse matrix

λ1 =
1

µ1
=

1

2y2

(
y2 + 1

)2
, λ2 =

1

µ2
=

1

2

(
y2 + 1

)2
.

When y = 1, these are the same; when y > 1, λ2 is the bigger one and grows with y.

When y lies in the interval (0, 1), then λ1 is the bigger one, λ1 = 1
2
(y2 + 2 + y−2) ⇒ d

dy
λ1 =

y − y−3 < 0, i.e., λ1descends monotonously.

End result:

the optimal value is y = 1 and α = arctan 1 = 45◦.

8.6 Exercises

1. Derive the corresponding equations as in section 8.5 for the case where we make distance
measurements from points A and B, the precision of which does not depend on distance.

2. Show, that if the eigenvalues of matrix N are close to each other,

λ1 = λ0 + ∆λ1,

λ2 = λ0 + ∆λ2,

· · ·
λn = λ0 + ∆λn,

where the ∆λi are small compared to λ0, that then

(detN)
1

n =

(
n∏

i=1

λi

) 1

n

=
1

n

n∑

i=1

λi =
1

n
Tr (N) .
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[Hint: use the binomial expansion (1 + x)y ≈ 1 + yx+ . . .]

So, in this case minimizing the determinant is equivalent to minimizing the trace.

3. [Challenging.] Show that if, in three dimensional space, we measure the distance of point
P ,

s =

√
(xP − xA)2 + (yP − yA)2 + (zP − zA)2

from three known points A, B and C, the optimal geometry is that in which the three
directions PA, PB ja PC are mutually orthogonal, i.e., PA ⊥ PB ⊥ PC. The assumption
is that the measurements from all three points are equally precise and independent of
distance.

[Hint: write the 3 × 3 design matrix which consists of the three unit vectors, and maxi-
mize its determinant, or (geometrically intuitively) the volume spanned by these vectors.
det (N−1) = (detA)−2, so this minimizes the determinant of Qbxbx]

4. [Challenging.] Show, that if we measure, in the plane, the pseudo-range to a vessel A
(DECCA system!)

ρ =

√
(xA − xM )2 + (yA − yM)2 + c∆TA,

from three points M,R,G (Master, Red Slave, Green Slave), the optimal geometry is
that, where the angles between the directions AM,AR,AG are 120◦.

In the equation, ∆TA is the clock unknown of vessel A.

[Hint: write the 3× 3 design matrix; remember that also ∆T is an unknown. After that,
as in the previous case.]
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Chapter 9

Kalman filter

Kirjallisuus:

[Kal98b, s. 62-66, 154-155]

[SB97, s. 543-584]

[Lei95, s. 115-130]

[Coo87, s. 215-223]

[MA76, s. 333-392]

The Kalman filter is a linear predictive filter. Like a coffee filter which filters coffee from drags,
the Kalman filter filters signal (the so-called state vector) from the noise of the measurement
process.

The inventors of theKalman filter were Rudolf Kalman and Richard Bucy in the years 1960-
1961 ([Kal60]; [KB61]). The invention was widely used in the space programme and in connec-
tion with missile guidance systems. However, the Kalman filter is generally applicable and has
been used except in navigation, also in economic science, meteorology etc.

A Kalman filter consists of two parts:

1. The dynamic model; it describes the motion process according to which the state vector
evolves over time.

2. The observation model; it describes the process by which observables are obtained, that
tell us something about the state vector at the moment of observation.

Special for the Kalman filter is, that the state vector propagates in time one step at a time; also
the observations are used for correcting the state vector only at the moment of observation.
For this reason the Kalman filter does not require much processing power and doesn’t handle
large matrices. It can be used inside a vehicle in real time.

9.1 Dynamic model

In the linear case, the synamic model looks like this:

d

dt
x = Fx + n, (9.1)

where x is the state vector, n is the dynamic noise (i.e., how imprecisely the above equations
of motion are valid) and F is a coefficient matrix.
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Chapter 9 Kalman filter

The variance matrix of the state vector’s x estimator x̂ which is available at a certain point
in time may be called Q or Qbxbx. It describes the probable deviation of the true state x from
the estimated state x̂. The noise vector n in the above equation describes, how imprecisely the
equations of motion, i.e., the dynamic model, in reality are valid, e.g., in the case of satellite
motion, the varying influence of atmospheric drag. A large dynamical noise n means that Qbxbx

will inflate quickly with time. This can then again be reduced with the help of observations to
be made and the state updates to be performed using these.

9.2 State propagation in time

The computational propagation in time of the state vector itself is simple:

d

dt
x̂ = F x̂.

In the corresponding discrete case:

x̂ (t1) = Φ1
0x̂ (t0) ,

where
Φ1

0 = eF (t1−t0),

a discrete version of the the coefficient matrix integrated over time [t0, t1).

If we call the variance matrix of n (more precisely: the autocovariance function of n (t)) N , we
may also write the discrete proagation formula for the variance matrix:

Q(t1) =
(
Φ1

0

)
Q(t0)

(
Φ1

0

)T
+

∫ t1

t0

N (t) dt.

Here we have assumed, that n (t) is by its nature white noise. The proof of this equation is
difficult.

9.3 Observational model

The development of the state vector in time would not be very interesting, if we could not also
somehow observe this vector. The observational model is as follows:

ℓ = Hx + m,

where ℓ is an observable (vector), x is a state vector (“true value”), and m is the observation
process’s noise. H is the observation matrix. As the variance of the noise we have given the
variance matrix R; E {m} = 0 and E

{
m mT

}
= R.

9.4 The update step

Updating is the optimal use of new observation data. It is done in such a way, that the difference
between the observable’s value ℓ̂i = H x̂i computed from the a priori state vector x̂i, and the
truly observed observable ℓi, is used as a “closing error”, which we try to “adjust” away in an
optimal fashion, according to the principle of least squares.
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9.5 Sequential adjustment

Let us construct an improved estimator

x̂i+1 = x̂i +K (ℓi −Hix̂i) .

Note that x̂i+1 is the estimator of the state vector after observation i, i.e., a posteriori. However,
relative to the index i+ 1 is is again a priori.

Here the matrix K is called the Kalman “gain matrix”.

The “optimal” solution is obtained by choosing

K = QHT
(
HQHT +R

)−1
,

which gives as solution

x̂i+1 = x̂i +QiH
T
i

(
HiQiH

T
i +R

)−1
(ℓi −Hix̂i) .

Updating the state variances as follows:

Qi+1 = Qi −QiH
T
i

(
HiQiH

T
i +Ri

)−1
HiQi = (I −KiHi)Qi,

without proof.

9.5 Sequential adjustment

Sequential adjustment is the Kalman filter applied to the case where the state vector to be esti-
mated (i.e., the vector of unknowns) does not depend on time. In this case the formulas become
simpler, but using the Kalman formulation may nevertheless be advantageous, because it allows
the addition of new information to the solution immediately when it becomes available. Also
in network adjustment one sometimes processes different groups of observations sequentially,
which facilitates finding possible errors. The co-ordinates are in this case state vector elements
independent of time.

The dynamical model is in this case
d

dt
x = 0,

i.e., F = 0 and n = 0. There is no dynamical noise.

Often one encounters also applications in which a part of the state vector’s elements are con-
stants, and another part time dependent. E.g., in satellite geodesy, earth station co-ordinates
as opposed to satellite orbital elements.

9.5.1 Sequential adjustment and stacking of normal equations

We may write the update step of the Kalman filter also as a parametric adjustment problem.

The “observations” are the real observation vector ℓi and the a priori estimated state vector x̂i.
Observation equations: [

ℓi
x̂i

]
+

[
vi
wi

]
=

[
Hi

I

]
[x̂i+1] .

Here, the design matrix is

Ã ≡
[
Hi

I

]
.
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The variance matrix of the “observations” is

Q̃ ≡ Var

([
ℓi x̂i

]T)
=

[
Ri 0

0 Qi

]
,

and we obtain as the solution

x̂i+1 =
[
ÃT Q̃−1Ã

]−1

ÃT Q̃−1

[
ℓi
x̂i

]
=

=
[
HT
i R

−1
i Hi +Q−1

i

]−1 [
HT
i R

−1
i ℓi +Q−1

i x̂i
]
. (9.2)

As the variance we obtain

Qi+1 =
[
HT
i R

−1
i Hi +Q−1

i

]−1
. (9.3)

Ks. [Kal98b, ss. 63-64 ].

Now we exploit the second formula derived in appendix A:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1.

In this way: [
HT
i R

−1
i Hi +Q−1

i

]−1
= Qi −QiH

T
(
Ri +HiQiH

T
i

)−1
HiQi.

Substitution yields

x̂i+1 =
[
Qi −QiH

T
(
Ri +HiQiH

T
i

)−1
HiQi

] [
HT
i R

−1
i ℓi +Q−1

i x̂i
]

=

=
[
I −QiH

T
(
Ri +HiQiH

T
i

)−1
Hi

] [
QiH

T
i R

−1
i ℓi + x̂i

]
=

=
[
QiH

T
i R

−1
i ℓi + x̂i

]
−QiH

T
(
Ri +HiQiH

T
i

)−1 [
HiQiH

T
i R

−1
i ℓi +Hix̂i

]

= x̂i +QiH
T
i R

−1
i ℓi −QiH

T
(
Ri +HiQiH

T
i

)−1 (
HQiH

T
i +Ri

)
R−1
i ℓi +

+QiH
T
(
Ri +HiQiH

T
i

)−1
RiR

−1
i ℓi −QiH

T
(
Ri +HiQiH

T
i

)−1
Hix̂i =

= x̂i +QiH
T
(
Ri +HiQiH

T
i

)−1
[ℓi −Hix̂i] , (9.4)

and

Qi+1 = Qi −QiH
T
(
Ri +HiQiH

T
i

)−1
HiQi . (9.5)

The equations 9.4 and 9.5 are precisely the update equations of the Kalman filter. Compared
to the equations 9.2 and 9.3, the matrix to be inverted has the size of the vector of observables
ℓ and not that of the state vector x. Often the matrix size is even 1× 1 , i.e, a simple number1.
Being able to compute inverse matrices more quickly makes real-time applications easier.

From the preceding we see, that sequential adjustment is the same as Kalman filtering in the
case that the state vector is constant. Although the computation procedure in adjustment gen-
erally is parametric adjustment (observation equations), when in the Kalman case, condition
equations adjustment is used.

1. . . or may be reduced to such, if the observations made at one epoch are statistically independent of each
other. Then they may be formally processed sequentially, i.e., separately.
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9.6 Kalman “from both ends”

9.6 Kalman“from both ends”

If we have available the observations ℓi, i = 1, . . . , n and the functional model is the system of
differential equations

d

dt
x = Fx

(without dynamic noise n), we may write

x (ti) = Φi
0x (t0) ,

where Φi
0 is the state transition matrix to be computed. Thus, the observation equations may

be written
ℓi + vi = Hix (ti) = HiΦ

i
0x (t0) ,

a traditional system of observation equations, where the desgin matrix is

A =




H0
...

HiΦ
i
0

...

HnΦ
n
0




and the unknowns x (t0).

From this we see, that the least-squares solution can be obtained by solving an adjustment
problem.

As we saw in section 8.3,we may divide the observations into several, e.g., two, parts:

ℓ =

[
ℓe
ℓj

]
, A =

[
Ae
Aj

]

and form separate normal equations:
[
ATeQ

−1
e Ae

]
x̂e = ATeQ

−1
e ℓe,

Qxx,e =
[
ATeQ

−1
e Ae

]−1
,

and
[
ATj Q

−1
j Aj

]
x̂j = ATj Q

−1
j ℓj ,

Qxx,j =
[
ATj Q

−1
j Aj

]−1
.

These separate solutions (e = before, j = after) can now be “stacked”, i.e., combined:
[
ATeQ

−1
e Ae + ATj Q

−1
j Aj

]
x̂ =

[
ATeQ

−1
e ℓe + ATj Q

−1
j ℓj

]
,

the original full equations system, and

Qxx =
[
Q−1
xx,e +Q−1

xx,j

]−1
=
[
ATeQ

−1
e Ae + ATj Q

−1
j Aj

]−1
,

the variance matrix of the solution from the full adjustment.

An important remark is, that the partial tasks — “before” and ”after” — can be solved also
with the help of the Kalman filter! In other words, we may, for an arbitrary observation epoch
ti, compute separately
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1. The solution of the Kalman filter from the starting epoch t0 forward, by integrating the
dynamical model and updating the state vector and its variance matrix for the observa-
tions 0, . . . , i, and

2. The Kalman filter solution from the final moment tn backward in time integrating the
dynamic modal, updating the state vector and the variance matrix using the observations
n, ↓, i+ 1 (in reverse order).

3. Combining the partial solutions obtained into a total solution using the above formulas.

In this way, the advantages of the Kalmanmethod may be exploited also in a post-processing
situation.

9.7 Harjoitukset

Olkoon x tuntematon vakio, jota yritetään estimoida. x on havaittu hetkellä 1, havaintoarvo
7, keskivirhe ±2, ja hetkellä 2, havaintoarvo 5, keskivirhe ±1.

1. Formuloi tavallisen tasoitustehtävän havaintoyhtälöt ja havaintovektorin varianssimatriisi.
Laske x̂.

ℓ+ v = Ax̂

jossa ℓ =

[
7

5

]
, Qℓℓ =

[
4 0

0 1

]
, A =

[
1

1

]
. Silloin

x̂ =
[
ATQ−1

ℓℓ A
]−1

ATQ−1
ℓℓ ℓ =

=
4

5
·
[

1
4

1
] [

7

5

]
=

27

5
= 5.4.

Varianssimatriisi:

Qbxbx =
[
ATQ−1

ℓℓ A
]−1

=
4

5
= 0.8.

2. Kirjoita tämän esimerkin Kalman-suodattimen dynaamiset yhtälöt. Muista, että x on
vakio.

Vastaus: Yleinen dynaaminen yhtälö voidaan kirjoittaa diskreettisessa tapauksessa

xi+1 = Φxi + w

jossa Φ = I (yksikkömatriisi) ja w = 0 (deterministinen liike, dynaaminen kohina
olematon). Näin saadaan

xi+1 = xi.

Vaihtoehtoisesti kirjoitetaan differentiaaliyhtälö:

dx

dt
= Fx+ n

Again in our example case:
dx

dt
= 0,

no dynamic noise: n = 0.
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3. Kirjoita tämän esimerkin Kalman-suodattimen päivitysyhtälöt:

x̂i = x̂i−1 +Ki (ℓi −Hix̂i−1)

ja
Qbxbx,i = [I −KiHi]Qbxbx,i−1,

where the gain matrix

Ki = Qbxbx,i−1H
T
i

(
Qℓℓ,i +HT

i Qbxbx,i−1Hi

)−1
.

(siis minkä näköisiä ovat tässä tapauksessa H- ja K-matriisit?)

Vastaus: Koska tässä tapauksessa havainto ℓi = xi (eli tilaa havaitaan suoraan) on Hi =
[1], eli 1 × 1 matriisi jonka ainoa elementti on 1.

K =
Qbxbx,i−1

Qℓℓ +Qbxbx,i−1

.

jos alkuperäinen Qbxbx,i−1 on suuri, on K ∼ 1.

x̂i = x̂i−1 +
Qbxbx

Qℓℓ +Qbxbx

(ℓi − x̂i−1) =

=
Qbxbx,i−1

Qℓℓ,i +Qbxbx,i−1

ℓi +
Qℓℓ,i

Qℓℓ,i +Qbxbx,i−1

x̂i−1 =
Qbxbx,i−1ℓi +Qℓℓ,ix̂i−1

Qℓℓ,i +Qbxbx,i−1

.

Eli: a posteriori tila x̂i on a priori tilan x̂i−1 ja havainnon ℓi painotettu keskiarvo.

Qbxbx,i = [1 −K]Qbxbx,i−1 =
Qℓℓ,i

Qℓℓ,i +Qbxbx,i−1
Qbxbx,i−1.

Eli: miten huonompaa on a priori tilan varianssi Qbxbx,i−1 havaintotarkkuuden Qℓℓ,i

verrattuna, sitä enempää päivitetty tilavarianssi Qbxbx,i paranee.

4. Laske manuaalisesti läpi molemmat Kalman-havaintotapahtumat ja anna sen jälkeinen
tila-arvio x̂1 ja sen varianssimatriisi. Tilasuureen x alkuarvioksi saa ottaa 0 ja sen vari-
anssimatriisin alkuarvoksi “numeerisesti ääretön”:

Q0 = [100] .

Vastaus:

Ensimmäinen askel:

K1 = 100 (4 + 100)−1 =
100

104
.

siis

x̂1 = 0 +
100

104
(7 − 0) = 6.73

Q1 =

[
1 − 100

104

]
100 =

400

104
= 3.85.

Toinen askel:
K2 = 3.85 (1 + 3.85)−1 = 0.79.

x̂2 = 6.73 + 0.79 (5 − 6.73) =

= 6.73 − 0.79 · 1.73 =

= 5.36.

Q2 = [1 − 0.79] · 3.85 = 0.81.

67



Chapter 9 Kalman filter

68



Chapter 10

Approximation, interpolation, estimation

10.1 Concepts

Approximation means trying to find a function that, in a certain sense, is “as close as possible”
to the given function. E.g., a reference ellipsoid, which is as close as possible to the geoid
or mean sea surface

An often used rule is the square integral rule: if the argument of the function is x ∈ D,
we minimize the integral ∫

D

(∆f (x))2 dx,

where
∆f (x) = f (x) − f (x) ,

the difference between the function f (x) and its approximation f (x). Here, D is the
function’s domain.

Interpolation means trying to find a function that describes the given data points in such
a way, that the function values reproduce the given data points. This means, that the
number of parameters describing the function must be the same as the number of given
points.

Estimation is trying to find a function, that is as close as possible to the given data points.
The number of parameters describing the function is less than the number of data points,
e.g., in linear regression, the number of parameters is two whereas the number of data
points may be very large indeed.

“as close as possible” is generally — but not always! — understood in the least squares
sense.

• Minimax rule: the greatest occurring residual is minimized

• L1 rule: the sum of absolute values of the residuals is minimized.

10.2 interpolation

Traditionally a “spline” has been a flexible strip of wood or ruler, used by shipbuilders to create
a smooth curve.

Nowadays a spline is a mathematical function having the same properties. The smoothness
minimizes the energy contained in the bending. The function is used for interpolating between
given points. Between every pair of neighbouring points there is one polynomial, the value of
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which (and possibly the values of derivatives) are the same as that of the polynomial in the
adjoining interval. So, we speak of piecewise plolynomial interpolation. If the support points
are (xi, ti) , i = 1, . . . , n, the property holds for the spline function f , that f (ti) = x (ti), the
reproducing property.

There exist the following types of splines:

• Linear: the points are connected by straight lines. Piecewise linear interpolation. The
function is continuous but not differentiable

• Quadratic: between the points we place parabolas. Both the function itself and its first
derivative are continuous in the support points

• Cubic. These are the most common1. Itse Both function and first and second derivatives
are continuous in the support points

• Higher-degree splines.

10.2.1 Linear splines

Ks. http://mathworld.wolfram.com/CubicSpline.html.

Linear splines are defined in the following way: let a function be given in the form

fi = f (ti) , i = 1, . . . , N,

where N is the number of support points. Now in the interval [ti, ti+1], the function f (t) can
be approximated by linear interpolation

f (t) = Aifi +Bifi+1,

where

Ai =
ti+1 − t

ti+1 − ti
Bi =

t− ti
ti+1 − ti

.

The function Ai is a linear function of t, the value of which is 1 in the point ti and 0 in the
point ti+1. The function Bi = 1 −Ai again is 0 in point ti and 1 in point ti+1.

Cf. figure 10.1. If we now define for the whole interval [t1, tN ] the functions

Si (t) =





0 jos t < ti−1

Bi−1 = t−ti−1

ti−ti−1
jos ti−1 < t < ti

Ai = ti+1−t
ti+1−ti

jos ti < t < ti+1

0 jos t > ti+1

,

the graph of which is also drawn (figure 10.1 below). Of course, if i is a border point, half of
this “pyramid function” falls away.

Now we may write the function f (t) as the approximation:

f (t) =
N∑

i=1

fiSi (t) ,

a piecewise linear function.

1Cubic splines are also used in computer typography to describe the shapes of characters, so-called Bézier

curves.
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10.2 interpolation
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Figure 10.1: Linear spline

10.2.2 Cubic splines

Assume given again the values
fi = f (ti) .

In the interval [ti, ti+1] we again approximate the function f (t) by the function

f (t) = Aifi +Bifi+1 + Cigi +Digi+1, (10.1)

in which gi will still be discussed, and

Ci =
1

6

(
A3
i − Ai

)
(ti+1 − ti)

2 Di =
1

6

(
B3
i −Bi

)
(ti+1 − ti)

2 .

We see immediately, that A3
i − Ai = B3

i − Bi = 0 both in point ti and in point ti+1 (because
both Ai and Bi are either 0 or 1 in both points). So, still

f (ti) = f (ti)

in the support points.

The values gi, i = 1, . . . , N are fixed by requiring the second derivative of the function f (t) to
be continuous in all support points, and zero2 in the terminal points 1 and N . Let us derivate
equation (10.1):

f ′′ (t) = fi
d2Ai (t)

dt2
+ fi+1

d2Bi (t)

dt2
+ gi

d2Ci (t)

dt2
+ gi+1

d2Di (t)

dt2
.

Here apparently the first two terms on the right hand side valish, because both Ai and Bi are
linear functions in t. We obtain

d2Ci (t)

dt2
=

d

dt

[
1

2
A2
i (t)

dAi
dt

− 1

6

dAi
dt

]
(ti+1 − ti)

2 =

= − d

dt

[
1

2
A2
i (t) − 1

6

]
(ti+1 − t) =

= +Ai (t) .

Similarly
d2Di (t)

dt2
= Bi (t) ,

2Alternatives: given (fixed)values, continuity condition f ′′ (tN ) = f ′′ (t1), . . .
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and we obtain
f ′′ (t) = Aigi +Bigi+1.

So, the parameters gi are the second derivatives in the support points!

gi = f ′′ (ti) .

Now, the continuity conditions. The first derivative is

f ′ (t) = fi
dAi
dt

+ fi+1
dBi

dt
+ gi

dCi
dt

+ gi+1
dDi

dt
=

= fi
−1

ti+1 − ti
+ fi+1

+1

ti+1 − ti

−gi
[
1

2
A2
i −

1

6

]
(ti+1 − ti) +

+gi+1

[
1

2
B2
i −

1

6

]
(ti+1 − ti) =

=
fi+1 − fi
ti+1 − ti

+ (ti+1 − ti)

(
−gi

[
1

2
A2
i −

1

6

]
+ gi+1

[
1

2
B2
i −

1

6

])
.

Let us specialize this to the point t = ti, in the interval [ti, ti+1]:

f ′ (ti) =
fi+1 − fi
ti+1 − ti

−
(

1

3
gi +

1

6
gi+1

)
(ti+1 − ti) (10.2)

and in the interval [ti−1, ti]:

f ′ (ti) =
fi − fi−1

ti − ti−1
+

(
1

6
gi−1 +

1

3
gi

)
(ti − ti−1) . (10.3)

By assuming these to be equal in size, and subtracting them from each other, we obtain

1

6
(ti − ti−1) gi−1 +

1

3
(ti+1 − ti−1) gi +

1

6
(ti+1 − ti) gi+1 =

fi+1 − fi
ti+1 − ti

− fi − fi−1

ti − ti−1
.

Here the number of unknowns is N : gi, i = 1, . . . , N . The number of equations is N − 2.
Additional equations are obtained from the edges, e.g., g1 = gN = 0. Then, all gi can be solved
for:

1

6




2 (t2 − t1) t2 − t1
t2 − t1 2 (t3 − t1) t3 − t2

t3 − t2 2 (t4 − t2) t4 − t3
t4 − t3 2 (t5 − t3) t5 − t4

. . .
. . .

. . .

tN−1 − tN−2 2 (tN − tN−2) tN − tN−1

tN − tN−1 2 (tN − tN−1)




·

·




g1

g2

g3

g4
...

gN−1

gN




=




b1
b2
b3
b4
...

bN−1

bN




,
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where

bi =
fi+1 − fi
ti+1 − ti

− fi − fi−1

ti − ti−1
, i = 2, . . . , N − 1; b1 =

f2 − f1

t2 − t1
, bN = −fN − fN−1

tN − tN−1

This is a so-called tridiagonal matrix, for the solution of the associated system of equations of
which exist efficient special algorithms.

In case the support points are equidistant, i.e., ti+1 − ti = ∆t, we obtain3

∆t2

6




2 1

1 4 1

1 4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 2







g1

g2

g3

g4
...

gN−1

gN




=




f2 − f1

f3 − 2f2 + f1

f4 − 2f3 + f2
...

fN−1 − 2fN−2 + fN−3

fN − 2fN−1 + fN−2

−fN + fN−1




.

10.3 Finite element method

The finite element method is used to solve multidimensional field problems, so-called boundary
value problems, that can be described by partial differential equations. In geodesy, this means
mostly the gravity field.

10.3.1 Example

Let us first study a simple example. The problem domain is

D : [0, 1] × [0, 1] = {(x, y) , 0 ≤ x < 1, 0 ≤ y < 1} .

I.e., a square of size unity in the plane. The boundary of the domain may be called ∂D and it
consists of four parts ∂D1 . . . ∂D4, see figure.

Let g now be a real-valued function on D Our problem is finding a function u (x, y), i.e., a
solution, with the following properties:

1. Twice differentiable on D. Let us call the set of all such functions by the name V .

2. uxx + uyy = g on the domain D

3. a) Periodical boundary conditions, i.e.,

u (x, y) = u (x+ 1, y)

a) and

u (x, y) = u (x, y + 1). We may visualize this by rolling upD into a torus, i.e., the topology
of a torus.

3In case of a circular boundary condition, the 2 in the corners of the matrix change into 4, and b1 and bN are
modified correspondingly.
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0
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D∇D2 ∇D4

∇D3

∇D1

Figure 10.2: A simple domain

The expression

uxx + uyy =
∂2u

∂x2
+
∂u

∂y2

is often called ∆u where the delta operator

∆ ≡ ∂2

∂x2
+

∂2

∂y2

is referred to as the Laplace operator in two dimensions. E.g., the gravitational field in
vacuum or the flow of an incompressible fluid can be described by

∆u = 0

.

In the case of our example
∆u = g,

and g is called the source function, e.g., in the case of the gravitational field 4πGρ, where G is
Newton’s gravitational constant and ρ the density of matter.

10.3.2 The “weak” formulation of the problem

The problem ∆u = g can also be formulated in the following form. Let φ be a functional in V
— i.e., a map producing for every function v ∈ V a real value φ (v) —, so, that

φ (tu+ v) = tφ (u) + φ (v) ,

nimelläi.e., a linear functional. Let us call the set of all such linear functionals V ∗.

Then, the following statements are equivalent:

∆u = g

and

∀φ ∈ V ∗ : φ (∆u) = φ (g) .

This is called the weak formulation of the problem ∆u = g.
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10.3.3 The bilinear form of the delta operator

In fact we don’t have to investigate the whole set V ∗, it suffices to look at all functionals of
form

φv (f) ≡
∫ 1

0

∫ 1

0

v (x, y) f (x, y) dxdy,

where v (x, y) satisfies the (periodical) boundary conditions that were already presented.

So now the problem is formulated as that of finding a u ∈ V so that

φv (∆u) = φv (g) (10.4)

for all v ∈ V .

Using integration by parts we may write

∫ 1

0

∫ 1

0

vuxxdxdy =

∫ 1

0

[vux]
1
0 dy −

∫ 1

0

∫ 1

0

vxuxdxdy,

∫ 1

0

∫ 1

0

vuyydxdy =

∫ 1

0

[vuy]
1
0 dx−

∫ 1

0

∫ 1

0

vyuydxdy.

Because of the periodical boundary condition, the first terms on the right hand side vanish,
and by summation we obtain

∫ 1

0

∫ 1

0

v (uxx + uyy) dxdy = −
∫ 1

0

∫ 1

0

(vxux + vyuy) dxdy.

Thus we find, that

φv (∆u) = −
∫ 1

0

∫ 1

0

(vxux + vyuy) dxdy.

Let us call this4

ψ (u, v) ≡ φv (∆u) = φv (g) =

∫ 1

0

∫ 1

0

v (x, y) g (x, y)dxdy.

Now we obtain the weak formulation (10.4) of the problem as the integral equation

−
∫ 1

0

∫ 1

0

(vxux + vyuy) dxdy =

∫ 1

0

∫ 1

0

vgdxdy.

In this equation appear only the first derivatives with respect to place of the functions u, v: if
we write

∇v ≡
[

∂v
∂x
∂v
∂y

]
,∇u ≡

[
∂u
∂x
∂u
∂y

]
,

(where ∇, or nabla, is the gradient operator) we can write

−
∫ 1

0

∫ 1

0

〈∇v · ∇u〉 dxdy =

∫ 1

0

∫ 1

0

vgdxdy.

4This is the bilinear form of the operator ∆.
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1 2 3 4 5

6 987 10

11...

...24 25

Figure 10.3: Triangulation of the domain and numbers of nodes

10.3.4 Test functions

Next, we specialize the function ν as a series of test functions. Let the set of suitable test
functions (countably infinite) be

E ≡ {e1, e2, e3, . . .} .
Let us demand that for all ei

ψ (u, ei) =

∫ 1

0

∫ 1

0

geidxdy. (10.5)

In order to solve this problem we write

u = u1e1 + u2e2 + . . . =

∞∑

i=1

uiei.

In practice we use from the infinite set E only a finite subset En = {e1, e2, . . . , en} ⊂ E, and
also the expansion of u is truncated. Now the problem has been reduced to the determination
of n coefficients u1, u2, . . . un from n equations:

u =
∑

uiei, (10.6)

g =
∑

giei. (10.7)

Now we discretise the domainD in the following way: we divide it into triangles having common
borders and corner points, see figure.

To every nodal point i we attach one test function ei, which looks as follows:

1. Inside every triangle it is linear

2. It is 1 in node i and 0 in all other nodes
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8

0
1

Figure 10.4: Test function e8

3. It is continuous and “piecewise” differentiable.

See figure.

Now the above set of equations (10.5) after the substitutions (10.6, 10.7) has the following form:

n∑

j=1

ψ (ej , ei)uj =

n∑

j=1

gj

∫ 1

0

∫ 1

0

ejeidxdy, i = 1, . . . , n,

or as a matric equation:
Pu = Qg,

where

u =




u1

u2
...

un


 ja g =




g1

g2
...

gn


 .

The matrices are

Pji = ψ (ej , ei) = −
∫ 1

0

∫ 1

0

〈∇ej · ∇ei〉 dxdy,

Qji =

∫ 1

0

∫ 1

0

ejeidxdy.

The P matrix is called the stiffness matrix and the Q matrix the mass matrix.

10.3.5 Computing the matrices

In order to calculate the elements of the matrix P , we look at the triangle ABC. The test
functions are in this case the, already earlier presented, barycentric co-ordinates:

eA =

∣∣∣∣∣∣∣

xB xC x

yB yC y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

, eB =

∣∣∣∣∣∣∣

xC xA x

yC yA y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

, eC =

∣∣∣∣∣∣∣

xA xB x

yA yB y

1 1 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣

.
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These can be computed straightforwardly. The gradients again are

∇eA =

[
∂
∂x
∂
∂y

]
eA =




∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣




−1




∣∣∣∣∣
yB yC
1 1

∣∣∣∣∣

−
∣∣∣∣∣
xB xC
1 1

∣∣∣∣∣




=

=




∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣




−1 [
yB − yC
xC − xB

]
,

and so on for the gradients ∇eB and ∇eC , cyclically changing the names A,B,C. We obtain

〈∇eA · ∇eA〉 =




∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣




−2

∥∥∥−−→BC
∥∥∥

2

and

〈∇eA · ∇eB〉 =




∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣




−2

〈−−→
BC · −→CA

〉
,

and so forth.

The gradients are constants, so we can compute the integral over the whole triangle by multi-

plying it by the surface are, which happens to be 1
2

∣∣∣∣∣∣∣

xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣
.When we have computed

∫ ∫

∆

〈∇ej · ∇ei〉 dxdy

over all triangles — six values for every triangle —, the elements of P are easily computed by
summing over all the triangles belonging to the test function. Because these triangles are only
small in number, is the matrix P in practice sparse, which is a substantial numerical advantage.

Computing, and integrating over the triangle, the terms eAeB etc. for the computation of the
Q matrix is left as an exercise.

10.3.6 Solving the problem

As follows:

1. Compute (generate) the matrices P and Q. Matlab offers ready tools for this

2. Compute (solve) from the function g (x, y) the coefficients gi, i.e., the elements of the
vector g, from the equations

∫ 1

0

∫ 1

0

g (x, y) ej (x, y) dxdy =
∑

i

gi

∫ 1

0

∫ 1

0

ei (x, y) ej (x, y)dxdy, j = 1, . . . , n.

3. Solve the matric equation Pu = Qg for the unknown u and its elements ui

4. Compute u (x, y) =
∑
uiei. Draw on paper or plot on screen.
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10.3.7 Different boundary conditions

If the boundary conditions are such, that in the key integration by parts

∫ 1

0

[vux]
1
0 dy +

∫ 1

0

[vuy]
1
0 dx =

=

∫ 1

0

(v (1, y)ux (1, y) − v (0, y)ux (0, y)) dy +

+

∫ 1

0

(v (x, 1)uy (x, 1) − v (x, 0)uy (x, 0)) dx

do not vanish, then those integrals too must be evaluated over boundary elements: we obtain
integrals shaped like

∫ 1

0

ej (0, y)
∂

∂x
ei (0, y)dy,

∫ 1

0
ej (1, y) ∂

∂x
ei (1, y)dy,

∫ 1

0

ej (x, 0)
∂

∂y
ei (x, 0) dx,

∫ 1

0
ej (x, 1) ∂

∂y
ei (x, 1) dx (10.8)

i.e., one-dimensional integrals along the edge of the domain. In this case we must distinguish
internal nodes and elements from boundary nodes and elements. The above integrals differ
from zero only if ei and ej are both boundary elements. The boundary condition is often given
in the following form:

u (x, y) = h (x, y) domeenin reunalla ∂D.

This is a so-called Dirichlet boundary value problem. Write

h (x, y) =
∑

hiei (x, y)

like earlier for the u and g functions.

Alternatively, the Neumann- problem, where given is the normal derivative of the solution
function on the boundary:

∂

∂n
u (x, y) = h (x, y) domeenin reunalla ∂D.

In case the edge is not a nice square, we can use the Green theorem in order to do integration
by parts. Then we will again find integrals on the boundary that contain both the test functions
ei themselves and their first derivatives in the normal direction ∂

∂n
ej . Just like we already saw

above (equation 10.8).

Also the generalization to three dimensional problems and problems developing in time, where
we have the additional dimension of time t, must be obvious. In that case we have, instead of,
or in addition to, boundary conditions, initial conditions.

10.4 Function spaces and Fourier theory

In an abstract vector space we may create a base, with the help of which any vector can be
written as a linear combination of the base vectors: if the base is {e1, e2, e3}, we may write an
arbitrary vector r in the form:
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r = r1e1 + r2e2 + r3e3 =

3∑

i=1

riei.

Because three base vectors are always enough, we call ordinary space three-dimensional .

We can define to a vector space a scalar product, which is a linear map from two vectors to one
number (“bilinear form”):

〈r · s〉 .
Linearity means, that

〈αr1 + βr2 · s〉 = α 〈r1 · s〉 + β 〈r2 · s〉 ,
and symmetry means, that

〈r · s〉 = 〈s · r〉
If the base vectors are mutually orthogonal, i.e., 〈ei · ej〉 = 0 if i 6= j, we can simply calculate
the coefficients ri:

r =

3∑

i=1

〈r · ei〉
〈ei · ei〉

ei (10.9)

If additionally still 〈ei · ei〉 = ‖ei‖2 = 1 ∀i ∈ {1, 2, 3}, in other words, the base vectors are
orthonormal – the quantity ‖r‖ is called the norm of the vector r – then equation 10.9 simplifies
even further:

r =
3∑

n=1

〈r · ei〉 ei. (10.10)

Here, the coefficients ri = 〈r · ei〉.
Also functions can be considered as elements of a vector space. If we define the scalar product
of two functions f, g as the following integral:

〈−→
f · −→g

〉
≡ 1

π

∫ 2π

0

f (x) g (x) dx,

it is easy to show that the above requirements for a scalar product are met.

One particular base of this vector space (a function space) is formed by the so-called Fourier

functions,

−→e0 =
1

2

√
2 (k = 0)

−→ek = cos kx, k = 1, 2, 3, ...
−→e−k = sin kx, k = 1, 2, 3, ...

This base is orthonormal (proof: exercise). It is also a complete basis, which we shall not
prove. Now every function f (x) that satifies certain conditions, can be expanded according to
equation (10.10) , i.e.,

f(x) = a0
1

2

√
2 +

∞∑

k=1

(ak cos kx+ bk sin kx) ,
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– the familiar Fourier expansion – where the coefficients are

a0 =
〈−→
f · −→e0

〉
=

1

π

∫ 2π

0

f (x)
1

2

√
2dx =

√
2 · f (x)

ak =
〈−→
f · −→ek

〉
=

1

π

∫ π

0

f (x) cos kxdx

bk =
〈−→
f · −→e−k

〉
=

1

π

∫ 2π

0

f (x) sin kxdx

This is the familiar way in which the coefficients of a Fourier series are computed.

10.5 Wavelets

The disadvantage of the base functions, i.e., sines and cosines, used in Fourier analysis, is that
they extend over the whole domain of study, as function values differing from zero.

Often we would wish to use base functions, that are different from zero only on a bounded area.
Of course the base functions of finite elements presented above are of such nature. They are
however not “wave-like” by their nature.

The solution is given by wavelets. A wavelet is a wave-like function that is of bounded support.
There are wavelets of different levels; higher level wavelets have a smaller area of support, but
within it, offers a higher resolution. A higher level wavelet is obtained from a lower level one
by scaling and shifting.

The simplest of all “mother wavelets”, and a good example, is the so-called Haar wavelet. Its
form is

ψ (x) =





1 jos 0 < x < 1
2

−1 jos 1
2
< x < 1

0 muualla.

From this, we can then obtain all other necessary wavelets as follows:

ψj,k (x) = 2j/2ψ
(
2jx− k

)
.

So, the wavelet ψj,k is 2j times narrower than ψ,
√

2j times taller, and shifted along the hori-
zontal axis by an amount k to the right.

The number j is called the resolution level, the number k the location number.

From one mother wavelet we obtain 2 first level, 4 second level, 8 third level daughters, etc.

It can be easily verified that wavelets are orthonormal : the “dot product” of the function space
is

〈ψj,k · ψj′.k′〉 =

∫ 1

0

ψj,k (x)ψj′,k′ (x) dx =

{
1 jos j = j′ ja k = k′

0 muulloin.

For this reason we may write an arbitrary function as the following series expansion:

f (x) =
∞∑

j=0

2j−1∑

k=0

fj,kψj,k (x) ,

where the coefficients are

fj,k =

∫ 1

0

f (x)ψj,k (x) dx
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Figure 10.5: Haar wavelets

i.e, again, the dot product in function space 〈f · ψj,k〉, the projection of f on the axis ψj,k.

Try the function

f (x) = sin 2πx.

Compute

〈f · ψ0,0〉 =

∫ 0.5

0

sin 2πx−
∫ 1

0.5

sin 2πx =

= 2

∫ 0.5

0

sin 2πx = −1

π
[cos 2πx]0.50 =

=
2

π
≈ 0.6366.

Also (symmetry)

〈f · ψ1,0〉 = 〈f · ψ1,1〉 = 0

and

〈f · ψ2,0〉 = 2

∫ 0.125

0

sin 2πx · 2dx− 2

∫ 0.25

0.125

sin 2πx · 2dx =

= −1

π
[cos 2πx]0.1250 +

1

π
[cos 2πx]0.250.125 =

= −1

π

(
cos

π

4
− cos 0

)
+

1

π

(
cos

π

2
− cos

π

4

)
=

=
1

π

(
1 − 1

2

√
2 + 0 − 1

2

√
2

)
=

=
1

π

(
1 −

√
2
)
≈ −0.1318.
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Figure 10.6: A sine function expanded into Haar wavelets

Using the symmetry argument, we now obtain

〈f · ψ2,1〉 =
1

π

(√
2 − 1

)
≈ +0.1318,

〈f · ψ2,2〉 =
1

π

(√
2 − 1

)
≈ +0.1318,

〈f · ψ2,3〉 =
1

π

(
1 −

√
2
)
≈ −0.1318.

With the aid of this we may perform a synthesis: the result is a stepping function, as drawn in
the figure.

The result is somewhat blocky; in the literature, much more “wave-like” wavelets can be
found.The stepwise, hierarchically bisecting improvement of the Haar wavelets resembles, how
a GIF image is built up stepwise on a computer screen, if it arrives over a slow line. In fact,
one large application area for wavelets is precisely the compression of imagery.

10.6 Legendre and Chebyshev approximation

10.6.1 Polynomial fit

If we are asked to approximate a function given by measurement values on the interval [−1, 1],
a logical approach is to try and use polynomial interpolation. We describe the function by

f (x) =

∞∑

i=0

aix
i,

and estimate the coefficients aifrom the data. In practice, the series is truncated at i = I: the
approximation obtained is then

f̃ (x) =

I∑

i=0

aix
i.

This can be written as an observation equation as

f̃ (x) =
[

1 x x2 · · · xI
]




a0

a1

a2
...

aI



.

83



Chapter 10 Approximation, interpolation, estimation

Now, let us have observations regularly spread out over the interval [−1, 1], e.g., at the points
−1,−0.5, 0,+0.5 and +1. Let us also assume, for the sake of example, that I = 3. Then the
set of observation equations becomes




f̃ (−1)

f̃ (−0.5)

f̃ (0)

f̃ (0.5)

f̃ (1)




=




1 −1 1 −1

1 −0.5 0.25 −0.125

1 0 0 0

1 0.5 0.25 0.125

1 1 1 1







a0

a1

a2

a3


 .

The matrix in the above equation is A, the design matrix. From it, the normal matrix is
calculated as

N = ATA =




5 0 2.5 0

0 2.5 0 2.125

2.5 0 2.125 0

0 2.125 0 2.03125


 .

The condition number of this matrix is λmax/λmin ≈ 50. It is clearly non-diagonal. On the basis
of experience we may say, that polynomial fit in these cases is a suitable method only for low
polynomial degree numbers I. Already for values I > 12 the solution begins to be so poorly
conditioned, that numerical precision begins to suffer.

10.6.2 Legendre interpolation

See http://en.wikipedia.org/wiki/Legendre_polynomials.

We can choose as base functions, instead of simple polynomials 1, x, x2, x3, . . ., Legendre5

polynomials, which have the useful property of orthogonality on the interval [−1, 1]: if we
formally define the inner product of two functions f (x) and g (x) as the integral

〈−→
f ·−→g

〉
=

∫ +1

−1

f (x) g (x) dx,

then we can say for the Legendre polynomials Pn (x) ,that

〈Pn · Pm〉 =

∫ +1

−1

Pn (x)Pm (x) dx =

{
0 m 6= n
2

2n+1
m = n

.

The Legendre polynomials are most easily generated by the following recursive relationship:

nPn (x) = − (n− 1)Pn−2 (x) + (2n− 1)xPn−1 (x) .

In this way we find

P0 (x) = 1,

P1 (x) = x,

P2 (x) =
3

2
x2 − 1

2
,

P3 (x) =
5

2
x3 − 3

2
x,

etcetera.
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Figure 10.7: Examples of Legendre polynomials

Now if we write our approximation of function f (x) as follows:

f̃ (x) =

I∑

i=0

aiPi (x) ,

we obtain again for a row of our observation equation:

f̃ (x) =
[
P0 (x) P1 (x) P2 (x) · · · PI (x)

]




a0

a1

a2
...

aI



.

Again choosing the values −1,−0.5, 0, 0.5 and 1 yields:




f̃ (−1.0)

f̃ (−0.5)

f̃ (0.0)

f̃ (0.5)

f̃ (1.0)




=




1 −1 1 −1

1 −0.5 −0.125 0.4375

1 0 −0.5 0

1 0.5 −0.125 −0.4375

1 1 1 1







a0

a1

a2

a3


 ,

5Adrien-Marie Legendre, 1752 - 1833, French mathematician.
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and the corresponding normal matrix is

N = ATA =




5 0 1.25 0

0 2.5 0 1.5625

1.25 0 2.28125 0

0 1.5625 0 2.38281


 .

Now, the condition number λmax/λmin is 6.25, a lot better than for simple polynomials!

The normal matrix looks approximately, but not precisely, diagonal. If we had a larger number
of support points, all spread uniformly over the interval [−1, 1], we would see the N matrix
become very nearly a diagonal matrix. (And even if some of the support points would be
missing, the matrix would still be close to diagonal.)

What this means is that the polynomial approximation done this way is more stable even for
very high polynomial degree numbers. Evaluating each polynomial Pn (x) for a given support
point argument x can be done very efficiently using the above given recurrence relationship.

10.6.3 Chebyshev interpolation

See http://en.wikipedia.org/wiki/Chebyshev_approximation#Chebyshev_approximation,
http://en.wikipedia.org/wiki/Chebyshev_polynomials.

Another kind of polynomials often used for interpolation are Chebyshev6 polynomials of the
first kind. They can be formally defined as7

Tn (x) = cos (n arccosx) . (10.11)

Like Legendre’s polynomials, they are easily computed recursively:

Tn+1 (x) = 2xTn (x) − Tn−1 (x) ,

starting from T0 (x) = 1 and T1 (x) = x. The first few polynomials are:

T0 (x) = 1,

T1 (x) = x,

T2 (x) = 2x2 − 1,

T3 (x) = 4x3 − 3x,

and so on.

Like Legendre’s polynomials, also Chevyshev’s polynomials satisfy an orthogonality rela-
tionship, but for a different inner product: if we define

〈−→
f · −→g

〉
=

∫ +1

−1

f (x) g (x)√
1 − x2

dx, (10.12)

where we call (1 − x2)
−1/2

the weighting factor, we have

6Pafnuty Lvovich Chebyshev, 1821 - 1894, Russian mathematician.
7T like in the French transliteration Tshebyshev.
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Figure 10.8: Examples of Chebyshev polynomials.

〈Tn · Tm〉 =

∫ +1

−1

Tn (x)Tm (x)√
1 − x2

dx =





0 n 6= m

π n = m = 0

π/2 n = m 6= 0

.

Again, we may approximate a function f as follows:

f̃ (x) =
I∑

i=0

aiTi (x) , (10.13)

from which the observation equation for the coefficients ai becomes

f̃ (x) =
[
T0 (x) T1 (x) T2 (x) · · · TI (x)

]




a0

a1

a2
...

aI



.

For the same case of observed function values in support points −1,−0.5, 0, 0.5 and 1 we get:




f̃ (−1.0)

f̃ (−0.5)

f̃ (0.0)

f̃ (0.5)

f̃ (1.0)




=




1 −1 1 −1

1 −0.5 −0.5 1

1 0 −1 0

1 0.5 −0.5 −1

1 1 1 1







a0

a1

a2

a3


 .
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The normal matrix is

N = ATA =




5 0 0 0

0 2.5 0 1

0 0 3.5 0

0 1 0 4


 ,

with a condition number of λmax/λmin = 2.5, which is pretty good!

This all looks very interesting. . . but what is the advantage of using Chebyshev approx-
imation? To understand that, look at the figure 10.8. Or look at equation (10.11). Each
polynomial oscillates between the extremal values +1 and −1. Compare this to Legendre

polynomials, which also oscillate, and at the ends of the interval ±1 assume values ±1 as well. . .
but in-between they oscillate a lot less.

If we assume for a moment that the Chebyshev expansion (10.13) converges rapidly, then we
may say approximately, that the error is equal to the first neglected term:

f (x) − f̃ (x) =

∞∑

i=I+1

aiTi (x) ≈ aI+1TI+1 (x) .

Where aI+1 is a constant, and TI+1 (x) a function that is uniformly bounded from above by +1
and from below by −1 on the domain [−1, 1].

This demonstrates what Chebyshev approximation is useful for: it constitutes uniform ap-
proximation, where the error is absolutely bounded to the same value |aI+1| all over the domain
[−1, 1]. For this reason it is used, e.g., in pocket calculators, or numerical libraries, for evalu-
ating standard functions like sines and cosines and logarithms. It is a way to guarantee that
always the same number of computed decimals is correct, irrespective of the argument value of
the function chosen.

For comparison: if you look at the Legendre polynomials drawn in Fig. 10.7, they are
oscillating much less in the middle than towards the end points ±1. This means by the same
argument, that the error of approximation will also be larger towards the end points when

using Legendre approximation. The weight function (1 − x2)
−1/2

which is present in the
Chebychev inner product definition (10.12) serves just to“force”the approximation to become
more precise there. The “floppy loose ends” of the approximation are suppressed.

10.7 “Inversion-free” interpolation

Inversion-free interpolation works generally in this way, that from the neightbourhood of the
prediction point we pick a suitable set of data points and calculate from them a weighted
average. The weighting is generally done according to some power of the distance of the data
points.

A robust method is formed by taking from the neighbourhood of the prediction point one data
point – the nearest point –from every quadrant.

10.8 Regridding

If some geophysical field has been given on a regular grid with point spacing ∆x, than in the
signal contained in this grid are found only the “frequencies” under a certain limit. The shortest
possible wavelength, that the grid still is able to represent somewhat reliably, is 2∆x. This is
called the Nyquist limit.
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10.9 Spatial interpolation, spectral statistics

Literature:

[BG95, s. 141-203]

[MA76, s. 393-426]

[Shi00]
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Chapter 11

Least squares collocation

Kirjallisuus:

[HM67] ss. 251-286.

11.1 Least squares collocation

11.1.1 Stochastic processes

Collocation is a statistical estimation technique which is used to predict a stochastic process, of
which we have available certain realization values.

Let s (t) be a stochastic process having an autocovariance function C (t1, t2). Let this process
also be stationary, i.e., C (t1, t2) = C (t2 − t1). The argument t generally is time, but it can be
almost any parameter, e.g., travelled distance.

Let now be given n observations of this process, s (t1) , s (t2) , . . . , s (tn); then the variance matrix
of these realizations, or stochastic quantities, may be written as follows:

Var (si) =




C (t1, t1) C (t2, t1) · · · C (t1, tn)

C (t1, t2) C (t2, t2) · · · ...
...

...
. . .

...

C (t1, tn) C (t2, tn) · · · C (tn, tn)



.

Let us use for this the symbol Cij. Both for a single element of the matrix, Cij = C (ti, tj),
and for the whole matrix, Cij = [C (ti, tj) , i, j = 1, . . . , n]. The symbol si again means a vector
composed of the observations s (ti) , i = 1, . . . , n – or its element s (ti).

Note that, if the function C (t2 − t1) is known, we can compute the whole matrix and all of its
elements as long as all ti are known.

Let the problem now be formulated as that of estimating the value of the process s at the
moment (epoch) T . We have available observations of the process at times ti, i.e., s (ti) , i =
1, . . . , n.

In the same way as we earlier computed the covariances between s (ti):n and s (tj) (the elements
of the variance matrix Cij), we can also compute the covariances between s (T )and all the
s (ti) , i = 1, . . . , n. We obtain

Cov (s (T ) , s (ti)) =




C (T, t1)

C (T, t2)
...

C (T, tn)


 .

For this we may again use the notation CTj.
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11.1.2 Signal and noise

It is good to remember here, that the process s (t) is a physical phenomenon in which we are
interested. Such a stochastic process is called a signal. There exist also stochastic processes
that behave in the same way, but in which we are not interested. Such stochastic processes we
call noise.

When we make an observation, the goal of which it is to obtain a value for the quantity s (ti),
we obtain in reality a value which is not absolutely exact. We thus obtain

ℓi = s (ti) + ni.

Here, ni is a stochastic quantity called observational error or noise. Let its variance be Dij;
this is quite a similar matrix as the above Cij. The only difference is, that D describes a
phenomenon in which we have no interest. Generally it is safe to assume, that the errors in
two different observations ℓi, ℓj do not correlate, in which case Dij is a diagonal matrix.

11.1.3 An estimator and its error variance

Now we construct an estimator

ŝ (T ) ≡
∑

j

ΛTjℓj,

a linear combination of the available observations ℓi. The mission in life of this estimator is to
get as close as possible to s (T ). Siis minimoitava suure on erotus

ŝ (T ) − s (T ) = ΛTjℓj − s (T ) = Λtj

(
s (tj) + nj

)
− s (T ) .

Here we left, for the sake of writing convenience, the summation symbol
∑

off (Einstein

summation convention).

Let us study the variance of this difference, i.e.,

ΣTT ≡ V ar (ŝ (T ) − s (T )) .

We use the law of proagation of variances, the notations given above, and our knowledge, that
it is highly unlikely that between the observation process ni and the signal s there would be
any kind of physical connection or correlation. So:

ΣTT = ΛTj (Cjk +Djk) ΛT
kT + CTT − ΛTjC

T
jT − CT iΛ

T
iT . (11.1)

11.1.4 The optimal and an alternative estimator

Now choose

ΛTj ≡ CT i (Cij +Dij)
−1 .

Then, from equation (11.1):

ΣTT = CT i (Cij +Dij)
−1CT

jT + CTT −
− CT i (Cij +Dij)

−1CT
jT − CT i (Cij +Dij)

−1CT
jT =

= CTT − CT i (Cij +Dij)
−1CT

jT . (11.2)
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Next, we investigate the alternative choice

ΛTj = CT i (Cij +Dij)
−1 + δΛTj.

In this case we obtain

Σ′
TT = CTT − CT i (Cij +Dij)

−1CT
jT +

+ δΛijC
T
jT + CT iδΛ

T
iT − δΛTjC

T
jT − CT iδΛ

T
iT +

+ δΛTj (Cij +Dij) δΛ
T
jT =

= CTT − CT i (Cij +Dij)
−1CT

jT + δΛTj (Cij +Dij) δΛ
T
jT .

Here the last term is positive, because the matrices Cij ja Dij are positive definite. In other
words, Σ′

TT > ΣTT , except if δΛTj = 0.

In other words, the already given solution

ΛTj = CT i (Cij +Dij)
−1 ⇒ ŝ (t) = CT i (Cij +Dij)

−1 ℓj

is truly optimal in the sense of least squares (more precisely, in the sense of minimising ΣTT ).

11.1.5 Stochastic processes on the Earth’s surface

Least squares collocation is much used on the Earth surface for optimally estimating gravity
values and values of other functionals of the gravity field.

If the gravity anomaly in the point Pi – location (ϕi, λi) – is written as ∆gi, then the covariance
between two gravity anomalies is

Cov
(
∆g

i
,∆g

j

)
= Cij.

Generally Cij depends only on the distance ψ between points Pi, Pj; if this is the case, we speak
of an isotropic process ∆g (ϕ, λ).

A popular covariance function that is used for gravity anomalies, is Hirvonen’s formula:

C (ψ) =
C0

1 + ψ2/ψ2
0

=
C0

1 + s2/d2
, (11.3)

where C0 = C (0) and d are descriptive parameters for the behaviour of the gravity field. C0 is
called the signal variance, d the correlation length. d is the typical distance over which there
is still significant correlation between the gravity anomalies in different points. The metric
distance s ≈ Rψ and d ≈ Rψ0.

If now we have given n points Pi, i = 1, . . . , n, where have been measured gravity values
(anomalies) ∆gi, we may, like above, construct a variance matrix

Var
(
∆g

i

)
=




C0 C (ψ21) · · · C (ψn1)

C (ψ12) C0 · · · C (ψn2)
...

...
. . .

...

C (ψ1n) C (ψ2n) · · · C0


 =

=




C0 C21 · · · Cn1

C12 C0 · · · Cn2
...

...
. . .

...

C1n C2n · · · C0


 ≡ Cij,
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where all C (ψij) are computed with the aid of the above given formula (11.3).

If we still also compute for the point Q the gravity of which is unknown:

Cov (∆gQ,∆gi) =




C (ψQ1)

C (ψQ2)
...

C (ψQn)


 ≡ CQj,

we obtain, in precisely the same way as before, as the least squares collocation solution:

∆̂gQ = CQj (Cjk +Djk)
−1 ∆g

k
,

where the ∆g
k

are the results of gravity anomaly observations made in the points Pk, k =
1, . . . , n. The matrix Djk again describes the random observation error (imprecision) occurring
when making these observations. Generally on may assume, that Djk is a diagonal matrix (the
observations are uncorrelated) and furthermore, that Djk << Cjk: The precision of gravity
observations is nowadays better than 0.1 mGal, whereas the variability of the gravity field itself
is of order 50-100 mGal (i.e., C0 ∼ 2500 − 10 000 mGal2).

11.1.6 The gravity field and applications of collocation

The method of least squares collocation as presented above is applied, e.g., for computing gravity
anomalies in a point where no measurements have been made, but where there are measurement
points in the vicinity. E.g., if a processing method requires, that gravity anomalies must be
available at the nodes of a regular grid, but the really available measurement values refer to
freely chosen points – then one ends up having to use the collocation technique.

Collocation may also be used to estimate quantities of different types: e.g., geoid
undulations or deflections of the vertical from gravity anomalies. This requires a
much more developed theory than the one that was presented here. See, e.g.,
http://www.uni-stuttgart.de/gi/research/schriftenreihe/kotsakis.pdf.

11.2 Kriging

Kriging is a form of least squares collocation, an interpolation technique.

Starting from the above Hirvonen covariance function (11.3), we can compute the variance of
the difference between two gravity anomalies in points Pand Q, as follows:

V ar
{

∆gP − ∆gQ

}
= V ar

{
∆gP

}
+ V ar

{
∆gQ

}
− 2Cov

{
∆gP ,∆gQ

}
=

= 2C0 − 2
C0

1 + (ψ/ψ0)
2 =

2C0 (ψ/ψ0)
2

1 + (ψ/ψ0)
2 =

=
2C0ψ

2

ψ2 + ψ2
0

.

In the situation where ψ ≪ ψ0, we get

V ar
{

∆gP − ∆gQ

}
≈ 2C0ψ

2/ψ2
0.
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Figure 11.1: Hirvonen’s covariance function (for parameter values C0 = ψ0 = 1) and the asso-
ciated semi-variance functionja vastaava semivarianssifunktio.

On the other hand, for ψ ≫ ψ0, we get

V ar
{

∆gP − ∆gQ

}
≈ 2C0.

We can identify half of this expression, 1
2
V ar

{
∆gP − ∆gQ

}
, with the semi-variance of ∆g.

We also recognize ψ0, or perhaps a few times ψ0, as the “sill” at which the semi-variance levels
off to the constant value C0.

For the alternative Markov covariance function, defined as:

C (ψ) = C0e
−ψ/ψ0 ,

we get

1

2
V ar

{
∆gP − ∆gQ

}
= C0 − C0e

−ψ/ψ0 =

= C0

(
1 − e−ψ/ψ0

)
.

Now, for ψ ≪ ψ0 this becomes C0ψ/ψ0, while for ψ ≫ ψ0 we obtain again C0. Note the linear
behaviour for small ψ, which differs from the quadratic behaviour of the Hirvonen function
and is typical for a “random walk” type process .

Kriging is a form of least-squares collocation described within this semi-variance formalism.

11.3 Exercises

11.3.1 Hirvonen’s covariance formula

Hirvonen’s covariance formula is

C(sPQ) =
C0

1 + (sPQ/d)
2 ,

where (in the case of Ohio) C0 = 337 mGal2 and d = 40 km. The formula gives the covariance
between the gravity anomalies in two points P and Q:

C (sPQ) = Cov (∆gp,∆gQ) .

sPQ is the inter-point distance.
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1. Compute V ar (∆gP ) and V ar (∆gQ) [Hint: remember that according to the definition,
V ar (x) = Cov (x, x)].

2. Compute Cov (∆gP ,∆gQ) if sPQ = 10 km.

3. Compute the correlation

Corr (∆gP ,∆gQ) ≡ Cov (∆gP ,∆gQ)√
V ar (∆gp)V ar (∆gQ)

.

4. Repeat the computations (sub-problems) 2 and 3 if sPQ = 80 km.

11.3.2 Prediction of gravity anomalies

Let us have given the measured gravity anomalies for two points 1 and 2, ∆g1 and ∆g2. The
distance between the points is 80 km and between them, at the same distance of 40 km from
both, is located point P . Compute the gravity anomaly ∆gP of point P using the prediction
method. The prediction formula is

∆̂gP = CPi (Cij +Dij)
−1 ∆gj ,

where ∆gj =
[

∆g1 ∆g2

]T
is the vector of observed anomalies,

Cij =

[
V ar (∆gi) Cov (∆gi,∆gj)

Cov (∆gi,∆gj) V ar (∆gj)

]

is its variance matrix, and CPi =
[
Cov (∆gp,∆g1) Cov (∆gP ,∆g2)

]
the covarance matrix

between it and ∆gP . Dij is the variance matrix of the observation process of ∆g1,∆g2.

1. Compute (as a formula) the matrix Cij, assuming Hirvonen’s covariance formula (pre-
vious problem) and parameter values.

2. Compute (as a formula) CPi.

3. Compute (as a formula, but fully written out) ∆̂gP . Assume that Dij = 0. (

a) Inverting the

Cij matrix is possible on paper, but rather use Matlab or similar.)

4. Compute (as a formula) the variance of prediction (Note CjP = CT
Pi):

m2
PP = CPP − CPiC

−1
ij CjP

11.3.3 Prediction of gravity (2)

Let us again have the gravity anomalies ∆g1 and ∆g2 measured at points 1 and 2. This time,
however, the points 1, 2 and P are lying on a rectangular triangle, so, that the right angle is
at point P , and the distances of point P from the points 1 and 2 are, just like before, 40 km.
The distance between points 1 and 2 is now only 40

√
2 km.

1. Compute Cij , CPi, ∆̂gP and m2
PP .

2. Compare with the earlier result. Conclusion?
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11.3.4 An example of collocation on the time axis

Given is, that the covariance function of the signal function s (t) between two moments t1 and
t2 is

C (t2 − t1) =
C0(

1 + t2−t1
∆t

) ,

where the constants are C0 = 100 mGal and ∆t = 10 s. Also given are the values of the
observation quantity

ℓi = s (ti) + ni

: t1 = 25 s, ℓ1 = 25 mGal and t2 = 35 s, ℓ2 = 12 mGal. Compute by least-squares collocation
ŝ (t3), if t3 = 50 s. You may assume that ni = 0, i.e., the observations are exact.

Answer:

ŝ3 =
[
C31 C32

] [
C11 C21

C12 C22

]−1 [
ℓ1
ℓ2

]
,

where
C11 = C22 = 100 mGal,

C12 = C21 =
100

1 + 10
10

mGal = 50 mGal,

C31 =
100

1 + 25
10

mGal =
1000

35
mGal = 28.57 mGal

C32 =
100

1 + 15
10

mGal = 40 mGal,

i.e.:

ŝ3 =
[

28.57 40
] [

100 50

50 100

]−1 [
25

12

]
=

=
1

150

[
28.57 40

] [
2 −1

−1 2

][
25

12

]
=

=
1045.86

150
= 6.97 mGal.
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Chapter 12

Various useful analysis techniques

In many practical adjustment and related problems, especially large ones, one is faced with
the need to manipulate large systems of equations. Also in geophysical applications, one needs
adjustment or analysis techniques to extract information that is significant, while leaving out
unimportant information. Also, the methods used should be numerically stable.

In these cases, the following techniques may be useful. We describe them here from a practical
viewpoint; they are typically available in rapid prototyping languages such as Matlab or Octave.
It is always advisable to use these for proof of principle before coding a production-quality
application.

12.1 Computing eigenvalues and eigenvectors

An eigenvalue problem is formulated as

[A− λI]x = 0, (12.1)

to be determined all values λi – eigenvalues – and associated vectors xi – eigenvectors – for
which this holds. The matrix A is n× n and the vector x, dimension n.

Determining the λi is done formally by taking the determinant :

det [A− λI] = 0.

This is an n-th degree equation that has n roots – which may well be complex. After they are
solved for, they are back substituted, each producing a linear system of equations

[A− λiI]xi = 0

to be solved for xi.

12.1.1 The symmetric (self-adjoint) case

If A is symmetric, i.e., A = AT , or self-adjoint, i.e., 〈xA · y〉 = 〈x · Ay〉 for all x,y, we can
show that the eigenvalues are real and the corresponding eigenvectors mutually orthogonal. As
follows: Say we have λi with xi and λj with xj. Then from the above

λixi = Axi,

λjx
T
j = xTj A

T .
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Multiply the first equation from the left with xTj ,and the second from the right with xi The
result:

λi
〈
xTj · xi

〉
=

〈
xTj · Axi

〉
,

λj
〈
xTj · xi

〉
=

〈
xTj A

T · xi
〉

=
〈
xTj A · xi

〉
.

Subtract these:

(λi − λj)
〈
xTj · xi

〉
= 0

using the self-adjoint nature of A. Now if we have two different eigenvalues λi 6= λj, we must
have 〈

xTj · xi
〉

= 0,

in other words, xi ⊥ xj. If λi = λj , we have a degeneracy, but still we will be able to find two
vectors xi and xj spanning the two-dimensional subspace of vectors satrisfying this eigenvalue.
The same is several eigenvalues are identical.

We can put all these eigenvectors xi, i = 1, . . . , n into a matrix R as columns:

R =
[

x1 · · · xi · · · xn

]
.

Because then

xTi xj = δij =

{
1 i = j

0 i 6= j

we also have

RTR = I,

i.e., R is an orthogonal matrix.

Because all columns of R satisfy Eq. (12.1), albeit for different values of λi, we may write

[A− Λ]R = 0,

where now Λ is the diagonal matrix made up of the eigenvalues: Λ = diag (λ1, λ2, · · · , λn).
Multiply from the left with RT :

RTAR = RTΛR = Λ,

because of the orthogonality property of R. So now we have found the rotation matrix that
brings A on principal axes:

A = RΛRT ,

readily obtained by multiplying from the left with R and from the right with RT , and observing
RRT = I.

12.1.2 The power method

Often we are interested in computing only the biggest eigenvalue of a matrix. In this case a
recommendable method is the “power method”.

If our matrix is A, we choose a starting vector xand multiply it repeatedly by A, obtaining

Anx, n→ ∞.
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12.2 Singular value decomposition (SVD)

This will converge to the eigenvector x1 associated with the largest eigenvalue λ1, which is then
obtained by

λ1 = lim
n→∞

‖An+1x‖
‖Anx‖ .

The smallest eigenvalue can be similarly obtained by applying the process to A−1 instead.

Note that An may become numerically uncomputable for large n: it may overflow (leading to
a crash) or underflow (leading to loss of precision). Therefore one should re-scale the product
Anx for every step.

12.2 Singular value decomposition (SVD)

12.2.1 Principle

Singular value decomposition writes an arbitrary matrix A as the product of three matrices:

A = USV T .

Here, the matrix S is a matrix that represents “scaling”, when the matrices U ja V represent
rotations – they are both orthogonal1. S on diagonaalimatriisi (More precisely, a diagonal
matrix to which have been edded zero columns or rows.).

Note that this works for an arbitrary matrix. A may be rectangular, i.e., the numbers of
columns and rows may differ, and there may be a rank defect. If the dimensions of A are n×m,
then U is of size n× n and V of size m×m. The matrix S has the same size as A.

12.2.2 Square matrix

If A is square, then we can compute its deteminant:

detA = detU detS detV,

and because the determinant of an orthogonal matrix is always ±1, we obtain

detA = ± detS.

The elements of S on the main diagonal are at the same time its eigenvalues:

detS =

n∏

i=1

λi,

where n is the amount of columns or rows of S, whichever is larger (so: the dimension of the
greatest possible square submatrix contained in it).

From this we see, that if some eigenvalue of S vanishes, then we have detS = 0 and therefore
necessarily also detA = 0, i.e., A is singular.

Geometrically we can say, that the rotation matrices U and V turn the matrix A“upon principal
axes”, after which every axis is independent of the others: every axis has its own factor λi. More

1I.e., UT U = UUT = I and the same for V .
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precisely, the columns of U are the eigenvectors of AAT , while those of V are the eigenvectors
of ATA. Both latter matrices are square and symmetric.

We can write ATA =
(
USV T

)T
USV T = V STUTUSV T = V STSV T , showing the eigenvectors

of this matrix to be the columns of V and the eigenvalues, those of the matrix STS, which
has m × m elements. They are the squares of the eigenvalues of S itself. Proving that the
eigenvectors of AAT are the columns of U is done similarly. Note that if m > n, then AAT will
have |m− n| vanishing eigenvalues, and the same for ATA if m < n.

Calculating the inverse matrix if A is square:

A−1 =
(
USV T

)−1
=
(
V T
)−1

S−1U−1 =

= V S−1UT .

In other words: The SVD of the inverse matrix has the same U and V as the SVD of the
original matrix – only their roles have been interchanged. Computing the matrix S−1 is trivial:
every diagonal element is the inverse number of the corresponding diagonal element of S. Of
course this presupposes, that all are 6= 0!

12.2.3 General matrix

In the general case the form of the matrix S will be one of the following, depending on whether
n < m or n > m:

[
Λ

∅

]
=




λ1

. . .

λn

0 · · · 0
...

...

0 · · · 0




,
[

Λ ∅
]

=



λ1 0 · · · 0

. . .
...

...

λn 0 · · · 0


 .

Then, when we write also U and V out in column vectors:

U =
[

u1 u2 · · · un

]
, V =

[
v1 v2 · · · vm

]
,

we may write

A =

min(m,n)∑

i=1

λiuivi.

This expansion explains the name “singular value decomposition”: λi are the eigenvalues or
singular values, organised in descending order of absolute size.

12.2.4 Applications

In applications often the A matrix contains observation values: the element Aij =
A (xi, tj) ,where xi is the place and tj the time. In this case the columns of V , Vki = Vk (xi) are
different patterns of place, and Ukj = Uk (tj) are correspondingly different time series or spectral
components. Every pattern has its own time series, having the same k value and amplitude
Skk.
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12.2 Singular value decomposition (SVD)

Thus SVD is useful for analysing geophysical phenomena, which depend both on place and on
time. The corresponding element of the S matrix, Skk = λk osana.describes the strength of the
pattern in question as a part of the total phenomenon.

Example: the ocean tide. Aij is the total value of the tide at place xi (which thus is two-
dimensional, xi = (ϕ, λ)i ∈ R2), at the moment tj . The solutions are the various tidal con-
stituents, e.g., k = 1 semidiurnal lunar tide, k = 2 semidiurnal solar tide, etc.

12.2.5 SVD as a compression technique

Only components making a significant contribution to the total signal have Skk ≇ 0. Those
elements of S that are in practice zero, can be removed from the S matrix, and correspondingly
the meaningless columns in the rotation matrices U and V . In fact, this is an often used
compression technique: Aij = A (xi, tj)can be a video clip, and U, V and S may together be
considerably smaller than the original A!

We can also look at the expansion

A =

min(n,m)∑

i=1

λiuivi.

In a realistic case, many of the eigenvalues are very close to zero, if not precisely zero. If they
are not zero, this will generally be due to the data being used containig noise. By removing all
eigenvalues that are absolutely smaller than some suitable limit, we also filter the matrix A for
this noise. Thus, SVD is also a data cleansing method.

12.2.6 Example (1)

We use here the example of a one-dimensional oscillating mirrored cavity. The spatial dimension
in x ∈ [0, 2π). The temporal dimension t could extend to infinity, but we limit it here also to
t ∈ [0, 2π). We assume the wave funtion to be the sum of two oscillations:

f (x, t) = sin
1

2
x sin

1

2
t+ sin x sin t.

The matrix A describing the wave motion now becomes, choosing 5 × 5 support points on the
square domain:

A =




0 0 0 0 0

0 −0.500 0.707 1.500 0

0 0.707 1.000 0.707 0

0 1.500 0.707 −0.500 0

0 0 0 0 0




Here we have retained three decimals (note that the value 0.707 is a truncation of 1
2

√
2).

Doing an SVD on this matrix produces

U =




0 0 0 1.00000 0

−0.70711 −0.50000 0.50000 0 0

0 −0.70711 −0.70711 0 0

0.70711 −0.50000 0.99992 0 0

0 0 0 0 1.00000



,
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S =




2.00000 0 0 0 0

0 1.99985 0 0 0

0 0 0.00015 0 0

0 0 0 0 0

0 0 0 0 0



,

and

V =




0 0 0 1.00000 0

0.70711 −0.50000 0.50000 0 0

0 −0.70711 −0.70711 0 0

−0.70711 −0.50000 0.99992 0 0

0 0 0 0 1.00000




Inspecting the S matrix, we see two large eigenvalues 2 and 1.99985, followed by the much
smaller 0.00015. This smaller value is due to numerical rounding error, as can be readily
verified by repeating the process with a larger number of decimals in A.

Retaining only the first two terms, we can compute

A = US̃V T =




0 0 0 0 0

0 −0.50004 0.70705 1.49996 0

0 0.70705 0.99992 0.70705 0

0 1.49996 0.70705 −0.50004 0

0 0 0 0 0



,

close to the original matrix.

12.2.7 Example (2)

We start from the tide gauge data of the Finnish Institute of Marine Research 1943-1968, see
table 12.2.

On this data, written as an array A, we have performed a sigular value decomposition. The
singular values, the diagonal elements of the S matrix, are given in table 12.3 in descending
order of magnitude.

It can be seen that there are some three dominant values, the rest being uniformly much smaller.

In order to identify what patterns in the data these singular values represent, we have plotted
the corresponding columns of V , representing spatial patterns over all 13 tide gauges. The
length of each of these columns is 13. The plots are in figure 12.1.

We can see that the first singular value, a horizontal line, represents the common mode of all
the tide gauges: the waters of the Baltic Sea moving up and down together, in almost the same
way at each location. This mode represents the total water volume of the Baltic, influenced
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12.2 Singular value decomposition (SVD)

Table 12.1: Finnish tide gauges.

Tide gauge Latitude Longitude

1 Hamina 60.56 27.17

2 Helsinki 60.15 24.97

3 Hanko 59.83 22.97

4 Degerby 60.03 20.39

5 Turku 60.41 22.10

6 Rauma 61.13 21.48

7 Mäntyluoto 61.60 21.48

8 Kaskinen 62.39 21.22

9 Vaasa 63.10 21.57

10 Pietarsaari 63.72 22.70

11 Raahe 64.70 24.50

12 Oulu 65.03 25.43

13 Kemi 65.75 24.55

Table 12.2: Tide gauge data from the Finnish coast, years 1943-86. Yearly averages. Years
1949 and 1953 are missing, being incomplete.

A = [2083,2060,2035,1994,2030,1972,1972,1970,1964,1938,1969,1996,2011; %1943

1998,1987,1973,1933,1964,1896,1899,1894,1885,1856,1880,1906,1936; %1944

1986,1978,1971,1928,1933,1880,1877,1858,1849,1810,1827,1850,1850; %1945

1952,1935,1922,1882,1893,1849,1848,1839,1819,1799,1827,1869,1867; %1946

1832,1827,1807,1763,1767,1725,1718,1701,1700,1656,1686,1720,1722; %1947

2042,2006,1992,1942,1955,1908,1902,1885,1869,1849,1885,1906,1929; %1948

1977,1972,1955,1914,1920,1872,1866,1854,1820,1810,1829,1862,1862; %1950

1847,1830,1812,1782,1786,1742,1737,1732,1701,1699,1730,1769,1769; %1951

1997,1963,1959,1912,1919,1870,1850,1831,1801,1781,1808,1845,1848; %1952

1933,1912,1888,1835,1847,1795,1784,1779,1742,1712,1759,1801,1794; %1954

1996,1975,1945,1883,1896,1830,1814,1786,1764,1726,1765,1807,1786; %1955

1966,1951,1923,1871,1876,1811,1793,1768,1747,1697,1740,1762,1753; %1956

2008,1985,1953,1887,1900,1840,1822,1795,1768,1725,1777,1812,1799; %1957

1914,1900,1881,1824,1832,1769,1745,1717,1690,1647,1689,1741,1721; %1958

1853,1842,1824,1767,1768,1711,1688,1663,1644,1603,1656,1692,1683; %1959

1772,1778,1770,1721,1723,1669,1635,1608,1573,1530,1572,1605,1590; %1960

2036,2004,1977,1922,1943,1873,1851,1824,1799,1764,1817,1852,1843; %1961

2004,1980,1951,1882,1891,1825,1802,1772,1750,1708,1786,1819,1786; %1962

1860,1829,1804,1738,1750,1683,1661,1626,1603,1569,1610,1662,1637; %1963

1964,1930,1894,1824,1843,1762,1747,1720,1696,1675,1719,1766,1759; %1964

1895,1891,1865,1798,1804,1733,1702,1670,1638,1607,1637,1693,1657; %1965

1857,1847,1825,1761,1778,1709,1684,1655,1627,1597,1639,1712,1670; %1966

2024,2012,1980,1916,1927,1860,1841,1806,1782,1748,1796,1850,1834; %1967

1886,1868,1840,1768,1776,1700,1648,1642,1615,1578,1616,1658,1645]; %1968
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Figure 12.1: The spatial patterns of the first three singular values found by SVD. Left, horizontal
scale is tide gauge number; right, geographic plot.
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Table 12.3: Singular values from SVD in descending order

1 32163.6050

2 377.3280

3 99.2063

4 52.3408

5 37.3715

6 32.1409

7 29.5212

8 26.3864

9 22.2418

10 19.6933

11 17.5263

12 10.6901

13 9.1831

mostly by in- and outflow through the Danish straits, inflow of river water, and precipitation
(evaporation being negligible).

The second and third modes are very similar, though different-looking. They represent (plane)
tilts of the water surface, the so-called “bathtub modes”. As was argued in [VKM+88], these
three modes describe pretty much all the vertical motion of the water surface of the Baltic.

This hypothesis can be tested. We can retain, in the S matrix, only the first three singular
values (diagonal elements), setting the remainder to 0. Then, we compute A−US̃V T , where S̃
is the thus truncated S matrix. These residuals, which represent all signal unexplained by the
three first modes, are given in table 12.4.

The unit in this table is millimetres. We see that the largest residuals are ±21 mm. Most
residuals are within ±10 mm. For comparison, removal of only the first singular value (common
mode) leaves many residuals of over ±50 mm, especially in the ends of the Gulfs of Bothnia
and Finland.

We still plot the common mode as a function of time, computed as

h (ti)Ui1S11
1

m

m∑

k=1

Vk1.

This is plotted in figure 12.2, with, for comparison, the time series of Hanko and Kemi. We see
that the general behaviour of the Baltic water masses is captured well.

12.2.8 Lisälukemista

A good explanation with calculated example:
http://geosci.uchicago.edu/~gidon/geosci236/mathSvd/svd.html.

Here the whole course: http://geosci.uchicago.edu/~gidon/geosci236.html
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Table 12.4: Residuals after removal of the first three singular values. Unit: mm
2 2 -4 -7 8 0 -4 0 8 0 1 -1 -4

-4 1 1 -1 13 -6 -5 -2 4 -1 -3 -5 9

5 0 1 -1 -3 -6 0 -2 8 6 1 -2 -6

-3 0 2 1 -3 1 0 1 -2 -1 -2 9 -3

-1 6 1 0 -8 -1 0 -4 13 -4 -2 1 0

7 -4 2 0 -5 3 1 -2 0 2 2 -12 5

-3 3 0 1 -3 0 1 3 -11 8 0 2 -2

-7 0 0 11 -2 2 -2 1 -13 2 0 8 0

6 -12 1 3 0 7 0 0 -8 3 -3 -1 4

0 1 0 -1 -4 1 1 12 -3 -8 0 3 0

6 2 -3 -5 -1 -2 4 1 5 3 0 -1 -6

9 2 -6 -1 -2 -5 1 3 8 0 5 -10 -3

6 2 -3 -7 -5 1 6 4 3 -3 3 -6 -2

-2 -2 0 1 2 2 2 0 -1 -6 -4 6 3

-6 0 5 5 -3 0 -1 -3 1 -7 4 0 5

-8 -2 1 3 5 6 0 0 -10 -8 4 3 6

5 -5 -6 0 7 3 1 -1 -1 -3 4 -4 0

-2 0 1 0 -4 0 1 -2 2 -7 18 2 -11

5 -4 -1 -2 0 0 5 -1 1 2 -5 0 -1

3 1 0 0 2 -7 0 -1 1 7 -4 -8 4

-3 3 1 0 1 -2 0 0 -4 8 -5 5 -3

-12 -1 3 1 7 2 0 -3 -6 -3 -7 21 -2

-6 4 0 1 0 1 4 -4 -2 -2 -3 3 4

1 2 3 1 2 -2 -21 4 6 9 -3 -10 6

 1550

 1600
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Figure 12.2: Common mode, Hanko and Kemi tide gauge time series
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12.3 Principal Component Analysis (PCA) or Empirical

Orthogonal Functions (EOF)

These methods are closely related to SVD. If we look at an observation matrix Aij = A (xi, tj),
and consider that it contains, instead of raw observations, deviations from some average value or
simple model, then we can generate an (empirical) variance-covariance matrix by the following
simple operation:

Q = ATA

or

Qik =
n∑

j=1

A (xi, tj)A (xk, tj) .

Here we have averaged over time to get spatial covariances. Q will be a square, positive-definite
matrix on which we can do SVD, or more simply, we can bring it on principal axes:

Q = RΛRT ,

where R is an orthogonal rotation matrix and Λ the diagonal matrix of eigenvalues. Every
column of R now represents a spatial pattern; the corresponding eigenvalue λi from the Λ
matrix represents its strength. As the spatial patterns are uncorrelated (i.e., the columns of R
are orthogonal) the name “empirical orthogonal functions” becomes obvious.

In a practical situation, often only those few eigenvalues significantly different from zero are
retained; the others are thrown away, reducing the dimensions of Λ and R (which now becomes
rectangular). This will represent the original data to good accuracy, but retaining only a
fraction of the original data. So again, we have a compression method.

12.4 Schur decomposition

...

12.5 Cholesky decomposition

This is for a symmetric matrix: it means, for a given matrix A, to compute Γ where

A = ΓΓT .

12.6 LU-decomposition

This means decomposing a given matrix A into an upper and lower triangle matrix:

A = LU,

or
A = LDU,
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where D is a diagonal matrix.

We can study what happens in the simple case of a 3 × 3 matrix:

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

We reduce this matrix by subtracting from the second row, a21/a11 times the first row, and
from the third row, a31/a11 times the first row. This is equivalent to multiplying by

L1 =




1 0 0

−a21
a11

1 0

−a31
a11

0 1


 .

Next, we reduce by subtracting from the third row, the second row multiplied by ã32/ã22, where
the tilde indicates that these elements are from the first reduction step: ã32 = a32 − a31

a11
a12 and

ã22 = a22 − a21
a11
a12. This is equivalent to a multiplication by

L2 =




1 0 0

0 1 0

0 −ga32
ga22

1


 .

It can be seen that L = L2L1 is again a lower triangular matrix:

L =




1 0 0

−a21
a11

1 0

−a31
a11

+ a21
a11

ga32
ga22

−ga32
ga22

1


 .

The reduced A matrix will look like

U =




a11 a12 a13

0 a22 − a21
a11
a12 a23 − a21

a11
a13

0 0 a33 − a31
a11
a13 − a32−a31a13/a11

a22−a21a12/a11

(
a23 − a21

a11
a13

)


 .

This looks very complicated, but numerically it is straightforward. It works just as well for
larger dimensions than 32. So we now have

A = LU.

Note that the diagonal elements of the L matrix are 1, while those of the U matrix are not, we
can still write

U = DU,

where D is a diagonal matrix, and U has ones on the main diagonal. Now we have

A = LDU.

LU -decomposition is a way to solve the system of equations

Ax = LUx = b :

2Although for a stable reduction one should re-arrange the row and columns in descending order of magnitude
– “pivoting”.
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one first solves
Ly = b

for y, which can be done one element at a time by back substitution; then, we solve

Ux = y

similarly for x, but starting from the last element backwards.

For a symmetrix matrix A, we have

A = LDU = ΓΓT ,

where L = UT and Γ = L
√
D =

(√
DU

)T
. The square root of a diagonal matrix is trivially

defined.

12.7 Jacobi, Givens, Householder rotations

Practical methods to bring a matrix on principal axes. ...
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[VK86] Peter Vańıček and Edward Krakiwsky. Geodesy – The Concepts. Elsevier Science
Publishers, Amsterdam, 1986.

[VKM+88] Martin Vermeer, Juhani Kakkuri, Pentti Mälkki, Kimmo Kahma, Matti Lep-
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Appendix A

Useful matric equations

Ensimmäinen kaava:

(A+B)−1 =
[
A
(
I + A−1B

)]−1
=
[
A
(
B−1 + A−1

)
B
]−1

=

= B−1
[
A−1 +B−1

]−1
A−1.

Sijoitetaan
B−1 =

(
A−1 +B−1

)
− A−1

ja saadaan

(A+B)−1 =
[(
A−1 +B−1

)
− A−1

] [
A−1 +B−1

]−1
A−1 =

= A−1 −A−1
[
A−1 + B−1

]−1
A−1.

Toinen kaava:

Kirjoitetaan
B = UCV.

Tutkitaan seuraava partitioitu yhtälö:

[
A U

V −C−1

][
D11 D12

D21 D22

]
=

[
I 0

0 I

]
.

Tätä voidaan kirjoittaa neljäksi matriisiyhtälöryhmäksi:

AD11 + UD21 = I, (A.1)

AD12 + UD22 = 0,

V D11 − C−1D21 = 0, (A.2)

V D12 − C−1D22 = I.

Näistä neljästä yhtälöstä vain ensimmäistä ja kolmatta tarvitaan jarkossa.

Ynnätään yhtälö A.2 kerrottuna UC:n kanssa yhtälöön A.1:

(A + UCV )D11 = I ⇒ D11 = (A + UCV )−1 . (A.3)

Vähennetään yhtälö A.1 kerrottuna V A−1:n kanssa yhtälöstä A.2:

(
C−1 − V A−1U

)
D21 = −V A−1 ⇒ D21 = −

(
C−1 − V A−1U

)−1
V A−1.
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Appendix A Useful matric equations

Sijoitetaan takaisin yhtälöön A.1:

AD11 − U
(
C−1 − V A−1U

)−1
V A−1 = I ⇒ D11 = A−1 + A−1U

(
C−1 − V A−1U

)−1
V A−1.

(A.4)

Nyt meillä on kaksi eri ilmaisua alamatriisille D11, jotka ovat oltavia identtisiä. Näin saadaan:

(A + UCV )−1 = A−1 + A−1U
(
C−1 − V A−1U

)−1
V A−1, (A.5)

Woodburyn matriisikaava (K. Inkilä, henk. tied.).
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Appendix B

The Gauss reduction scheme

Jo K.F. Gaußin ajoista on peräisin perin yksinkertainen ja kätevä reduktiomenetelmä lin-
eaarisen yhtälöryhmän ratkaisun laskemiseksi.

Olkoon ratkaistava yhtälöryhmä seuraava:

AX = B.

Sen ratkaisu on ilmeisesti

X = A−1B.

Kirjoitetaan auki:




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm







x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xm1 xm2 · · · xmk


 =




b11 b12 · · · b1k
b21 x22 · · · b2k
...

...
. . .

...

bn1 bn2 · · · bnk


 .

Tämän yhtälöryhmän ratkaisumatriisi X ei muutu, vaikka

1. Sekä A:n että B:n tietty rivi kerrotaan vakion c kanssa, tai

2. Sekä A.n että B:n tietty rivi ynnätään vastaavaan toiseen sekä A:n että B:n riviin.

Jätetään nyt matriisi pois ja käytetään notaatio:




a11 a12 · · · a1m b11 b12 · · · b1k
a21 a22 · · · a2m b21 b22 · · · b2k
...

...
. . .

...
...

...
. . .

...

an1 an2 · · · anm bn1 bn2 · · · bnk




Tässä notaatiossa voidaan nyt, samalla tavalla kuin yllä luetteloitiin, kertoa rivejä vakion kanssa
tai ynnätä rivi toiseen riviin, elementti kerrallaan.

Menetellään seuraavalla tavalla:

1. Kerro ensimmäinen rivi kertoimella a−1
11 .

2. Vähennä se kaikilta muilta riviltä i kertoimella ai1:lla kerrottuna (Gauß-reduktio).
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Appendix B The Gauss reduction scheme

Lopputulos:




1 a−1
11 a12 · · · a−1

11 a1m a−1
11 b11 a−1

11 b12 · · · a−1
11 b1k

0 a22 − a21a
−1
11 a12 · · · a2m − a21a

−1
11 a1m b21 − a21a

−1
11 b11 b22 − a21a

−1
11 b12 · · · b2k − a21a

−1
11 b12

...
...

. . .
...

...
...

. . .
...

0 an2 − an1a
−1
11 a12 · · · anm − an1a

−1
11 a1m bn1 − an1a

−1
11 b11 bn2 − an1a

−1
11 b12 · · · bnk − an1a

−1
11 b1k




Kirjoitetaan symbolisesti




1 a
(1)
12 · · · a

(1)
1m b

(1)
11 b

(1)
12 · · · b

(1)
1k

0 a
(1)
22 · · · a

(1)
2m b

(1)
21 b

(1)
22 · · · b

(1)
2k

...
...

. . .
...

...
...

. . .
...

0 a
(1)
n2 · · · a

(1)
nm b

(1)
n1 b

(2)
n2 · · · b

(1)
nk




Elementti (1) kutsutaan tämän operaation pivotiksi.

3. Toista operaatiot 1,2 elementillä a
(1)
22 . Lopputulos on tämän näköinen:




1 0 a
(2)
13 · · · a

(2)
1m b

(2)
11 b

(2)
12 b

(2)
13 · · · b

(2)
1k

0 1 a
(2)
23 · · · a

(2)
2m b

(2)
21 b

(2)
22 b

(2)
23 · · · b

(2)
2k

0 0 a
(2)
33 · · · a

(2)
3m b

(2)
31 b

(2)
32 b

(2)
33 · · · b

(2)
3k

...
...

...
. . .

...
...

...
...

. . .
...

0 0 a
(2)
n3 · · · a

(2)
nm b

(1)
n1 b

(2)
n2 b

(2)
n3 · · · b

(2)
nk




Huomaa yksikkömatriisin ilmaantuminen vasemmalle ylänurkalle.

4. Yllä olevaa reduktiomenetelmää voidaan suorittaa, paitsi rivi kerrallaan, myös riviblokki
kerrallaan. Partitioidaan yhtälö:

[
A11 A12

A21 A22

][
X11 X12

X21 X22

]
=

[
B11 B12

B21 B22

]
.

Osittainen reduktio tässä tapauksessa antaa

[
A11 A12 B11 B12

A21 A22 B21 B22

]
⇒

[
I A−1

11 A12 A−1
11 B11 A−1

11 B12

0 A22 −A21A
−1
11 A12 B21 −A21A

−1
11 B11 B22 − A21A

−1
11 B12

]

Tästä näkyy, että, jos haluat laskea matriisi-ilmaisua P −UQ−1V — usein esiintyvä tarve
— voit laittaa ne neljä osa-matriisiä vain laskentataulukkoon seuraavalla tavalla:

Q V

U P

. . . ja redukoida tämä taulukko rivi kerrallaan, kunnes osamatriisin Q paikkaan ilmaantuu
yksikkömatriisi:

I Q−1V

0 P − UQ−1V

Nyt voidaan “poimia” osamatriisin P paikasta ilmaisu P − UQ−1V .
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5. Sovellusesimerkki: parametrinen tasoitustehtävän ratkaisu on

x̂ =
[
ATQ−1

ℓℓ A
]−1

ATQ−1
ℓℓ ℓ,

Qxx =
[
ATQ−1

ℓℓ A
]−1

.

Muodostetaan seuraava taulukkko:

Qℓℓ A ℓ

AT 0 0

reduktio antaa:
I Q−1

ℓℓ A Q−1
ℓℓ ℓ

0 −ATQ−1
ℓℓ A −ATQ−1

ℓℓ ℓ

Poistetaan tästä diagrammasta ensimmäiset rivi ja sarake ja lisää sarake oikealle:

−ATQ−1
ℓℓ A −ATQ−1

ℓℓ ℓ −I

Jatketaan reduktio:

I
[
ATQ−1

ℓℓ A
]−1

ATQ−1
ℓℓ ℓ

[
ATQ−1

ℓℓ A
]−1

Kuten näkyy, on sekä ratkaisu x̂ että sen varianssimatriisi Qxx valmiit poimittaviksi!

Tätä lähestymistapaa voidaan helposti laajentaa esim. jäännösvirheiden ja painoyksikön
keskivirheen laskemiseen. Myös pienimmän neliösumman kollokaation ja Kalman-suodattimen
kaavat voidaan laskea tällä tavoin, joka on helposti implementoitavissa tietokoneellekin.
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