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Abstract 

 
In this paper we detail the performance of a new Alphaserver machine consisting 
of 16 Alpha EV7 CPUs. This processor is based on the Alpha EV68 processor 
core as used in the existing Alphaserver ES45 that has been used to build tera-
scale systems at Los Alamos and at Pittsburgh. The EV68 processor core is 
supplemented with an additional six-way router circuitry which enables a 2-D 
inter-processor torus network to be constructed as well as direct connections to 
I/O and local memory. A performance evaluation of this machine is reported here 
which considers memory hierarchy, intra-node MPI communication, and full 
application performance. Comparisons are also made to existing Alphaserver 
machines. It is clear from this analysis that this machine achieves an excellent 
main memory bandwidth of over 4 GB/s. This has a positive impact on 
application performance on larger problem sizes in comparison to a similar speed 
EV68 processor. 

 
1. Introduction 
 
This paper details a performance evaluation of a state-of-the-art Alphaserver machine. It 
represents one of the next generation Alphaserver machines which are designed to scale up to 64 
processors within a node. The most significant changes relative to the current Compaq ES40 [1] 
and ES45 systems include: the upgrade to the EV7 CPU module, PCI-X I/O slots, and a NUMA 
memory architecture [3].  
 
The EV7 CPU uses the same EV68 core as in the Alphaserver ES45 but also incorporates two 
on-chip Direct Rambus (RDRAM) memory controllers and a 1.75-MB L2 cache on the chip. The 
instruction set architecture is identical to that of the EV68; a maximum of two floating-point 
operations can be executed each cycle, so a 1.2-GHz CPU has a peak theoretical processing rate 
of 2.4-GFLOPS. However, certain improvements to the core have been made; for example, the 
EV7 CPU can accommodate 16 concurrent outstanding cache misses (versus 8 for the EV68). 
 
The L1 and L2 cache latencies are the same as they were in the EV68: with an expected 2 cycle 
latency to the L1 and 12-cycle latency to the L2. The EV7's L2 cache is seven-way set 
associative and can transfer data to the CPU at 16 bytes/cycle (up to 19.2 GB/s at 1.2-GHz). Note 
that the previous EV68 L2 cache was much larger (up to 16 MB) but was off-chip and had a 
maximum transfer rate to the CPU of only 5.3 GB/s. The two EV7 on-chip RDRAM memory 
controllers support a maximum memory-to-L2 transfer rate of 12 GB/s; this is to be compared 
with only 2.6 GB/s maximum in the EV68. 
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The EV7 chip also includes a router with a total of six connections. Four connections go to 
neighboring processors arranged within a node as a 2-D torus topology. These are capable of 
running at 6.4-GB/s each. One is an I/O port and the remaining one connects to the local 
processor resources - the local processor core and its two memory controllers. (Note: this router 
is similar to the router chip in the SGI Origin2000, the main difference being that in the EV7 it is 
on-chip rather than as a separate ASIC.) This arrangement is shown in Figure 1. 
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Figure 1 – an example 16 processor EV7 machine indicating processor number ordering 
 
A node is composed of between 1 and 64 EV7 CPUs interconnected via the on-chip routers. The 
resulting system is a ccNUMA (cache coherent, non-uniform memory architecture) design in 
which any CPU can access all of the memory in the node but in which the memory access time 
differs depending on where the data are located (also similar to the SGI Origin2000). The latency 
to local memory was measured at 83ns. Each reference to non-local memory pays this same 83ns 
penalty, plus about 30ns of overhead getting in and out of the network, plus about 18ns per hop 
of mostly wire and router delay - a total delay of about 140ns to read the memory on a node 
that's one hop away. Each additional hop adds another 35-36ns of delay on average. 
 
Therefore, the worst-case latency on a 64-CPU node is roughly 390ns (about five times worse 
than the best-case). The average memory latency across such a machine is approximately 260ns, 
which compares favorably with the (uniform) memory latency of 170ns on an Alpha (EV68) 
ES45 4-processor system. Smaller nodes will have smaller average latencies (e.g., about 225ns 
on a 32-processor system). 
 
The EV7 machine analyzed here consisted of a single node containing 16 processors with a clock 
speed of 1.2-GHz. Three sets of tests were used to analyze its performance. These are: 
 

(1) memory hierarchy performance micro-benchmarks, 
(2) intra-node MPI communication kernels, and 
(3) full-application codes. 
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The performance of the memory hierarchy is detailed in Section 2, the performance of the intra-
node MPI communication is detailed in Section 3, and the performance of several full 
application codes are detailed in Section 4. A comparison is made between the measured 
performance on this machine to that measured on existing Alphaserver machines in Section 5. 
 
2. Memory Hierarchy Performance 
 
The performance of the memory hierarchy is analyzed here both in terms of the latency of the 
various memory levels in the machine, and also the bandwidth possible to local processor 
memory and to remote memory within a node. 
 
2.1 Memory Latency 
 
The memory latency was measured by performing a read from a vector in which successive 
reads are from elements a cache-line length apart. This guarantees that each memory access will 
exhibit a latency cost as no spatial cache-reuse will occur. By increasing the size of the vector, 
the latency to different parts of the memory hierarchy can be observed. In addition the memory 
vector can be placed on a pre-determined PE (Processing Element) and read from on a further 
pre-determined PE – thus latency to memory on remote processors can also be observed.  
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Figure 2 – Memory Latency to Remote Processors from Processor 12. 

 
Figure 2 indicates the latency observed when the memory read is performed on processor 12 and 
memory is placed on processors 2-15 respectively. The latency for remote memory access can be 
seen on the larger data vector sizes. On smaller vector sizes, the data will reside in the local 
processor cache and thus appear the same for all remote processors. 
 
The latency increases as the distance (processor hops increases). It also depends on the route 
taken, for instance two processors are contained on a single board from a vertical processor pair 
in within the node, and has less latency than to a processor on a different board. A summary of 
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the latency on the 64Mbytes data vector size is indicated in Figure 3 below. The processor hop 
distance is shown in Figure 4 for this study (distance from processor 12). The processor ID 
layout is as shown in Figure 1. 
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Figure 3 –memory latencies (clock cycles) 
for processor 12 
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Figure 4 – distance (hops) from processor 
12

2.2 Memory Bandwidth 
 
Cachebench [5] was used to measure the memory hierarchy bandwidth performance within a 
single node. Two sets of tests were performed. The first test measured the peak memory 
performance on a single processor for: read, write, read-modify-write, memset, and memcpy. 
These are shown in Figures 5 and 6. All results are measured for a vector of varying size.  
 
A second test measured the bandwidth performance on a single processor while a number of 
other processors within the node performed background reads each to their local memory to 
measures the effective bandwidth in the presence of possible contention.  
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Figure 5 – Achievable peak memory bandwidths (read, write, Read-Modify-Write). 
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Cachebench - Double (EV7 1.2GHz)
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Figure 6 – Achievable peak memory bandwidths (memset, memcpy). 

 
In addition a vector of size larger than the local processor memory was allocated and a read 
operation performed. This test results in memory accesses to all the available local memory 
along with a proportion of remote memory. The bandwidth obtained is shown in Figure 7. Note 
that this test was performed only on an 800-MHz EV7 machine.  
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Figure 7 – Achievable peak memory bandwidth (read) illustrating remote memory access on 

large vector sizes. 
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The memory bandwidth observed for the EV7 machine is very good and is summarized in Table 
1. Note that the size of each level of the memory hierarchy can be seen in Figure 7 by the step 
changes in the memory bandwidth performance. 
 

 Peak bandwidth 
(GB/s) 

Latency 
(cycles) 

L1 (64KB) 7.77 2 

L2 (1.75MB) 6.20 12 

Main memory (2GB) 4.60 106 

Remote memory ~3.60 162-290 
 

Table 1 – Memory performance summary. 
 
The results show that there is only less than a factor of 2 bandwidth reduction between L1 and 
main memory illustrating a major strength of this machine.  
 
It is expected that the performance of memset corresponds to that of the write performance, and 
that the performance of memcpy corresponds to that of the read-modify-write performance. As 
can be seen from Figures 5 and 6, they are indeed similar for L1 cache performance but both 
under-perform on main memory indicating a better implementation may be possible. 
 
The impact of having many background processors performance memory reads did not have an 
impact on an individual processors memory performance. This is unlike many of the existing 
smaller SMP nodes such as the Alphaserver ES45 which can be effected by a reduction in 
bandwidth by a factor of 2 due to memory bus contention. This data has not been included here. 
 
3. Intra-node Communication Performance 
 
The achievable intra-node communication performance was measured using a number of MPI 
based tests. These included: 
 

• Ping-pong message performance between two adjacent processors. This was measured 
for both uni-directional and bi-directional message traffic, recording both message 
latency and bandwidth. 

• Message latency and bandwidth between a single processor and all other processors in 
the node to indicate the performance of between non-adjacent processors. 

• Hot-spot communication performance – the achieved communication bandwidth when 
more than one processor communicates to a single processor.  

• Barrier performance – latency for MPI barrier 

• Broadcast performance – achieved bandwidth for MPI broadcast  
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3.1 MPI Communication Performance 
 
The performance of both uni-directional and bi-directional MPI communication between two 
adjacent PEs using a ping-pong test is shown in Figures 8 and 9. Figure 8 shows the duration 
(latency) and Figure 9 shows the achieved bandwidth for messages of size between 1 and 
1,000,000 bytes. 
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Figure 8 – MPI message latency between two adjacent PEs. 
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Figure 9 – MPI ping-pong message bandwidth between two adjacent PEs. 



 

 8 

The achieved latency of a small message was 1.7µs for a uni-directional message and 2.2µs for 
bi-directional messages. The ping-pong bandwidth on a message of size 1,000,000 bytes was 
1.08GB/s for a uni-directional message and 485MB/s for bi-directional messages. Note that the 
bi-directional bandwidth is quoted for the achieved bandwidth for each direction in the 
communication. The bi-directional bandwidth in each direction is just under half of the uni-
directional bandwidth. 
 
3.2 Point to Point Communication Performance within a node 
 
The performance of a uni-directional communication using a Ping-Pong test was recorded for all 
PEs within a node communicating with PE 0. The latency obtained (for a 0 sized message) and 
the bandwidth achieved on a message of size 1MB are shown in Figures 10 and 11 respectively.  
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Figure 10 – MPI latency (µs).  
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Figure 11 –MPI bandwidth (GB/s).
 
Both figures show a 4x4 processor map of the PEs in a node. The latency increases as the 
distance (in processor hops) increases. In fact 2 processors are engineered on the same board in 
the machine. Processors on the same board have a slightly lower latency than those that are not. 
In the processor maps shown in Figures 10 and 11 each vertical pair of processors reside on the 
same board, thus the latency between PE 0 (top-left) and PE 1 (second from top on left) is 
smaller than the latency between PE 0 and PE 2 (top, second from left). Also note that the PEs 
within a node are connected in a 2-D torus topology and thus the PE (lower-right) is only 2-hops 
distant from PE 0.  
 
The bandwidth between PE 0 and any other PE is approximately a constant at 1.13GB/s. The 
processor ID layout is as shown in Figure 1, and the distance in hops for this experiment is 
shown in Figure 12. 
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Figure 12 – distance (hops) from processor 0. 
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3.3 Hot-spot Communication Performance 
 
The achieved bandwidth performance under the hot-spot communication traffic is shown in 
Figure 13. Hot-spot tests the situation when 1 or more PEs simultaneously communicates to a 
single PE in a repetitive mode. In the case shown in Figure 13 one or more PEs sent a message of 
size 256KB to processor 0. 
 
The achievable bandwidth on this test actually increases as more processors perform the 
simultaneous communication approaching a maximum of just over 1.9GB/s. This indicates that 
the available bandwidth exceeds that which can be used by a single pair of processors.  
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Figure 13 – Achievable bandwidth under the Hot-Spot traffic 

 
 
3.4 MPI Barrier Latency and Broadcast Bandwidth. 
 
The performance of MPI barrier is shown in Figure 14. The in-node barrier takes 11.2µs on the 
1.2-GHz machine. This is actually larger than a Quadrics QsNet based barrier which takes 7µs 
for an internode barrier on 512 nodes [6]. The performance of MPI broadcast is shown in Figure 
15. The achievable bandwidth decrease as more processors are involved in the broadcast. This is 
due to the broadcast operation relying on messages to propagate through the 2D torus topology. 
The Quadrics QsNet uses additional hardware support to improve its barrier and broadcast 
performance. The bandwidth decreases from 1.01GB/s on 2 PEs down to 300MB/s when using 
all 16 PEs in the EV7 machine. 
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Figure 14 – MPI barrier performance  Figure 15 – MPI broadcast performance. 

 
 
 
4. Application Performance 
 
The performance of several applications of interest to Los Alamos National Laboratory were 
measured on the EV7 Alphaserver machine. Performance is detailed here for SAGE, MCNP, and 
SWEEP3D. SAGE is a multidimensional multi-material hydrodynamics code with adaptive 
mesh refinement [7]. MCNP is a general purpose Monte-Carlo N-Particle that can be used for 
neutron, photon, electron, or coupled transport [4]. SWEEP3D is a time independent, Cartesian-
grid, single-group, discrete ordinates deterministic particle transport code [2]. Each application 
was executed in a number of different configurations as described below. 
 
4.1 SAGE 
 
The performance of SAGE was examined in two different studies. The first considers a sequential test 
whilst varying the size of the spatial grid in terms of the number of cells processed in a single iteration of 
the code. This is to examine the impact of the memory hierarchy as it is possible for small spatial grids to 
be L2 cache resident whereas larger grids are not. The second study considers a single spatial grid size 
whilst varying the number of processors used in a weak scaling study (i.e. keeping the number of cells per 
processor at a constant). Both studies are described below. 
 
i) SAGE – Cells per PE scaling 
 
This is a sequential test of SAGE whilst scaling the number of cells in the spatial grid. The number of 
cells was varied from 143 to 583. Note that SAGE uses a 3D spatial cube by default – hence the number of 
cells were varied as a cubic power. The result of this scaling is shown in Figure 16 using the number of 
cells that can be processed in one second (CC/s) as a metric. Ideally this should be a constant for all 
problem sizes. 
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SAGE - 1 CPU (timing.Input)
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Figure 16 – Sequential Performance of SAGE when varying the spatial grid size. 

 
The performance degrades as the number of cells increases. This is expected due to the limited 
capacity of the cache. On the smaller problem sizes a large utilization of the L2 cache is possible. 
On the larger problem sizes very little re-use of L2 cache is possible and hence resulting in a 
large utilization of main memory. 
 
The performance levels off above 125,000 cells (when main memory is mainly utilized). The 
dips in performance are due to the number of cells being close to or an exact function of 2 (for 
instance 4096, and 32768). Having such a number of cells results in poor cache performance 
resulting from ping-pong interference causing a higher degree of cache misses. 
 
The performance decrease over the range of cell numbers is only 40%. This is a small decrease 
and is attributed to the good main memory bandwidth of the EV7 machine. 
 
ii) SAGE - Scalability 
 
A scalability test of SAGE was performed on between 1 and 16 processors contained within the 
EV7 node. The number of cells per processor was set at a constant of 13,500 and thus resulted in 
a weak-scaling study.  
 
Results are shown in Figure 17 using the number of cells processed in one second per processor 
(CC/s/pe) metric. The CC/s/pe should ideally be constant but decreases due to parallel overhead.  

 



 

 12 

SAGE (TimingMPI.input)
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Figure 17 – Scaling behavior of SAGE on the EV7 machine (in node) using the CC/s/pe metric 

 
It can be seen from Figure 17 that the performance decrease up to 16 processors is small (from 
42,500 on a single processor down to 38,200 on 16 processors). This represents a high 90% 
efficiency on 16 processors. The unexpected performance on 10 processors can most likely be 
attributed to a poorer cache utilization that can occur from the only approximate weak scaling 
behavior of SAGE. 
 
 
4.2 MCNP 
 
The performance of MCNP is examined here in a strong scaling study. The number of particles 
that are processed in each cycle was set at a constant and divided up across the number of slaves 
available for processing. The geometry in which the particles move was replicated across the 
processors being used. The processing of each particle within a cycle is independent and thus 
communication occurs at the start and end of a cycle between all slaves and a master processor. 
The number of cycles, C, and particle histories per cycle, nps, was set to be (C=1010, nps=1,000) 
and (C=210, nps=10,000) in two separate scalability tests. 
 
The time per particle history while varying the number of slave processors used is shown in 
Figure 18. This is effectively the grind time of this code. Note that the number of processors used 
in each case is actually the number of slaves + 1 (i.e. plus a master processor who accumulates 
results).  
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Figure 18 – Time per particle history in MCNP using the critexp input deck on the EV7 machine 
 
The code is subject to a high degree of communication on the smaller problem (C=1010, 
nps=1,000) resulting in a low efficiency when using all 15 slaves (<60%).  
 
The scalability of the larger problem (C=210, nps=10,000) is expected to be much better due to a 
decrease in the degree of communication. The time per particle history when using 3 slave 
processors on the larger problem is ~0.55ms on the EV7 machine. All configurations of the 
larger problem sizes were not run, but the few measurements made indicate a better scaling 
behavior than the smaller problem. 
 
 
4.3 Sweep3D 
 
The performance of Sweep3D was also measured on the EV7 machine. A problem of size 50-
cubed with 1-k plane per block and 1 angle per block was run. The total run time was measured 
in a weak scaling analysis. Observed parallel efficiency on 16 processors was about 90% on the 
EV7 machine. The single-processor time on EV7 was found to 30% faster than the single-
processor time on an EV68 (1GHz) ES45 processor.  
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5. Comparative Performance 
 
The results of the performance tests measured on the EV7 machine are compared with the 
performance obtained on current Alpha-systems in this section. The comparisons are made on a 
like for like basis unless stated. A comparison of performance is shown in Table 2. Currently no 
MPI performance is available for the 1.25GHz ES45, and no inter-node MPI performance is 
available on the EV7. 
 
Note that the benchmarked EV7 system was a prototype, and that the current performance may 
not reflect the achieved level of performance possible on production systems after system and 
application tuning. 
 
 

 ES40 [1] 
(EV68) 

ES45 
(EV68) 

ES45 
(EV68) 

EV7 

System Characteristics     
Clock 833 MHz 1 GHz 1.25 GHz 1.2 GHz 
Node size (CPUs) 4 4 4 16 
L1 Cache 64 KB 64 KB 64 KB 64 KB 
L2 Cache 8 MB 8 MB 16 MB 1.75 MB 

Memory Performance     
Latency (cycles):   L1 
   L2 
            Main 
       Remote Memory 

2 
12 

168 
- 

2 
19 

170 
- 

- 
- 
- 
- 

2 
12 

106 
162-2901 

Read Bandwidth (GB/s):  L1 
     L2 
              Main 
        Remote Memory 

4.93 
3.972 
1.702 

- 

6.47 
6.072 
2.272 

- 

7.89 
7.522 
2.272 

- 

7.77 
6.20 
4.58 
3.60 

MPI performance     
Intra-Node (Point to Point) 
Uni-directional:   Latency (µs) 
    Bandwidth (MB/s) 
Bi-directional:   Latency (µs) 
    Bandwidth (MB/s) 

 
6.2 
695 
12.7 
317 

 
4.9 
792 
8.9 
379 

 
- 
- 
- 
- 

 
1.7 

1,080 
2.2 
485 

Inter-Node3 (QsNet – Elan3) 
Uni-directional:   Latency (µs) 
    Bandwidth (MB/s) 
Bi-directional:   Latency (µs) 
    Bandwidth (MB/s) 

 
5.6 
199 
9.8 
79 

 
4.5 
293 
7.4 
132 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
Table 2 – Comparison of various performance characteristics of Alpha machines. 
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Notes on Table 2: 
 

1 – Remote memory latency on the EV7 varies on the distance (PE hops) between data 
locality and PE accessing data. 

2 – The memory bandwidth on the ES40 and ES45 decrease depending on the number of PEs 
simultaneously accessing memory (a decrease up to a factor of 2 is possible). No 
decrease occurs on the EV7.  

3 – Peak values for inter-node Latency and Bandwidths are quoted. These can decrease 
depending on distance between nodes, and physical lengths of wires used. 

 
The performance comparison show a number of significant performance improvements of the 
EV7 1.2-GHz machine in comparison to the existing EV68 ES45 1-GHz machine. These can be 
summarized as: 
 

• the main memory bandwidth is a factor of 2 better  
• in-node MPI latency is almost a factor of 3 better,  
• in-node MPI bandwidth is 30% better 

 
 
6. Summary 
 
The performance evaluation of the EV7 Alphaserver has shown that the machine has an excellent 
main memory bandwidth which is almost a factor of two greater than existing systems. In 
addition, there is only a factor of 2 decrease in the memory read bandwidth between L1 cache at 
7.77GB/s and main memory at 4.6GB/s. The bandwidth from remote memory within the node is 
also high at approximately 3.6GB/s. The small L2 cache (1.75MB) will have a negative impact 
on application performance on larger problem sizes. 
 

The MPI communication performance compares well with current systems - point-to-point 
message latency between adjacent processors is low at 1.7µs and bandwidth between adjacent 
processors is just over 1GB/s. However, the latency is high when compared to remote memory 
latency (1.7µs vs. 135-240ns), and the bandwidth is low when compared to peak remote memory 
bandwidth (1GB/s vs. 3.6GB/s). 
 

The MPI latency increases as the distance between processors increases with the maximum being 
2.4µs. The bandwidth between any two processors is a constant (at just over 1GB/s). However, 
the barrier latency was 11.2µs for all 16 processors – this seems large when compared with 
clusters interconnected with Quadrics QsNet [6]. The broadcast bandwidth also decreases as the 
number of processors increase due to a lack of hardware support – the bandwidth for all 16 
processors was 300MB/s. 
 

The application performance showed that in-node scaling was good resulting in high efficiencies 
on most codes (90% at 16 processors for SAGE, and SWEEP). On a detailed analysis of scaling 
the spatial grid in SAGE, the performance decrease from running a small problem (cache bound) 
to a large problem (main memory bound) was only 24%.  
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Due to the excellent main memory bus bandwidth, a higher performance should be achievable on 
the EV7 machine in comparison to a similarly clocked existing Alphaserver ES45. 
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