

Evaluating Open Source Software for

Health Information Exchange

HIMSS Healthcare Information Exchange
Open Source Task Force White Paper

June 2008

© 2008 Healthcare Information and Management Systems Society (HIMSS). 1

Table of Contents

Introduction... 3
Open Standards... 4
Open Source Terms .. 5

Open Source Licensing ... 5
Public Domain Software ... 6
Free Software (No Cost to User) .. 6
Free Software (As in Freedom)... 6

Open Source Software Development .. 6
Leveraging Open Source Communities .. 7
Open Source Products... 8
Open Source and Security... 9
Open Source Business Model ... 9

HIE Functionality Considerations .. 9
Benchmarking ... 10
HIE Open Source Product Check List .. 10

Managing an Open Source HIE Project... 11
Planning .. 12
Analysis... 13
Design ... 13
Development / Acquisition ... 14
Testing... 15
Deployment... 15
Maintenance.. 16
Conclusion .. 16

Appendix: Open Source Software Fact Sheet .. 18
Credits .. 22

© 2008 Healthcare Information and Management Systems Society (HIMSS). 2

Introduction

A recent review of developing Health Information Exchange (HIE) projects focused on
governance and operational models,1 but was silent on technical approaches. The
majority of projects examined in a recent review of projects that had been established,
including ones that had failed,2 also did not review any of the software technologies that
had been used to deploy the projects. For instance, the suggested reason for failure for the
Santa Barbara County Clinical Data Exchange was “failure to obtain sufficient
participation from local stakeholders,” but the authors did not explore how the technical
approach itself might have had an influence on the outcome of the project. While a strong
organizational structure is essential for an effective HIO (Health Information
Organization), choosing the right technology is also critical. The time is right to explore
the suitability of open source software technology for HIE projects.

In the ensuing discussion, the terms HIE and HIO will be used, recognizing that the
Regional Health Information Organization (RHIO) is one popular form of HIO. The use
of these terms in this report is in keeping with a recent publication from the U.S.
Department of Health and Human Services (HHS).3 Whether the subject is a local
exchange, regional exchange, state-based exchange, or a node of the National Health
Information Network (NHIN), a careful study of the architecture and technology
underpinnings is critical to understanding the organization’s successes and failures.

 A small minority of HIE projects have used the term “open source” to describe some
component of the technology used in the project. Although there have been occasional
reviews of open source software’s applicability for healthcare information technology,4
they have not specifically explored the potential for use of open source software for HIE
implementations.5 In this paper, a number of issues regarding the use of open source
software in healthcare will be explored, but with a particular emphasis on considerations
for HIE projects. First, how the word “open” has been used—in “open” standards and in
“open” source—will be addressed.

1 Holland Marc. It’s Spring and the HIEs are Blooming. Health Industry Insights #H1211724; April, 2008.
2 Adler-Milstein Julia., et al. The State of Regional Health Information Organizations: Current Activities
and Financing. December 11, 2007. Available at
http://content.healthaffairs.org/cgi/content/full/hlthaff.27.1.w60/DC1
3 Defining Key Health Information Technology Terms. A report from the National Alliance for Health
Information Technology to the Office of the National Coordinator for Health Information Technology;
April 28, 2008.
4 Goulde Michael, et al. Open Source Software: a Primer for Health Care Leaders. California Health Care
Foundation; March, 2006.
5 Fauss Samuel, Sujansky Walter. Open Source EHR Systems for Ambulatory Care: A Market Assessment.
California Health Care Foundation; January, 2008.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 3

http://content.healthaffairs.org/cgi/content/full/hlthaff.27.1.w60/DC1

Open Standards

The development of standards for software in healthcare has been an essential step for
creating architectures for rational health information exchange.6 Healthcare information
technology (IT) has implemented a number of standards that are used in other industries
(such as XML for message formats and the ISO 17799 Security Standards and NIST-800
Series Security Framework which have largely been incorporated into HIPAA). In
addition, a number of standards have been developed which are used almost exclusively
by healthcare. Healthcare IT standards include messaging standards such as the various
versions of HL7, as well as terminology standards such as SNOMED and LOINC.

One criterion that is often used to evaluate a particular standard is its “openness.” In this
case, “open” refers both to the breadth of the community involved in developing the
particular standard as well as to the transparency of the development process.
Transparency (publicly scheduled meetings and calls, regular correspondence, predictable
cycles of review, widely disseminated proceedings and meeting minutes, etc.) encourages
and facilitates community involvement. Broader community involvement predicts
broader usage of a standard. Standards that are broadly used and understood across a
community foster interoperability, which is a cornerstone of rational health information
exchange.

The business of creating Standards Development Organizations (SDOs) requires funding.
SDOs are typically funded in a variety of ways including membership dues, parent
organization support, grants, and licensing. While certain standards, such as CPT-4,
operate in a business model that depends on comparatively high licensing fees from
organizations wishing to implement the standard, there has been significant movement
toward reducing the license costs for other standards, most notably SNOMED. That does
not mean that the costs for maintaining SNOMED have disappeared; rather, those costs
have been absorbed first by National Library of Medicine and then by International
Health Terminology Standards Development Organization (IHTSDO.)

Open standards can be used by any software development organization and by any
customer of a software development organization so long as both organizations adhere to
that particular standard’s licensing stipulations. It follows, then, that any standard can be
used by both proprietary and open source software development organizations. It also
follows that if any software development organization does not incorporate those open
standards that are required for interoperability, the products from that organization are
not likely to be very useful for rational health information exchange projects.

Simply put, interoperability is the ability of two or more systems (human or machine) to
exchange information based on previously agreed upon structure and/or meaning.
Unfortunately, the term is confusingly applied to several situations:

6 Uniform Data Standards for Patient Medical Record Information. National Committee on Vital and
Health Statistics Report to the Secretary of U.S. Department of Health and Human Services; July 6, 2000.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 4

• Syntactic interoperability is a condition in which structures are exchangeable
but there is no guarantee that meaning will be consistent across system
boundaries. Earlier versions of HL7 carefully specified the syntax (structure)
of data elements and messages but did not ensure consistent semantics of
elements across messages.

• Semantic interoperability refers to the exchange of meaning between systems.
Humans are adept at exchanging meaning (understanding). Machines,
however, have a very limited capacity unless the exact meaning of each piece
of data is unambiguously defined. Increasingly, healthcare IT projects require
semantic interoperability. This feature is readily demonstrable between
humans using email and the Internet, but is much more difficult when
machine processing of data prior to human interpretation is required (e.g.,
machine-assisted decision support).

• Computable semantic interoperability (CSI) refers to the exchange of
consistent and unambiguous meaning between two or more machines. This
does not mean that all machines must process a given piece of data identically,
but rather that all machines receiving a given piece of data interpret its
meaning to be the same.7

Since achieving effective HIE is dependent on the shared use of clinical information,
standards for ensuring semantic interoperability are essential; otherwise, a hospital
system could be exchanging information with a physician office system but neither
system recognizes what is being transmitted.

Open Source Terms

Just as “interoperability” has come to mean different things to different people, “open
source” has a wide range of meanings in two divergent areas:

• “Open source” software development as an engineering process; and
• Licensing costs for “open source” intellectual property.

Below, open source licensing costs are discussed, and in the following section the open
source software development process is reviewed. The key point is that “open source” is
a broadly inclusive term that by itself lacks specificity to the extent that two nominally
open source software packages may be completely incompatible in a given situation
based on a various licensing and technical conflicts.

Open Source Licensing

There are many different types of open source licenses. Appendix A provides an
overview of open source licensing prepared by the HIMSS Ambulatory Information
Systems Open Source Work Group. Some licenses are incompatible with each other. The
Open Source Initiative8 website maintains a list of 70 separate open source licenses that
have each been approved by a formal (and open) process.

7 Jones TM, Mead CN. The Architecture of Sharing. Health Informatics. Nov, 2005

8 http://www.opensource.org/licenses/alphabetical

© 2008 Healthcare Information and Management Systems Society (HIMSS). 5

Public Domain Software

Public domain software is software that is not copyrighted. By itself, public domain
software is not open source (although it may or may not be developed under an open
source process). A public domain software package may have one or more dependencies
on a proprietary software environment in order for it to be effectively used. Public
domain software is generally available at no cost or minimal cost (i.e., $5).

Free Software (No Cost to User)

Some open source software is released for free (no cost to user). Anyone can download it
and, providing that one has the appropriate hardware and operating system (if required),
the software can be used. OpenOffice.org9 is an example of free software released under
an open source license. Free software can be proprietary as well as open source. One
cannot assume that free (no cost to user) software can be copied, modified, or distributed,
unless it is released under an open source license. One cannot assume that source code is
available for free (no cost to user) software.

Free Software (As in Freedom)

Free (as in freedom) software means that source code is available10 and that a developer
can copy, modify, and/or distribute the software. Its use/distribution may require a fee. It
is this use of “free” that best captures “open source.”

Open Source Software Development

As part of a healthcare software contract, a funding organization may stipulate that code
developed for the project is made available to many other users without end user license
fees. In some cases, this stipulation is met by creating the required software in an open
source development environment and releasing it under an open source licensing model.
More commonly, the code is developed in relative obscurity and then released for broader
use when the project is complete. Because the code has been developed for a specific
project, it may not be broadly applicable. Moreover, because the people who developed
the code may consider their jobs to be finished when the code has been delivered to the
funding organization, there may be little in the way of ongoing support available to other
potential users outside of the organization that funded the project.

Occasionally, an entrepreneurial group will decide to “productize” the code that had been
developed for a project. That group will then attempt to establish a business that allows
the group to garner revenue for supporting the code outside its original project use and to
charge consulting fees for extending the code (hopefully in a carefully governed way) for

9 http://www.openoffice.org
10 The most widely used collaborative site for housing open source software is SourceForge.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 6

additional functionality. While this is a commendable activity,11 there are hazards. If the
software architecture/design has been created for a specific project without a broader
view from the outset, a great deal of re-work will need to be done. Moreover, many such
projects are released to the open source community upon completion rather than being
released incrementally. This means that community input (along with the attendant
scrutiny to quality) will be far more difficult to incorporate. Finally, many such projects
may have incorporated proprietary code or dependencies on proprietary code that were
not problematic for the original funding organization but that quickly become issues for
other organizations that wish to use the code from the project.12

Leveraging Open Source Communities

Open source software development is a discipline. Creating new open source code can be
very much like performing on the high wires without a net. The creator(s) of the initial
kernel in the project or product places the code on SourceForge (or a similarly available
site) and then seeks all comment and criticisms. Bugs are vigorously discussed and fixed
in the open, lending an unusual degree of transparency to the development process. This
degree of community engagement takes time, and may give the appearance that open
source development is more time consuming than traditional code development. The
trade-off of the open source process is a higher degree of software quality. Detecting
bugs before the software is placed into actual use is just one reason why good open
source software can be superior to proprietary software.

One way to accelerate an open source development process is to leverage existing open
source components and the communities that support them. Leveraging a collection of
open source communities rapidly increases the number of eyes examining development.
Moreover, using robust open source components will likely increase the number of
engineers who may be called upon to support a complex open source project, such as
would be entailed for HIE. For instance, there are more engineers who are familiar with
open source databases such as PostgreSQL and MySQL than with less widely deployed
open source databases. The same comment can be made about the use of Java versus less
widely used programming languages.

“Governed” open source projects/products are those in which the addition of code to the
core code line is tightly controlled. For instance, while many engineers have made
changes to the core Linux code, the code from a handful of those engineers (the
“committers”) actually becomes part of the core Linux code. Any code changes that are
not committed to the core Linux product represent forks in the code that are not
necessarily supported by the mainstream developers.

11 This sort of evolution should be familiar to workers in healthcare IT. Many products in use today began
life as projects in academic or governmental settings.
12 The California HealthCare Foundation faced this dilemma in 2006 when it sought to release the
proprietary code created for the Santa Barbara County Care Data Exchange to the open source community.
To convert the software to an open source license required identifying and removing all proprietary
portions of the software code that would be incompatible with the open source license under which the
code was to be released. http://www.chcf.org/topics/view.cfm?itemID=132846

© 2008 Healthcare Information and Management Systems Society (HIMSS). 7

http://www.chcf.org/topics/view.cfm?itemID=132846

“Ungoverned” open source projects may encourage broad and relatively indiscriminate
community contributions without the sense that a main code stream is being developed.
Major support organizations such as Red Hat are more likely to support open source
projects/products that are carefully governed. We believe that it is very important for
organizations that are considering using open source software for health information
exchanges to fully understand how the code is governed and how the code is supported
for implementation at a customer site.

Open Source Products

If one considers all of the software in healthcare that has been labeled “open source,”
either mistakenly or accurately, one discovers relatively few “pedigreed” open source
products. A true open source product is developed, from the onset, in a governed open
source development environment using, wherever possible, tested open source
components. An open source product is not developed for a specific customer but is
developed to solve a set of problems faced by many healthcare organizations; it has broad
applicability. Iterations of the code have been available for community review long
before the product is considered to be generally available (GA) for use at customer sites.

An open source product should have not only a dedicated development team but should
also have one or more dedicated support teams (development and support teams may be
in different organizations). Organizations considering the use of open source software for
healthcare information exchanges are advised to check for the availability of support
services. It is critical for all HIOs to secure strong technical skills to implement enterprise
level software. Interestingly, organizations that seek to provide commercial support
services for an open source product as well as organizations actively implementing an
open source product may attempt to identify potential members of their work force by
investigating the community participants for the product. This is just another way in
which developers can leverage their participation in open source development.

If the open source product is maintained on SourceForge, for example, one can assess the
degree of community involvement from the activity posted on the product’s SourceForge
project site. The various forums for community participation should have many more
participants than just the code committers. The forums should be sounding boards for
high level clinical functionality comments as well as low level chatter about relatively
arcane technical nuances. If a product fails to engage the community, the SourceForge
forums will show little in the way of ongoing conversations; this can be a sign that the
code is not being examined and may indicate that a valuable community oversight
activity is failing to take place.

To further transparency, an open source product development organization should have a
menu of white papers that are aimed at various levels of users (ranging from clinicians to
engineers). In addition, the development organization should have taken pains to ensure
ease of downloading by preparing various kits for trial use.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 8

Open Source and Security

Since there is an admirable emphasis on protecting patient privacy in regards to
healthcare information, managers need to be assured that an open source product
implementation provides the level of security that is expected by consumers and
clinicians. There is an unfortunate tendency to conflate security with secrecy. When such
confusion reigns, then it is easy to carelessly assume that open source code must not
provide the same degree of security as proprietary code. In other arenas, such as
elections, where privacy and security are also very important, it has become apparent that
using open source software is likely to ameliorate security concerns rather than increase
them.

“When I talked to Jennifer Brunner in October, she told me she wished all of
Ohio’s machines were “open source” – that is, run on computer code that is
published publicly, for anyone to see. Only then, would voters trust it; and the
scrutiny of thousands of computer scientists worldwide would ferret out any flaws
and bugs.”13

A recent study demonstrated that a substantial number of projects in the U.S. Department
of Defense and in the Intelligence communities have been implemented using open
source software and that security considerations were critical in making the choice.14 If
anything, use of open source software enhances security.

Open Source Business Model

Since an open source product traditionally does not require the purchase of a license, how
do organizations “make money” from open source products? Since most companies that
develop proprietary healthcare IT products derive their income from multiple activities,
of which license fees are one, it should come as no surprise that commercial
organizations can garner revenue from providing support services and custom code
extensions with open source products. The sales/marketing cycle for an open source
company may bear little resemblance to the cycle of those activities for a proprietary
software company.15 In many cases, the customers come to the commercial open source
support organization after they have downloaded and “tried out” the open source code.

HIE Functionality Considerations

Over the past few years, it has become apparent that the functional requirements for HIE
and for a hospital-based health information system are both overlapping and different. It
has therefore proved to be challenging to transform any traditional clinical information
systems into a foundation for HIE, although attempts have been made and are continuing

13 Thompson Clive. Can you count on these machines? New York Times Magazine. January 6, 2008.
14 http://www.federalopensourcealliance.com/#Study
15 A very engaging look at the contrast can be found at http://www.linuxworld.com/news/2007/081607-
matt-asay-interview.html?page=1

© 2008 Healthcare Information and Management Systems Society (HIMSS). 9

http://www.federalopensourcealliance.com/#Study
http://www.linuxworld.com/news/2007/081607-matt-asay-interview.html?page=1
http://www.linuxworld.com/news/2007/081607-matt-asay-interview.html?page=1

to be made. For instance, none of the four “original” NHIN prototypes employed a
traditional clinical information system vendor in their architectural approach.

Other attempts have employed software that was not originally designed with healthcare
in mind.

While some solution sets were built from the ground up to address the unique technical
and operational functions of RHIO/HIE entities, others evolved from the expansion of the
functionality of products that were originally targeted at related business functions such
as workflow management, secure messaging, or Web portal development.16

For an organization responsible for HIE to be interested in an open source product, that
product should have incorporated the core functionality of secure information exchange
among the community stakeholders.

Because the desired functionality for HIE can be expected to change as new experience
with this community-centered model is gained, the use of open source products is
particularly attractive because extensions to the code can be proposed by a much larger
community of developers and users. Moreover, if certain extensions developed for one
organization prove to be useful, the community-focused nature of HIE is likely to support
contributing that code to the open source product line (of course, the code committers
would need to endorse the contribution).

Benchmarking

Successful HIE must be able to scale to a large number of patients (figures in the millions
are not unusual). The easy availability of open source code should encourage
benchmarking so that hardware determinations for HIE are less guesswork and more
extrapolation. Simulations of data loads for a particular HIE project should be available
before long-term commitments are made by the organization.

HIE Open Source Product Check List

Based on the discussion so far, a short check list can be created that will allow HIE
project managers to screen available open source software for use.

1. Does the product incorporate the required level of open standards (messaging,
vocabulary, information model) to be useful in HIE?

2. Does the product leverage robust open source components?
3. Are there any dependencies on proprietary software?
4. Has the product been developed in an open source environment from the outset?
5. Does the product continue to evidence active engagement with the open source

community?
6. Is the product’s open source development process governed?

16 Dunbrack Lynne, Holland Marc. RHIO/HIE Market Players Reports. Health Industry Insights (IDC).
June, 2007.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 10

7. Does the product have a full-time development organization?
8. Is there an adequate menu of whitepapers for the product?
9. Can the product be easily installed?
10. Is the product supported by a full-time support organization?
11. Does the product meet your organization’s criteria for functionality, security, and

scaling?
12. Can the product meet the core needs of all of the HIE organization stakeholders?
13. Can the product be extended to meet the future needs of your organization?

Managing an Open Source HIE Project

A fundamental question that should be discussed when reviewing the domain of Open
Source is how IT project management of an open source implementation would differ
from any other vendor-supplied product or internal development activity. Exploring this
question can use a well-defined and understood model – the system development life
cycle (SDLC) which is used by IT project managers around the world to manage IT
acquisition/implementation projects. The SDLC breaks an application development task
into several areas, and defines management tasks during each phase of application
acquisition/development, testing, implementation, use, and refit/replacement. Whether
the project involves use of Open Source code, in-house development, or a vendor-
supplied proprietary product, the steps followed, and many of the considerations, are
common to all three. Examining the following seven high-level stages in the SDLC
reveals how Open Source projects may differ from routine acquisition or development:

• Planning – Define the application boundaries and justify the application, develop
an acquisition plan, and develop a process for managing the project to the plan.

• Analysis – Create use cases with the users and IT specialists that illustrate
business requirements.

• Design – Develop the logical and technical architecture, infrastructure
requirements, user interfaces, and the test cases to support the business
requirements.

• Development / Acquisition – Decide on an approach to acquire the application
and manage the development process.

o Open Source projects will appear to have elements from both development
and acquisition.

• Testing – Test the developed/acquired application, focusing on the system and
user-functional testing.

• Deployment – Place applications into production.
o Process incorporates development of user guides, training, and

implementation management, and often includes post-installation return
on investment (ROI) analysis if required by the organization.

• Maintenance – Monitor help desk and support; keep the application current and
correct bugs that occur after go-live.

o Periodic end-of-life analysis, as needed.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 11

Planning

This first step of the SDLC probably has the fewest differences when considering open
source. The single most important factor is to educate the organization on the benefits
and risks of open source so that the organization can determine if it is willing and able to
manage the risks and leverage the benefits. Early in the planning process, once the
application has been defined and a rough needs analysis is completed, the project’s target
success factors (often called “critical success factors”) should be determined. The
organization’s first open source project will require both enlightened departmental
management and IT savvy for direction, but there is no reason to be unusually concerned.
Good project management skills will suffice to keep the organization on track and
provide for a well designed and soundly implemented application, whether open source,
acquired, or internally developed.

During the planning process, open source projects can be thought of in the same way as
hybrid projects, the only difference is that the initial cost of the open source code may be
very low (even zero), but the code extensions and maintenance costs may be greater,
depending upon the size of the support vendor and the potential for requested changes to
become part of the product’s core code base. In most cases, a well designed and managed
open source project should have lower overall costs over the project lifetime, but good
project management skills are required during all phases to both tightly manage the
application evolution and user expectations. It is common during poorly managed
projects for user expectations to be misaligned with the delivered product, whether it is
open source or proprietary. Open source development organizations that do not spend
much on implementation staffing are not strong vendor partners by themselves since they
lack established implementation methodologies and strong user-analyst skills. Lack of
these skills must be managed, and an experienced project manager will look for outside
user-analyst skills when considering an open source development organization that does
not have a strong support staff.

During the initial project design it is important to have very open discussions with senior
organization management, key departments and respective application user champions
regarding operational procedures and process redesign around the envisioned application.
This is a recurrent theme throughout this section of the paper since this is the single most
important factor impacting a successful installation. “Turn-key” products, which are
easily adapted to existing user procedures, may result in less-than-optimal automation in
the long run. A good project manager will be vigilant in keeping users engaged and
ensuring that process redesign is an integral part of the project.

The functional analysis must match user expectations, and the testing and new
operational procedures must be clear and approved by the users. Consequently, senior
management must make it clear to those ultimately responsible for the application choice
that achievement of a successful install is the responsibility of those who made the
application choice.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 12

Analysis

Use case design and development should be independent of the choice of vendor and
method of acquiring the desired application. During this phase, projects should pay
particular attention to process redesign as mentioned earlier. For those products that have
less flexibility during product implementation, the departmental business processes will
have to fit more closely, or have to be changed to fit. Alternatively, in an open source
environment, new code forks will need to be developed for the project if user processes
cannot adapt to the application flow that has been supplied. Aside from a more intensive
focus on business process redesign, most other facets of the analysis step should not be
different from any other application acquisition or development project.

Design

Upon completion of the analysis phase, the use cases and design requirements should be
well documented. Organizations that typically develop their own software will have well
developed architectures and processes for application program design. Organizations that
typically acquire their applications from vendors have more highly-developed acquisition
skills including Request for Information (RFI)/Request for Proposal (RFP) development,
product review processes, negotiation, and contracting. Organizations considering open
source acquisition should make sure they have a good understanding of their own
technical infrastructure, architecture and component services. Vendor-supplied
commercial products are often implemented on many different platforms within several
different architectures; if an open source product is only offered on open source
platforms, the organizations choices may be narrowed.

Development of the RFI/RFP is typically part of the design process where requirements
are codified into distinct questions regarding the applicant’s processes and functionality.
While there are not significant differences on how such acquisition documents are
composed, the organization should add sections specifically relevant to open source
vendors and solutions, such as those mentioned in the “check list” found in the previous
section.

Finally, development of test cases and a test plan is key to making a good vendor
selection. Vendors should know what the organization expects relative to application
functionality testing, and users, who have provided their input during the analysis phase,
should have clear expectations about how they will be evaluating application
functionality. Where process redesign has been considered, testing design should be
flexible enough to allow vendors to show how their application design will result in user
processes that produce efficiencies equivalent to those envisioned during the analysis
phase. Open source vendors who have designed their products to address specific user
functionality requirements can often have better overall process design, but can also
achieve flexibility in user interfaces commensurate with proprietary software vendors.
Testing design should focus on user efficiency and not the “lipstick” of flashy UIs.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 13

Development / Acquisition

Both acquisition through commercial vendors and development projects can still have
portions of their application architecture satisfied with open source products. Linux is a
very popular operating system which is being used by a growing number of vendors of
commercial products; it has become a favorite platform for in-house development teams.
From a project management perspective, an enterprise’s development projects will differ
little in their management as a mix of proprietary and open source products are
considered and integrated into the developed application.

Acquisition projects will also vary little during the initial steps of creation and release of
the RFI/RFP, and during the follow-on paper evaluation steps. Probably most evident will
be the “flash” and overwhelming volume of a proprietary vendor’s response versus the
probably conservative, almost academic, nature of an open source vendor’s response. The
paper evaluation process should focus on functional capability in the key areas identified
by application users, and should pay attention to long-term ROI as part of the evaluation
process. In most cases, RFPs for large applications such as full electronic health records
(EHRs) will always find proprietary vendors represented in the finalist group when only
functionality is considered. A realistic paper evaluation process considers all available
information, and will not weight overall initial instillation (or day one) functionality too
heavily. When any application is implemented on day one, it is not unusual to find 40%
or more of the feature/functions requested in the RFP ending up on the cutting room
floor.

Vendor demonstrations are another phase of the RFP/sales cycle, and open source
vendors typically will not have the budgets and availability to compete in intensive multi-
day product demonstrations. If the organization is serious about evaluating open source
products on an equivalent basis with proprietary products, then again, the demonstration
stage should take key processes and develop the demonstration scenario around those
processes. Allowing vendors to demonstrate their solutions to certain scripted scenarios
via Web-based meetings will continue to level the playing field since it further reduces
the cost to vendors as well as the cost to the organization.

Site references are very important, but typically site visits will yield ambiguous results
unless they are carefully managed. Traditional proprietary vendors can swing an
application decision through a combination of a willing “demonstration” customer and
four-star lunches and dinners. When evaluating open source solutions, good project
management will spend the extra time to pose specific scenarios that demonstrate how
key functions are performed, and then engage reference customers on Web-based
interviews without intervention from the vendor. These interviews should focus on frank
discussions not only regarding how the application performs certain functions, but also
on the vendor’s specific performance at each step of the process, from contracting
through testing, implementation support, process redesign, and product evolution.

The decision process should focus on overall ROI and fit of the product to the
organization. Contract discussions should begin before the final decision and be well

© 2008 Healthcare Information and Management Systems Society (HIMSS). 14

along when all factors are considered. The ability to work with the vendor during contract
negotiations is a key consideration in selecting the right vendor. All costs should be
considered in the contract. Proprietary vendors should include all costs for interfaces and
functions needed to satisfy the organization’s need, including their cost and expectation
of any client-incurred costs. Open source solutions, while they may not have a
“purchase” cost, will certainly incur many of the same costs as other solutions including
interfaces, customization to organizational architecture, and business redesign. In all
cases, some of these services may have to be acquired externally. Before a contract is
signed, all costs should be considered and documented. Major contract elements must be
worked out. Specific attention should address test cases for the application and any
contracted code extensions expected to meet. As opposed to proprietary vendors, open
source vendors may have no “quarterly quotas” to meet, and consequently may be more
willing to wait for all contracting phases to be completed.

Testing

Testing of the chosen product to the scenarios developed during the analysis and design
phases needs to take place based on the contracted functions. The user community needs
to be bought-in to the final decision process, and the features/functions contracted for
should be used to customize the testing scenarios. Forcing an application to use test
scripts where the acquired functionality is already known to be deficient is both non-
productive and harmful to the overall implementation process. Testing should focus on
designed outcomes and should not be concerned with how elegant the solution is. In
healthcare, elegance often takes a back seat to practicality and desired outcomes.

Since an HIE project is often associated with both acquisition of software and
development of functions to integrate the application into the organization’s overall
technical environment, additional code extensions may also be included in the contract.
The timing of delivery and testing of functionality may need to be phased. The project
manager must be careful with projects to keep product forks to a minimum, which will
hold down the ongoing maintenance cost to the organization.

Upon code turnover, along with the test results there should also be an emphasis on
receiving a full set of product and source code documentation. While this should have
been examined during the purchase decision, a particular emphasis needs to be placed on
the as-built documentation since that may be the only artifact that can be used to
reconstruct application design when the original supporting vendor is acquired or goes
away. It is also important if there is any thought of the organization taking responsibility
for its own maintenance.

Deployment

There is virtually no difference in deployment of applications based on their sourcing. If
the HIE project has a particular focus on process redesign to meet efficiency objectives,
added cost will most likely be required for design of training materials and training.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 15

This is the time when user expectations must be most carefully managed. Since the
acquisition cycle may well be separated in time from the actual deployment by many
months if not over a year, depending on project size, users will have forgotten what they
contracted for, and may have been exposed to more recent and elegant designs since the
acquisition occurred. A simple way to keep users engaged is with regular bulletins on
testing and discussions/reminders of functional design and process redesign. Working
product demonstrations that allow users to see changes in the product are also helpful.

Open source projects will most likely require additional assistance from third parties –
experts in implementation of the open source product. In truth, many traditional
proprietary vendors rely on third party implementation as well. While an open source
product may have been very cost-attractive when evaluating the overall cost/benefit, do
not underestimate the inevitable costs for this step. In the latter stages of any application
acquisition process, there is typically lack of organizational interest in continued funding
for the product installation, and there will be significant pressure on the project to cut
costs and get the product live. Such pressure can be singularly disastrous to any product
installs if the install cost has been ignored in the initial contracting. To be safe, the
project manager should try to get budget funds for installation, training, and process
redesign committed and sequestered as soon as possible after the actual contracts are
signed (if not in conjunction with the signing).

Maintenance

Open source development organizations usually do not offer end user support services.
This means that the HIO must either work with an implementation partner that provides
such services or develop those “help desk” services internally. The same choices apply to
project-driven application change requests. While an open source development
organization may not have organized user groups that collectively drive application
evolution, the HIE project management team can either work independently with other
organizations using the same product or can work with an implementation/support
services partner that has created these user forums. The HIE project management team
should review how the chosen product has kept abreast of emerging requirements, such
as those being formulated by the Certification Commission for Healthcare Information
Technology (CCHIT) (www.cchit.org).

Conclusion

It is clear that the challenges in managing an open source project are virtually identical to
managing a project that deploys proprietary software. If, however, the HIO has any
ambition to develop proprietary software that is built on open source foundation, then
careful attention must be paid to the particular license under which the open source
product is released. As noted in the Appendix, the GPL (General Public License) license
is not as flexible in this regard as are other licenses, such as L-GPL. If the HIE project
management team exercises appropriate due diligence regarding the capabilities of both
the open source development organization and the potential open source
implementation/support organization (including creating such an organization internally),

© 2008 Healthcare Information and Management Systems Society (HIMSS). 16

http://www.cchit.org/

and if the team follows through on all of the recommendations outlined above, an open
source approach to an HIE project offers no increased risk and also offers some novel
factors for risk mitigation.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 17

 Appendix

Open Source Software Fact Sheet
Open Source Software (OSS) products are systems whose human-readable ("source") code is
always freely available to anyone who is interested in downloading it. This is in contrast to most
commercial software, whose source code is considered intellectual property and a trade secret not
to be disclosed. Advantages of open source include availability, extensibility, and the opportunity
for peer review. Open source products are made available under a variety of licenses, which are
discussed below. Although many of the challenges and benefits of using open source software are
the same as with commercial software, there are some unique aspects of open source software
that need to be kept in mind when selecting a product or vendor.

Questions about Open Source Software

What are the advantages of open source software for healthcare?
Open source solutions have a number of advantages for a healthcare enterprise. The
collaborative sharing of ideas and concepts practiced by users of open source software can create
‘communities’ of developers, partners, testers and users who interact with each other to further
improve the software. This can speed up the development process, bringing in skills that a single
software vendor would not be able to provide. And the community can also provide an
alternative, though unconventional, avenue for technical support.

At the data level, an open source software application does not strand critical health data in a
proprietary format. When access to mission critical business data is controlled by an open source
application, healthcare organizations are protected from the risk of a technology vendor business
failure, or from a merger or acquisition that leads to the sun setting of an installed software
solution by the new vendor, and the imposition of a mandatory, expensive and disruptive software
“upgrade.” Upgrades can be a non-trivial event for an enterprise health care software product.
Open Source software increases the bargaining position of a healthcare enterprise, making it
possible to “fire” a suboptimal open source software vendor without losing access to the business
data.

What are the disadvantages of open source software for healthcare?
Open source solutions present risks for the technology infrastructure of an enterprise lacking prior
experience with open source software. Absence of qualified technology staff on site may limit
the agility of support for users. In many narrow healthcare verticals there is no compelling open
source alternative to the dominant proprietary software vendors. In some cases, there are
insufficient options for access to qualified vendor support for the open source solution. There
may also be indemnification and liability risks associated with an open source software solution
which lacks a well-capitalized vendor to stand behind the product.

© 2008 Healthcare Information and Management Systems Society (HIMSS). 18

Appendix

What is open source software?
“Open source software” refers to the licensing terms governing the use and distribution of the
software code as intellectual property. According to the Open Source Definition1 ten criteria
must be met to qualify a software program as “open source”:

1. Free redistribution is allowed and royalty payments are prohibited.
2. The program must include source code.
3. Modifications and derived works are allowed.
4. The integrity of the original source code must be preserved.
5. No discrimination against any person or group of persons.
6. No discrimination against fields of endeavor.
7. The license remains with the program even if it is redistributed.
8. The license must not be specific to a product.
9. The license must not restrict other software.
10. The license must be technology neutral.

Open source software has its roots in the 1970s and 1980s when researchers at major universities,
such as UC Berkeley and MIT, collaborated to rapidly develop the Unix operating system.
During the1990s, when Linus Torvalds launched the Linux kernal project, the use of open source
software grew into a mainstream feature of the computer industry. Today, in addition to the open
source operating system based on the Linux kernal, there are many enterprise open source
software solutions, such as databases (MySQL, PostgreSQL), CRM solutions (SugarCRM),
browsers (Firefox), Web servers (Apache), development tools (Eclipse), and more.

What is an open source license?
The legal framework for an open source software license is built on existing copyright and
contract law. The original author of the software source code retains the copyright while an open
source license is assigned to the software code. Others who want to use the software must abide
by the terms of the license. All open source licenses stipulate that the source code is available for
inspection and reuse.

What types of open source licenses are available?
Open source software licenses fall into two categories, sometimes referred to as “permissive” and
“copyleft.” Permissive licenses conform to the ten open source criteria listed above, while
copyleft licenses conform to the “Four Freedoms” (see below) published by the Free Software
Foundation.2

What is “copyleft”?
“Copyleft” (as opposed to “copyright”) is based on the Four Freedoms written by Richard
Stallman and published by the Free Software Foundation:2

1. The freedom to run the program, for any purpose
2. The freedom to study how the program works, and adapt it to your needs
3. The freedom to redistribute copies so you can help your neighbor
4. The freedom to improve the program, and release your improvements to the

public so that the whole community benefits

© 2008 Healthcare Information and Management Systems Society (HIMSS). 19

The fourth freedom is also a restriction: by changing the source code, the licensee agrees to
release the changed code under the same free software license. In other words, the results must
also remain as open source software, allowing the whole community to benefit from all
improvements.

What are the differences between “permissive” and “copyleft” open source licenses?
“Permissive” licenses are also called the “BSD style” license, after the original Berkeley Software
Distribution license for Unix. The BSD license was based on open collaborative sharing among
academic researchers. There are many BSD-style licenses, the most common being the Revised
BSD, MIT, L-GPL, Mozilla, Apache and Eclipse licenses. There is only one “copyleft” license,
the General Public License (GPL) published by the Free Software Foundation. The main
difference between the two types of licenses is that the GPL requires the software and all
derivative works to always be licensed under the GPL. In comparison, BSD-style licenses, like
academic collaboration, only require acknowledging the original authors, and place few
restrictions on derivative uses of the source code.

What is the advantage of BSD-style licenses?
By allowing derivative works to be licensed under a restrictive, non-open source license, BSD
style licenses are ideal for mixed enterprise environments, where proprietary software will be
integrated with open source software. The absence of the compulsory open source provision for
derivative works incentivizes the BSD licensed intellectual property as a library of components
that can be easily integrated with proprietary products. BSD style licenses are also used to
preemptively release enterprise software solutions under an open source license in an attempt to
gain market share advantages. An example of this strategy is IBM’s market-making release of
the Eclipse SDK environment under a BSD-style license.

What is the advantage of the GPL?
By requiring derivative works to remain under the GPL license, the “copyleft” approach
incentivizes the rapid accumulation of a public commons of GPL licensed intellectual property.
This programmer-friendly approach is most useful to enterprises that have no need for systemic
integration with non-GPL software. The compulsory openness of intellectual property under the
GPL can be a powerful competitive advantage for projects with a large community of users and
developers. The Linux kernal is licensed under the GPL.

What is the Free Software Foundation?
The Free Software Foundation (FSF) maintains both the GPL license and the Limited GPL (L-
GPL) license. The L-GPL is necessary to allow “permissive” style licensing for instances where
the GPL is incompatible with existing intellectual property rights.

What is the business model of an open source healthcare software vendor?
Open source software vendors compete for service and support contracts, not for sales. This
forces a successful open source vendor to concentrate on customer support, because the absence
of proprietary enterprise healthcare software lock-in allows a customer increased opportunity to
“fire” the vendor. In addition, the absence of new sales revenue reduces the vendor’s
opportunity to leverage sales to capitalize new feature development.

If Open Source is such a good thing, why isn’t implementation more widespread in healthcare?
There is limited penetration of open source solutions into healthcare enterprises. The absence of
development capital for open source projects can result in suboptimal user interfaces and feature

© 2008 Healthcare Information and Management Systems Society (HIMSS). 20

sets among newly developed open source software solutions. On the other hand, general
technology adoption in healthcare is at abysmal rates in some markets.

Where can I learn more about open source software in healthcare?
A good place to start is by reading the Linux Medical News Web site.3 There is a global mailing
list named “Openhealth” at Yahoo! Groups.4 O’Reilly, the technology publisher,5 specializes in
high quality books about open source software. You can also join the HIMSS Open Source
Work Group.

References
1. The Open Source Definition is maintained by the Open Source Initiative

(http://www.opensource.org), a non-profit corporation dedicated to managing and promoting
the Open Source Definition for the good of the community.

2. The GPL and the L-GPL are maintained by the Free Software Foundation.

http://www.fsf.org

3. http://www.linuxmednews.com

4. http://tech.groups.yahoo.com/group/openhealth

5. http://oreilly.com

Appendix Fact Sheet is located on the HIMSS website at:
http://www.himss.org/content/files/HIMSSOpenSource.pdf

© 2008 Healthcare Information and Management Systems Society (HIMSS). 21

http://www.himss.org/content/files/HIMSSOpenSource.pdf

© 2008 Healthcare Information and Management Systems Society (HIMSS). 22

Credits
Special acknowledgment and appreciation is extended to Tom Jones, Chair of the HIMSS
HIE Open Source Task Force, for his time, leadership and content contribution in the
development of this white paper.

Members of the HIMSS 2007 – 2008 HIE Open Source Task Force, who spearheaded the
development of this white paper, include:

Tom Jones, MD (Chair)
Medical Director
Tolven
tom.jones@tolvenhealth.com

Neil Cowles;
CEO
Tolven
neil.cowles@tolvenhealth.com

Richard Kubica
Managing Director & CTO, IS Infrastructure
Hartford Hospital, Information Services
Rkubica@harthosp.org

Dave Minch
HIPAA/HIE Project Manager
John Muir Health
Dave.Minch@johnmuirhealth.com

Will Ross
Project Manager
Mendocino Informatics
wross@minformatics.com

Pam Matthews, CPHIMSS, FHIMSS
Senior Director, Healthcare Information Systems
HIMSS – Staff Support
pmatthews@himss.org

Holly Gaebel
Coordinator, Healthcare Information Systems
HIMSS – Staff Support
hgaebel@himss.org

The inclusion of an organization name, product or service in this publication should not
be construed as a HIMSS endorsement of such organization, product or service, nor is
the failure to include an organization name, product or service to be construed as
disapproval. The views expressed in this white paper are those of the authors and do not
necessarily reflect the views of HIMSS.

mailto:tom.jones@tolvenhealth.com
mailto:neil.cowles@tolvenhealth.com
mailto:Rkubica@harthosp.org
mailto:Dave.Minch@johnmuirhealth.com
mailto:wross@minformatics.com
mailto:pmatthews@himss.org
mailto:hgaebel@himss.org

	Introduction
	Open Standards
	Open Source Terms
	Open Source Licensing
	Public Domain Software
	Free Software (No Cost to User)
	Free Software (As in Freedom)

	Open Source Software Development
	Leveraging Open Source Communities
	Open Source Products
	Open Source and Security
	Open Source Business Model

	HIE Functionality Considerations
	Benchmarking
	HIE Open Source Product Check List

	Managing an Open Source HIE Project
	Planning
	Analysis
	Design
	Development / Acquisition
	Testing
	Deployment
	Maintenance
	Conclusion
	 Appendix
	Open Source Software Fact Sheet

	Credits

