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Motivation

• Computational simulations have become a key contributor to:
– Design and virtual prototyping of engineered systems

– Supplementing experiments and testing of systems

– Certification of the performance, safety, and reliability of high-
consequence systems

• Why is verification and validation (V&V) important?

– V&V procedures are the primary means of assessing accuracy in
computational simulations.

– V&V procedures are the tools with which we build confidence and
credibility in computational simulations.

• The DOE Accelerated Strategic Computing Initiative (ASCI) is
heavily investing in the research and development of V&V
methodology and tools.
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Outline of the Presentation

• Terminology

• Code Verification

• Solution Verification

• Validation Fundamentals

• Validation Experiment Characteristics

• Closing Remarks
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Terminology: Verification

American Institute of Aeronautics and Astronautics, Committee on
Standards in Computational Fluid Dynamics definition (1998):

 Verification: The process of determining that a model implementation
accurately represents the developer’s conceptual description of the
model and the solution to the model

Verification
deals with
mathematics
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Two Types of Verification

• Verification is now commonly divided into two types:

• Code Verification: Verification activities directed toward:

– Finding and removing mistakes in the source code

– Finding and removing errors in numerical algorithms

– Improving software using software quality assurance practices

• Solution Verification: Verification activities directed toward:

– Assuring the accuracy of input data for the problem of interest

– Estimating the numerical solution error

– Assuring the accuracy of output data for the problem of interest
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Definition of Validation

Validation: The process of determining the degree to which a model
is an accurate representation of the real world from the perspective
of the intended uses of the model

Validation
deals with
physics
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Important Features of
Verification and Validation

• Both definitions stress “process of determining”:
– Each process provides evidence (substantiation)

– The veracity, correctness, or accuracy of all possible solutions to
the conceptual model cannot be proven

• Both definitions stress comparison with a reference standard:
– A measurement of accuracy, or error, must be available

– For verification, the standard is the “conceptual model”

– For validation, the standard is the “real world”

Verification provides evidence that the computational model is
solved correctly and accurately.

Validation provides evidence that the mathematical model
accurately relates to experimental measurements.
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Model Fidelity and Model Validation
(ASME Committee on V&V in CSM, 2003)
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Code Verification
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Numerical Algorithm Verification

• Formal order of accuracy of a numerical method  is
determined by:
– Taylor series analysis for finite-difference and finite volume

methods
– Interpolation theory for finite-element methods

• Consider the 1-D unsteady heat conduction equation:

• Using a forward difference in time and a centered difference
in space, the Taylor series analysis results  in:
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Observed Order of Accuracy

• Computed solutions do not typically reproduce the formal
order of accuracy

• Factors that can degrade the formal order of accuracy include:
– Mistakes in the computer code, i.e., programming  errors
– Dx, Dy, Dz, Dt are not sufficiently small for the solution to be in the

asymptotic convergence region, i.e., truncation errors

– Singularities or discontinuities in the solution domain and on the
boundaries

– Insufficient iterative convergence for solving nonlinear equations

– Round-off error due to finite word length in the computer

• We use the term “observed” order of accuracy for the actual
accuracy determined from computed solutions



12

Methods for Determining the
Observed Order of Accuracy

• Method of Exact Solutions (MES):
– MES involves the comparison of a numerical solution to the exact solution

to the governing PDEs
– MES is the traditional method for code verification testing
– Number and variety of exact solutions is extremely small

• Method of Manufactured Solutions (MMS):
– MMS is a more general and more powerful approach for code verification
– Rather than trying to find an exact solution to a PDE, we “manufacture” an

exact solution a priori
– It is not required that the manufactured solution be physically real
– Use the PDE operator to analytically generate source terms in a new PDE
– The manufactured solution is the exact solution to a new (modified)

equation: original PDE + source terms
– MMS involves solving the backward problem: given an original PDE and a

chosen solution, find a modified PDE which that chosen solution will satisfy
– Initial & boundary conditions are determined from the solution, after the fact
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Solution Verification

• Three aspects of solution verification:
1. Verification of input data

- Ensuring correct input files, grids, physical and material data, etc.

2. Numerical error estimation of the solution
- Mapping from continuum mathematics to discrete mathematics
- Non-zero Dx, Dy, Dz, Dt

- Insufficient iterative convergence for solving nonlinear equations

- Round-off error due to finite word length in the computer

3. Verification of output data
- Ensuring that the correct files are used and post-processing steps taken

• Solution verification must be performed for every simulation
that is sufficiently different from previous solutions
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Numerical Solution Error

• Discretization error (DE) arises due to the mapping of
PDEs to discretized equations

• The DE can be clearly related to the truncation error (TE)
using a Taylor series expansion for linear PDEs

• For nonlinear problems, the relation between DE and TE is
not as straightforward (Celik and Hu, 2003)

• Discretization of the boundary conditions can dominate the
numerical accuracy if the the order of accuracy is less than
the interior scheme

• The total (or global) DE is made up of two components
– Local DE due to the local element size
– Error that has been transported from other regions (also known as

pollution error)
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Local and Transported Error
(Roy, 2003)
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Approaches for Estimation of
Discretization Error

• a priori error estimation:
– Estimated before the numerical solution is computed
– Estimated by truncation error analysis for finite difference or finite

volume scheme
– Estimated by interpolation theory for finite element schemes
– Not useful for practical problems because the magnitude of the error is

only know within a (unknown) constant

• a posteriori error estimation
– Estimated after at least one numerical solution is computed
– Finite-element-based error estimation

• Recovery methods: e.g., Zienkiewicz-Zhu (1992)
• Residual methods, adjoint methods

– Extrapolation-based error estimation
• Richardson extrapolation (h-extrapolation)
• Order extrapolation (p-extrapolation)
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Validation Fundamentals

• Goals of validation:
• Tactical goal: Characterization and minimization of uncertainties

and errors in the computational model as well as in the
experimental data

• Strategic goal: Increase confidence in the quantitative predictive
capability of the computational model

• Validation procedure does not imply that the experimental
data is always correct:
• Experimental uncertainty estimates may be very large
• Unknown bias errors can exist in the experimental data

• Validation experiments:
• Can be conducted at different levels in a hierarchy of complexity
• Various system response quantities can each be used in a

validation metric
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Validation Experiment Hierarchy
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Traditional Experiments vs.
Validation Experiments

Three types of traditional experiments:

1. Improve the fundamental understanding of the physics:
• Ex: Fluid dynamic turbulence experiment, experiment for understanding

the decomposition of a thermal protection material

2. Improve the mathematical models of some physical phenomena:
• Ex: Detonation chemistry experiment, multi-phase flow experiment

3. Assess subsystem or complete system performance:
• Ex: Performance of the National Ignition Facility

• Model validation experiment
– An experiment that is designed and executed to quantitatively estimate a

mathematical model’s ability to simulate a physical system or process.

• The computational model developer/code user is the customer.
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Why is it Difficult to Use Existing
Experimental Data for Model Validation?

The most common reasons are (in priority order):

1. Incomplete measurement or documentation of model input
quantities:

– BCs and ICs (including actual geometry and facility
imperfections)

– Physical/material properties
– System excitation or imposed electromagnetic fields

2. Limited measurement of system output quantities:
– Typically only global or high-level quantities are measured

3. Limited experimental uncertainty estimates and
documentation of:

– Random error
– Bias error (Ex: diagnostic technique, facility imperfections)
– Unit-to-unit or setup-to-setup variability
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Validation Experiment Characteristics

1. A validation experiment should be jointly designed and
executed by experimentalists and computationalists:
– Close working relationship from inception to documentation

– Complete candor concerning strengths and weaknesses

2. A validation experiment should be designed to capture the
relevant physics, all initial and boundary conditions, and
auxiliary data:
– All important modeling input data must be measured in the

experiment and key modeling assumptions understood

– Characteristics and imperfections of the experimental facility
should be included in the model, if possible
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Characteristics of a Validation Experiment
(continued)

3. A validation experiment should use any possible synergisms
between experiment and computational approaches:
– Offset strengths and weaknesses of computation and experiment

– Use high confidence simulations for simple physics to calibrate
or improve the characterization of the facility

4. Independence between computational and experimental
results should be maintained where possible:
– The flavor of a blind comparison should be maintained, I.e., input

data is provided but not measured system response quantities

– The computational simulation should be a prediction, not a
calibration of the physics or the numerics
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Characteristics of a Validation Experiment
(continued)

5. A hierarchy of experimental measurements should be made
which presents an increasing range of computational
difficulty:
– Functionals, local variables, derivatives of local variables.

– Computational solution data should be processed in a manner
similar to the experimental measurement data

6. Develop and employ experimental uncertainty analysis
procedures to estimate random and correlated bias errors:
– Use traditional, i.e., error propagation, or modern statistical

methods to estimate random and correlated bias errors in both
input and system response measurements

– If possible, conduct experiments using different diagnostic
techniques or in different experimental facilities
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Traditional Methods for Comparing
Computational Simulations and Experiments

Traditional methods of measuring the accuracy of computational results
have been either qualitative or semi-quantitative

Some examples are:



25

Validation Metrics are
Quantitative Measures

• Validation metrics are measures of agreement between computational
results and experimental measurements for system response
quantities of interest

• Steps required to evaluate a validation metric:
1. Choose a system response quantity (or multiple quantities) of interest

2. Experimentally measure all input quantities needed for the code

3. Experimentally measure the system response and estimate uncertainties

4. Using the code and the input quantities from the experiment, compute the
system response quantity

5. A difference is computed between the experimental measurements,
typically the estimated mean of the system response, and the computational
results

• Validation metrics have been formulated using:
– Bayesian updating (Hanson, Hasselman, Mahadevan)

– Hypothesis testing (Hills and Trucano, Paez, Urbina, Rutherford, Dowding)

– Statistical confidence interval methods (Easterling, Coleman, Oberkampf)
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Relationship Between
Validation, Calibration and Prediction

Prediction
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Closing Remarks

• Code verification is commonly assumed to have been completed by
code developers:

– This assumption is a serious mistake
– Documented evidence should be required by code users

• Solution verification is commonly ignored by code users and decision
makers:

– This is a serious mistake
– Evidence of solution verification should be required by decision makers

• Validation experiments are commonly expensive, and are they not easy
to conduct (even by experienced experimentalists)

• Computational simulation should more widely embrace nondeterministic
simulations:

– This will be computationally expensive because of the additional numerical
solutions required

– Decision makers should require nondeterministic simulations to quantify
uncertainties and system robustness

• None of this will be easily accepted
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Calibration

• For some cases when validation is not feasible or practical,
calibration is appropriate

• AIAA Guide defined:

Calibration: The process of adjusting numerical or physical modeling
parameters in the computational model for the purpose of
improving agreement with real-world data

• Also known as: parameter estimation, model tuning, model
updating

Calibration is a response to the “degree of representation of the real
world” directed toward improvement of agreement.

• In many fields, calibration is critically important:
– Calibration is commonly conducted before validation activities

– Ex: In structural dynamics, determination of stiffness and damping in
fastener joints and welds
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Meaning of Prediction vs. Validation

Prediction refers to a simulation result for a specific case of interest
that is different from cases that have been validated.
• Computationally replicating a point in the validation database is not a

prediction

Validation should be viewed as a historical statement:

Reproducible evidence of measurable agreement between
computational and experimental results

Validation does not directly make a claim about the accuracy of a
prediction:
• Computational models are extremely general and easily misused

(unintentionally and intentionally)

• How closely related are the conditions of the prediction and specific
cases in the validation database?

• How well are the physics/chemistry of the process understood?
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Relationship Between
Validation and Prediction
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Types of Error

Error: A recognizable deficiency in any phase or activity of
modeling and simulation that is not due to lack of
knowledge.
• Acknowledged errors are errors that can be estimated, bounded,

or ordered

• Unacknowledged errors are mistakes or blunders

Examples of acknowledged errors:
• Finite precision arithmetic in a digital computer

• Insufficient spatial discretization

• Insufficient iterative convergence

Examples of unacknowledged errors:
• Computer programming errors (source code or compiler)

• Use of incorrect input files (geometry, material properties)
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Types of Uncertainty

Aleatory uncertainty is the inherent variation associated with
the physical system or the environment.

– Also referred to as irreducible uncertainty, variability, and stochastic
uncertainty

• Examples:
– Variation in thermodynamic properties due to manufacturing
– Variation in joint stiffness and damping in structures
– Random vibrational input to a structure

Epistemic uncertainty is a potential deficiency in any phase of
the modeling process that is due to lack of knowledge.

– Also referred to reducible uncertainty, model form uncertainty, and
subjective uncertainty

• Examples:
– Poor understanding of fracture dynamics
– Poor knowledge or experience of failure, misuse, or hostile scenarios
– Information obtained from expert-opinion elicitation
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Software Quality Assurance (SQA)

• Formal procedures to ensure software is reliable

• Primarily developed by computer science community

• Driven by high consequence software systems
– Aircraft automatic control systems

– Autonomous vehicle control, such as spacecraft

– Nuclear power plant control systems

• Configuration management
– Concurrent Versions System (CVS) for software version control

– Code documentation (requirements, equations, options)

• Software testing
– Static testing

– Dynamic testing

– Formal testing
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Recommended Characteristics
for Validation Metrics

1) Should include an estimate of the numerical error (or show it is
small) √

2) Should include an estimate of the experimental random errors and,
if possible, the correlated bias errors √

3) Should include an accuracy assessment of the computational
model, including all assumptions √

4) Should exclude a measure of adequacy of agreement between
computational and  experimental results √

5) Should depend on the number of experimental replications of a
given experimental quantity √

6) Should depend on the uncertainty due to lack of experimental
measurement of needed computational quantities and random
uncertainty in experimental parameters
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Traditional Engineering Inference:
Interpolation

• Complete overlap of
application domain and
validation database

• Prediction can be
thought of as
interpolation between
points in the validation
database

• Errors in the model are
either:

– Ignored (and the factor
of safety in the design
is increased)

– Model is corrected
using the bias error
determined from the
experiment
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Well-Founded Inference:
Small Extrapolation

• Partial overlap of
application domain and
validation database

• Extrapolations typically
occur in terms of
various types of
coordinate directions:

– Input data for system
parameters

– Environmental
parameters

– Boundary conditions
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Weak Inference:
Large Extrapolation

• No overlap of application
domain and validation
database

• Large extrapolations
typically occur in terms of
meta-coordinate
directions, such as:

– Large changes in
physical complexity

– Introduction of new
physics coupling

– Introduction of coupling
between subsystems or
components


