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[1] Schwartz [2007] recently evaluated the time constant
of Earth’s climate system. However, his methodology yields
to a significant underestimation of the value of t and
obscures a much more interesting property of the system.
Schwartz found t = 5 ± 1 years. Herein, by using an
improved methodology I find that for short time scales
from 0 to 2 years t is of the order of a several months and
for larger time scales, at least up to 20 years, t is at least
70% larger than what Schwartz estimated.
[2] Schwartz [2007] hypothesized (his equation (17)) that

the climate system behaves as a first-order autoregressive
process plus a linear trend. The implicit idea seems that the
linear trend represents the effect of the external forcings on
climate while the temperature signal, detrended of the above
linear component, represents the internal variability of the
same. This internal variability is assumed to be described by
an AR(1) process whose autocorrelation function, r(Dt),
decays as an exponential function of the lag time Dt with a
given time constant t: r(Dt) = exp(�Dt/t).
[3] Although in physics using simple models is useful,

the one suggested by Schwartz [2007], with a single time
constant, is an oversimplification and, as I will prove below,
it is inconsistent with the analysis. In fact, it is very well
known that climate is the combination, coupling and super-
position of several phenomena. Some phenomena respond
quickly as the atmosphere, others as the deep ocean respond
very slowly. Thus, each climate component responds with
its own time constant that might range from a few months to
several years or decades.
[4] Given the length limitation of the temperature data

herein analyzed (approximately 125 years) the analysis is
limited to time scales below 20 years with a monthly
resolution and I look for two time constants. The climate
model I suggest is

Rt ¼ Tt � Ft ¼ Xt þ Yt; ð1Þ

where t = 1, 2, . . . is a discrete time index and

Xt ¼ a1Xt�1 þ z t ð2Þ

Yt ¼ a2Yt�1 þ ht : ð3Þ

So, we have that Tt represents the global temperature, Ft is
the climate effect of the external forcings, Rt the residual
signal. The residual signal is made of a slow plus a fast
AR(1) processes, Xt and Yt, respectively, which describe the
internal variability of climate. z t and ht are two independent
white noise processes with zero mean and standard
deviation s1 and s2, respectively. The above model has
the residual signal Rt characterized by the following
autocorrelation function

r Dtð Þ ¼ A1 exp �Dt=t1ð Þ þ A2 exp �Dt=t2ð Þ; ð4Þ

where A1 + A2 = 1. By calling a1 = exp(�D/t1), a2 =
exp(�D/t2), where in our case D = 1/12 years, we have

s2
1

s2
2

¼
A1 1� a21

� �

A2 1� a22
� � ; ð5Þ

thus the relative magnitude between A1 and A2 is directly
proportional to the relative magnitude of the two noise
variances.
[5] Figure 1a shows a global surface temperature record

from 1880 to 2008 [Brohan et al., 2006] (note that the
record includes data from 1850 to 1880 too, but they are
excluded herein because Schwartz [2007] excluded them).
Figure 1b shows the temperature record detrended of the
linear component, as Schwartz does. The autocorrelation
function of a time series {xi} with i = 1, 2, .., N (mean m and
variance s2) is

r Dð Þ ¼ 1

N �Dð Þs2

XN�D

i¼1

xi � mð Þ xiþD � m
� �

; ð6Þ

where D is the lag time. Figure 1c shows r(Dt) of the
sequence plotted in Figure 1b and its fit with the above
autocorrelation function within the interval from 0 to 11
years where the results are more stable. I obtain t1 = 0.40 ±
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Figure 1. (a) Global monthly average surface temperature [Brohan et al., 2006]. (b) Detrended
sequence. (c) Autocorrelation function of the detrended sequence shown in Figure 1b. The y axis is in
logarithmic scale.
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Figure 2. As in Figure 1 but instead of a linear trend I detrend the average global temperature GISS
modelE simulation (monthly moving average) obtained by using all forcings [Hansen et al., 2007].
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0.1 years in the short range and t2 = 8.7 ± 2 years in the
long range, respectively. Figure 1c also shows Schwartz’s
equation with t = 5 years and it is evident that it does not fit
the data. Note that in his Figures 6 and 7, Schwartz claims
that t(Dt) monotonically increases in Dt from 0 to 5 years.
But, as Figure 1 shows, this is not correct. Indeed,
Schwartz’s result is a mathematical artifact of using a
single AR(1) process. Also, I find s1/s2 � 5.
[6] However, the above conclusion follows by assuming,

as Schwartz [2007] did, that the internal variability of
climate can be deduced by simply removing a linear trend
from the temperature data. This choice is evidently ques-
tionable. I repeat the calculation by removing from the
temperature data the average global temperature GISS
simulation obtained by using all forcings [Hansen et al.,
2007]. The rationale is that the residual shown in Figure 2b
represents the internal variability of the climate system as
obtained by the GISS model. Figure 2c shows the result. I
obtain t1 = 0.39 ± 0.1 years in the short range and t2 = 8.1
± 2 years in the long range, respectively. These values do
not differ significantly from the previous ones obtained with
a simpler linear detrending, and suggest that the above
results might be quite robust, unless the GISS model is
found to be extremely poor. Also, I find s1/s2 � 6.
[7] However, the length of the time series herein analyzed

is quite short, and the time constants might be underesti-
mated. To estimate the magnitude of the statistical bias I
compare the autocorrelation function of very long computer
generated time series according to the above model with

sequences of 125*12 = 1500 data, as the sequences herein
analyzed. The results is shown in Figure 3. It seems that t1
is not significantly changed, the real t2 might be 50% larger
than the measured one, and the real A1 might be 10%
smaller than the measured one.
[8] Thus, Figures 1c, 2c, and 3 show that within a time

scale of 1–2 years the climate is characterized by a fast time
response of about 5 months while for time scales larger than
1–2 years up to 20 years the climate system is characterized
by a slower response with a measured time constant of
about 8 ± 2 years, which may correspond to 12 ± 3 years by
taking into account the statistical bias. These estimates are
significantly larger thanwhat Schwartz [2007] calculated, but
well agree with what Scafetta and West [2007] found with an
alternative model by adopting the latest solar and temperature
proxy sequences since 1600: t = 9 ± 3.25 years.
[9] By trusting Schwartz’s [2007] equations about the

equilibrium climate sensitivity, ls
�1 = t/C, and assuming

that t = t2, I obtain a value that ranges from ameasured ls
�1 =

0.5 K/Wm�2 to a hypothetical ls
�1 = 0.7 K/Wm�2. These

values are below but compatible with the estimates sum-
marized in the Fourth Assessment Report of the IPCC
[Intergovernmental Panel on Climate Change, 2007]: ls

�1 =
0.8�0.3

+0.4 K/Wm�2. The above values correspond to an equi-
librium temperature increase for doubled CO2,DT2X, from a
measured best estimate of about 1.7 K to a hypothetical one
of about 2.6 K: the IPCC best estimate is about 3 K, from a
minimum of 1.5 K to a maximum of 4.5 K. However, the
value of t required in the above equilibrium climate sensi-
tivity might be larger than t2 because it might refer to a
secular or millenarian time scale, while t2 refers to a decadal
time scale.

[10] Acknowledgments. N.S. thanks the Army Research Office for
research support (grant W911NF-06-1-0323).
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Figure 3. Comparison between autocorrelation functions
for computer generated data. A result with a long
sequence obtained with A1 = 0.65, t1 = 0.4 years, t2 =
12 years is compared with an average result obtained with ten
sequences of 125*12 = 1500 data. The curves are fit with the
function r(Dt, A1, t1, t2).
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