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ABSTRACT

Recent solutions to the curve-fitting problem, described in Forster and Sober ([1994]),
trade off the simplicity and fit of hypotheses by defining simplicity as the paucity of
adjustable parameters. Scott De Vito ([1997]) charges that these solutions are ‘conven-
tional’ because he thinks that the number of adjustable parameters may change when the
hypotheses are described differently. This he believes is exactly what is illustrated in
Goodman’s new riddle of induction, otherwise known as the grue problem. However,
the ‘number of adjustable parameters’ is actually a loose way of referring to a quantity
that isnot language dependent. The quantity arises out of Akaike’s theorem in a way
that ensures its language invariance.
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1 Introduction
Five years ago Elliott Sober and I published an article on the general problem
of selecting from amongst a set of quantitative models (Forster and Sober
[1994]). The article described a solution to the problem first worked out in
detail by Akaike ([1973]). The idea has not been widely publicized even
amongst statisticians, until recently. Since then, there has been a growing
interest in the subject, especially on the part of scientists themselves.1 Unfor-
tunately, there is a certain amount of misinformation surrounding the merits of
Akaike’s approach. Some common misconceptions held by statisticians are
addressed in Forster ([to appear]), whereas this paper is directed at mistakes
made by philosophers, especially De Vito ([1997]).

I will start from the beginning by first describing how the problem arises in
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1 This interest is reflected in the proceedings of an econometrics conference held in Tilburg, The
Netherlands on 9–11 January 1997, and in a forthcoming special issue on model selection in the
Journal of Mathematical Psychology.



well-known episodes in the history of science (Section2). At the same time, the
standard philosopher’s understanding of the ‘curve-fitting problem’ does not fit
this example. Philosophy may not provide all the answers, but it can help you
ask the right question. The right questions about curve-fitting are asked in
Section3. There is also a common contention that Goodman’s new riddle of
induction, also known as the grue problem, is the same as the curve-fitting
problem. This is critically examined in Section5, where I conclude that it is not
the same problem as the problem solved by Akaike. De Vito ([1997]) is right to
say that Akaike does not solve the grue problem, but the limitations of
Akaike’s solution do not undermine its positive achievements in the cases to
which it does apply. However, the central question remains. Is Akaike’s
solution language dependent? The final section lays the foundations of the
Akaike framework in way that is manifestly language invariant.

2 A methodological puzzle redescribed
Suppose that we want to accurately predict the future positions of the planets
relative to the fixed stars. That is the goal. Copernicus, like his predecessor
Ptolemy, was an astronomer who appeared to have an foolproof method for
achieving this goal. He modelled the planetary motions as being the result of a
compounded series of uniform circular motions, which is mathematically
similar to representing a function as a Fourier series. There are mathematical
theorems to show that for a sufficient number of circles on circles, or epicycles
upon epicycles, the true trajectories of the planets can be matched to an
arbitrary degree of accuracy. So, why was Copernicus’s theory superseded
by the more modern theories of Kepler, Newton, and Einstein? One reason is
that Newton’s and Einstein’s theories have important implications in areas of
physics beyond the motion of planets. But is this theonly reason?

Kepler’s laws2 pose this question in a particularly poignant way because the
scope of Kepler’s laws is limited to planetary motion. Kepler did not super-
sede Copernicus because his model had greater scope. Moreover, Kepler’s
laws do not predict planetary positions extremely well, partly because the sun
is not quite at the focus of the Kepler’s ellipses, partly because of the
disturbances of other planets when they pass close by, and partly because of
the slow rotation of the ellipses (the precession of the perihelia), which we
know today is a relativistic effect. In contrast, Copernicus’s theory is able, in
principle, to account for all of these effects. So, if Newton and Einstein never
came along, would we have to say that Copernicus’s theory is better than
Kepler’s laws? One popular response is to say that Kepler is preferable to

Malcolm R. Forster84

2 There are three laws. The first says that all the planets revolve in ellipses with the sun at one
focus. The second says that the radius from the sun to a planet sweeps out equal areas in equal
times. The third says that the ratio of the mean radius cubed to the period (the time for a complete
revolution) squared is the same for all planets.



Copernicus because it is simpler. But what does that mean, and why is
simplicity important?

To deepen the puzzle, notice that a naı¨ve empiricist rule of ‘choosing the
best-fitting curve’ has to favour Copernicus over Kepler. For Copernicus’s
theory of planetary astronomy can always add enough circles to fit any set of
observations better than Kepler’s laws. In fact, it can even fit better than
Einstein’s theory of gravitation, which is the best theory currently available.

One reaction to the puzzle is to say that the accuracy predictions is not the
goal of science. While I agree that there are other goals of science besides
predictive accuracy, I dispute the idea that the puzzleforcesthis conclusion
upon us. What it really shows is that the theory that fits the observed data best is
not necessarily the one that makes the most accurate predictions. Case in point:
Copernicus’s theory fitted the data better than Kepler’s laws, but Kepler’s laws
made more accurate predictions. The naı¨ve empiricist tacitly assumes that a
precise fit of old data is the best way of guaranteeing an accurate fit of new data.
This view is so well entrenched that even those who do not think of themselves
as empiricists automatically conflate accuracy-in-fitting-old-data with accu-
racy-in-fitting-new-data without a second thought.

Forster and Sober ([1994]) explain why the naı¨ve empiricist assumption is
false. The basic point is that the in-principle ability of a theory to represent
reality is quite different from its in-practice ability to do so. The difference
between principle and practice arises because modelling in science introduces
adjustable parameters whose values have to be estimated from the data. In the
case of Copernican astronomy, each circle introduces a radius, period of
motion, and initial positions. It takes many circles to overtake Kepler’s laws,
and with a large number of circles, there are a large number of adjustable
parameters. The problem is that the precision of the parameter estimates goes
down as the total number of parameters goes up, and this decrease in the
precision of the parameter estimation reduces the accuracy of the predictions.

I will review the details of the explanation in the Sections4 and6. In the
meantime, in Section3, I want to describe the sense in which this explanation
provides a solution to the curve-fitting problem, while in Section5, I reply to
De Vito’s charge that Goodman’s famous grue problem shows that this
solution is ‘conventional’ because the number of adjustable parameters
depends on our language.

3 The curve-fitting problem redefined
Traditionally, in the philosophy of science, the curve-fitting problem is under-
stood as follows: We are interested is representing some variabley as a
function of a variablex. For example,y might be the position of a planet
andx might be time. Suppose that we have a number of observations ofy for
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different values ofx. These may be plotted as a set of points on anx-y diagram,
and for that reason one often refers to the data as data points. Curve-fitting is
the procedure by which we fit a curve to the points in thex-y plane, from which
we may predict the values ofy for new values ofx. Many curves can be drawn
through any finite set of points, so the points do not determine which curve
should be used to represent them. So how do we determine a curve from a finite
set of data points?

The traditional answer to the question is to say, in addition to the require-
ment that the curve passes through the points, that the curve should be simple.
The problem with this solution is threefold: (1) The notion of simplicity is left
vague. (2) We cannot rely on our intuitions about which curves look simple
because that depends on how we represent the curves. For as Priest ([1976])
pointed out, a curve that looks simple in thex–y diagram will look complex if
its represented on anx0–ydiagram, wherex0 is some complex transformation of
the variablex. Similarly, a complex-looking curve can be made to look simple.
(3) Even if we solve these problems, then it is still mysterious why simplicity is
valuable. The usual story—that we knowa priori that the world is simple—
seems plainly wrong in light of the fact that we knowa posteriorithat the world
is complex, especially at the curve-fitting level. For example, the true trajec-
tories of the planets are chaotic to some degree, and therefore extremely
complex.

Forster and Sober ([1994]) do not propose a solution to the traditional curve-
fitting problem. They reject the traditional problem because it is ill posed. First,
it buys into the naı¨ve empiricist assumption that curves should fit the seen data
perfectly. Second, it misdescribes the problem as it arises in science. For
instance, in Copernican astronomy, one always fixes the number of circles
before attempting to fit the theory to the data. Only a boundedfamilyof curves,
or trajectories, is ever fitted to the observations. I will refer to such a family as a
model. Within the context of a fixed model, there is no problem of the under-
determination of a curve from data. In fact, the problem is quite the opposite.
There is usuallyno curve that passes through all the data points! Therefore,
curve-fitting in science selects the curve thatbestfits the data, where ‘best’ is
defined in terms of a statistical measure of fit, such as in the method of least
squares. Under most conditions (known as conditions ofidentifiability), the
best-fitting curve in a family is unique. The parameters values associated with
this best fitting curve are the parameterestimates. That is how statistical
estimation works.

There is a problem here, but it takes a different form. The problem is that there
are many competing models, each yielding a different best-fitting curve. How do
we choose from amongst these? It is a problem of underdetermination, but it
occurs at the level of models, not curves. Forster and Sober ([1994]) discuss this
problem, and describe a solution based on the work of Akaike ([1973]).
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The Akaike solution is similar to the solution of the traditional problem. It
says that the competing best-fitting curves should be chosen on the basis of
their fit with the data as well as the simplicityof modelfrom which it was
selected. However, this solution is not subject to any of the three objections listed
above. (1) The notion of simplicity used is not vague. Under the previously
mentioned condition of identifiability, it is adequately defined as the paucity of
adjustable parameters. (2) It is not subject to Priest’s problem because the
simplicity of a single curve is never defined. (3) The reason why simplicity is
valuable is that tends to increase the precision by which parameters may be
estimated, which has a positive effect on the accuracy of predictions.

The precision of parameter estimation is not the only factor that affects
predictive accuracy. For example, suppose we model planetary orbits as
squares centered at the sun. Even if we could estimate the parameters of this
model with infinite precision, the model would not make accurate predictions
because there is no curve in the family which fits the true orbit very well. It
cannot predict the phenomena accuratelyin principle. The discrepancy
between the best in-principle curve in a family and true curve is known as
themodel biasor theapproximation discrepancyof the model. Any model that
contains the true curve has zero model bias, whereas modelling planetary
orbits as squares introduces a large model bias.

So the accuracy of the predictions made by a model depends on two factors:
the error in estimating the parameters and the model bias. Simple Copernican
models compare favourably with Kepler’s laws with respect to estimation
error, because they have about the same number of adjustable parameters. But
Kepler provides a better in-principle approximation to the true motion than a
simple Copernican model. On balance, Kepler has an advantage over simple
Copernican models.

What about complex Copernican models? They are better at approximating
the true motion in principle, but this advantage is outweighed by the impreci-
sion of the parameter estimates. So in either case, Kepler does better than
Copernicus.

4 Akaike’s theorem revisited
Akaike ([1973]) provides a precise quantitative way of correcting the metho-
dology of naı¨ve empiricism. Naı¨ve empiricism, remember, operates under the
false assumption that the fit of a model toseendata is the best estimate of its
predictive accuracy. It fails to take account of the estimation error. If there
were no estimation error, then the naı¨ve empiricist assumption would be
correct. So, if we could estimate the estimation error, then maybe we could
combine this information with the observed fit to provide an improved estimate
of predictive accuracy. This is what Akaike succeeded in doing.
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First, let me introduce some terminology. Consider any family of curvesF,
and denote the best in-principle curve inF byF *. The discrepancy betweenF*
and the true curve is the model bias. The curve that best fits the seen data is
F̂and the discrepancy betweenF̂andF* is the estimation error. The predictive
accuracy of̂F is maximized by minimizing the discrepancy betweenF̂ and the
true curve. The discrepancy betweenF̂ and the true curve is the sum of the
estimation error and the model bias.

This very simple analysis of the problem leads to some deep and insightful
consequences. Consider two families of curves,F andG, such thatF is nested
in G. That is to say, all the curves inF are also inG. This subset relation arises
frequently in real examples of model selection. For example, if LIN is the
family of all straight lines in thex–y plane, and PAR is the family of all
parabolas, then LIN is nested in PAR because straight lines are special cases of
a parabola (with the coefficient of thex2 term put to zero). Or consider two
Copernican models in which the second is obtained from the first by the
addition of one circle. The first is nested in the second because it is a special
case of the second with the radius of the added circle equal to zero. In these
cases, two important facts about discrepancies.

Proposition 1: If F is nested inG, then the model bias ofF is greater than or
equal to the model bias ofG.

Proof: By definition F* is the curve inF with the smallest discrepancy.
SinceF* is also in G, the curve inG with the least discrepancy,G*, cannot
have a greater discrepancy thanF*.

In the Copernicus example, this tells us that we can never increase the bias of
a Copernican model when we add an epicycle. Fourier’s theorem goes one step
further. It implies that we can reduce the bias of a Copernican model to an
arbitrary amount by adding a sufficient number of epicycles.

Proposition 2: If F is nested inG, then the estimation error inF is less than
or equal to the estimation error inG.

Informal Proof: Unfortunately, this property is not as general. But in the
Akaike framework, the property follows from the choice of discrepancy
measure and the particular assumptions made in the proof of Akaike’s theo-
rem. The proof rests on the fact that there is a geometrical representation of the
families in which each member is a point in Euclidean space, and the dis-
crepancy between any two curves is the square of the distance between them
(see Figure 1). Moreover, the displacement fromF̂ to F* is the (orthogonal)
projection of the displacement from̂G to G*. The projection of a displacement
can never have a greater length than the original displacement, so the estima-
tion error inF can never be greater than the estimation error inG.
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All of this proves that there is a kind of dilemma involved in the choice
betweenF andG. By choosing the more complicated model,G, we may reduce
the model bias, which is good. But we will also increase the estimation error,
which is bad. Whether the move to greater complexity is good or bad depends
on whether the reduction in bias outweighs the increased estimation error. This
is commonly known as the bias/variance dilemma (e.g. Gemanet al. [1992]).

Akaike ([1973]) uses the Kullback–Leibler ([1951]) information measure to
define the discrepancy, which is why he calls his model selection criterion an
information criterion. Note that the concepts of ‘discrepancy’ and ‘fit’ are two
sides of the same coin. The less the discrepancy between two curves the greater
their mutual fit. This definition of discrepancy defines the fit between a
hypothesis and a data set as the logarithm of the likelihood, where the like-
lihood of a hypothesis is a technical term that refers to the probability (density)
of the data given the hypothesis. Do not confuse this with the Bayesian notion of
the probability of a hypothesis given the data. The log-likelihood of a family
of curvesF is undefined.3 So when one speaks of the fit of the familyF to a
set of data, one is referring to themaximumlog-likelihood. A hypothesis is a
particular curve, or trajectory in this case,together with an error distribution
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Fig 1. The familyF is represented by points on the line, while familyG includes all
points in the plane.

3 In logical terms, a family or modelF is a huge disjunction of hypotheses, each of which does
have a well-defined likelihood. The laws of probability show that the likelihood of a model is an
average of the likelihood of its members. Therefore, each hypothesis would need to have a
probability (density) in order for the likelihood of the model to be well defined. Only Bayesians
assume that such probabilities exist.



(for a curve by itself does not assign a probability to data). This will play an
important role in Section6.

Akaike ([1973]) shows that if fit is defined is that way, then under quite
general circumstances4 we may expectF* to fit the true curve by an amountk/2
betterthanF̂, wherek is standardly equal to the number adjustable parameters.
In other words, the estimated parameter values inF̂ are less accurate than those
for F* and this translates into a lower predictive accuracy by an average
amount ofk/2. But how do we use this information to estimate the predictive
accuracy? That is the next question.

Assume that the seen data are representative of the data generated by the true
curve. However, it does not follow that the degree to whichF̂ fits the current
data is representative of how wellF̂ will fit other data generated by the true
curve. The reason is thatF has the special status of being the curve inF that
bestfits the current data. That introduces a selection bias, which means thatF̂
has special features that fit toaccidentalfeatures of this particular data set.
That is, we know that̂F overfitsthe current data. Overfitting is dramatically
illustrated by the fact thatF fits the current data better thanF* even though it
will usually do worse thanF* on other data sets. In factF* will do better, on
average, thananyother curve inF because it is by definition the curve that is
closest to the true curve.

If we knew which curveF* was, we would use it, but we do not. In fact, we
have no direct information about whereF* is relative toF̂. All we ‘see’ is F̂.
So, what can we do? This is where Akaike’s theorem introduces a clever trick.
If we have a number of competing models of different complexities, each with
a differentF̂, then maybe we can correct for overfitting, and choose the bestF̂
from the competing models. That is, we may compare the competing curves by
their estimated fit with unseen data rather than their fit with seen data. Since
predictive accuracy is defined as the expected fit with unseen data, this
idea amounts to comparing competing models by their estimated predictive
accuracy.

Despite that fact that we cannot ‘see’ the differentF*, they play an important
role in the second part of Akaike’s theorem which says that, on average,F* fits
the current data by an amountk/2 worse than̂F. Therefore, we may estimate the
fit of F* with the current data as equal to the fit ofF̂ minusk/2. This is useful to us
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becauseF* is not subject to a selection bias. It is defined independently of the
particular data set at hand, and so its fit with the seen data is representative of its
fit with any data set generated by the true curve (assuming that it is sampled
from the same region of the curve). So we now have a way of estimating the
predictive accuracy ofF*, or, equivalently, the discrepancy betweenF* and
the true curve (modulo a constant that is the same for every model, which can
be ignored in making comparisons). Remember that this discrepancy is also
called the model bias, or the approximation discrepancy.

Remember that the discrepancy betweenF̂ and the true curve is the sum of
the estimation discrepancy and the approximation discrepancy. Therefore the
estimated discrepancy betweenF̂ and the true curve is given by its discrepancy
with the current data plusk; or equivalently, the estimated predictive accuracy
of F̂ is equal to its fit with the current data minusk. This corrects the naı¨ve
empiricist estimate of predictive accuracy by taking account of the complexity
of the model, as measured byk.

In summary: if one is interested in predictive accuracy, one should compare
the best fitting curves fromcompetingfamilies by their fit with seen dataafter it
is corrected for overfitting. This leads to a precise rule for trading off simplicity
and goodness-of-fit, known as Akaike’s Information Criterion, or AIC (pro-
nounced A-I-C).

It is a quirk of the way statistical fit is defined that it increases as the number
of data,n, increases. It has been tacitly assumed that the novel data set has the
same number of data as the current data set, so this has not mattered. But it is
best to remove this assumption by defining predictive accuracy as the expected
per datumfit with novel data, which is then estimated by the per datum fit with
current data minusk/n. Sincen is constant for all models, this modification
makes no practical difference in model selection. Nevertheless, it shows that
the estimation error, like allsamplingerrors, tends to zero as the number of
data increases.5

AIC makes one important correction to a very naı¨ve methodology of
science—naı¨ve empiricism—by using some background information about
the tendency of complex models to overfit the data. In cases where there is
other relevant information available, we should expect that AIC will have to be
amended.

5 The grue problem as a curve-fitting problem
There is one claim in De Vito’s paper that is correct. He’s right that this
explanation of the relevance of simplicity to curve-fitting does not solve
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Goodman’s new riddle of induction (also known as the grue problem). He’s
also right that the grue problem is a curve-fitting problem. So, it follows that
the Akaike solution does not solve all problems commonly included under the
title of ‘curve-fitting problem’.6 But he’s wrong about theway in which the
grue problem is represented as a curve-fitting problem, and this mistake leads
to a mistaken charge of language variance. I will begin by explaining the sense
in which the grue problem is a curve-fitting problem, and show why the
example does not justify De Vito’s charge of language variance.

First, define ‘grue’:

DEFINITION: Objectx is grue at timet if and only if x is green at timet and
t < 2100, orx is blue at timet andt $ 2100.

The reason that I relativize the colour predicates to a specific time is that,
otherwise, they are not observational predicates. I can observe that a tomato is
green now, but I am not thereby observing that it will be green next week. I may
be able to infer that, but I cannot observe it. Curve-fitting has to begin with
what is observed, so the point is important. In the grue example, the data are
that all the emeralds observed to date have been green, which also implies, by
the definition, that they have all been observed to be grue (at the time of
observation). There are now two competing hypotheses capable of explaining
the data: the Green hypotheses says that ‘All emeralds are green (at all times)’
and the Grue hypothesis says that ‘All emeralds are grue (at all times)’. Note
that, while they fit all the observations of emeralds to date equally well, they
make different predictions. The Grue hypothesis predicts that all emeralds
observed after 2100 will be grue, and therefore blue at that time, while the
Green hypothesis predicts that they will be green.

The grueproblemis that the Green hypothesis and Grue hypothesis fit all the
observations of emeralds equally well, so fit is not what tells us that we should
use the Green hypothesis in favor of the Grue hypothesis. Yet we seem to have
no hesitation in preferring the Green hypothesis. It is yet another demonstra-
tion that naı¨ve empiricism is wrong. The problem is to say what else marks the
difference between the hypotheses. Many people are inclined to say that the
Green hypothesis is better because it is simpler. But what is ‘simplicity’ and
why does it matter? There is no doubt that the problem is similar to Akaike’s
problem in many ways, but that does not imply that it is the same problem.

It is not obvious that the grue problem can be understood as a curve-fitting
problem at all. A curve represents a function of some dependent variabley on
an independent variablex, where a function is a many-to-one mapping fromx-
values in a set (called the domain) intoy-values (called the range). The Grue or
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the Green hypothesis can be thought of as mapping time values into colour
values. Thus,t is the independent variable, and ’colour’ is the dependent variable.
The Grue and the Green hypothesis are each represented as a single curve
(Figure 2). Each hypothesis is represented by asingle ‘curve’ because it gives
a unique prediction for any specification of the independent variable (time).

Does the concept of ‘adjustable parameter’ apply to this example? Here it is
important to understand the difference between ‘adjustable’ and ‘adjusted’.
The time 2100 AD is a parameter in the Grue hypothesis, but it is an adjusted
parameter. In fact, all the parameters associated with an individual curve are
adjusted because they have particular numerical values. It is only when
parameters are free to take on a range of possible values that they are
adjustable, and that occurs only within the context of afamily of curves. We
could place the Green hypothesis and the Grue hypothesis in singleton families
in which they are the only member. Then thesefamilies would have zero
adjustable parameters, so the answer is the same.There are no adjustable
parameters in this example.

Therefore, the Green and the Grue hypotheses do not differ in simplicity in
the sense relevant to standard model-selection criteria, including Akaike’s
solution to the curve-fitting problem. Therefore Akaike’s criterion must go by
fit alone in this example.

Does the relevant concept of fit apply to this example? The concept of fit in
Akaike’s theorem is derived from the Kullback–Leibler discrepancy, which
requires that the competing hypotheses are probabilistic (so that likelihoods are
well defined). The Green and Grue hypotheses are not probabilistic, but that
may be fixed by associating them with the same assumption about the prob-
ability of observational errors. The bottom line is that the Green and Grue
hypotheses both fit the current observations equally well. None of the usual
model-selection criteria provide any reason to favour the Green hypothesis
over the Grue hypothesis, either by differences of simplicity, or by differences
in fit, and Akaike’s criterion is no exception.

This makes perfect sense in light of what the Akaike criterion aims to do. Its
purpose is to use simplicity to correct for the difference between the in-practice
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and in-principle application of a model. When a model has only one member,
there is no difference between its in-practice and in-principle application.
There is no estimation of parameter values, and therefore no need to use
simplicity to correct for estimation error. The only factor involved is model
bias, and all standard model-selection criteria assume that fit is the best way of
estimating this.

I do not dispute the idea that Akaike’s criterion gives the wrong answer. But
what follows from that? Some may say that the number of adjustable para-
meters is not the correct measure of simplicity. But it was never presented as
the measure of simplicity. It isone measure of simplicity, and it is a kind of
simplicity that is relevant in the curve-fitting problem because it quantifies
estimation error. If other kinds of simplicity are relevant to curve-fitting, then
this does not undermine the fact Akaike simplicity is relevant to curve-fitting.
Akaike’s criterion says that there is no correction for estimation error required, and
here it is correct even if it does not provide a complete solution to the problem.

Unfortunately, De Vito ([1997]) reaches a different conclusion. He thinks
that there is a serious problem for Akaike in this example that goes well beyond
its incompleteness. He thinks that the parameter that appears in the definition
of ‘grue’ is anadjustableparameter. This time parameter, which I will denote
by v, should not be confused witht, which is an independent variable.v is a
parameter that gets assigned the value 2100 AD in the definition of grue. True,
there is an everyday sense in which it is a parameter, and it is adjustable in some
sense, but it is not adjustable in the relevant sense. But if one grants the mistaken
premise that it is an adjustable parameter, then one can see how everything goes
wrong. Define ‘bleen’ as: Objectx is bleen at timet if and only ifx is blue at timet
and t < 2100, orx is green at timet and t $ 2100. Now we have a complete
‘grolour’ language in which the terms ‘grue’ and ‘bleen’ can replace the terms
‘green’ and ‘blue’ entirely. For example, objectx is green at timet if and only ifx
is grue at timet andt < 2100, orx is bleen at timet andt $ 2100. Therefore, we
may redescribe the Green hypothesis as: All emeraldsx are such that, ift < 2100
then x is grue at timet and if t $ 2100 thenx is bleen at timet. The Grue
hypothesis makes no mention of the year 2100 in the grolour language, whereas
the Green hypothesis does. If we replotted the ‘curves’ in Figure 2 using grolour
values on they axis instead of colour values, then the Grue ‘curve’ would be the
simple one, and the Green ‘curve’ would look complicated. So in the grolour
language, the Grue hypothesis is simpler, while in the standard colour language,
the Green hypothesis is simpler. Therefore, simplicity is language dependent.

The trouble with this argument is that it uses the wrong notion of simplicity.
Akaike’s criterion depends on the number ofadjustableparameters, and not on
the number ofadjustedparameters. None of the parameters in this example is
adjustable in the relevant sense because adjusting the value of a parameter
should move us from one curve in the family to another. That is impossible
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when there is only one curve in the family. Therefore, the Akaike simplicity is
not language dependent because no re-description of the hypotheses can turn
one curve into many, or many curves into one.

In Section3, De Vito presents a different example, which he subjects to the
same confusion. In this example, De Vito compares the family of straight-line
curves (LIN) with the family of parabolas (PAR) in thex–y plane. Then he
considers a transformation of the independent variablex to a new independent
variable x0. Under this transformation, LIN transforms to LIN0 and PAR
transforms to PAR0. First, the transformation rule contains adjustable para-
meters, so there are many possible redescriptions involved. The main problem
is that transformations do not map a single member of PAR into a unique
member of PAR0, so there is no sense in which the transformed families are
equivalentrepresentations of the old families. De Vito thereby conjures up the
appearance that PAR0 is simpler than LIN0, thereby reversing the simplicity
ordering. Again, it is all smoke and mirrors.

In this example, the simplicity ordering is determined by the fact that LIN is
nestedin PAR. For any familiesF andG, if F is a subfamily ofG, thenF is not
more complex thanG. Clearly, any one-to-one transformation of LIN and PAR
must preserve the subset relation. Therefore, LIN0 is a subfamily of PAR0,
which implies that LIN0 is not more complex than PAR0 in the relevant sense.
Therefore, the Akaike simplicity cannot be reversed under a one-to-one
transformations of the families.

My argument assumes that the subfamily relation between families con-
strains their Akaike simplicity ordering. Unfortunately, the substantiation of
this premise requires a more detailed understanding of Akaike’s theorem.
Suffice it to say that it follows from Proposition 2: ifF is nested inG, then
the estimation error inF is less than or equal to the estimation error inG.
Akaike uses simplicity to estimate the estimation error, so it should respect the
same relationship. The next section of this paper provides more of the details
needed to prove this rigorously.

There is another way of setting up the Grue hypothesis so that it does use an
adjustable parameter in the Akaike sense. Instead of supposing that the date at
which emeralds change color is the year 2100, allow that time to vary. Again,
denote that time byv so that it is not confused with the independent variablet. v
is adjustable because there is a different curve corresponding to each value ofv.
The Grue hypothesis is now a non-singleton family of curves, while the Green
hypothesis is still a singleton family. This is a different version of the grue
problem from the one De Vito describes, but it is worth considering in its own
right.

It may appear that Akaike’s criterion will now choose the Green hypothesis
in favor of the Grue hypothesis; after all, there is a sense in which the Green
hypothesis is nested in the Grue family as the special case int goes to infinity.
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The criterion does favour ‘All emeralds are green’ if it is taken at face value.
However, this application of the criterion is not appropriate. Remember that
Akaike’s notion of simplicity aims to quantify the sampling errors in the
parameter estimates. But in this example, there is still nosamplingerror in the
estimation of the grue parameterv. It cannot be estimatedat all in any principled
way because there is a large range of values ofv that makes no difference to the
degree of fit. In the language of statistics, the grue model is unidentifiable in the
sense that there is no unique value ofv that maximizes the fit with the seen data.
There is no overfitting or underfitting in the relevant sense. So Akaike’s criterion
does not solve the second version of the grue problem either.

There is another point here. You cannot estimatev because you cannot
sample from the future. Akaike’s theorem has to do with predictingnewdata
from information onold data, where both come from the same distribution.
Past observations may tell us wherev is not, but predictions require us to say
wherev is. The grue problem (set up as problem in which one estimatesv) is
like sampling from one urn and using the information to make predictions
about a different urn. Without assumptions about how the two urns are related,
this is an impossible task.7

There are many curve-fitting problems that Akaike’stheoremdoes not
solve. The subfamily problem in Forster and Sober ([1994]) was one example,
and the reply of Forster ([1995]) to Kukla’s problem Kukla ([1995]) is another.
Kruse’s ([1997]) explanation of the value of evidential variety does not rest on
Akaike’s theorem, even though it is firmly situated within the Akaike frame-
work. None of the limitations in the scope of Akaike’s theorem undermines the
positive insights it provides in a large class of cases to which it does apply. It is
a precise theorem built upon precise assumptions, whose applicability or
inapplicability can be examined in particular circumstances.8 Once the theo-
rem is properly understood, one can see why it is language invariant, and why it
does not solve the grue problem.

6 Language invariance restored
The previous section has established that De Vito’s arguments are flawed.
However, this does not establish that his conclusion is false. So I need to delve
deeper into how the quantityk emerges from Akaike’s theorem, fork is
responsible for introducing the notion of simplicity into the equation. That is
the purpose of this section.
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functions using truncated Taylor expansions. Almost all ofappliedmathematics and statistics
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The issue at stake is far greater than the health and well-being of Akaike’s
criterion. For if the charge were true, it would undermine all recent approaches
to model selection, including Schwarz’s ([1978]) Bayesian Information Cri-
terion (BIC), the Minimum Description Length (MDL) approach, the Mini-
mum Message Length (MML), and a number of others. They all measure
simplicity in exactly the same way.

If k were equal to the number of adjustable parameters, then on the surface,
there is a problem because the number of adjustable parameters can change
when a family of curves is differentlydescribed. An example in Forster and
Sober ([1994], fn. 13) shows this: suppose that we have a family of curves
represented by the equationy ¼ vx, wherev is an adjustable parameter. The
same family of curves is equivalently represented by the equationy ¼ ða þ bÞ x,
wherea andb are two adjustable parameters. This simple re-description of the
family changes the number of adjustable parameters from 1 to 2.

However, this does not prove that Akaike’scriterion is language variant.
What it shows is that it is wrong to describe the quantityk as the number of
adjustable parameters. It is only the commondescriptionof the criterion that is
wrong, and not the criterion itself. So, what is the true meaning of the quantity
k? Its meaning is determined by the role it plays in Akaike’stheorem. It is
important to understand the theorem in greater detail.

In the family of curvesfy ¼ vxj ¹ ∞ < v < ∞g, the parameterv takes on an
infinite range of possible values. For each numerical value ofv there corre-
sponds a curve (a straight line with slopev passing through the origin in this
example) in the family. Conversely, for each member of the family, there
corresponds a unique value ofv. So, if we represent the family in the parameter
space consisting of all values of the single parameterv, then there is a one-to-one
correspondence between curves in the family and points in the parameter space.

Now consider the parameter space in which points determine an array value
assigned to the parametersfv;f; hg, for example. Our family can still be
represented in this parameter space, except that there is no longer a one-to-
one correspondence between the family and the points in parameter space. A
point in the parameter space determines a unique member of the family, but a
member of the family no longer determines a unique point in the parameter
space. The mapping from the parameter space on to the family of curves is
many-to-one. Or consider the parameter space of possible value for
fa;b;f; hg, wherev is equal toa þ b. Again, there is a many-to-one mapping
from points in the parameter space onto the family of curves.

Akaike’s theorem begins by defining a discrepancy function between an
arbitrary curvey ¼ vx and the true curve, which we may denote byDðvÞ.9 The
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function will induce a discrepancy function between points in the parameter
spacesfv;f; hg andfa;b;f; hg as well, except that the induced function will
have a built-in redundancy. For example, ifa þ b ¼ a0 þ b0, then

Dðða; b;f; hÞÞ ¼ Dðða0; b0;f0; h0ÞÞ

The discrepancy used in Akaike’s theorem is the Kullback-Leibler distance
(Kullback and Leibler [1951]), but I will keep the account at the most general
level possible.

The purpose of Akaike’s theorem is to estimateDðv̂Þ, wherev̂ denotes the
curve that best fits the observed data.v̂ also denotes the estimated value of the
parameter, and it is important to understand that a discrepancy function assigns
valuesto thecurvesand not to parameter values. Remember that a function is a
many-to-one mapping from one set, called the domain, into another set, called
the range. Each member of the domain must be mapped to auniquemember of
the range. A discrepancy function maps a set ofcurvesinto a set of numbers. So
if the parameter is transformed so that a particular curve is associated with
a different parameter value, the curve will still be assigned the same
discrepancy.

What if we transform thex or they coordinates? The answer is the same. A
curve will be assigned the same discrepancy before the transformation as after
the transformation. The situation may seem a little more complicated than this.
After all, isn’t it easy to transform thex andy coordinates to change which
curve is closer to the truth than another by the sum of squared deviations
(Miller ([1975]) makes this point)? Well, yes, but that just shows that the sum
of squared deviations does not define a discrepancy function.

So how is a discrepancy function actually defined? In the Akaike frame-
work, one must first associate an error distribution with each curve. This will
then determine a conditional probability density of the formpvðy=xÞ. This
conditional density will be different for each curve, as I have indicated by
the subscriptv. v assigns numerical values to all adjustable parameters,
including those characterizing the error distribution if there are any. Then
we need to add a probability distribution for the independent variable,pðxÞ,
which defines the region of the curves from which the data is sampled. This
depends on thekind of sampled data that we aim to predict. There are many
predictive accuracies one could consider, depending on the choice ofpðxÞ. But
none of them is language dependent in any way. OncepðxÞ is decided upon, it
usually disappears from the equations because it is the same for all curves and
all models. From these ingredients, we obtain a joint probability density
pvðx; yÞ for each hypothesis. Letp* ðy=xÞ be the true conditional probability
density, from which we may obtainp* ðx; yÞ using the samepðxÞ as before. The
discrepancy of hypothesisC is now defined as the Kullback–Leibler distance
pvðx; yÞ between andp* ðx; yÞ. The Kullback–Leibler distance is the difference
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between two information or negentropy measures; namely:

DðvÞ ;
�

p* ðx; yÞ logpvðx; yÞ ¹

�
p* ðx; yÞ logp* ðx; yÞ:

Each term is transformationally invariant modulo a constant, but the constant
drops out when one substracts one from the other (Shannon and Weaver [1946]).
Therefore, once we represent the hypotheses as probability densities, we may
easily define a language invariant discrepancy function (Good ([1975]) made a
similar point in reply to Miller ([1975])). There are many other choices besides the
Kullback–Leibler distance (see Linhart and Zucchini [1986] or Zucchini [1999]).

Akaike’s theorem estimates the discrepancyDðv̂Þ in terms of Dðv* Þ by
expandingDðv̂Þ as a Taylor series aroundv*:

Dðv̂Þ ¼ Dðv* Þ þ
∂Dðv* Þ

∂v
ðv̂ ¹ v* Þ þ

1
2

∂2Dðv* Þ

∂2v
ðv̂ ¹ v* Þ2 þ ···;

where∂Dðv* Þ=∂v is a shorthand notation for∂DðvÞ=∂v evaluated atv*. The
discrepancy function is language invariant, because it assigns discrepancy
values to specificcurves, and not parameter values. Thus,Dðv̂Þ and Dðv* Þ

have the same values even if these curves are picked out by a different value of
a rescaled parameter. Moreover, each term in the Taylor expansion is invariant.
Consider the second term, for example. It is true that ifv is transformed tov0,
then the value ofðv̂ ¹ v* 0Þ will change. But the value of∂Dðv* 0Þ∂v0 will change
in a way to compensate exactly.

What if we expand the Taylor series in an extended parameter space? In that
case, we will have a multivariate Taylor expansion, but it will reduce to
something equivalent to the expression above because most of the terms will
be zero. For example, the term involving∂Dðv* Þ=∂h would drop out because the
discrepancy function does not vary as a function ofh.

What if we define new parameter defined byl ; v þ h? Then∂Dðv* Þ=∂l is not
zero. But then by the chain rule for derivatives,∂Dðv* Þ=∂l ; ∂Dðv* Þ=∂v. Adding
the term forl would be to count the dependence onv twice. So, again, the end
result is the same as before, provided that the calculation is done correctly.
Likewise, if a andb were used in place ofv, then there would be more terms in
the Taylor expansion, but the end result would be the same once we take account
of the fact thatv ; a þ b. The point is that language invariance is built into the
mathematical theory of functions from the ground up.

By taking the expected value of both sides, and dropping higher than
quadratic terms, we arrive at:

E½Dðv̂ÿ < Dðv* Þ þ 1=2QE½v̂ ¹ v* Þ2ÿ:

where

Q ;
∂2Dðv* Þ

∂2v
:
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This introduces expected values, but these are also language invariant features
of a probability distribution.10 Akaike then argues thatEðv̂ ¹ v* Þ2 is equal to
1=ðnQÞ under the conditions assumed by the theorem. This step depends the
Keibler–Leibler discrepancy measure, and appeals to the Central Limit
Theorem. So he ends up with something equivalent to:11

E½Dðv̂Þÿ < Dðv* Þ þ
1
2n

:

If we were to change the example so that the discrepancy has a real
dependence onk parameters, instead of just one, then thek parameters could
be transformed so that Taylor expansion of the discrepancy would involvek
quadratic terms, each of which look like the one above. By the same reasoning,
each term would contribute and expectation of 1=ð2nÞ, adding to a total of
k=ð2nÞ. This is the first part of Akaike’s theorem.

The point is that the value ofk is not simply the number of adjustable
parameters, but the number of parametersthat contribute to the expected
discrepancy in a certain way. Given the fact that the Taylor expansion is
language invariant, and expected values are language invariant, there is no way
in which this number can change by any redescription of the families of curves.
It is convenient to describek as equal to the number of adjustable parameters
only because this equality holdsin most cases.

One could, in principle, encode the information contained ink variables in a
single variable.12 However, if the discrepancy function were not a sufficiently
smooth function of that variable for the derivatives in the Taylor expansion to
be well defined, then the derivation would not go through in its present form. If
it can be made to work then the answer will be the same as before. There are no
tricks that are going to change the bottom line.

In summary, the property of language invariance is an important desider-
atum for any criterion of model selection. It is not acceptable for someone to
say that, in English, Newton’s theory of motion is true, but in French it is false
(or the other way around). It is equally unacceptable to say that a hypothesis is
closer to the truth in one language than it is in another. Fortunately, language
invariance is built in at the very beginning. The only problem is in explaining it
to a non-mathematical reader.

Malcolm R. Forster100

10 Not all features of a probability distribution are invariant. Forster ([1995]) criticizes some
Bayesians for failing to notice that probability densities are not language invariant. But expected
values of an invariant function are always invariant.

11 For those following the proof, it is important to note that the discrepancy assumed here is
defined in a way that does not depend onn. The expected value ofDðv̂Þ depends onnbecause the
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Acknowledgements
I am grateful to Scott De Vito and the participants of the Central Division
meeting of the APA discussion on this topic at Pittsburgh in 1997 for helping
me to improve a previous draft of this reply. Special thanks go to Elliott Sober
and to an anonymous referee of this journal for helpful advice.

Department of Philosophy
5185 Helen C. White Hall

University of Wisconsin
Madison, WI 53706

USA

References
Akaike, H. [1973]: ‘Information Theory and an Extension of the Maximum Likelihood

Principle’, in B. N. Petrov and F. Csaki (eds), 2nd International Symposium on
Information Theory; Budapest: Akademiai Kiado, pp. 267–81.

Cramér H. [1946]:Mathematical Methods of Statistics, Princeton: Princeton University
Press.

De Vito, Scott [1997]: ‘A Gruesome Problem for the Curve Fitting Solution’,British
Journal for the Philosophy of Science, 48, pp. 391–6.

Forster, Malcolm R. [1995]: ‘Bayes and Bust: The Problem of Simplicity for a
Probabilist’s Approach to Confirmation’,British Journal for the Philosophy of
Science, 46, pp. 399–424.

Forster, Malcolm R. [1995]: ‘The Golfer’s Dilemma: A Reply to Kukla on Curve-
Fitting’, British Journal for the Philosophy of Science, 46, pp. 348–60.

Forster, Malcolm R. [submitted]: ‘The New Science of Simplicity’, in H. Keuzenkamp,
M. McAleer, and A. Zellner (eds)Simplicity, Inference, and Econometric Modelling,
Cambridge: Cambridge University Press.

Forster, Malcolm R., and Sober Elliott [1994]: ‘How to Tell when Simpler, More
Unified, or Less Ad Hoc Theories will Provide More Accurate Predictions’,British
Journal for the Philosophy of Science, 45, pp. 1–35.

Geman, Stuart, Bienenstock, E., and Doursat Rene´ [1992]: ‘Neural Networks and the
Bias/Variance Dilemma’,Neural Computation, 4, pp. 1–58.

Good, I. J. [1975]: ‘Comments on David Miller’,Synthe´se, 30, pp. 205–6.

Kieseppa¨, I. A. [1997]: ‘Akaike Information Criterion, Curve-fitting, and the Philosophical
Problem of Simplicity’,British Journal for the Philosophy of Science, 48, pp. 21–48.

Kukla, Andre [1995]: ‘Forster and Sober on the Curve-Fitting Problem’,British Journal
for the Philosophy of Science, 46, pp. 248–52.

Kruse, Michael [1997]: ‘Variation and the Accuracy of Predictions’,British Journal for
the Philosophy of Science, 48, pp. 181–93.

Kullback, S. and Leibler, R. A. [1951]: ‘On Information and Sufficiency’,Annals of
Mathematical Statistics, 22, 79–86.

The Problem of Language Variance 101



Linhart, H. and Zucchini, W. [1986]:Model Selection, New York: John Wiley & Sons.

Miller, David [1975]: ‘The Accuracy of Predictions’,Synthe´se, 30, pp. 159–91.

Priest, Graham [1976]: ‘Gruesome Simplicity’,Philosophy of Science, 43, 432–7.

Schwarz, Gideon [1978]: ‘Estimating the Dimension of a Model’,Annals of Statistics,
6, pp. 461–5.

Shannon, Claude and Weaver, W. [1949]:The Mathematical Theory of Communica-
tion, Urbana: University of Illinois Press.

Sober, Elliott [1994]: ‘No Model, No Inference: A Bayesian Primer on the Grue
Problem’, in Stalker [1994], pp. 225–40.

Stalker, Douglas [1994]:GRUE!, Chicago, IL: Open Court.

Zucchini, Walter [1999]: ‘An Introduction to Model Selection’, To appear in the
Journal of Mathematical Psychology.

Malcolm R. Forster102


