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The Curve Fitting Problem: A Bayesian Rejoinder

Abstract

In the curve fitting problem two conflicting desiderata, simplicity and goodness-of-fit
pull in opposite directions. To solve this problem, two proposals, the first one based
on Bayes’ theorem criterion (BTC) and the second one advocated by Forster and
Sober based on Akaike’s Information Criterion (AIC) are discussed. We show that
AIC, which is frequentist in spirit, is logically equivalent to BTC, provided that a
suitable choice of priors is made. We evaluate the charges against Bayesianism and
contend that AIC approach has shortcomings. We also discuss the relationship

between Schwarz’s Bayesian Information Criterion and BTC. [ Word count 93]

Overview

In the curve fitting problem, two conflicting desiderata, simplicity and
goodness-of-fit, pull in opposite directions. Simplicity forces us to choose straight
lines over non-linear equations, whereas goodness-of-fit forces us to choose the latter
over the former. This article discusses two proposals that attempt to strike an
optimal balance between these two conflicting desiderata. A Bayesian solution to
the curve fitting problem can be obtained by applying Bayes’ theorem. The
Bayesian solution is called the Bayes’ Theorem Criterion (BTC). Malcolm Forster
and Elliot Sober, in contrast, propose Akaike’s Information Criterion (AIC) which is
frequentist in spirit. The purpose of this article is threefold. First, we address some
of the objections to the Bayesian approach raised by Forster and Sober. Second, we
describe some limitations in the the implementation of the approach based on AIC.
Finally, we show that AIC is in fact logically equivalent to BTC with a suitable
choice of priors. The underlying theme of this paper is to illuminate the

Bayesian /non-Bayesian debate in philosophy of science.
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1 The Curve Fitting Problem: BTC

Those who live in colder climates have to face this problem at one time or another
especially if they heat their home with natural gas. Sue is one such woman. The
amount of gas required to heat her home depends on the outdoor temperature —
the colder the weather, the more gas will be consumed. As long as the family’s
habits, the insulation of the house, and other such factors don’t change, Sue should
be able to predict gas consumption from the outdoor temperature. The usual need
for heating is measured in degree days. One heating degree day is accumulated for
each degree the average daily temperature falls below 65° Fahrenheit. An average
temperature of 20° F., for example, corresponds to 45 degree days. Table 1 presents
historical data for one season. In Table 1, the explanatory variable, z, is heating
degree days for the month, and the response variable, Y, is gas consumption per day

in units of 100 cubic feet.

Table 1

Month

Variable | Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June
x 156 26.8 374 364 355 186 153 7.9 0.0
Y 52 6.1 87 85 88 49 45 25 1.1

Sue’s goal is to use these data to predict gas consumption at different
temperatures. To do this she wants to find a relationship, if any between, x and y.
The most common technique for fitting a line to data is known as the method of
least squares and the line drawn that runs through the scatter plot is known as the
regression line. It is assumed that Y] is related to x; through the linear model

k .
Y; :ozo—l—Zozjxf—l—si, fore=1,...,n,
j=1
where n is the sample size; o, 7 = 0,..., k are unknown regression coeflicients, k is
the order of the polynomial model, and ¢; is random error. The error terms, ¢;,
1 =1,...,n are assumed to be independently distributed as Gaussian random

variables with mean zero and variance 2.
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Sue wants to know what her gas consumption will be for a month this year that
has = 15.3 degree days. In April of the historical data set, 15.3 heating degree
days corresponded to 4.5 hundred cubic feet of gas. We shall forecast from three
different regression line equations how much gas the house will require at 15.3
degree days. Each regression equation corresponds to a hypothesis, Hy, Hy or Hs in
a domain in which each is mutually exclusive of the others. The hypotheses are
obtained by assuming that the order of the polynomial regression model is 1, 2, or
3. That is, Hi: E(Y|z) = ap + ay2; He: E(Y|2) = ag + a2 + agz?; and
H3: E(Y]z) = ag + ay1@ + aza? + azz®. Here, E(Y'|2) is the conditional expectation
of Y given x. To say that these hypotheses are mutually exclusive is to say that the
coefficient of 2* under Hy is non-zero.

~

The least squares forecast under Hy is Y = 1.22 4+ .20 x 15.3 = 4.33 hundred
cubic feet. Under Hs, the prediction is Y = 1.09 +.22 x 15.3 — 0.0005 x 15.3% = 4.39
hundred cubic feet per day. This is closer to the historical value of 4.5 than that
based on Hj. If we use Hs, then we will find that the prediction, Y = 4.45 is even
closer to the historical value. In general, as the order of the polynomial regression
model increases, the goodness-of-fit of the model to the observed data increases. A
standard measure of the goodness-of-fit is the likelihood function evaluated at the

parameter values which give a maximum value of the function. Denote the value of

the maximized likelihood function Under Hy by Ek That 1s

L, = max Li(c% a0, .. o Hg Vi, .o, Y0, (1)

o2:a0,...,ak
where L is the likelihood function.

As the order of the polynomial model increases, the maximized likelihood
increases. That is, Ly is an increasing function of k. Thus, it might appear that as
the order of the model increases, the predictions will become more accurate. The
fact of the matter, however, is otherwise. A model having too large of an order will
over-fit the data. Predictions of future data from such a model will, in general, have
larger errors than will predictions from a model with a smaller, but sufficient,

number of parameters.
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Bandyopadhyay et al. (1996) employed Bayes Theorem and showed that if one
adopts certain non-informative priors on ¢? and «; for j = 1,...,k, then the
posterior probability of Hy, given the data, is proportional to the maximized

likelihood function, Ek, multiplied by the prior probability of Hj. That is,

Pr(Hy|data) o< Ly x Pr(Hy), (2)

where L, is the maximized likelihood function given in (??) and Pr(Hy) is the prior
probability of Hy reflecting the agent’s beliefs before any evidence is known. The
right-hand-side of (??) is one application of BTC. An investigator using this
application of BTC would compute the posterior probability of each hypothesis
under consideration and if one is to be selected, it would be the one with the highest
posterior probability.

To obtain the posterior probability in (?7), Bandyopadhyay et al. adopted a
Gaussian prior on the vector of regression coefficients. The prior variance of the
regression coefficients was assumed to be of order of magnitude % If the prior on
the regression coefficients is redefined so that it does not depend on n, then the

posterior probability of Hy, given the data, can be shown to be

Pr(Hg|data) o Ly x Pr(Hy) x n=k?, (3)

The right-hand-side of (??7) is a second application of BTC and is equivalent to
Schwarz’s (1978) Bayesian Information Criterion (BIC), provided that Pr(Hy) is not
a function of n.

The posterior distributions in (??) and (??) also can be obtained by adopting
other non-informative priors. In particular, the invariant prior of Jeffreys (1961)
leads to (??) if information is computed for a sample of size n and to (?7) if
information is computed for a sample of size 1. In fact, as shown by Schwarz (1978),
the posterior distribution in (??) is obtained (to a first order approximation) by
adopting any prior distribution on ¢ and ag,...,a; from a large class of
informative and non-informative priors. One necessary characteristic of the priors in

this class is that they do not depend on the sample size, n.



Bayesian Analyses 5

In the application of BTC, two factors, formal and non-formal, determine the
prior probability of the hypothesis, Pr(Hy). The formal factor is paucity of
parameters and this factor orders hypotheses with respect to simplicity. Recall the
three hypotheses, Hy, Hy, and Hs, where the order of the polynomial model is
denoted by the subscript. A hypothesis gets a higher probability than a competitor,
ceteris paribus, if it has fewer parameters. That is, Pr(H;) > Pr(Hy) > Pr(Hs).

Restricting the prior probabilities of the hypotheses to satisfy Pr(H;) > Pr(H;)
whenever ¢ < 7 is not sufficient to determine the values of these probabilities.
Non-formal factors, especially epistemological and pragmatic factors, play a key role
in arriving at the specific values of the prior probabilities. Several approaches have
been suggested for how investigators might use historical data, expert opinion, and
other epistemological and pragmatic factors to assign specific prior probabilities
(e.g., Berger, 1985). For illustrative purposes, our discussion will focus on just three

of many possible priors. These three priors are summarized in Table 2.

Table 2
Prior Equation
Pri(Hg) 27k k=1,2,...
Pry(Hg) (e—De*: k=12,...
Prs(Hy) | (Vo — Dn=F2% k=1,2,...

In Section 4, we will use the posterior probabilities in equations (??) and (?77?)
along with the priors in Table 2 to choose the polynomial order for the Sue data in
Table 1. First, however, we will describe several charges that have leveled against

the Bayesian approach.

2 Charges Against Bayesianism

There are allegedly several problems with the Bayesian approach. First, some
charge that Bayesianism leads to subjectivism. Bayesianism is suspect, it is claimed,

because subjectivism vitiates a scientific approach to making inferences.
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Bayesianism derives its name from its heavy use and interpretation of Bayes’
theorem. This theorem relies on the notion of prior probability. An agent’s prior
probability for a hypothesis represents that agent’s belief in the hypothesis prior to
conducting the planned investigation. For the same hypothesis, another agent could
have a different prior probability. An agent’s prior belief in a specific hypothesis can
be any probability ranging from 0 to 1, exclusively. Because Bayesianism allows two
agents to start with non-extreme divergent priors, provided their assignments of
priors are consistent with the probability calculus, Bayesians are sometimes branded
as subjectivists. In our Bayesian account, an agent might choose the prior
probability Pry(Hy) in Table 2. According to the first objection, this assignment of
probabilities is subjective because it is arbitrary and devoid of any justification.

A second charge against Bayesianism is that the goal of the BTC approach is
flawed. In the Sue example, as Bayesians we consider three hypotheses as possible
candidates for predicting future data. We choose the hypothesis Hy, if the
probability of Hy, given the data, is highest. Forster (1997) objects that working
scientists are not interested in probability of truth. Therefore, attempting to select
the hypothesis with the highest posterior probability of being correct is a fruitless
exercise. Instead, working scientists are interested in predictive accuracy. According
to this objection, no working scientist acts like a Bayesian.

Third, Forster and Sober (1994) charge that the approach based on BTC is
flawed because it fails to deal with the importance of families of curves. The charge
states that to speak of the probability of the best fitting curve being true is
nonsense because no amount of data will produce a curve that is exactly true.

To escape these problems Forster and Sober suggest that an approach based on
Akaike’s Information be used, rather than an approach based on BTC. In practice,

Akaike’s approach is implemented by means of Akaike’s Information Criterion

(AIC).
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3 The Curve Fitting Problem: AIC

In the curve fitting problem, according to Forster and Sober, we would like to
choose the curve that is closest to the true curve. Their desire is to measure the
closeness of a family of curves to truth without invoking prior probability. To
accomplish this goal, they suggest that AIC be used. The theory underlying AIC
assumes that there is a true distribution of the observable random variables. Call
this distribution f(Z|@) (or f) where Z is a vector of observable random variables
(i.e., future data) and 8 is a vector of unknown parameters (e.g., 02 and ay, ..., ax).
Under Hg, an approximation to the unknown distribution, f. is desired. In the
Akaike approach one approximates f in two steps. First, a sample of data, say Y, is
observed and 8}, the maximizer of fx(Y|0) with respect to € is computed. Second,
the unknown density, f, is approximated by fj, = fk(Z|§k)

To make predictions with optimal accuracy, one would use f if the density was
known. In the absence of such knowledge, fk is used, where the value of k£ is chosen
to minimize the distance between f and fk Akaike (1973) argued that a useful

measure of the distance between f and fk is twice the expected Kullback-Leibler

information. That is, Akaike’s measure of the distance between f and fk is

D(ﬁﬁ)z%El/ln(%)de],

where the expectation is taken with respect to the distribution of the estimator 6.
By taking the latter expectation, Akaike obtained a measure of the distance
between the true curve and a family of curves rather than the distance between the
true curve and a specific member of the family.

Choosing the family of curves which minimizes D(f, fk) is equivalent to

choosing the family of curves which maximizes the quantity

R 9 R
AT =2 [ [ (7) 1 a2 ()
Forster and Sober (1994) refer to A(f, fk) as the predictive accuracy of the kth

family of curves. The negative of predictive accuracy also is known as
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Kullback-Leibler divergence.

Akaike showed that, under certain conditions,

" 2 - 2
A(f, fx) = Eln (Lk) - Dim(Hg) + constants

is a consistent estimator A(f, fk), where L is the maximized likelihood function
given in equation (??) and Dim(Hy) is the number of adjustable parameters
estimated under Hy. For the polynomial models under consideration,

Dim(Hg) = k + 2. To maximize predictive accuracy, one chooses the hypothesis

which maximizes

AIC =1n (Ly) — k. (5)

4 AIC is Equivalent to BTC With a Suitable
Choice of Priors

Consider the two criteria BTC and AIC. BTC chooses the hypothesis that
maximizes the posterior probability whereas AIC chooses the hypothesis that

maximizes predictive accuracy. The two approaches are summarized in Table 3.

Table 3
General Specific  Specific Criterion | Applied to Sue Data

Approach Criterion Prior (Log Scale) H, H, H,
BTC, Ly Pr(Hy) Pri(Hy) In(Ly)—kIn(2) | —475 —530 —=5.55
Pry(Hy) In(Ly) —k —5.06 —5.92 —6.47

Pry(Hy) In(Ly) —EIn(n) | =515 —6.11 —6.77

BTC, Ly Pr(Hy)n="?2 Pri(Hy) In(Ly) —%In(n) | =515 —6.11 —6.77
Pry(Hy) In(Ly) —EIn(n) | =515 —6.11 —6.77

AIC Lye " In(Ly) — k —5.06 —5.92 —6.47
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For each approach in Table 3, the hypothesis selected is the one which
maximizes the criterion. The approaches labeled BTC; and BTC; correspond to the
posterior probabilities in equations (??) and (??). The hypothesis which is selected
using BTC; potentially depends on the specific prior adopted. Hypothesis selection
using BTC; also depends on the specific prior adopted, but only minimally. If
Pr(Hy) is not a function of n, then In[Pr(Hy)] — £1n(n) is dominated by the term
—% In(n). Accordingly, for moderate to large samples, the selection can be based on
the maximized log likelihood function minus the penalty function gln(n). The
approach based on AIC is not Bayesian and, therefore, the hypothesis selected by
AIC does not depend on any prior probabilities.

Column 4 of Table 3 displays the specific criterion obtained when specific priors
are adopted. Clearly AIC is equivalent to BTCy when the prior Pry(Hy) is adopted.
Equivalence under other priors also can be demonstrated. For example, Akaike
(1978) adopted an informative prior on the parameters (2, ag, g, ...) but weighted
all families equally. Under his specific conditions, Akaike showed that BTC is
equivalent to AIC.

Note that all criteria can be written as the maximized log likelihood function
minus a penalty function. The larger the penalty function, the more weight the
criterion gives to simplicity. If n > 8, the three penalty functions in Table 3 can be

ordered as follows:

k
Eln(2) < k < §ln(n).

Accordingly, BTC can give more, equal, or less weight to simplicity than does AIC.
The last three columns in Table 3 apply the various criteria to the Sue data. For
this data set, all criteria select H; as the best trade-off between goodness-of-fit and

simplicity.
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5 A Bayesian Response

5.1 Subjectivity

Our response to the charge that the use of priors smacks of subjectivism and
arbitrariness has several parts. First, we contend that any assignment of priors must

satisfy four constraints.
1. It must satisfy the probability calculus.
2. It must order hypotheses with respect to simplicity.
3. It must be buttressed by epistemological /pragmatic considerations.
4. Tt must follow a rule.

In most applications, the priors on a finite set of hypotheses can be ordered in
an objective manner. We argued in Section 1 and elsewhere (Bandyopadhyay et al,
1996) that the prior probability of a theory depends on simplicity as well as other
factors. Paucity of adjustable parameters provides a formal index of simplicity.
Lower order polynomial curves get higher prior probability than higher order
polynomial curves.

In some applications, paucity of parameters may not suffice to order hypotheses
with respect to simplicity. The ordering of prior probabilities sometimes depends on
epistemological /background information. For instance, scientists routinely ignore
solutions to equations which are not sensible in a given situation (e.g., negative
values for quantities which can only plausibly be positive). We reject these values
because on the basis of our background knowledge we know that they make no sense.

Whether an equation is mathematically tractable, or whether that equation is
easy to handle plays a vital role in theory choice, hence in the assignment of prior
probabilities to theories. Working scientists take resort to this reason frequently. As
an illustration, consider an example from Weinberg (1992). Each of the following is
an infinite series: (a) 1 + % + % +---and (b) 1 +24 3 +---. Each series is infinite

but, according to Weinberg, “one is less infinite than the other, in the sense that it
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takes less effort to figure out what to do about it” (pp. 112). Given our selection
criterion of simplicity, we will take the latter to be simpler than the former because
we take it to be easy to comprehend the former than the latter.

As illustrated in Table 2, ordering priors with respect to simplicity does not
dictate the specific form of the prior. That is, an agent can still choose any of the
three priors or some other prior that orders hypotheses with respect to simplicity.
Here, an agent can take one of two approaches. First, the agent can employ
pragmatic and/or epistemological factors to choose the specific form of the prior.
An agent adopting this approach is responsible for justifying his/her choice. If the
prior can not be justified, then the criticism of subjectivity is well founded.

Second, in some cases the agent may be able to show that for priors chosen
from a well defined class, the results are invariant with respect to the specific choice
of a prior from that class. In this case, the agent need only defend the class of priors
and not any specific choice. Schwarz’s BIC can be defended in this manner. Priors
chosen ;from a large class all yield the same criterion to a first order approximation.

For moderate to large sample sizes, these priors play a negligible role.

5.2 Probability of Truth

The objection says that a Bayesian approach with its focus on the probability of a
particular hypothesis being true fails to agree with practice of science. According to
the objection, scientists’ only concern is with predictive accuracy. We have not done
a survey among working scientists to examine the above claim because we think, as
Bayesians, that it would be very expensive to do so.

We believe that all scientists do not have the same goals. Certainly, many
scientists are interested in predictive accuracy and we have no qualms with this.
Nonetheless, the goal of the BTC approach is reasonable whenever the scientist
believes that the true model is a member of one of the approximating families under
consideration. In designed experiments, this is usually the case. In a designed
experiment, potentially confounding variables are controlled by means of blocking or

randomization. The true model, then, is a function of a subset of the known
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explanatory variables. The specific subset of variables which yields the true model,
however, is not known. The investigator may want to determine which subset of the

explanatory variables yields the true model.

5.3 Importance of Families

The charge that the BTC approach fails to deal with the importance of families is
based on a misconception about BTC. In the Sue example, we desire to know the
polynomial order of the true model. For each k, there is a family of polynomial
regression models which differ in the values of their regression coefficients.. The
hypothesis Hy states that the true model is some member of this family. The
hypothesis H;, does not refer to any specific k" order polynomial. The goal of the
BTC analysis is to compute the posterior probability that the true model is a
member of the k" family of polynomials. The BTC approach does not attempt to
compute the posterior probability of some specific member of the family being true.
Forster and Sober (1994) argue that Bayesians may try to compare likelihoods
of families of curves, but they are unsuccessful. First they argue that if a strictly
information-less prior on the unknown parameters is adopted, then the probability
density of the data averaged over all values of the unknown parameters must be
zero. This is true, but irrelevant. The posterior probability of the family is a ratio of
probability densities. The numerator and denominator may each go to zero as the
information in the prior goes to zero, but the ratio of densities does not go to zero.
Second, they argue that if certain almost information-less priors are adopted, then
the BTC approach suffers because it is not invariant under reparameterization. In
response, we ask them to justify their choice of priors almost-information-less

priors.!

LAlso, we remind them not to neglect the Jacobian when performing transformations. See

footnote number 37 in Forster and Sober (1994).
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6 Problems with AIC

6.1 Consistency

Consider the situation where the true family of curves is among the set
approximating families. The true family is defined as the lowest order curve that
correctly models the data. The AIC approach has been criticized in this situation
because as sample size increases to infinity, AIC will not necessarily select the true
family. Forster (1997) has addressed this charge. We do not take issue with his
response. The goal of AIC is to choose a family of models that has highest
predictive accuracy and this is not the same as choosing the family that has the
highest posterior probability. Nonetheless, there is an issue of consistency for which
AIC does not fare well.

Forster (1997) claims that AIC (when suitably scaled) is a consistent estimator
of predictive accuracy. This is true in the special case of regression models where o2
is a known constant. In addition, if one is willing to assume that the approximating
family is identical to the true family of models, then AIC is a consistent estimator of
predictive accuracy. Forster’s claim, however, is not true, in general. If the
approximating family misspecifies the true family, then AIC no longer is consistent.
For regression models, consistent estimators of predictive accuracy have been
proposed (Sawa, 1978), but these estimators are of little use in more general
settings. Linhart and Zucchini (1986) give a consistent estimator of predictive
accuracy for the general setting, but it requires that the true family of models be
specified. In practice, it may not be possible to specify the true family.

To be fair, Forster (1997) makes it clear that he is advocating the Akaike
approach, not necessarily AIC. That is, Forster’s goal is to maximize predictive
accuracy, but he does not claim that AIC is the optimal way to reach this goal.
Nonetheless, the problem remains that when using the Akaike approach, one

cannot, in general, consistently estimate the quantity of interest.
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6.2 Maximizing Predictive Accuracy

Suppose that one is interested in maximizing predictive accuracy. Again, we have
no objection to this goal. We do wonder, though, why fk(Z@k) is used as the
approximating density (see Section 3). Aitchison (1975) showed that if a prior
distribution is adopted for the unknown parameter vector 8, then the density that
maximizes predictive accuracy is fr(Z|Y) rather than fk(Z@k) That is, the best
predictive density for future data Z is the conditional density for Z given the
observed data Y. This density is called the posterior predictive density.

Furthermore, the posterior predictive density depends only negligibly on the
prior distribution adopted for 8. For moderate to large samples, it does not matter
much which prior is adopted. For example, when selecting a family of regression
models, the posterior predictive density, to order \/Lﬁ, is a multivariate ¢. In general,
the gain in predictive accuracy (equation ??) from using fi(Z]Y) rather than
fk(Z@k) is approximately %[1 —In(2)] ~ 0.15k. The Akaike criterion, modified by
substituting fx(Z]Y) for fk(Z|§k), chooses the hypothesis which maximizes
In(Ly) — 0.85k.

If it is believed that the true model is a member of one of the approximating
families under consideration, then an even better approach is feasible. For this
situation, San Martini and Spezzaferri (1984) proposed a Bayesian prediction
criterion for selecting the model with maximum posterior expected predictive
accuracy. Reschenhofer (1996) implemented this approach for regression models.
His simulation results suggested that substantial improvement in predictive
accuracy over AIC is possible. Apparently, Forster (1997) is not opposed to this
approach, but also is unwilling to specify a prior distribution for the unknown
parameters. This seems to be an unnecessary limitation. Reschenhofer adopted a

non-informative prior, yet still improved upon AIC.
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Summing Up

We discussed how BTC and AIC work following an example. Bayesianism has been
criticized for being subjective. One proclaimed strength of AIC is that it is not
Bayesian. Unlike Bayesianism, it does not invoke prior probability. Despite the
alleged strength of AIC as being non-Bayesian, we showed by contrast that AIC is,
in fact, logically equivalent to BTC with a suitable choice of priors. In this
connection, we discussed the relationship between Schwarz’s Bayesian Criterion and
BTC. We diagnosed the charge of subjectivity and argued that AIC approach has

some defects as a research program.
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