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Abstract

The equilibrium climate response to anthropogenic forcing has long been
one of the dominant, and therefore most intensively studied uncertainties, in
predicting future climate change. As a result, many probabilistic estimates
of the climate sensitivity (S) have been presented. In recent years, most of
them have assigned significant probability to extremely high sensitivity, such
as P (S > 6C) > 5%.

In this paper, we investigate some of the assumptions underlying these
estimates. We show that the popular choice of a uniform prior has unaccept-
able properties and cannot be reasonably considered to generate meaningful
and usable results. When instead reasonable assumptions are made, much
greater confidence in a moderate value for S is easily justified, with an upper
95% probability limit for S easily shown to lie close to 4oC, and certainly
well below 6oC. These results also impact strongly on projected economic
losses due to climate change.



1 Introduction

The long-term response of the climate system to anthropogenic forcing, tradi-
tionally expressed as the equilibrium sensitivity (S) of the globally-averaged
temperature to a doubling of the atmospheric concentration of CO2, has long
been considered as having great significance in terms of our understanding
of the climate system. A number of estimates have been presented over re-
cent decades, perhaps the most famous being the assessment of the NRC
(1979) that S was believed to lie in the range of 1.5–4.5oC, with that rather
vague statement later formally presented as representing a probability some-
where in the range of 66–90% (Houghton et al., 2001). More recently, a
proliferation of probabilistic estimates explicitly based on calculations using
observational data have also been presented (eg Andronova and Schlesinger,
2001; Gregory et al., 2002; Forest et al., 2002; Hegerl et al., 2006). Many of
these results suggest a worryingly high probability of high sensitivity, such
as P (S > 6oC) > 5% (Solomon et al., 2007, Box 10.2). The focus of this
paper is to discuss some of the assumptions underlying these estimates, and
implications for users.

To avoid possible misunderstandings, we establish at the outset that the
notion of probability discussed here is the standard Bayesian paradigm of
probability as the subjective degree of belief of the researcher in a proposi-
tion (Bernardo and Smith, 1994). In order to calculate a posterior proba-
bility distribution function (pdf) for S in the light of observational evidence
O, f(S|O), two inputs are required: our prior belief about f(S), and the
likelihood f(O|S) which depends on our analysis of the observations which
are used. These inputs are combined through Bayes’ Theorem:

f(S|O) = f(O|S)f(S)/f(O).

While the Bayesian approach is not the only possible paradigm for the
treatment of epistemic uncertainty in climate science (eg Kriegler, 2005),
it appears to be the dominant one in the literature. We do not wish to
revisit the wider debate concerning the presentation of uncertainty in cli-
mate science (eg Moss and Schneider, 2000; Betz, 2007; Risbey, 2007; Risbey
and Kandlikar, 2007) but merely note that despite this debate, numerous
authors have in fact presented precise pdfs for climate sensitivity, and fur-
thermore their results are frequently used as inputs for further economic and
policy analyses (eg Yohe et al., 2004; Meinshausen, 2006; Stern, 2007; Har-
vey, 2007). The IPCC 4th Assessment report (Solomon et al., 2007) remains
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somewhat vague about climate sensitivity, only making the comment that S
is likely (> 66%) to lie in the range 2–4.5oC and very unlikely (< 10%) to
lie below 1.5oC (a marginal change from previous assessments) but with no
further detailed quantitative assessment. In the absence of an authoritative
and widely-accepted pdf for S, researchers have generally either used some
parameterised distribution fitted to the IPCC’s statements, or else sourced
estimates directly from the relevant literature.

Given the subjective nature of the assumptions underlying all of these
analyses, it is important to properly understand the relationship of the results
to the assumptions that underly them. The goal of this paper is to explore
one aspect in particular which has received rather limited (and in our opinion
rather confusing) treatment in the literature — that is, the choice of prior
f(S). In the following section, we outline the methods used in this paper.
Then we investigate the prior assumptions which underly most of the results
in the literature. These results illustrate serious shortcomings in the approach
that has been most widely used. We next present some alternatives that we
consider to be more reasonable and practically usable, and then investigate
the robustness of our results. Finally, we conclude with some suggestions
that researchers may wish to consider in their future work in this area.

2 Methods

We present results both in terms of probabilistic predictions of climate change
under a given emissions scenario, and also in terms of the economic impli-
cations of this climate change. Since the only climate parameter we are
considering in this paper is the equilibrium climate sensitivity, we focus our
attention to a long-term stabilisation scenario in which the atmospheric CO2

concentration is stabilised at 550ppm (double the pre-industrial level, corre-
sponding to the IPCC S550 scenario (Houghton et al., 1996)) and the climate
system comes into equilibrium with this forcing. Thus, the global mean tem-
perature change in the long term is precisely the value of the climate sensi-
tivity. To examine the economic consequences of climate change, we use the
damage function of the DICE model (Nordhaus, 2008) to provide an estimate
of the consequential economic loss due to climate change on the global scale.
According to this model, climate change is estimated to cause a loss of the
form C(T ) = 0.284T 2 where C(T ) gives the loss in percentage of global GDP
as a function of the global mean temperature change T . For this function,
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a warming of 4oC causes a loss of about 4.5%, which is near the top end
of the IPCC range of 1-5% loss for this amount of warming (Parry et al.,
2007, p17). At 6oC warming, the cost according to DICE exceeds 10% of
global GDP, which is also at the higher end of the range of likely damages
estimated by the Stern Review (Stern, 2007, Fig 6.6). As the cited reviews
indicate, there is substantial uncertainty among alternative damage func-
tions, although they also suggest that our choice is towards the pessimistic
end of the range supported by the literature and could easily be overstated
by a factor of 2 or more. Thus, we do not claim here to provide a comprehen-
sive probabilistic assessment of the economic harm associated with climate
change. Rather, the economic assessment is intended to demonstrate how the
details of the choice of prior may have a substantial downstream impact on
users of climate science information. Our results are qualitatively insensitive
to the particular choice of the DICE model as the basis for the economic cost.
Alternative economic damage functions which also show substantial relative
rises in harm across moderate to high temperature rises (say 3–10oC) would
support a qualitatively similar analysis and conclusions.

The quadratic curve of the DICE model must be truncated at T ≃ 19oC
where a complete destruction of the world economy is implied. Extrapolation
of this curve to such high temperatures is of course of dubious validity, but
our results are qualitatively insensitive to the precise details.

We ignore complications such as the much-debated discount rate, and
also risk-aversion (as could be expressed by performing the analysis in terms
of a nonlinear utility function of global GDP), as outside the scope of this
paper. Instead we directly present the results of our economic analyses as an
expected loss of global GDP in percentage terms. For our 2×CO2 scenario,
the expected cost of climate change (relative to a pre-industrial baseline),
given a probabilistic estimate of the climate sensitivity f(S), is therefore
given by

∫
f(S)C(S) dS.

We note that, for a more pessimistic stabilisation at 1000ppm CO2 corre-
sponding to the IPCC S1000 scenario, the temperature rise would be virtually
double the value of the climate sensitivity, and the corresponding economic
damage would be nearly four times greater than the estimates we provide
here.
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3 Prior beliefs

According to Bayes Theorem as written in the Introduction, a posterior dis-
tribution for S in the light of observational evidence O, which we write as
f(S|O), logically requires a prior distribution f(S) which represents the re-
searcher’s beliefs concerning S in the absence of these observations. Note
that this does not actually require a chronological relationship between the
formation of the prior, observation of the data, and calculation of the pos-
terior, although such a relationship may exist. Determining a suitable prior
is potentially challenging given that in many or even most cases, the re-
searcher is already aware of the broad implications of the data before the
detailed quantitative analysis is undertaken. It is important to be aware of
the risk of double-counting the data by accounting for it both in the prior
and again through the likelihood, as committing this error would result in
over-confident estimates.

3.1 Ignorant priors

In an attempt to avoid the risk of double-counting evidence, researchers have
often chosen to use a prior which is uniform in S, which has been described
as encapsulating no knowledge about S (eg Lee et al., 2005; Frame et al.,
2005). However, it must be recognised that in fact there can be no prior
that genuinely represents a state of complete ignorance (Bernardo and Smith,
1994, Section 5.4), and indeed the impossibility of representing true ignorance
within the Bayesian paradigm is perhaps one of the most severe criticisms
that is commonly levelled at it (eg Walley, 1991, p234). Any proper prior for
S must assign a specific level of belief to the proposition that S > 6oC, and
it also cannot help but imply a specific prior expectation of loss under the
climate change scenario presented in Section 2. Furthermore, the uniform
priors which have been widely used represent beliefs that in our opinion are
extreme and difficult to justify. For example, the uniform prior U[0C,20C]
of Frame et al. (2005) actually represents a prior belief that S is “likely” (70%
probability) greater than 6oC, with a mean value for S of 10oC and a 50%
probability of exceeding this figure. Even when truncated to U[0C,10oC] as
in Hegerl et al. (2006) and Solomon et al. (2007, Figure 9.20), this uniform
prior still represents the belief that P (S > 6oC) = 40%, and also that S is
more than twice as likely to lie outside the conventional 1.5–4.5oC “likely”
range, as inside it. Perhaps more importantly, the probability assigned to
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high values of S has a dominant effect on the expected cost of climate change,
due to the strong rise in economic losses that accompany increases in tem-
perature. Using the stabilisation scenario and economic analysis described in
Section 2, the U[0,10oC] prior implies an expected loss of 9.5% of GDP, with
the 40% probability assigned to the interval 6oC < S < 10oC accounting
for 87% of that total loss. The broader prior U[0,20oC] implies a massive
expected loss of 37% of GDP. Again, the high end of the sensitivity range
dominates the loss calculation. It is clear from examining those economic
calculations that even low probabilities of high values for for S can have a
very strong influence on economic decision making. In fact, changing a de-
terministic estimate for S from 2oC to 3oC (which covers the range of values
where most analyses agree on a highest likelihood for S) has a smaller effect
on the total expected loss, than changing our probability of 6oC < S < 20oC
by a mere 3%, distributed uniformly across that range. Thus, the notion that
such priors (or indeed any prior) can encapsulate the notion of “ignorance”
may be superficially attractive but is surely not defensible in detail.

For illustration of how these prior beliefs feed through into posterior esti-
mates of climate sensitivity, we consider the ERBE data which were recently
analysed by Forster and Gregory (2006) (henceforth FG). Their analysis is
based on fairly recent observational data, and does not rely on the analysis of
climate model output, which is valuable in ensuring that we are not double
counting data in the analysis presented later. First, we note that their anal-
ysis can be interpreted (and was presented by the authors) as generating a
likelihood function which is Gaussian in radiative feedback L = 1/S. While
the authors did not actually present a fully Bayesian analysis of their data,
the use of regression-based estimates as likelihood functions is extremely
common in climate science and elsewhere, and has some theoretical justi-
fication (eg Leroy, 1998). Forster and Gregory’s Gaussian regression-based
estimate for L = 2.3 ± 1.4 Wm−2K−1 (at 2 standard deviations) therefore

naturally translates into a likelihood function f(O|L) ∝ e
−(2.3−L)2

2×0.72 . Although
the authors acknowledge that their estimate, based on interannual variability,
may exclude some feedbacks that are relevant to longer term global warming,
they present analysis and arguments that their estimate is accurate to within
its stated uncertainties. To further demonstrate the robustness of the results
presented here we report on some sensitivity analyses on this likelihood later
in the paper.

Figure 1 shows results obtained when different uniform priors are updated
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with this likelihood function. We have selected two priors that have been used
in the recent literature; U[0,10oC] (Hegerl et al., 2006; Solomon et al., 2007),
U[0,20oC] (Frame et al., 2005). In contrast to the upper bound, the lower
bound of 0oC on the prior is uncontentious: a negative value of sensitivity
implies an unstable climate system, and so long as the prior’s lower bound
is not set so high as to actually exclude reasonable values of S, all results
obtained are insensitive to the details of that choice.

In both of these cases, the likelihood we use is exactly the same function
presented by FG. That is, the difference in results here is entirely due to
the choice of upper bound on the prior, rather than anything relating to
the observations or their interpretation. These results, along with others
discussed in this paper, are also summarised in Table 1.

It would, we argue, be difficult to claim on theoretical or scientific grounds
that either of these prior choices was more objective or defensible than the
other one, or any other uniform prior with a different upper bound. Indeed we
are unaware of any such arguments in the literature. However, the posterior
pdf, and in particular the upper 95% probability threshold, differs greatly
between these two results. We can easily explain this by examining the shape
of the likelihood function in more detail. A Gaussian likelihood in feedback
space has the inconvenient property that f(O|L = 0) is strictly greater than
zero, and so for all large S, f(O|S) is bounded below by a constant. There-
fore, the integral of this function (with respect to S) is unbounded. This
means that if the improper semi-unbounded uniform prior U [0,∞] is used,
no proper posterior pdf results. Thus it is necessary to impose bounds on
the uniform prior — it would be more appropriate to describe it as a uniform
prior rather than the uniform prior — and the results are strongly depen-
dent on where this upper bound is placed. The inverse Gaussian shape of
FG’s likelihood function is broadly similar in shape to the marginal likeli-
hood functions for sensitivity that have been obtained from a wide variety of
investigations including those cited previously. There are fundamental phys-
ical reasons for the skewed shape which have been well understood for many
years (Hansen et al., 1985). Therefore, this strong sensitivity to the upper
bound of the prior is a generic feature which applies much more widely than
just to this specific case.

The expected cost of our stabilisation scenario is also strongly affected by
the choice of prior, changing from 3% of global GDP for the U[0,10] prior to
7% for U[0,20]. Increasing the upper bound on the prior still further would
generate an even larger posterior expected loss, which would actually tend
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Figure 1: Effect of using different bounds on a uniform prior. Upper row
shows marginal pdfs, lower row shows cumulative pds. Dotted lines indicate
the priors, solid lines indicates the posterior pdf after updating with the
likelihood function of Forster and Gregory (2006). Vertical lines in the lower
row indicate the upper 95% bound in each case.
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Inputs Upper 95% limit Cost of 2×CO2

(oC) (% GDP)
Prior Likelihood Prior Posterior Prior Posterior

U[0,10] FG 9.5 6.9 9.5 3.1
U[0,20] FG 19 12.3 37.4 7.1
Webster FG 5 3.6 2.3 1.5

Cauchy (2.5,3) FG 14.5 4.2 9.7 2
Cauchy (3,3) FG 14.6 4.6 10.4 2.4
Cauchy (3,6) FG 19.6 5.1 13.9 2.6
Cauchy (3,12) FG 26.2 5.7 18.8 3.1

Webster FG+50% 5 4.4 2.3 1.9
Cauchy (2.5,3) FG+50% 14.5 6.8 9.7 4.4
Cauchy (3,6) FG+50% 19.6 9.1 13.9 6.4

Cauchy (2.5,3) Hegerl+ 14.5 4.5 9.7 2.4
Cauchy (2.5,3) AH+ 14.5 4.2 9.7 2.8
Cauchy (2.5,3) Hegerl+, FG 14.5 3.5 9.7 1.6
Cauchy (2.5,3) AH+, FG 14.5 3.7 9.7 2.0

Table 1: Selected data from prior and posterior analyses discussed in the text.
Upper 95% probability limit for S, and expected cost of 2×CO2 scenario are
shown. Location and scale parameters of Cauchy distribution are given in
parentheses. FG indicates the likelihood from Forster and Gregory (2006),
FG+50% indicates 50% increase in the width of their likelihood function.
Hegerl+, AH+ are likelihoods based on Hegerl et al. (2006) and Annan and
Hargreaves (2006) respectively, with minor modifications as discussed in the
text.
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to 100% as the bound increases. As a result, choosing between these uniform
priors (or any other) could be expected to have strong implications for policy
decisions. For example, if stabilising CO2 at 275ppm compared to 550ppm
was estimated to cost an additional 5% of GDP, then switching the prior
between U[0,10oC] and U[0,20oC] would reverse the economically optimal
decision. Again we emphasise that this difference in outcomes is entirely due
to an arbitrary decision to truncate the prior at different points. Moreover,
the qualitative behaviour of the specific results presented here will apply to
any analysis based on a likelihood function that is approximately Gaussian
in feedback (or indeed, more generally, bounded away from zero at L = 0).
Thus we believe the vast bulk of the results in the published literature are
sensitive in this way to the arbitrarily-selected upper bound on the uniform
prior. Even though we can expect estimates to converge on the true value of
the climate sensitivity as more data are obtained and analysed, at any given
time our likelihood functions will still be bounded above zero at L = 0. That
is, if we start with a sufficiently wide uniform prior, analyses of this nature
will always present us with an expectation of disaster. In the next section,
we discuss alternatives to uniform priors.

3.2 Expert priors

Having demonstrated how the widely-used approach of a uniform prior fails
to adequately represent “ignorance” and generates rather pathological re-
sults which depend strongly on the selected upper bound, we now consider
how to represent reasonable opinion through an expert prior. As we have
already mentioned (and proponents of uniform priors are quick to argue), it
would be hard today to find a “cloistered expert” who could give an author-
itative prior but who was not already aware of the modern data with which
we aim to update their prior. Moreover, it is well established that experts
often tend to claim more certainty than is appropriate (Morgan and Henrion,
1990). Nevertheless, it certainly seems worthwhile (given the lack of a viable
alternative) to attempt this quest, while remaining aware of the potential
pitfalls. We minimise the risk of overconfidence by performing some sensi-
tivity analyses to investigate how critically our results depend on the choices
made.

In the absence of a cloistered expert, one reasonable approach would be to
look back through the literature to see what climate scientists actually wrote
prior to the observation and analysis of modern data sets. After what was
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perhaps the earliest early estimate for S of around 5oC (Arrhenius, 1896),
all subsequent model-based estimates have been clearly lower (Manabe and
Wetherald, 1967; Hansen et al., 1983), culminating in the “likely” range of
1.5–4.5oC (NRC, 1979). This estimate was produced well in advance of any
modern probabilistic analysis of the warming trend and much other observa-
tional data, and could barely have been affected by the strong multidecadal
trend in global temperature that has emerged since around 1975. Therefore,
it could be considered a sensible basis for a credible prior to be updated by
recent data.

Simple physically-based arguments also point towards this range as at
least having higher probability than much higher or lower values. That is, the
radiative forcing effect of a doubling of CO2 alone is estimated to be roughly
1oC for a suitable grey body via the Stefan-Boltzman law, with the expected
water vapour feedback roughly doubling this to around 2oC (Houghton et al.,
2001). Cloud feedback is widely acknowledged to be highly uncertain even in
sign, and therefore the nonlinear relationship between feedbacks and sensi-
tivity implies that any prior for S should have broad support that extends to
high values. However, a prior for S of U[0,20oC] requires the belief that not
only is it “very likely” (90%) that the cloud feedback is positive, but further-
more “likely” that it is almost as large as the powerful water vapour effect.
Since the sign of this feedback is considered uncertain even now (Solomon
et al., 2007, Section 8.6.3.2), it does not seem reasonable to start from such
confidently biased beliefs in a prior. We emphasise that we do not propose
that the simple theoretical and model-based arguments presented above can
provide a precise estimate for S, or even that they justify the prohibition of
high values a priori. Rather, we merely use them to support our contention
that the uniform priors which have been widely used represent an extreme
viewpoint which cannot readily be reconciled with any credible scientific
opinion, past or present.

A composite expert prior has previously been presented by Webster and
Sokolov (2000), which is also broadly consistent with the long-held viewpoint
that S is likely to be moderate. This prior (which is shown in Figure 2) is
a Beta function with the parameters chosen to approximately fit the range
of results found in a survey of experts (Morgan and Keith, 1995), and is
also compatible with the NRC report in assigning a probability of 67% to
the range 1.5–4.5oC. It produces an expected cost of 2.3% of GDP under
our 2×CO2 scenario. It has already been shown by Forest et al. (2002) that
updating this expert prior with global temperature data from the 20th cen-
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tury results in greatly increased confidence in a moderate value for S. It is,
however, hard to shake off the accusation that the experts who were surveyed
by Morgan and Keith were aware of the recent warming rate, and had there-
fore already accounted for that data in their estimates (albeit informally, as
there were no published analyses at this time). Perhaps for that reason, this
estimate of Forest et al. appears to have been largely ignored. However,
such a criticism of double-counting is no longer tenable if instead of using a
likelihood function based on historical temperature data, we consider FG’s
recent analysis of the ERBE data, which was published more than 10 years
after Morgan and Keith performed their expert survey. We can also note fur-
ther that the raw observational data upon which the FG analysis was based
entirely post-dates the NRC (1979) report so cannot possibly have influenced
that assessment. As FG also mention, their analysis does not depend on cal-
culations of climate models, and therefore we believe we are fully justified in
treating it as independent of the NRC estimate.

We should therefore update the expert prior with the likelihood function
arising from FG’s analysis of the ERBE data, and present the results in
Figure 2. The resulting 5–95% posterior probability interval is 1.2–3.6oC,
and the expected cost of 2×CO2 drops from 2.3% to 1.5% of GDP.

4 Sensitivity analysis

In order to investigate the robustness of this result, we next examine its
sensitivity to changes in both the prior and the likelihood function.

4.1 Sensitivity to the prior

The Beta function of Webster and Sokolov may be considered rather opti-
mistic in the very low probability that it assigns to high values of S. Also, by
being strictly bounded to S < 15oC, it prohibits any more extreme values of
S irrespective of the data. Therefore, we consider the use of an alternative,
more pessimistic prior with greatly exaggerated tails, also illustrated in Fig-
ure 2 (right hand plots). This is a Cauchy distribution with location param-
eter 2.5 and scale 3, giving it the functional shape f(S) ∝ 1/((S−2.5)2 +3).
We truncate this prior at 0oC and 100oC for numerical convenience but, in
contrast to the uniform priors previously discussed, the influence of the up-
per bound on the results presented here is negligible. The parameters of
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Figure 2: Pdfs arising from different prior distributions. Dotted lines indicate
the priors, solid lines indicates the posterior pdf after updating with the
likelihood function of Forster and Gregory (2006). Vertical lines indicate the
upper 95% bound in each case.
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this distribution were chosen to be roughly compatible with both the NRC
report and the simple physical arguments presented above, but we have tried
to err on the side of pessimism. Thus, this prior only assigns 55% proba-
bility to S lying in the traditional range of 1.5–4.5oC, insufficient to satisfy
the IPCC’s interpretation of “likely”. It also implies P (S > 6oC) = 18%
and P (S > 15oC) = 5%. We suspect that if such an estimate had been pre-
sented in the NRC report, it would have (rightly) been met with widespread
concern from those who accepted it, but also would have provoked hostility
and scepticism from others who would have argued that it was rather too
pessimistic.

The Cauchy distribution has extremely long and slowly-declining tails,
such that it has neither a mean nor a variance, although it does have a
well-defined median and finite probability intervals for any probability less
than 1. Thus it represents a much more pessimistic outlook than the strictly
bounded Beta distribution chosen by Webster and Sokolov (2000) and used
by Forest et al. (2002). Indeed, its extreme tail assigns non-zero probability
to substantially higher values than any of the uniform priors that appear
in the literature. Even in this rather extreme case, however, the posterior
5–95% probability range after updating with FG’s results only covers the
interval 1.3–4.2oC. Such a result represents a substantial decrease in uncer-
tainty compared to all recent published estimates. Furthermore, it cannot be
argued that this has been achieved by using a prior which rules out high S ab

initio. On the contrary, it assigns a substantial level of prior belief to such a
hypothesis, including 8% probability to S > 10oC, an event which is deemed
impossible by the currently favoured U[0,10oC] prior. If the data had actu-
ally indicated a strong likelihood for high sensitivity, say via a hypothetical
likelihood function for radiative feedback given by 1/S = L = N(0.4, 0.1),
then the posterior distribution for S would have a 5–95% probability range
of 6.4–14.8oC, comfortably bracketing the maximum likelihood value for S
of 3.7/0.4 = 9.2oC. Therefore, it is clear that the choice of such a prior
in no way prevents the posterior from indicating a high probability of high
sensitivity, if the data were to actually support this.

The implications for economic analysis are also encouraging. Whereas
the Webster and Sokolov prior alone indicates a loss of only 2.3% of GDP
for stabilisation at 2×CO2, which is reduced in the posterior to 1.5%, the
long-tailed Cauchy prior presented here has a much greater expected loss of
9.7% but this is still reduced to only 2% by the Bayesian updating with the
FG likelihood.
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We now investigate how much more pessimistic the prior would have to
be in order to strongly affect the posterior. We start by shifting the location
parameter of the Cauchy prior up to 3 (remembering that the median of the
prior will always be higher than this, due to the asymmetric truncation at 0oC
and 100oC). This change alone only increases the posterior cost marginally
to 2.4%. An additional doubling of the prior’s scale parameter, to 6, increases
the 95%th percentile of the prior to almost 20oC, and its median to 3.8oC. In
this case, the posterior cost of climate change creeps up a little more to 2.6%.
Doubling the scale factor again, to 12, leads to a posterior cost of 3.1% of
GDP, still fractionally lower than that generated by the U[0,10] prior and less
than half of that arising from U[0,20]. In this case, the prior has a median
of 4.5oC, which is double that of the Webster and Sokolov prior, and it also
assigns 19% probability to S > 10oC. We consider that this prior is a very
long way removed from any credible expression of prior expert opinion.

4.2 Sensitivity to the likelihood

It is also plausible that FG’s interpretation of their data is too optimistic, so
we also test the sensitivity of our results to both increasing the uncertainty
on their result (combining this modified likelihood function with different
priors for S), and also consider replacing their analysis with other analyses
of different observational data sets. As before, the results are detailed in the
table, and we now describe the basis of these calculations. First we change
the uncertainty of FG’s likelihood function. A 50% increase on its width
in feedback space (to 1.05 at one standard deviation) results in it providing
only a rather weak update to the Webster and Sokolov prior, reducing the
upper 95% probability limit for S and the cost of a doubling of CO2 by only
a few tenths of a degree and a few tenths of a percentage point respectively.
When that broader likelihood is combined with our original Cauchy prior,
the posterior cost of a doubling of CO2 is as high as 4.3% of GDP, and this
number rises substantially as the Cauchy prior is broadened and shifted to
higher values. Therefore, it seems that the interpretation of the data can
be a relatively important factor (at least, if one considers an increase in
uncertainty as extreme as 50% to be plausible).

We must, however, also recognise that there are many other data that can
also help to inform us on the climate sensitivity. Even considering the possi-
bility that our prior already accounts for that part of the historical warming
trend observed prior to NRC (1979) or Morgan and Keith (1995), there has
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been additional gradual ongoing warming since then, and also distinct analy-
ses such as explorations of paleoclimatic data (Annan et al., 2005; Schneider
von Deimling et al., 2006), and simulation of the short-term response to vol-
canic perturbations (Yokohata et al., 2005; Wigley et al., 2005). If we are
not implicitly considering this evidence as part of our prior knowledge about
S (and we have deliberately chosen to base the prior on very little evidence),
it should rightfully contribute to the likelihood function. The common pro-
cedure of using each analysis separately, combined with a “ignorant” prior,
cannot by construction generate a credible posterior belief concerning the
climate sensitivity, since such an approach makes no attempt to present an
integrated analysis of our information. It is well-known that additional data
are expected to decrease uncertainty. To be precise, we can only say that ad-
ditional data cannot be expected to increase uncertainty, but limiting cases
where they have no effect whatsoever tend to be somewhat pathological (eg
Wynn, 2008). Some analyses of combined data sets have already illustrated
the increase in confidence that can arise from such joint analysis (Annan and
Hargreaves, 2006; Hegerl et al., 2006). We note that both of these analyses
were actually based on an underlying uniform prior, which suggests that a
less naive choice would have generated rather sharper results. Since the like-
lihoods used in these papers in no way depended on the choice of prior, we
can illustrate this point by simply post-multiplying their results by a different
prior.

The Hegerl et al. analysis was abruptly truncated at 10oC, so we must
first extend their likelihood function to higher values. We do this by fitting
an inverse Gaussian to the tail of high values, this shape being (as noted
above) supported by various theoretical arguments and empirical evidence.
With this interpretation of their result, simply extending their uniform prior
to cover the range 0–20oC would result in a 95% probability limit of 6.8oC.
When we combine their likelihood function with the Cauchy prior, however,
the 95% probability limit is much lower at 4.5oC, and the expected cost is
2.4%. These values represent a significant improvement on their published
result where an upper 95% probability limit of 6.2oC was reported.

We can also treat the results of Annan and Hargreaves in a similar way.
In that work, some strongly truncated likelihood functions (Gaussian and
Beta) were chosen for convenience, which may be considered too optimistic
in the light of our earlier discussion about extreme tails. Therefore, we
impose a lower bound on the likelihood function arising from this work, never
allowing it to drop below a value of 1% of its peak. This value was chosen
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to approximately match the likelihood ratio for the high tail of Hegerl et al..
The resulting posterior pdf, if a U[0,20oC] prior is used, would have a cost
of 5.9% of GDP under 2×CO2 and a 95% probability limit of 9oC. Using
instead the Cauchy prior gives a cost of 2.8% and a 95% limit of 4.2oC.
Again, the upper limit for S is lower than the originally published result,
despite the increased likelihood function for extreme values.

Both of these analyses exclude the FG work, which was based on inde-
pendent observations. Therefore, we think it would be hard to argue that all
of these results are substantially overconfident. If we were to further update
each of these analyses with the FG likelihood, the posterior cost would re-
duce still further to 1.6% of GDP with a 95% limit for S of 3.5oC based on
the Hegerl et al. analysis, and 2% of GDP with a 95% limit for S of 3.7oC
for Annan and Hargreaves. At such a level of precision, it would probably
be worth re-examining the accuracy of assumptions in some detail, such as
those regarding the linearity of the climatic response to forcing, and the inde-
pendence of the analyses of the distinct data sets. Nevertheless, such results
may be interpreted as hinting at an achievable upper bound to the precision
with which we can reasonably claim to know S, given our current scientific
knowledge.

5 Conclusions

We have investigated the assumptions underlying many recent probabilistic
analyses of climate sensitivity, and shown how these may influence policy
through a simple economic analysis of a climate change scenario. We have
two main results. First, we have shown that results based on a uniform
prior are sensitive to the selection of the upper bound, and it is surprising
that this point has not received more discussion in the literature. We also
observe that the uniform priors that have been used represent extremely
pessimistic beliefs about climate sensitivity that cannot truly be considered to
represent either “ignorance” or plausible prior beliefs of reasonable scientists.
For these reasons, we consider uniform priors to be a poor choice for this
analysis. Second, we have shown that when an analysis is performed based
on a reasonable expert prior, the results are robust with respect to changes
in either the details of the choice of prior, or the likelihood function. Even
using a Cauchy prior (based on a rather pessimistic interpretation of the
NRC report), which has such extremely long and fat tails that it has no
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mean or variance, gives quite reasonable results. While we are reluctant
to openly endorse such a pathological choice of prior, we think it should
at least be immune from any criticism that it is overly optimistic. When
this prior is updated with the analysis of Forster and Gregory (2006), the
long fat tail that is characteristic of all recent estimates of climate sensitivity
simply disappears, with an upper 95% probability limit for S easily shown
to lie close to 4oC, and certainly well below 6oC. Alternative likelihoods
based on Hegerl et al. (2006) and Annan and Hargreaves (2006) generate
similar results. Thus it might be reasonable for the IPCC to upgrade their
confidence in S lying below 4.5oC to the “extremely likely” level, indicating
95% probability of a lower value. Expected economic losses are also strongly
impacted by this reduction in the uncertainty of climate sensitivity. While
the economic analysis presented here ignores a substantial additional source
of uncertainty by selecting one specific damage function, the use of reasonable
expert priors results in a substantial lowering of the expected loss to around
2% of global GDP for the simple 2×CO2 scenario used.
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