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The Argument: In its reconstruction of scientific practice, philosophy of 

science has traditionally placed scientific theories in a central role, and has 
reduced the problem of mediating between theories and the world to formal 
considerations.  Many applications of scientific theories, however, involve 
complex mathematical models whose constitutive equations are analytically 
unsolvable.  The study of these applications often consists in developing 
representations of the underlying physics on a computer, and using the 
techniques of computer simulation in order to learn about the behavior of these 
systems.  In many instances, these computer simulations are not simple number-
crunching techniques.  They involve a complex chain of inferences that serve to 
transform theoretical structures into specific concrete knowledge of physical 
systems.  In this paper I argue that this process of transformation has its own 
epistemology.  I also argue that this kind of epistemology is unfamiliar to most 
philosophy of science, which has traditionally concerned itself with the 
justification of theories, not in their application.  Finally, I urge that the nature of 
this epistemology suggests that the end results of some simulations do not bear a 
simple, straightforward relation to the theories from which they stem. 
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§0. Introduction 

Although computers have come to play an increasingly large role in scientific research, a 

detailed study of their significance for the philosophy of science has yet to emerge.  I refer here 

not to the role of the computer in the study of mind, for which there is a vast philosophical 

literature, but to the more workaday role of the computer in helping to manage mathematically 

unsolvable sets of equations.  Specifically, this paper will address the scientific practice of 

computer simulation in the study of complex physical systems.  In many instances, these 

computer simulations are not simple number-crunching techniques.  They involve a complex 

chain of inferences that serve to transform theoretical structures into specific concrete knowledge 

of physical systems.  

 In this paper I argue that this process of transformation is also a process of knowledge 

creation, and that it has its own unique epistemology.  It is an epistemology that is unfamiliar to 

most philosophy of science, which has traditionally concerned itself with the justification of 

theories, not in their application.  I also argue that the complex and motley nature of this 

epistemology suggests that the end results of simulations often do not bear a simple, 

straightforward relation to the theories from which they stem.  Accordingly, I urge philosophers 

of science to examine more carefully the process of 'theory articulation', the process by which a 

general theory is made to conform to a particular application. It is a relatively neglected aspect of 

scientific practice, but it plays a role that is often as crucial, as complex, and as creative as 

theorizing and experimenting.  Indeed, my conclusion will be that we now need a new philosophy 

of simulation to complement recent work on the philosophy of experiment. 

Why, should simulation — a form of calculation — require an epistemology?  We need 

an epistemology of simulation because simulation modeling is a set of scientific techniques that 

produces results.  When science produces results, we would like to have standards for deciding 

whether or not these results have some degree of reliability. Even though simulation is 
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fundamentally about replacing analytical solutions with calculation, which at first sight appears to 

be merely a mathematical transformation, the question of the reliability of the results of 

simulation modeling goes beyond simple concerns about the reliability of the calculation, and 

reaches out to the entire simulation process and the conclusions scientists reach using it. 

The first step in getting a handle on what an epistemology of simulation might be is to 

highlight and characterize the different inferential steps that take place during the process of 

simulation; those that might be subject to epistemic scrutiny.  So I will try to make the point that 

a simulation study embodies a rich inferential process by outlining the essential steps that are 

involved in the study of complex phenomena using computational techniques.  Along the way, 

though, I want to fulfill a second related task.  

The second task is to get clear on the different uses of the word “model”, as they will 

come up in this discussion. Regrettably, the term “model” is used in far too many ways in both 

scientific and philosophical parlance.  According to Nelson Goodman, 

 Few terms are used in popular and scientific discourse more 
promiscuously than 'model'.  A model is something to be admired and emulated, 
a pattern, a case in point, a type, a prototype, a specimen, a mock-up, a 
mathematical description-- almost anything from a naked blonde to a quadratic 
equation -- and may bear to what it models almost any relation of symbolization. 
(Goodman, 1968, p. 171). 

 
In a discussion of simulation modeling, the situation is particularly ambiguous.  There are 

at least five different uses of the notion of model in the context of simulation.  All of them are 

important, and all of them are, I believe, usefully thought of as types of models.   So, as I outline 

the successive steps of a simulation study, I want to develop a small taxonomy, and a lexicon, for 

the different notions of model that I will be using in my discussion of simulation. The integral 

part of the practice of simulation is the process of building what I call a hierarchy of these 

models. This hierarchy includes a mechanical model, a dynamic model, ad hoc models, a 

computational model, and finally, a model of the phenomena. 

Each of these steps in the simulation modeling process is a step on the way toward an 
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inference.  Figure 1 illustrates the different layers of models involved in simulation and the 

resources used in each inferential step.  Via these steps, the simulationist hopes to infer, from 

existing theoretical knowledge, new knowledge about the system being simulated.  While it is 

typical in philosophy of science to talk about deducing results from theories, the inferential 

moves described above are patently not deductive.  They have neither the inevitability nor the 

epistemic certainty associated with deduction.  

If one of the central tasks of a philosophy of science is applied epistemology, then any 

philosophical look at simulation modeling needs to ask when, and why, these nondeductive 

inferential steps are acceptable—that is, under what sorts of conditions do they produce reliable 

knowledge, and why.  But another task of philosophy of science is interpretation.  So we will also 

need to ask what the nature of the inferred knowledge is, and in what relation it stands to the 

theoretical structure from which it was inferred. 

The structure of this paper will be as follows.  In section one I identify and describe 

roughly the kind of simulation research on which I will be focussing. In section two I will outline 

the methodological structure of this kind of simulation research.  I will do this with the help of a 

case study involving the simulation of a severe super-cell thunderstorm.  I will also introduce, in 

this section, a ‘hierarchy of models’, which presents the various kinds of models that play 

important roles as intermediate steps in the process of simulation.  Section three will focus on the 

final model of the hierarchy, what I call the “model of the phenomena,” which represents the end 

result of simulation research.  In sections four and five I argue for the unique character of the 

epistemology of simulation, and I outline how this epistemology fits (or fails to fit) into the 

philosophical literature.  In section six I explore the relationship that models of phenomena bear 

to theoretical structures, arguing that the relationship is more complex than one might suppose.  

Finally, in section seven, I offer some concluding remarks. 

§1. Simulation Techniques. 
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The use of computational techniques in the sciences has become more and more 

widespread, and the range of techniques and applications is enormous. I will focus on one type of 

application of these techniques—the practice of modeling very complex physical phenomena for 

which there already exist good, well-understood theories of the processes underlying the 

phenomena in question. Though the underlying theories are well understood, the phenomena 

themselves are not well understood because of the complexity of interactions involved in 

generating the phenomena. These computational techniques, involving the solution of intractable 

differential equations, via simulation modeling, have as their aim an understanding of complex 

phenomena they model.  In contrast, my discussion will not necessarily be relevant to simulations 

that do not draw on a base of accepted theory, such as traffic pattern simulations, or the 

simulation of a flock of birds in flight. 

Let me begin by giving a rough sketch of these kinds of techniques.  As an illustration, let 

us suppose that we are confronted with a physical system of which we would like to gain a better 

understanding: a severe storm, a gas jet, or the turbulent flow of water in a basin1. The system in 

question is made up of underlying components such as solid particles or parcels of fluid that 

behave according to a strict set of physical laws, and we can assume that we know what these 

components are and that we know the laws that govern them.   

The assumptions we have made so far allow us write down a set of partial differential 

equations.  These differential equations represent an exact determination of how the system will 

evolve through time, as given by the physical model.  In the types of systems that the simulation 

modeler is concerned with, though, the equations are non-linear, and it is mathematically 

impossible to find an analytic solution to these equations – the model is said to be nonintegrable.  

That is, it is impossible to write down closed form equations, equations given in terms of known 

mathematical functions, which represent an exact solution to the set of differential equations and 

will thereby tell us what the system will do over time. 
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This problem is not new to the computer age and nor are attempts to it.  In the past, 

attempts focused on analytic techniques for finding approximate solutions to the differential 

equations in question.  These techniques have succeeded in generating closed form functions that 

are approximately valid.  That is, for problem situations such as the three-body problem, 

functions can be found which can be shown to have the same qualitative character as the 

unknown solution to the equations to be solved.   

But there are vast regions of possible solutions to interesting equations that are 

qualitatively different from any know closed form function.  The approach that the simulationist 

takes to this problem is to discretize the equations and "solve" them by brute force.  

Discretization turns differential equations, which relate continuous rates of change over 

infinitesimal intervals, into difference equations, which relate rates of change over finite, or 

discrete, intervals.  The values that these difference equations give can then be calculated by a 

digital computer, from one discrete moment of time to the next.  This technique of simulation is 

often called "finite differencing." 

Of course the transformation of the differential equations into difference equations 

constitutes an approximation.  But by choosing an appropriately "fine grid," that is by using 

discrete intervals of space and time that are sufficiently small, the simulationist can reduce the 

"damage" done by the approximation as much as he or she wants.  In principle, unlike for analytic 

techniques, no assumptions such as symmetry or time independence need necessarily be imposed. 

In practice, though, the amount of time and memory required to do these computations 

goes up very quickly as the simulationist chooses smaller grids.  Frequently, the problem posed 

requires, for reasonably accurate solutions, a grid too small for any reasonable allocation of 

computer time and memory.  If the simulationist uses the full set of laws in the model, and tries to 

solve the resulting difference equations with a grid fine enough to assure a reasonable degree of 

accuracy, he or she will often run up against the limits of the available computational power.  In 
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such cases, the equations are said not only to be analytically unsolvable, but computationally 

intractable as well.  

§2. Models, Models, Models. 

The solution is to make modeling assumptions.  The idea here is to develop computer 

algorithms that embody some simplified version of the original set of equations.   Depending on 

what aspect of the solution the simulationist is interested in resolving, it is often advantageous to 

trade away theoretical rigor in the equations in favor of a finer grid.  The deciding factor is not 

which approach is most true to theory but which approach will produce a solution-set that best 

resolves the features of the system important for understanding it.  

For an adequate discussion of this point, we need to understand more about the 

simulation process, how complex it is, and the number of diverse factors involved.  The heart of 

the practice of simulation is the construction of a hierarchy of models, (illustrated in figure 1) . 

The first step in any simulation study is to identify the theory under whose domain the 

phenomena of interest lie. This will form the basis for the simulation.  For example, we might 

start with mechanical laws, force laws, or equations of state.  (Kaufmann and Smarr, 1993) 

i) Mechanical Models 

By itself, the theory tells us very little about anything but the most idealized systems.  To 

apply them to real world systems requires a mechanical model.  A mechanical model is a bare 

bones characterization of a physical system that allows us to use the theoretical structure to assign 

a family of equations to the system.  When we characterize a system as being like a damped, 

harmonic oscillator, we have assigned a mechanical model to the system. The locus classicus of 

philosophical discussion of these kinds of models is Nancy Cartwright's simulacrum account of 

models in How the Laws of Physics Lie. (Cartwright, 1983). 

ii) Dynamical Models 

Even though a mechanical model provides a foothold for the application of a theory to a 
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set of real world problems, a mechanical model by itself is still a very general entity, for it is not 

about any particular system.  The next step for a simulationist is to specify a class of parameters, 

boundary values, and initial conditions that restrict the theoretical model to a specific class of 

phenomena.  This conjunction of the theory with parameters, boundary values, and initial data 

make a concrete dynamical model (or really, a family of dynamical models) for a highly specific 

class of phenomena.  The specification of these values for a simulation is rarely a straightforward 

process, and is often a delicate balancing act between accuracy and tractability (Smarr, 1985). 

In order to lend some substance to these remarks, I will consider a project led by Robert 

Wilhelmson: a numerical (finite difference) simulation of a severe thunderstorm. The purpose of 

the simulation, as stated by Wilhelmson, is to provide "improved understanding of severe storm 

structure and evolution" (Wilhelmson, 1990, p. 20).  The simulation generated a four-hour period 

of solution space for a system of nine partial differential equations.  These equations describe the 

time evolution of the dependent variables of the model.  The discrete data which comprise this 

solution were then subjected to a variety of techniques of data visualization in order to resolve the 

water and ice structure inside of a storm, to be able to see how air moves and rotates in and 

around a storm, and to discern various physical processes that influence storm rotation near the 

ground.   

The dynamical model of Wilhelmson’s simulation is a system of nine partial differential 

equations that govern temperature, pressure, three components of velocity, water vapor content, 

cloud water content, rain water content, and "sub-grid-scale" kinetic energy.  For initial 

conditions, the researchers used observed conditions from one vertical column of air in an actual 

pre-storm environment.  The model was then initialized using horizontally homogeneous values 

for each of the nine variables of the simulations.  A storm, however, will not grow under such 

homogeneous conditions, so the researchers initiated the storm by introducing a small 

temperature perturbation at the horizontal center of the storm. 
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iii) Computational Models 

Next comes the construction of a computational model.  Some dynamical models are 

analytically tractable; their differential equations can be solved and a mathematical function can 

be given which provides a good representation of the dynamics of the system.  But in systems of 

interest to simulationist, this approach is not possible.  The dynamical model needs to be 

transformed into a computational model so that computational techniques can be used to 

overcome the problem of analytical intractability. 

There are two steps to this process.  First, the continuous differential equations of the 

dynamical model need to be converted into discrete algebraic equations for which solutions can 

be cranked out by the computer.  Even though this solves the problem of analytical intractability, 

the new model must also be computationally tractable.  Simulationists use ad hoc modeling 

assumptions to help make their computational models more tractable and manageable.  

iv) Ad Hoc Models 

Ad hoc modeling includes such techniques as simplifying assumptions, removal of 

degrees of freedom, and even substitution of simpler empirical relationships for more complex, 

but also more theoretically-founded laws.  This model making can be eliminative or creative.  

The modeling can involve eliminating considerations from the dynamical model, or making up 

new ones. Sometimes the simulationist will ignore important factors or influences from their 

computational models because limitations of computational power make their inclusion 

impractical.  This is what I refer to as eliminative ad hoc modeling.  In this case, the simulationist 

has one of two options: either to determine that the effects of this neglected factor are negligible 

or to make use of some sort of empirical "fudge factor"—creative ad hoc modeling—to make up 

for the absence of the neglected factor.  

Often, the question of whether some particular aspect of a system under study is crucial 

to the system's dynamics is not even the issue.  There are times when the simulationist is acutely 



 Page 10  

aware of the important influence of one component of the dynamics and yet it is simply 

impractical to include it in a full-blown simulation. It is in this sort of situation that the 

simulationist will resort to what is often described in the scientific literature as "using modeling." 

For the simulationist, "using modeling" in a simulation, means to use some sort of rough and 

ready, ad hoc model inside of the context of the computational model itself.  This way of talking 

may seem a little strange, given that what we would normally associate any attempt to apply 

theoretical equations to some concrete physical situation with the term "modeling."  That is why I 

prefer to use the term "ad hoc modeling."  The term "ad hoc" serves to distinguish this activity 

from all the other roles models play in simulation as well as to emphasize the fact that the 

construction of the model relies on insight gained from outside of the context of our best 

theoretical understanding of the phemonena. 

Creative ad hoc models typically involve relatively simple mathematical relationships 

designed to approximately capture some physical effect in nature. When “coupled” to the more 

theoretical equations of a simulation, they allow the simulation to produce results that are more 

realistic than they could have been without some consideration of that physical effect.  For 

example, here are Wilhelmson's own words describing his simulation: 

A very simple model is used to account for the development of rain.  In 
many studies such simple models are sufficient for studying storm dynamics.  
Although simple, they provide the key storm-driving forces, namely, warming 
due to the release of latent heat as water vapor condenses and cooling due to 
evaporation of cloud and rain drops in unsaturated regions. (Wilhelmson, 1990, 
p. 22) 

 
§3. The Model of the Phenomena 
 

Once the computational model is implemented on a computer in the form of a particular 

algorithm, the algorithm produces results in the form of a data set, often a very large one.  This 

data set requires interpretation.  For this, the data can be visualized, subjected to mathematical 

analysis, and used in conjunction with other sources of knowledge, including observation, in 
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order to arrive at the final goal of a simulation study; what I call a model of the phenomena. 

A model of the phenomena is a manifold representation that embodies the relevant 

knowledge, gathered from all relevant sources, about the phenomena. It can consist of 

mathematical relations and laws, images (both moving and still), and textual descriptions.  The 

construction of the model of the phenomena is an attempt to summarize the basic robust 

qualitative features of a whole class of structurally similar phenomena. It might include such 

features as: 

• An emergent high-level mathematical relationship among certain aspects of the system, such 
as a scaling law. 

• A transport mechanism: any effect, such as diffusion, turbulence, an instability, or 
viscosity, which explains the movement of some entity or quantity such as mass, 
energy, or angular momentum, through a particular system. 

• Threshold values of parameters; for example a Reynolds number at which a system 
undergoes the transition from soft to hard turbulence. 

• Characteristic coherent structures (like the red spot of Jupiter). 
• Characteristic geometries of flow. 
• Patterns of interaction and competition among coherent structures. 

 

In Wilhelmson's simulation, the solution space data set is composed of values for each of 

the nine dependent parameters at each of the points on the space time grid of the simulation.  This 

data set was then subjected to a variety of complicated and labor-intensive visualization 

techniques designed to "reveal the inner dynamics" (Wilhelmson, 1990, p. 20) of the phenomena.  

The ultimate goal was to produce a visual record of how the basic internal stable structural 

features of the storm evolve, and to understand the internal mechanisms that are at work in 

creating and preserving the stability of these structures. 

In this case, the researchers generated images corresponding to naked eye observations of 

the simulated storm as well as images corresponding to those generated by surface reflectivity 

radar.  The visual viewpoint was generated by rendering images of the surfaces that enclose 

regions of cloud (small water droplets and ice particles) and regions of rain within the storm.  

This created a time series of images that depict what the storm cloud would look like to the naked 
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eye from some particular vantage-point.  Images traditionally generated from reflectivity radar are 

two-dimensional cross sections that are color-coded to graph the concentration of raindrops at 

every point in the cross section of the storm. The simulationists recreated these images from the 

data set generated by the model. 

Next, imaging techniques were used to study the patterns and mechanisms of airflow 

inside the storm.  Wilhelmson's team used the computed velocity field data in order to simulate 

the trajectories of imaginary "weightless tracer particles" through the storm environment. The 

team also used long streamers to display the trajectories of selected air particles inside the storm.  

These streamers allowed the researchers to view the major stable, long-lived, air currents.  

Another important aspect of the flow is the vorticity.  In particular, researchers are especially 

interested in depicting the patterns of streamwise vorticity, the rotation of air around an axis 

parallel to the direction of flow.  For this purpose they used differently colored ribbons whose 

degree of twist is in proportion to the quantity of streamwise vorticity in that region of the flow 

line.  All of these visualizations were preserved as both still images and full motion video. 

Once the researchers succeeded in visualizing these aspects of the flow, they were able to 

make use of these visual representations to identify some of the key structures and trajectories in 

the inner dynamics of the flow of air, ice, and water through the storm system.  They were able to 

use this knowledge to construct "a model of storm evolution and persistence"—a model of the 

phenomena for severe storms.  Meteorologists researching storm dynamics are particularly 

interested in the question of how severe storms maintain their longevity and develop and maintain 

their rotational character.  The researchers seek an answer to these questions by analyzing how 

the basic geometry of the main flow features works to create the features of the storm which are 

known to be important in preserving its basic structure. 

A good example of this kind of explanation involves the updrafts in the storm and 

vorticity of this flow.  Wilhelmson and his colleagues have shown that an updraft with a high 
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degree of streamwise vorticity will become helical in character, and have argued that this type of 

flow is essential for reducing the energy dissipation in a severe storm, thus prolonging its life.  

Because of the importance of streamwise vorticity, Wilhelmson and his team have used the 

visualization techniques mentioned above in order to do "an in-depth analysis of the processes 

that govern the development of the vorticity."  The researchers identified four processes in the 

storm that contribute to vertical vorticity: advection (horizontal transport of air due to temperature 

variation), convergence of air, tilting of horizontal vortex lines into the vertical, and dissipation.   

This example illustrates well the type of model I am attempting to characterize.  That is, 

what we have here is an attempt to understand a crucial feature of the storm's dynamics—

streamwise vorticity in the updraft—by uncovering the geometrical patterns of the dynamical 

processes in terms of large-scale durable structures.  

§4 Epistemology. 

 In trying to apply the resources of philosophy of science to an epistemology of 

simulation, there are two obstacles that we face.  The first is that there is very little philosophical 

discussion of epistemological issues in the practice of building novel applications for existing 

theories.  The typical focus of philosophy of science is on the most theoretical aspects of science, 

and much less attention is paid to the subsequent application of this theoretical knowledge in the 

modeling of higher level, more complex phenomena. 

The second obstacle hearkens back to the old philosophy of science tradition of the 

"layer-cake" image of science.  The layer cake provides a picture wherein science operates by 

gathering the most basic low-level facts and then uses these to build up higher-level 

generalizations, then laws, and finally theories.  The layer cake is foundational. Epistemology, for 

the philosophy of science, is about deciding when these moves up the layer cake, are justified.   

While the more modern, hypethetico-deductive, account of epistemology remains 

agnostic about where theoretical claims come from, it retains a fundamental feature of the layer-
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cake model.  It retains the idea that the epistemology of scientific knowledge is fundamentally 

about justifying the top part of the layer cake by appealing to the low-level facts of the bottom of 

the cake.  Our epistemological concerns, however, focus themselves in the opposite direction.  

We are concerned with the autonomous sanctioning of conclusions that we draw from our 

scientific theories.  But despite the lack of philosophical literature on applied science, we do have 

one fortuitous inroad. 

One of the most influential accounts of epistemology in the philosophy of science is the 

hypothetico-deductive model, and any discussion of the hypothetico-deductive model requires a 

discussion of the deduction of empirical consequences from theoretical statements.  Even Carl 

Hempel realized early on (in a preliminary way) that the 'deductive' half of the hypethetico-

deductive model is not as deductive as the name implies. (Hempel, 1966, p.31) 

But Hempel's concerns steer clear of such issues as approximations, simplifications, and 

other forms of transformations designed to tease new applications out of theories.  His approach 

foreshadows a persistent limitation of the philosophical literature regarding the derivation of 

empirical conclusions from theoretical structures.  The literature follows Hempel in focusing on 

the problem of testing theoretical claims rather than on the extension of theoretical knowledge 

into new areas—constructing new knowledge about a system assumed to be under the domain of 

the theory. 

Probably the first philosopher of science to emphasize the importance of theory 

articulation as a creative process was Thomas Kuhn.  In "The Function of Measurement in 

Modern Physical Science," Kuhn illustrates the point that much of “normal science” consists of 

theory articulation.  He notes that most novel theories, including Newton's theories of motion and 

gravitation, are capable, upon their first presentation, of few novel predictions.  

 
 
The new order provided by a revolutionary new theory in the 
natural sciences is always overwhelmingly a potential order.  
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Much work and skill, together with occasional genius, are 
required to make it actual. (Kuhn, 1977, p. 188) 
 

"Complex mathematical manipulation,” together with “essential approximations,” is often 

necessary in order to get theories to yield experimental predictions.  (Kuhn, 1977, p. 190)  Kuhn 

also argues that none of this ought to be construed as attempts at confirmation, because he points 

out, failure does not count as disconfirmation.  Accordingly, a failure in constructing a model of 

the storm does not count against whatever theory or theories we use to model such phenomena. 

Nevertheless, Kuhn resists going so far as to say that theory articulation is productive of 

new knowledge. " His [the scientist’s] success [at opening up new areas of application for a 

theory] lies only in the explicit demonstration of a previously implicit agreement between theory 

and the world.  No novelty in nature has been revealed."  (Kuhn, 1977, p.192)  

Kuhn's insights are helpful, yet somewhat insufficient.  The concept of theory 

articulation, the idea that bringing theory into contact with the world is often a nontrivial and 

nondeductive process, is very helpful in understanding what goes on in complex situations 

involving simulation.  His assumption, however, that "no novelty in nature is revealed" misses the 

mark.  Simulation modeling is clearly a case of theory articulation in the spirit of Kuhn.  It is a 

nontrivial process of bringing a theoretical structure into resonance with some phenomena that is 

'implicitly' in its domain.  But simulation modeling, when successful, does reveal novel aspects of 

nature.  Often simulation will enable us to produce a representation of an aspect of nature that is 

extremely difficult to observe.  Even if the system in question can be observed in detail, often the 

simulation will bring a level of mathematical order where before there was only seemingly 

random detail.  In Kuhn's own words, there is actual order where before there was only potential 

order.  

This blind spot in Kuhn, the reluctance to see theory articulation as a form of knowledge 

production, is not a minor one; if a process provides no new knowledge, then it requires no 

epistemology.  Because of the blind spot, it is natural for Kuhn not even to express any concerns 
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about justification.  He talks about mathematical manipulation, approximation, and idealization, 

but there is not one worry about when or why or how these steps might be justified. 

This is a persistent problem in the philosophy of science literature on theory articulation.  

Most philosophers of science assume that approximations, idealizations, and other such 

transformations serve only to allow us to compare theoretical predictions with observed results, 

usually in order to test the theory.  As such, they have not been concerned with the autonomous 

assessment of the reliability of these inductive steps; autonomous in the sense of being based on 

the means by which the steps were carried out, rather than merely on how successfully the 

outcome matches the world. 

Consider, for example, the work of the philosopher of science Ronald Laymon.  Laymon 

has written extensively on the use of approximations and idealizations in deriving conclusions 

from theories, including one paper that specifically addresses their role in computer simulation.  

Laymon's work in this area, however, has focused primarily on epistemological issues relating to 

theory confirmation under the influence of approximations and idealizations.  If a theoretical 

structure requires the application of approximations in order to make predictions about the world, 

then Laymon worries about what impact the (then only approximate) success of the prediction has 

on the relative confirmation of the underlying theory. (Laymon, 1985, 1990) 

For our purposes, the important thing to note about Laymon’s work is that for him, an 

epistemology of approximation is ultimately about the truth of the theory, not the justification of 

the approximation itself.  Laymon's epistemology is an epistemology of theories and not really an 

epistemology of approximations and idealizations.  It is simply worth noting here another 

example of a philosopher of science who has viewed the epistemological importance of 

approximations as relating exclusively to the justification of theoretical knowledge, and not to the 

results of the approximations themselves.  

Jeffry Ramsey has made some telling criticisms of prevailing philosophical accounts of 
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approximation.  In "An expanded epistemology for approximations,"(Ramsey, 1992) Ramsey 

criticizes Laymon, as well as Cartwright  (1983,1989), Giere  (1988), and other philosophers for 

this persistent problem in their treatments of approximation.  (Ramsey, 1992, p.156)  First, he 

argues that all of these philosophers have a static conception of approximation, in which an 

approximation is a static relation between two structures: the theoretical structure on the one hand 

and the real-world empirical structure on the other.  Ramsey wants to emphasize the dynamic 

nature of approximation as an act, instead of looking at approximations as fixed things.  In other 

words, he wants to focus his epistemological lens on the context-dependent act of approximating, 

and not on the relation between the end product of the act and the world. 

Ramsey's second criticism is that, because of their focus on approximations as static 

relations between two structures, traditional philosophical accounts of approximation and 

idealization can all be seen as "comparison" accounts.  Ramsey's argument is that all prior 

accounts take as the sole criteria of epistemic adequacy the degree to which the end result of the 

approximation resembles some empirical structure. 

When we look specifically at the techniques employed in simulation, we find this point to 

be especially on the mark.  It is precisely on this point that an epistemology of simulation 

modeling must focus: What are the factors that contribute to the notion that a computational 

model constructed on a set of approximations and idealizations is valid?  Here, Ramsey’s analysis 

of approximations is important for us. The realization that techniques of approximation are in fact 

inferences that require an epistemology that looks at the means of the methods, and not just their 

ends, is exactly the jumping off point that we need.  

The transformations involved in simulation cannot be judged solely by comparing their 

results to the world.  Since simulations are used to generate representations of systems for which 

data are conspicuously sparse, the transformations they make use of need to be justified 

internally; that is, based on their own internal form, and not solely on the basis of what they 
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produce.  

§5 Simulation and Experiment. 

I should make it clear from the outset that I believe it unlikely that there is a logic to the 

epistemology of simulation modeling.  What I propose to offer is something that is inspired by 

what Allen Franklin offered in "The Epistemology of Experiment," a chapter of his book, The 

Neglect of Experiment.  (Franklin, 1986)   Franklin asks: "How do we come to believe rationally 

in an experimental result?" His answer is that there are various strategies used by scientists which 

philosophers ought to be able to see as providing grounds for rational belief in experimental 

results. While Franklin provides a list of twelve or so such strategies, he is careful to note that this 

list is neither exclusive nor exhaustive, and that no subset of the list is a necessary or sufficient 

condition for rational belief.  He also notes that grounds for rational belief do not guarantee 

certain knowledge.  Sometimes we may rationally believe something which we all later regard as 

wrong.  (Franklin, 1986, p.190-91) 

The epistemology of simulation is an analogous project.  It is the study of the means by 

which we sanction belief in the outcome of simulation studies, despite their motley methodology.  

I will argue that in order really to understand the relationship between models of phenomena and 

scientific theories, we need to understand the processes by which these results get sanctioned.  

One of the benefits of gaining some insight into the epistemological foundations of the simulation 

practice is that it facilitates a better understanding of this relationship. 

One of the central themes of Franklin’s work is that experimenters are constantly 

preoccupied with scrutinizing experimental setups to uncover possible sources of artifact.  Then 

they can work to eliminate the impact of these disturbances on experimental results. The same is 

certainly true of simulationists.  Naturally, the complexity of this task is proportional to the 

complexity of the methodology of simulation.  This methodology includes, among its 

components: 
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• A calculational structure for the theory. 
• Techniques of mathematical transformation. 
• A choice of parameters, initial conditions, and boundary conditions.  
• Reduction of degrees of freedom. 
• Ad hoc models.  
• A computer and a computer algorithm. 
• A graphics system. 
• An interpretation of numerical and graphical output coupled with an assessment of their 

reliability.  
 

A thourough epistemology of simulation requires a detailed analysis of the role of each of 

these components and of how a skilled simulationist can manage each of their potential 

contributions as sources of error.  Here, I will have to be satisfied to note a few crucial features of 

the process of sanctioning.   

To begin with, there is a diverse range of elements that need to be subjected to 

epistemological scrutiny.   Each of the elements listed above mediates between our theoretical 

models and our simulation results.  If the influences and possible pitfalls of each element are not 

properly understood and managed by the simulationist, then they represent a potential threat to 

the credibility of simulation results.  Understanding and managing these diverse factors requires 

reliance upon an equally diverse range of sources of knowledge and skills.  Much of this 

knowledge is not contained in the theoretical structure that formed the original basis for the 

simulation. 

A simple example for comparison will help to this point.  In celestial mechanics, there 

exist no general closed form solutions for the orbits of three massive gravitational bodies.  There 

do, however, exist certain restricted solutions.  Lagrange, for example, was able to write down a 

solution for two large masses orbiting around each other, orbited in turn by a third body of 

infinitesimal mass. (Moulton, 1970, 277-321)  Using techniques of qualitative analysis, such as 

linear perturbation techniques, it is possible to study certain dynamical models, in this case 

certain celestial systems, for which there is no closed form solution, by studying perturbations of 

systems for which there do exist such solutions. These techniques study the orbits “nearby” to 
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orbits that have closed form solutions.  This allows us to write down a mathematical function that 

bears a mathematically provable degree of asymptotic similarity to the actual solution of our 

dynamical model, even though that model itself has no closed form solution. 

Notice, though, that in the celestial mechanics example the resources that we need to 

establish the validity of our results come from within the theoretical structure of celestial 

mechanics proper.  In contrast, as the issues concerning the tractability of a dynamical model 

grow more complex, and as qualitative analysis techniques begin to fail, more and more resources 

get drawn into the attempt get a handle on the empirical consequences of the dynamical model.  

As this happens, we begin to depend on more and more outside resources in order to warrant the 

validity of our results.  With all of its mediating elements, simulation techniques represent, in a 

sense, the extreme case. 

For example, extra-theoretical knowledge of storm dynamics is needed to sanction 

Wilhemson’s confidence in his claim that “a simple rain model” is capable of providing the “key 

storm-driving forces.”  We could go through each of the different mediating transformation of the 

storm simulation, and talk about what sources of knowledge are required in order to rationally 

justify them, and we would find that most of them lay outside of any of our general theories of 

fluid mechanics and thermodynamics.  The general point is that there are a large number of 

mediating influences in simulation that need to be subjected to epistemological scrutiny, and that 

many of the resources needed to carry out this scrutiny cannot be located inside the original 

theoretical structure.  In the case of ad hoc models, often these derive their support from 

empirical findings not incorporated into fundamental theory. 

It is also important to note the pivotal role of the ‘observer’ in the sanctioning of 

simulation results.  On the one hand, simulations are often performed to learn about systems for 

which data are sparse.  As such, comparison with real data can never be the autonomous criterion 

by which simulation results can be judged.  Nevertheless, calibration does play a very important 
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role. Simulation models can be calibrated in three different ways: by comparing their results to 

experiments, to analysis, and to other simulations.  The first criterion that a simulation must meet 

is to be able to reproduce known analytical results.  Even for complex systems, there often exist, 

under highly constrained conditions, limited analytical results for the full equations of a 

mechanical model.  Typically, these results apply to highly symmetrical, equilibrium-state 

instances of the system, or from instances that can be studied as small deviation, or perturbations, 

of such instances.  

Results can also be compared to the output of another simulation in if it uses a different 

algorithm, or even better, if it is of a small local region within the broader system and makes use 

of a more complete dynamical model.  

Simulation results are also calibrated against experimental results.  Unfortunately, this 

kind of comparison is often not as easy as it might seem, since data from these different sources 

may come in different forms.  For example, simulation data and experimental data are not always 

obtained at the same spatial position within a system; the grid points of the simulation do not 

often correspond to the location of probes within the experimental setup.  Moreover, it is typically 

less interesting to compare detailed data— piece by piece—than it is to compare the characteristic 

features of the simulation results and empirical results, especially when the empirical results 

come in the form of flow visualization.  (Shirayama and Kuwahara, 1990, p.67) 

Most of all, the observer is crucial because, absent an observer who can compare images 

against images, there is no metric of similarity between the different data sets that need to be 

compared.  Visualization is by far the most effective means of identifying characteristic features 

out of complex dynamical data sets, and so it is the most, if not only, effective means of judging 

the degree of calibration a simulation enjoys with other data sets and with analytic results.  Thus, 

visualization plays a crucial role in sanctioning as well as in analyzing simulation results.  Not 

only does the epistemology of simulation call upon resources that are empirical, and that come 
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from outside of the theory, it also calls upon the faculties of the observer. 

§6 What are Models? 

Once we understand that simulation has its own epistemology, and that that epistemology 

necessitates the scrutiny of all of the elements I have listed, we are forced to take a fresh look at 

what we take to be the nature of the relationship between scientific theories and their empirical 

consequences. 

In the philosophy of science, there are basically two competing accounts of the 

relationship between theories and their real-world consequences.  One comes from the syntactic, 

or "received," view of theories and the other from the semantic view.  According to the 'syntactic' 

view, specifying the syntax, axioms, and correspondence rules of a formal theory specifies a 

scientific theory.2  The empirical consequences of a theory are exactly those sentences that are 

logically derivable from the formal theory with the help of the appropriate correspondence rules.  

According to the 'semantic' view, a theory is specified by specifying the semantics; that is, by 

specifying a family of models, in the set-theoretic sense.  A class of phenomena is said to be an 

empirical consequence of the theory if it is ‘isomorphic’ to a sub-structure of one member of the 

family of models.  (Suppes, 1962, Suppe, 1974,  p.221-30, VanFraassen , 1970, 1980, p.64-70) 

In other words, under the syntactic view, the empirical consequences of a theory bear a 

strictly logical relation to the theory itself.  They are simply deduced from the theory.  In the 

semantic conception, this is not the case.  The empirical consequences of a theory can only be 

determined once an isomorphism has been established between a model of the data in question 

and a model of the theory.  The establishment of this isomorphism, as well as the construction of 

the model of the data, can require many extra-theoretic resources. 

However, in the semantic conception, while the exact empirical consequences of a theory 

are not logically determined by the theory, the sub-model, which is a candidate for being 

isomorphic to the data model, is.  The sub-model is said to be embeddable in the semantic 
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structure of the theory.   It follows directly from the theory by semantic implication. 

In most cases, the equations that form the theoretical basis of systems of interest to 

simulationists are analytically unsolvable. That is, there is no mathematically expressible function 

that is the solution to these equations.  Therefore, representations of these systems cannot 

possibly come in the form of linguistic entities derivable from a linguistic theoretical structure.  

The syntactic view won’t cut it. 

Moreover, deductive inferences by definition confer certainty on their conclusions 

(provided the premises are true!)  The inferences that take place in simulation modeling confer no 

such thing.  At their best, they confer reasonable warrant for believing the conclusions reached, 

and this only when painstaking steps are taken to insure success. 

Nevertheless, we must keep in mind that what we are after here is not the human means 

by which results are acquired, but the relation that they actually bear to our best theories of the 

physical world.  Might it not be argued then, that while simulation results are not actually 

deducible from the theory, they do bear a logical relation to the theoretical structure; a relation of 

ideal deduction.  Surely, the argument goes, the actual relation between theory and model is 

independent of the means we use to arrive at the model, and it is equally independent of the trust 

we put in the model. 

Before we consider this possibility, we need to look carefully at what we might be 

proposing. One thing that we would probably not want to propose is that our models of 

phenomena stand in an actual logical relation to our theories.  Our models are approximate, and 

they are often rich with detail that we know is not robust. 

What one might propose though, is that if all has gone well, the results of a particular 

simulation closely resemble an ideal structure that stands in a purely logical relation to the theory.  

The structure itself and the exact nature of the relationship are unfortunately inaccessible to us, 

but we should be confidant that it is there and that we have successfully approximated it.  The 
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fact that we lack the certainty of deduction merely reflects the fact that there is some chance that 

we are wrong and that our results do not bear any relation to the ideal structure.  In other words, 

there is some structure that is a logical consequent of our theories, and what we have is something 

which we strongly believe approximates it.  Is this a view that we should adopt? 

The semantic view of theories provides us with a good framework for articulating this 

picture.  In the semantic view, one way of characterizing a dynamical theory is a phase diagram.  

In this picture, the theory specifies what are the allowable state transition trajectories for any 

system under the domain of the theory.  But in non-linear theories, the notion of “specifying” is 

quite weak.  Even though there is a restricted class of trajectories which are logically determined 

by the theory, there may, even in principle, be no way of extracting or displaying what these 

trajectories are. 

In cases, like ours, where there are no know solutions to the equations provided by the 

theory, we have no direct way of displaying what the appropriate family of trajectories is.  But we 

might express the hope that our models of phenomena can play a surrogate role.  On this view, 

models of phenomena represent the best attempts of scientists to qualitatively and approximately 

characterize a family of state transition trajectories that are semantically implied by the theory for 

a given range of parameters. 

Even though this way of characterizing the situation may strike some as overly formal, it 

does provide us with a means for asking a central question here.  Should we indeed think of the 

models of phenomena that simulationists provide to us as approximate qualitative 

characterizations of set theoretic ‘solutions’ of the theoretical equations?  Simply put, do we have 

grounds to believe that models of phenomena are close approximations to structures that are 

models of our theories in the strict formal parlance of the semantic conception. 

I would argue that we do not.  Given the rich complexity of the process of deriving 

warrant for simulation results, and the extent to which this process focuses on elements external 
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to the theoretical structure itself, it would be unrealistic to interpret this warranting process as 

being about the results’ relationship to some formal model. That is, if we think carefully about the 

epistemological steps that go into warranting the reliability of simulation results, we find that they 

have everything to do with ensuring that the results match up well with the world, and little to do 

with ensuring that they resemble some ideal structure.  

In other words, the confidence we have in our simulation results depends on several 

factors being in place, none of which is guaranteed by our theoretical knowledge. It depends on 

facts we know about our computers, and about our graphical techniques.  It depends on the 

confidence we have in the various ad hoc models we use—confidence we derive from laboratory 

and observational experience.  It depends on our ability to calibrate models against empirical 

results.  And finally, it depends on the confidence we have in our tacit abilities as observers to 

make judgements about the degree of resemblance between different classes of images; often 

abilities acquired in the role of skilled experimenters and observers, as well as in the role of 

skilled simulators.  The epistemology of simulation, as we have seen at length, is very much an 

empirical epistemology, and not merely a mathematico-logical one. 

 

§7 Conclusion. 

Ultimately, even though all simulation modeling of the kind described in this paper 

fundamentally begins with a theoretical model, and even though we think of simulation as an 

attempt to ‘solve’ the mathematical equations of this theoretical structure, our theoretical 

knowledge is just one of several ingredients that simulationists use to produce their end 

product—a model of the phenomena.  So the relation that theory bears to these models is simply 

this: our confidence in our physical theories is one of the things that, in combination with other 

elements, warrants our rational belief that the models we construct are reliable and cognitively 

useful. 
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There may indeed be something somewhat unsatisfying about this conclusion—that what 

is at root an application of theoretical knowledge bears no direct substantive relationship to the 

theory itself.  Unfortunately, this conclusion is simply the result of a fundamental limitation of 

our cognitive power.  When it comes to complex systems, we simply cannot bend our theories to 

our cognitive will—they will not yield results with any mechanical turn of a crank.  The models 

that we need to construct in order to do our science need to be constructed delicately, and from as 

many sources as are available.  Consequently, these models are no mere ‘solutions’ to our 

theoretical structures.  Though they are the results of a form of calculation, they are rich physical 

constructs that mediate between our theories and the world. 
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Figure 1.  The Hierarchy of Models. 
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