
2550 Garcia Avenue
Mountain View, CA 94043 USA
1-800-681-8845

A Sun Microsystems, Inc. Business

www.sun.com/sparc

U2P™

UPA to PCI Interface User’s Manual

Part No.: 802-7835-01
May 1997

Copyright © 1997 Sun Microsystems, Inc. All Rights Reserved.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS”

WITHOUT ANY EXPRESS REPRESENTATIONS OR WARRANTIES. IN ADDITION, SUN

MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL

PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or under license

from third parties. No part of this document may be reproduced in any form or by any means

or transferred to any third party without the prior written consent of Sun Microsystems, Inc.

Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. in the

United States and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The information contained in this document is not designed or intended for use in on-line

control of aircraft, air traffic, aircraft navigation or aircraft communications; or in the design,

construction, operation or maintenance of any nuclear facility. Sun disclaims any express or

implied warranty of fitness for such uses.

Printed in the United States of America.

Contents iii

Contents

1. Overview 1-1

Introduction 1-1

Product Summary 1-2

Technology 1-2

Package 1-2

Design Size 1-2

Custom Cells 1-2

Maximum Frequency of Operation 1-3

Minimum Frequency of Operation 1-3

Power Consumption 1-3

Performance 1-4

Typical System Partition 1-5

U2P External Interfaces 1-5

U2P Block Diagram 1-7

U2P Block Overviews 1-8

UPA Interface blocks 1-8

PCI Interface blocks 1-8

Interrupt block 1-9

Internal Control 1-9

Clock Ratios 1-10

Miscellaneous 1-10

PCI Address Map Overview 1-10

iv UPA to PCI Interface (U2P) User’s Manual • May 1997

2. U2P Pin Descriptions 2-1

UPA Interface Signals 2-1

64-bit, 66MHz capable PCI Interface Signals (PCI Bus A) 2-2

64-bit, 33MHz PCI Interface Signals (PCI Bus B) 2-3

Miscellaneous Interfaces 2-4

Power and Ground Pins/Pads 2-5

Total Pin/Pad Count 2-6

3. U2P Functional Description 3-1

Functional Overview 3-1

Top-Level Architectural Philosophy 3-1

Block Overviews 3-4

PIO Decoder 3-4

DMA Control 3-4

Bus Control 3-5

UPA Master / Slave 3-5

UPA Reply 3-6

ECC Generate / Check 3-6

DMA Merge Buffer 3-7

PCI Bus Module (PBM) 3-7

IOMMU 3-10

Streaming Cache 3-10

MDU 3-11

Timer / Counters 3-12

Reset 3-12

Testability 3-13

4. DMA/PIO Transactions Flow 4-1

Block Diagram 4-2

DMA Transaction Flow 4-5

DMA Write Transactions 4-6

64 and 16 Byte DMA Writes to IO Space 4-6

64 Byte DMA Write to Memory 4-8

Less than 64 Byte DMA Write to Memory 4-10

DMA Read Transactions 4-13

Contents v

PIO Transaction Flow 4-14

PIO Write 4-15

PIO Read 4-17

5. IOMMU 5-1

Block Diagram 5-2

TLB Entry Format 5-2

TLB CAM Tag 5-3

TLB RAM Data 5-3

DVMA Operation Modes 5-4

Translation Mode 5-4

Bypass Mode 5-5

Pass-through Mode 5-6

Translation Storage Buffer 5-6

Translation Table Entry 5-7

TSB Lookup 5-7

PIO Operations 5-9

Translation Errors 5-9

IOMMU Demap 5-10

TLB Initialization and Diagnostics 5-10

6. PCI Bus Interface 6-1

Introduction 6-1

Supported PCI features: 6-1

Unsupported PCI features: 6-2

PCI Bus Operations 6-2

Bus Master Operation (PIO) 6-2

Target Operation (DMA) 6-4

Transaction Termination Behavior 6-5

Retries 6-5

Disconnects 6-5

Master-aborts 6-5

Target-aborts 6-6

Addressing Modes 6-7

vi UPA to PCI Interface (U2P) User’s Manual • May 1997

Configuration Cycles 6-7

Special Cycles 6-7

Exclusive Access 6-8

Fast Back-to-Back Cycles 6-8

Functional Topics 6-9

PCI Arbiter 6-9

Arbitration Scheme 6-9

Bus Parking 6-9

Endianess 6-10

PCI Commands 6-10

Diagnostic Modes 6-11

Clocks 6-11

Reset 6-11

7. Streaming Cache Operation 7-1

Overview 7-1

Streaming Cache Conceptual Overview 7-2

STC Subsections 7-2

Streaming Cache Functional Description 7-3

Streaming Writes 7-3

Byte Holes and Zero Byte Writes 7-4

Streaming Reads 7-4

Entry Flushing 7-5

Streaming Cache Programming Model 7-6

Performance Issues 7-6

Memory Coherency Maintenance 7-7

Error Recovery 7-8

8. Mondo Dispatch Unit 8-1

Overview 8-1

Mondo Dispatch Overview 8-1

Mondo Dispatch Block Diagram 8-3

Mondo Unit Functional Description 8-3

Mondo Vectors 8-4

Contents vii

Overview of an Interrupt 8-4

Interrupt Number Register 8-5

Interrupt Types 8-6

Internal/External 8-6

Level/Pulse 8-7

Priority 8-8

Synchronization with DMA writes 8-9

Interrupt Table 8-9

Processing an Interrupt 8-11

Interrupt Receiver 8-12

Interrupt Decoder 8-12

Interrupt Arbiter 8-12

Interrupt Dispatcher 8-12

9. U2P Timer/Counter 9-1

Overview 9-1

Timer Functional Description 9-2

10. Little-endian support 10-1

Big- and Little-endian regions 10-1

Address Space 10-1

Internal blocks 10-2

Byte Twisting 10-2

Specific Cases 10-4

PIOs 10-4

DMA 10-5

11. Error Handling 11-1

Overview 11-1

Fatal Hardware Errors 11-1

UPA Address Parity Error 11-1

Non-fatal Hardware Error 11-2

UPA Datapath Uncorrectable Error 11-2

UPA Timeout 11-3

UPA Read Error 11-3

viii UPA to PCI Interface (U2P) User’s Manual • May 1997

PCI Data Parity Error 11-3

PCI Target-Abort 11-4

PCI Timeout 11-4

DVMA ECC Error 11-5

IOMMU Translation Error 11-5

PCI Address Parity Error 11-5

PCI System Error 11-6

Summary of Error Reporting 11-6

Unreported Errors 11-9

12. JTAG 12-1

Introduction 12-1

TAP Controller 12-2

Synchronous FSM and Decode 12-5

Instruction Register 12-5

Instruction Decode Logic 12-6

Bypass Register 12-6

Internal Register Clocking Logic 12-7

JTAG ID Register 12-7

Boundary Scan Control Logic 12-7

BIST Control Logic 12-7

Clock Control Registers 12-8

Clock Stop Logic 12-8

TDO MUX logic 12-8

Scan Chains 12-9

Boundary Chain 12-9

The Internal Scan Chain 12-9

ATPG Chain 12-10

Special JTAG Instructions 12-10

INTEST 12-10

The ATPG Instruction 12-10

The RUNBIST Instruction 12-11

Test Coverage Information 12-11

ATPG 12-11

BIST 12-12

Contents ix

13. Programmer’s Model 13-1

Internal Registers 13-1

U2P Control/Status Register 13-2

UPA Registers 13-4

UPA Port ID Register 13-4

UPA Configuration Register 13-5

ECC Registers 13-6

ECC Control Register 13-6

Uncorrectable Error Asynchronous Fault Status/Address Register 13-7

Correctable Error Asynchronous Fault Status/Address Register 13-9

DMA Scoreboard Diagnostic Support 13-10

PCI Bus Module 13-12

PCI Control/Status Register 13-13

PCI Asynchronous Fault Status/Address Registers 13-14

PCI Diagnostic Register 13-17

PBM Configuration Space 13-18

Vendor ID 13-20

Device ID 13-20

Command Register 13-21

Status Register 13-22

Revision ID Register 13-22

Programming I/F Code Register 13-23

Sub-class Code Register 13-23

Base Class Code Register 13-23

Latency Timer Register 13-23

Header Type Register 13-24

Bus Number 13-24

Subordinate Bus Number 13-24

Unimplemented Registers 13-24

IOMMU Registers 13-25

IOMMU Control Register 13-25

TSB Base Address Register 13-28

Flush Address Register 13-29

TLB TAG Diagnostics Access 13-29

x UPA to PCI Interface (U2P) User’s Manual • May 1997

TLB Data RAM Diagnostic Access 13-30

LRU Queue Diagnostic Access 13-31

Virtual Address Diagnostic Register 13-31

TLB Tag Compare Diagnostic Access 13-32

Streaming Buffer Registers 13-33

Streaming Buffer Control Register 13-34

Streaming Buffer Page Invalidate/Flush Register 13-35

Streaming Buffer Flush Synchronization Register 13-35

Streaming Buffer Page Tag Diagnostic Access 13-36

Streaming Buffer Line Tag Diagnostic Access 13-36

Streaming Buffer Data RAM Diagnostic Access 13-37

Streaming Buffer Error Status Diagnostic Access 13-37

Interrupts 13-38

Partial Interrupt Mapping Registers 13-40

Full Interrupt Mapping Registers 13-42

Clear Interrupt Registers 13-43

Interrupt State Diagnostic Registers 13-45

Interrupt Retry Timer Register 13-48

Counter/Timer Registers 13-49

Count Registers 13-49

Limit Registers 13-50

Performance Monitor Registers 13-50

Performance Monitor Control Register 13-51

Performance Counter Register 13-53

PCI Address Spaces 13-53

UPA to PCI 13-53

PCI Configuration Space 13-54

Special Cycles 13-56

PCI I/O Space 13-56

PCI Memory Space 13-56

PCI to UPA 13-57

PCI Configuration Space 13-57

PCI I/O Space 13-57

PCI Memory Space 13-57

Address Map Summary 13-59

Figures xi

Figures

Typical PCI UltraSPARC System Block Diagram 1-5

U2P External Interfaces 1-6

U2P Conceptual Block Diagram 1-7

U2P PIO and DVMA address spaces 1-11

PIO Data & Address Paths 3-2

DMA Data & Address Paths 3-3

Top level block diagram for DMA and PIO transactions flow/control 4-2

DMA Write to IO space 4-6

64 Bytes DMA Writes to Memory 4-8

Less than 64 Bytes DMA Writes to Memory 4-10

DMA read request to memory or IO space 4-13

PIO Write Transaction Flow 4-15

PIO Read Transaction Flow 4-17

IOMMU top level block diagram 5-2

Virtual to physical address translation for 8K page size 5-5

Virtual to physical address translation for 64K page size 5-5

Physical address formation in bypass mode (8K and 64K) 5-5

xii UPA to PCI Interface (U2P) User’s Manual • May 1997

Physical address formation in pass-through mode (8k and 64K) 5-6

Computation of TTE Entry Address 5-8

Basic PCI Read Transaction 6-3

Basic PCI Write Transaction 6-3

Retry Cycle 6-5

Disconnect Cycle 6-6

Master-abort Cycle 6-6

Target-abort Cycle 6-7

Special Cycle 6-8

Fast Back-to-Back Cycles 6-9

Mondo Dispatch Unit in U2P 8-2

Mondo Dispatch Overview Block Diagram 8-3

Mondo Vector Format on UPA Data Bus 8-4

Full INR Contents 8-5

Partial INR Contents 8-6

Level Interrupt States 8-8

U2P Byte Twisting 10-3

TAP Controller Block Diagram 12-2

U2P Data registers 12-3

JTAG control signals during ATPG instruction 12-11

Legal DVMA address configurations 13-27

U2P Interrupt Format 13-38

Type 0 Configuration Address Mapping 13-55

Type 1 Configuration Address Mapping 13-55

Tables xiii

Tables

U2P Absolute Best Case Performance 1-4

UPA Interface Signals 2-1

PCI Bus A signals 2-2

PCI Bus B Signals 2-3

Miscellaneous Signals 2-4

Power and ground pins 2-5

Special power and ground pins 2-5

Total Pin Count 2-6

Type of P_REQ and S_REPLY used for DMA write to IO space 4-7

Type of S_REPLY’s U2P receives 4-7

Type of P_REQ and S_REPLY used for 64 byte DMA writes to memory 4-9

Type of P_REQ and S_REPLY used for less than 64 byte DMA writes 4-11

Type of P_REQ and S_REPLY used for DMA reads 4-14

Type of write P_REQ’s U2P receives and type of P_REPLY it generates 4-16

Type of P_REPLY’s generated by U2P 4-16

Type of read P_REQ’s U2P receives and type of P_REPLY it generates 4-18

Description of TLB Tag Fields 5-3

xiv UPA to PCI Interface (U2P) User’s Manual • May 1997

TLB Data Format 5-3

PCI DVMA Modes of Operation 5-4

TTE Data Format 5-7

Offset to TSB Table 5-8

PCI Command Generation and Response 6-10

Level Interrupt States 8-7

Interrupt Receiver State Register 8-8

Summary of Interrupts 8-10

Summary of Fatal Error Reporting 11-6

Summary of Non-Fatal Error Reporting 11-7

Description of signals in JTAG macro 12-3

Components of the U2P TAP controller 12-4

 Instructions supported by U2P JTAG controller 12-5

U2P scan chains 12-9

BIST register files 12-12

Non-BIST register files 12-13

Offset of Control Register 13-2

U2P Control Register 13-2

Offset of UPA Registers 13-4

UPA Port ID Register 13-4

UPA Configuration Register 13-5

Offset of ECC Registers 13-6

ECC Control Register 13-6

ECC Error Reporting 13-7

UE AFSR 13-8

Tables xv

UE AFAR 13-8

CE AFSR 13-9

CE AFAR 13-10

Offset of DMA Scoreboard Diagnostic Access 13-10

DMA Scoreboard Diagnostic Access 13-11

Offset of PBM Registers 13-12

PCI Control and Status Register 13-13

PCI AFSR 13-15

PCI AFAR 13-16

PCI Diagnostic Register 13-17

Default offset of PCI Bridge Configuration Spaces 13-18

Configuration Space Header Summary 13-19

Command Register 13-21

Status Register 13-22

Latency Timer Register 13-23

Header Type Register 13-24

Offset of IOMMU Registers 13-25

IOMMU Control Register 13-25

Address space size and base address determination 13-26

TSB Base Address Register 13-28

Flush Address Register 13-29

TLB Tag Diagnostics Access 13-29

TLB Data RAM Diagnostics Access 13-30

LRU Entry Diagnostics Access 13-31

Virtual Address Diagnostic Register 13-31

TLB Tag Comparator Diagnostics Access 13-32

Offset of Streaming Buffer Registers 13-33

Streaming Buffer General Control Register (2 copies) 13-34

Streaming Buffer Page Invalidate/Flush Register (2 copies) 13-35

xvi UPA to PCI Interface (U2P) User’s Manual • May 1997

Streaming Buffer Flush Synchronization Register (2 copies) 13-35

Streaming Buffer Page Tag Format 13-36

Streaming Buffer Line Tag Format 13-36

Streaming Buffer Data RAM Content Format 13-37

Streaming Buffer Data RAM Error Format 13-37

Interrupt Number Offset Assignments 13-39

Offset of Partial Interrupt Mapping Registers 13-40

Format of Partial Interrupt Mapping Registers 13-42

Offset of Full Interrupt Mapping Registers 13-42

Format of Full Interrupt Mapping Registers 13-43

Offset of Clear Interrupt Pseudo Registers 13-43

Clear Interrupt Register 13-45

Offset of Interrupt State Diagnostic Registers 13-45

Level Interrupt State Meaning 13-46

Pulse Interrupt State Meanings 13-46

PCI Int Diag Reg Definition 13-46

OBIO and Misc Int Diag Reg Definition 13-47

Offset of Interrupt Retry Timer Registers 13-48

Interrupt Retry Timer Register 13-48

Offset of Counter/Timer Registers 13-49

Count Register 13-49

Limit Register 13-50

Offset of Performance Monitor Registers 13-50

Performance Monitor Control Register 13-51

Performance Counter Event Sources 13-51

Performance Counter Register 13-53

Offsets for access from UPA space to PCI space 13-53

PCI DVMA Modes of Operation 13-58

Address Map Summary 13-59

1-1

CHAPTER 1

Overview

1.1 Introduction
The U2P chip is the primary connection on an UltraSPARC CPU board between the

UPA System Bus (including UltraSPARC Processors and Memory) and a PCI based

I/O Subsystem. U2P features include:

■ Full master and slave port connection to the high-speed UltraSPARC UPA

Interconnect. The UPA is a split address/data packet-switched bus which has a

potential data throughput rate of over 1 Gbyte/sec. UPA data is ECC protected.

■ Two physically separate PCI bus segments, with full master and slave support.

PCI Bus A has the following features:

■ 5 volt or 3.3 volt signalling.

■ 64-bit data bus.

■ Compatible with the PCI Rev 2.1 Specification.

■ Compatible with the PCI 66MHz extensions.

■ Support for up to four master devices (at 33MHz only).

PCI Bus B has the following features:

■ 5 volt signalling.

■ 64-bit data bus.

■ Compatible with the PCI Rev 2.1 Specification.

■ Support for up to six master devices.

■ Two separate 16-entry streaming caches, one for each bus segment, for

accelerating some kinds of PCI DVMA activity. Single IOMMU with 16-entry TLB

for mapping DVMA addresses for both busses.

1-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ A “Mondo-Vector” Dispatch Unit, or MDU, for delivering Interrupt requests to

UltraSparc CPU modules, including support for PCI interrupts from up to six

total slots, as well as interrupts from on board IO devices.

1.2 Product Summary

1.2.1 Technology
■ 0.35 micron, 3 level metal, 3.3 volt optimized CMOS standard cell library from

Lucent Technologies (formerly AT&T).

1.2.2 Package
■ The U2P die has 352 signal pads (including specialty power/grounds) and 104

VSS/VDD pads for a total pad count of 456.

■ The U2P package is a 456 ball PBGA, with 352 signal balls and 104 VSS/VDD

balls.

1.2.3 Design Size
■ 170K gates.

■ 29K bits RAM.

■ Die size = 404.7 x 435.4 mils (10280 x 11060 microns)

1.2.4 Custom Cells

The following non-standard cells are used in the U2P chip design:

■ 5V tolerant PCI pads.

■ 66MHz capable PCI pads.

■ UPA pads (with and without holding amps).

■ PLL and PECL receiver for UPA clock.

■ PLL for main clock.

Chapter 1 Overview 1-3

1.2.5 Maximum Frequency of Operation
■ UPA operation (UPACLK) up to 100 MHz (10 ns).

■ Main internal clock (PSYCLK) up to 66.7 MHz (15 ns).

■ PCI bus A clocks at 1x or 0.5x internal clock (synchronous).

■ PCI bus B clocks at 0.5x internal clock (synchronous).

1.2.6 Minimum Frequency of Operation

At times it is desirable to run the clocks at less than their intended frequencies.

For reliable operation, certain ratios between UPACLK and PSYCLK must be

maintained.

■ UPACLK > 0.9 * PSYCLK if Mode bit = 1 (Control/Status Reg bit 0).

■ PSYCLK > 0.41 UPACLK

1.2.7 Power Consumption
■ Maximum power consumption: 3 Watts.

1-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

1.3 Performance
The performance numbers in the table below were extracted from simulations. For

PIO and Consistent DMA, 16 back-to-back transactions were simulated, the first 4

were ignored, and the remaining ones were timed. For Streaming DMA, 64 back-to-

back transactions were simulated and the first 16 ignored.

Caution – Except where noted, the table above lists the maximum achievable

performance for the U2P chip. These are not minimum or typical performance

numbers. Many factors can reduce the above performance numbers, including but

not limited to: (1) System clock speed; (2) Contention for memory or UPA bus; (3)

Specific SC implementation details; (4) IOMMU tablewalks, or thrashing in the

IOMMU or streaming cache; (5) Insertion of wait-states by PCI device (as master or

slave); (6) Software overhead.

1. The PIO read performance numbers shown here are not absolute best case numbers. Simulations were run with only a single out-
standing PIO read allowed. In systems where multiple outstanding PIO reads are supported, somewhat higher PIO read performance
numbers are possible.

Table 1-1 U2P Absolute Best Case Performance

Xfer
Size

Bus speed Bus Width PIO Wr PIO Rd 1 DMA Wr
Consistent

DMA Rd
Consistent

DMA Wr
Streaming

DMA Rd
Streaming

4 33 MHz 32 bit 22.2 8.3 10.3 7.7 22.5 24.2

16 33 MHz 32 bit 59.3 26.7 40.3 27.9 61.0 53.3

64 33 MHz 32 bit 97.0 66.7 106.7 71.1 106.7 106.7

8 33 MHz 64 bit ---- ---- 19.5 15.8 45.4 44.6

16 33 MHz 64 bit ---- ---- 39.5 29.6 79.0 59.3

64 33 MHz 64 bit ---- ---- 177.8 94.1 177.8 164.1

4 66 MHz 32 bit 33.3 11.1 10.1 8.6 33.6 33.3

16 66 MHz 32 bit 106.7 38.1 40.0 33.3 99.2 76.2

64 66 MHz 32 bit 185.5 103.2 193.9 106.7 193.9 185.5

8 66 MHz 64 bit ---- ---- 19.6 17.4 67.7 59.3

16 66 MHz 64 bit ---- ---- 40.5 34.3 121.9 82.1

64 66 MHz 64 bit ---- ---- 304.8 125.5 304.8 222.1

All performance measurements are in MBytes/sec.

Chapter 1 Overview 1-5

1.4 Typical System Partition
Figure 1-1 shows one possible configuration of U2P in a PCI UltraSPARC system.

U2P connects to the system controller chip and other UPA ports via UPA address,

control and data busses. The system has both PCI and EPCI slots, as well as an on

board PCI device (PCIO). Interrupt information is provided by the RIC chip, and a

JTAG port is provided for board test as well as in-circuit test and debug of U2P.

Figure 1-1 Typical PCI UltraSPARC System Block Diagram

1.5 U2P External Interfaces
Figure 1-2 summarizes the external interfaces and pins of U2P.

Ultra

UDB

Tag

512KB
E$

TA(15:0)

TD(24+3+P)

DA(18+16BE)

D(128+16P)

Graphics

U
P

A
/S

 6
4b System

Memory SIMMs

Memory Address
Memory Control

Memory Data (256+32ECC)

XB1

UPA_A0(35:0)

UPA_A1(35:0)

UPA_D0(127:0+ECC) UPA_D1(63:0+ECC)

UPA_Ctrl

U2P

UPA Interface

PCI Interface A

PCI Interface B

PCI Bus

PCI Bus

RIC

Controller

SPARC

PCIO

Clk

1-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

Figure 1-2 U2P External Interfaces

64

2

7

4

4

4

8

2

64

8

7

6

6

2

64

8

36

6

5

5

3

2

6

U2P

UPA
130 pins

TEST
10 pins

Intr.
6 pins

Clocks
5 pins

PCI A
96 pins

PCI B
96 pins

104

5

5

2

2

5

Special
pwr/gnd
8 pins

2

2

UPA_DataBus

UPA_ECC

UPA_Addressbus

UPA_Arbitration

UPA_P_Reply

UPA_P_Reply

UPA_Misc

UPA_Reset_L

UPA_Sys_Clk

JTAG

MISC

INT_NUM

TMR_CLK

PSYCLK

BYPASS

Power/Ground

A_AD

A_PAR

A_C/BE#

A_CTRL

A_REQ#

A_GNT#

A_IDSEL

A_ERR

A_CLK

PCI_RST

B_AD

B_PAR

B_C/BE#

B_CTRL

B_REQ#

B_GNT#

B_ERR
B_CLK

VSSA

VDDA

VDD5

Shared
PCI RST
1 pin

Chapter 1 Overview 1-7

1.6 U2P Block Diagram
The diagram below shows a conceptual block diagram of U2P. The actual

implementation is somewhat different, for example, there are no internal

bidirectional busses. Details of specific implementation of each block can

be found in the following chapters.

Figure 1-3 U2P Conceptual Block Diagram

PCI Bus

Mondo

PIO Ctl.

UPA

Dispatch
Unit

BUS Ctl.

Timer/
Counters

ECC
Gen/
Check

DMA Ctl.

PCI Bus B

Interrupts

JTAG

UPA

PCI Bus

Streaming
Cache B

PCI Bus A

IOMMU Streaming
Cache A

Merge
Buffer

JTAG

Module A

Module B

1-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

1.7 U2P Block Overviews
This section gives a brief description of each top level functional block. A more

detailed description of each block can be found in Chapter 3. Each block is also

described in its own individual chapter as well. The top level blocks in U2P fall into

one of five categories:

■ UPA.

■ PCI.

■ Interrupt.

■ Internal Control.

■ Miscellaneous.

1.7.1 UPA Interface blocks

The UPA is UltraSPARC system’s packet switched main system bus. In an

UltraSPARC system, the UPA can operate up to 100 MHz. Data and address have

independent flow controls. Each type of UPA cycle (PIO read, PIO write, DMA read,

etc.) uses its own FIFO-based queueing. There is a synchronization boundary

between the UPA interface blocks and other U2P blocks, which run at 66.7 MHz.

■ UPA Master/Slave: This block deals exclusively with UPA address control. It

listens to UPA_A when U2P is a slave. It also arbitrates for and drives UPA_A

when U2P is a master.

■ UPA_Reply: This block deals exclusively with UPA data. It generates P_REPLY to

the System Controller (SC) ASIC during PIO and copyback cycles. It also listens

to S_REPLY from the SC and manages the UPA data FIFOs accordingly.

■ ECC Generate: Generates ECC on the outgoing 64-bit UPA data path.

■ ECC Check: Checks ECC on the incoming 64-bit UPA data path.

1.7.2 PCI Interface blocks
■ PCI Bus Module (PBM): This is the main portion of the PCI interface. U2P

contains two nearly identical copies of this block. One is designed to support a

64-bit PCI bus at 66 MHz or 33 MHz with up to four master devices. The other

supports a 64-bit PCI bus at 33MHz with up to six master devices. The PBM

adheres to all PCI protocol guidelines as contained in the PCI Revision 2.1

Chapter 1 Overview 1-9

specification. Each PBM controls arbitration, flow control and error handling for

its bus segment. Each PBM also handles the big- to little-endian byte twisting

required for correct operation of both PIO and DVMA datapaths.

■ IOMMU: For the portion of the PCI memory address space which is reserved for

DMA to the UPA bus, the IOMMU maps the PCI address into the appropriate

UPA physical address. The IOMMU keeps the 16 most recently used translations

in a TLB, and automatically performs hardware tablewalks on TLB misses. There

is a single IOMMU supporting both PCI busses. Only a single translation can be

in progress at a time, and during tablewalks, translations from the other bus

segment will be delayed.

■ Streaming Cache: The Streaming Cache (STC) is used to accelerate PCI DMA

activity. For DMA reads, the STC will speculatively prefetch 64-byte cache lines.

For DMA writes, the STC buffers up 64-byte lines before sending to the UPA

interface. There are two separate STC blocks in U2P, one associated with each

PBM block. Each STC contains storage for 16 virtual address tagged entries and

their data, which is stored in 64-byte lines, allocated on a least recently used basis.

1.7.3 Interrupt block
■ Mondo Dispatch Unit (MDU): In the Sun-4U architecture, interrupts to a

processor are sent as packets on the UPA bus. The MDU in U2P is a system

resource for generating such packets. The MDU accepts interrupt requests from

the UPA slave ports, PCI busses and internal U2P sources and dispatches

interrupt packets to the UPA.

1.7.4 Internal Control
■ Merge Buffer: In order to allow sub-line writes into a 64-byte memory line, it is

necessary to perform a read-modify-write operation on the UPA. The Merge

Buffer is responsible for generating the correct UPA read, merging the partial line,

and writing the whole block to the UPA.

■ PIO Control: Decodes slave requests from the UPA_A request FIFO, arbitrates for

the appropriate resource and dispatches the request.

■ Bus Control: This is an internal arbiter shared by the PIO Control and DMA

Control blocks. It schedules the use of the main internal data paths.

■ DMA Control: Arbitrates and decodes requests from internal DMA sources

(PBM, STC, IOMMU, MDU), and arbitrates for the appropriate UPA FIFO.

1-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

1.7.5 Clock Ratios

At times it is desirable to run the clocks at less than their intended frequencies. Such

instances might be using the part in a low speed emulation environment, or if on

power up the clocks are defaulted to something other than their usual speed.

There are two ratios that must be adhered to:

■ UPACLK > 0.9 * PSYCLK if Mode bit = 1 (Control/Status Reg bit 0).

Prevents underrunning the UPA input FIFO which could occur if UPACLK is

running too slow in relation to PSYCLK.

■ PSYCLK > 0.41 UPACLK.

Prevents underrunning the DMA write data FIFO which could occur if PSYCLK is

running too slow in relation to UPACLK.

Note that it is clock ratios which are being specified here and not a minimum

operating frequency. U2P has been used in emulation at speeds in the 1KHz

range.

1.7.6 Miscellaneous
■ Timer/Counter: Contains two identical 32-bit timer-counters as specified by the

Sun-4U architecture. Used for system scheduling and profiling.

■ JTAG Control: Provides the necessary control for the standard IEEE 1149.1 JTAG

port, as well as additional scan based features that are useful for debugging

purposes.

1.8 PCI Address Map Overview
Complete information on address maps and other software visible features of U2P

can be found in Chapter 13. A simplified diagram showing PIO and normal DVMA

address spaces is in Figure 1-4.

Chapter 1 Overview 1-11

Figure 1-4 U2P PIO and DVMA address spaces

0.0000.0000

1.0000.0000

PCI B I/O Space
PCI A I/O Space

PCI A&B Config Space

U2P internal regs

1.f000.0000

1.8000.0000

PROM via PCIO

PCI A Mem Space

PCI B Mem Space

U2P UPA

Unused

PCI B Space

DVMA

0000.0000

xxx0.0000

8000.0000

PCI bus A

PCI bus B

U2P
IOMMU

UPA Address

0.0201.0000

0.0202.0000

Unused

0.0100.0000

0.0200.0000

Unused

PCI A Space

DVMA

0000.0000

xxx0.0000

8000.0000

memory space

memory spaceaddress space

1-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

2-1

CHAPTER 2

U2P Pin Descriptions

2.1 UPA Interface Signals
These signals connect U2P to the UPA. Maximum frequency of operation is 100 MHz.

Table 2-1 UPA Interface Signals

Signal Name Pin
Count

I/O Description

UPA_DataBus 64 I/O 64 bit Data Bus

UPA_ECC 8 I/O 8 bits for ECC

UPA_Addressbus 36 I/O Address/request lines + parity

UPA_Req_in 3 I Requests from other clients on this address bus

UPA_Req_out 1 O Request asserted by U2P

UPA_SC_Req_in 1 I Request from the SC

UPA_Arb_Reset_L 1 I UPA Arbiter reset

UPA_Addr_Valid 1 I/O Valid address; active high

UPA_ECC_Valid 1 I ECC Valid

UPA_Data_Stall 1 I Data Stall

UPA_P_Reply 5 O Port Reply signals

UPA_S_Reply 5 I System Reply signals

2-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

2.2 64-bit, 66MHz capable PCI Interface
Signals (PCI Bus A)
These signals connect U2P to the 64-bit, 66MHz capable PCI bus segment. Maximum

frequency of operation is 66.7 MHz.

UPA_Reset_L 1 I Port/System Reset Signal

UPA_Sys_Clk_pos

UPA_Sys_Clk_neg

2 I UPA System Clock (PECL)

UPA Total 130

Table 2-2 PCI Bus A signals

Signal Name Pin Count I/O Description

A_AD<63:0> 64 I/O Address/Data Bus

A_PAR 1 I/O Parity for AD<31:0>

A_PAR64 1 I/O Parity for AD<63:32>

A_CBE_<7:0> 8 I/O Command/Byte enable lines

A_FRAME_ 1 I/O Cycle frame

A_REQ64_ 1 I/O Request 64-bit transfer

A_ACK64_ 1 I/O Acknowledge 64-bit transfer

A_TRDY_ 1 I/O Target Ready

A_IRDY_ 1 I/O Initiator Ready

A_STOP_ 1 I/O Target initiated STOP

A_DEVSEL_ 1 I/O Target decoded its address

A_IDSEL<3:0> 4 O Chip select lines for configuration cycles

A_PERR_ 1 I/O Parity Error

A_SERR_ 1 I/O System Error

A_CLK 1 I PCI Clock

Table 2-1 UPA Interface Signals (Continued)

Signal Name Pin
Count

I/O Description

Chapter 2 U2P Pin Descriptions 2-3

2.3 64-bit, 33MHz PCI Interface Signals (PCI
Bus B)
These signals connect U2P to the 32-bit PCI bus segment. Maximum frequency of

operation is 33.3 MHz.

A_REQ_<3:0> 4 I Bus master request lines

A_GNT_<3:0> 4 O Bus master grant lines

PCI_RST_ 1 I Reset (shared with PCI bus B)

PCI Bus A total 97

Table 2-3 PCI Bus B Signals

Signal Name Pin Count I/O Description

B_AD<63:0> 64 I/O Address/Data Bus

B_PAR 1 I/O Parity for AD<31:0>

B_PAR64 1 I/O Parity for AD<63:32>

B_CBE_<7:0> 8 I/O Command/Byte enable lines

B_FRAME_ 1 I/O Cycle frame

B_REQ64_ 1 I/O Request 64-bit transfer

B_ACK64_ 1 I/O Acknowledge 64-bit transfer

B_TRDY_ 1 I/O Target Ready

B_IRDY_ 1 I/O Initiator Ready

B_STOP_ 1 I/O Target initiated STOP

B_DEVSEL_ 1 I/O Target decoded its address

B_PERR_ 1 I/O Parity Error

B_SERR_ 1 I/O System Error

B_CLK 1 I PCI Clock

B_REQ_<5:0> 6 I Bus master request lines

Table 2-2 PCI Bus A signals (Continued)

Signal Name Pin Count I/O Description

2-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

2.4 Miscellaneous Interfaces
Clocks, interrupts, JTAG interface, and other test pins.

B_GNT_<5:0> 6 O Bus master grant lines

PCI_RST_ 0 I Reset (shared with PCI bus A)

PCI Bus B total 96

Table 2-4 Miscellaneous Signals

Signal Name Pin Count I/O Description

PSYCHOPS_CLK 1 I 66 MHz main clock

PSYCHOPS_CLKR 1 I Reference pin for PSYCHOPS_CLK

PSY_BYPASS 1 I Bypass PLL on PSYCHOPS_CLK

UPA_BYPASS 1 I Bypass PLL on UPA_Sys_Clk

TMR_CLK 1 I 10 MHz timer/counter clock

INT_NUM 6 I Encoded interrupt number

BOOT_BUS 1 I Select PCI bus A or B for system boot path

EXT_EVENT 1 I External event trigger

INT_EVENT 1 O Internal event trigger

B_CPU_REQ 1 O Test signal - copy of PBMB internal request

B_CPU_GNT 1 O Test signal - copy of PBMB internal grant

JTAG 5 I/O JTAG test port

Misc. total 21

Table 2-3 PCI Bus B Signals (Continued)

Signal Name Pin Count I/O Description

Chapter 2 U2P Pin Descriptions 2-5

2.5 Power and Ground Pins/Pads
Each signal pin (or ball) is directly connected to a pad on the U2P die. Power and

ground pins are connected to power and ground planes on the package substrate.

Power and ground pads on the die are connected to these planes as well, but there is

no 1-1 correspondence between power/ground pads and pins.

In addition to the main power and ground pins, U2P has some special purpose

power and ground pins. These are treated as signal pads/balls, and there is no

special handling on the package substrate.

Table 2-5 Power and ground pins

Signal Name Pad
Count

Pin
Count

Description

VDD 52 32 3.3V power supply

VSS 52 72 Digital ground

Power total 104 104

Table 2-6 Special power and ground pins

Signal Name Pad
Count

Pin
Count

Description

VDD5 5 5 5V reference voltage

VDDA 2 2 3.3V analog supply

VSSA 1 1 Analog ground

Special total 8 8

2-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

2.6 Total Pin/Pad Count

Table 2-7 Total Pin Count

Interface Pad Count Pin Count

UPA 130 130

PCI Bus A 97 97

PCI Bus B 96 96

Miscellaneous 21 21

Special Power/Ground 8 8

Subtotal 352 352

Power/Ground 104 104

Total Count 456 456

3-1

CHAPTER 3

U2P Functional Description

3.1 Functional Overview
This chapter contains the functional description of the U2P chip at the top level.

Overall chip design is discussed and the address data/flow is presented. This

chapter has 2 major sections:

■ Block diagrams of the address and data paths.

■ A description of each of the major design blocks within U2P.

3.2 Top-Level Architectural Philosophy
When reviewing the U2P internal bus structure, it is important to keep in mind the

architectural philosophy of the chip:

■ U2P has a UPA bus.

■ U2P has two PCI busses.

■ The design connects them together so that data goes as fast as possible without

making the chip too complicated.

■ Where practical, the UPA to SBus (U2S) chip design has been leveraged.

3-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

Figure 3-1 PIO Data & Address Paths

U2P Header

UPA Interface

Stream
Cache

A

PIO RD Fifo

PIO WR Fifo

P_REPLY

DMA
CTL

PBM
A

MDU

IO
MMU

ECC

UPA

U2P_PD

64

64

P2U_PD

U2P_PA

41

PRP Mux

Timer
Counter

UPA Interface
Blocks

Internal PIO
Slaves

UPA
Addr.

P_REPLY
output

input

UPA
Data
input

UPA
Data
output

Addr/

Ctrl.

Stream
Cache

B
PBM

B

Data

Addr/

Ctrl.

Data

UPA_PD

STCA_PD

PBMA_PD

STCB_PD

PBMB_PD

DSB_PD

MDU_PD

MMU_PD

ECC_PD

TMR_PD

Chapter 3 U2P Functional Description 3-3

Figure 3-2 DMA Data & Address Paths

S_REPLY

UPA Interface
PBM

A

DMA WR Fifo

DMA RD Fifo

P2U Header

DMA
CTL

Stream
Cache

A

DMA
Merge
Buffer

MDU

IO
MMU

U2P_DD

64

64

P2U_DD

41

64

64

P2U_DA

41

41

64

64

41

64

64

41

40

64

64

64

DRQA Mux

DRQD Mux

UPA
Addr.

S_REPLY
input

output

UPA
Data
output

UPA
Data
input

PCI

Addr/

Ctrl.

UPA Interface
Blocks

Internal DMA
Masters

PBM
B

Stream
Cache

B

41

64

41

64

64

64

PCI

Addr/

Ctrl.

PBMA_DA
STCA_DA
PBMB_DA
STCB_DA
MRG_DA

PBMA_DD
STCA_DD
PBMB_DD
STCB_DD
MRG_DD
MDU_DD

MDU_DA
MMU_DA

Data

Data

3-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

3.3 Block Overviews

3.3.1 PIO Decoder

This block decodes requests from the U2P header request FIFO. The target of the PIO

cycle may be either PCI bus or one of the internal U2P units. For PCI, the

corresponding PBM will determine the transaction timing based on the response of

the PCI device. For internal units, the PIO Decoder and Bus Controller block control

the timing. All PIO requests are serviced strictly in order and one at a time.

For PIO accesses to PCI configuration space, the PIO Decoder does not have enough

information to determine which PBM receives the transaction. With the help of the

Bus Controller block, the PIO Decoder will forward the request to both PBM

modules. Based on the values programmed into the Bus Number and Subordinate

Bus Number registers in each PBM, one or none of the PBM’s will accept the PIO,

and the Bus Control unit will correctly handle the situation.

The PIO decoder allows the following transaction types:

■ P_NCBRD_REQ, P_NCBWR_REQ - Only to PCI memory space portion of address

space, not to U2P internal address space or PCI config or PCI I/O space.

■ P_NCRD_REQ - With byte masks representing 1, 2, 4, or 8-byte aligned accesses

to any U2P internal register.

■ P_NCRD_REQ - With byte masks representing 1, 2, or 4-byte aligned accesses to

PCI I/O or PCI Configuration space.

■ P_NCRD_REQ - 1, 2, 4, 8, or 16-byte accesses are allowed to PCI memory space.

■ P_NCWR_REQ - 8-byte accesses are allowed to U2P internal registers (less than 8-

byte access is allowed, but treated as 8 bytes).

■ P_NCWR_REQ - 4-byte or less accesses are allowed to PCI I/O or PCI

Configuration Space.

■ P_NCWR_REQ - Any arbitrary byte mask is allowed to PCI memory space.

3.3.2 DMA Control

This block decodes and builds the UPA packet for requests from PCI bus A or B,

streaming cache A or B, the IOMMU, the Mondo Dispatch Unit or the Merge Buffer.

This block also keeps a FIFO of the requests. All DMA transactions are issued on the

UPA with the class bit set to 0, so the UPA will service U2P DMA requests in order.

U2P is capable of generating the following transaction types:

Chapter 3 U2P Functional Description 3-5

■ P_NCBRD_REQ, P_NCBWR_REQ - From PBM blocks only.

■ P_NCWR_REQ - From PBM block only, may have arbitrary byte mask.

■ P_RDO_REQ, P_WRB_REQ - From merge buffer for partial line DMA writes.

■ P_RDD_REQ - From PBM, STC or IOMMU.

■ P_WRI_REQ - From PBM or STC.

■ P_INT_REQ - From Mondo Dispatch Unit.

3.3.3 Bus Control

This is an internal arbiter shared between the DMA Control and PIO Control units.

The bus control unit handles timing of internal U2P resources based on the number

of clocks required for each kind of transaction. The bus control unit correctly handles

“ambiguous” PIO destinations (i.e. PIO’s to PCI configuration space, in which either

or none of the PBM blocks may respond).

There are separate busses for each of the following operations: PIO read, PIO write,

DMA read and DMA write. The PIO read and write busses are considered a single

resource by the bus controller, so only one PIO operation is in progress at a time. The

remaining busses are independent, however, so the bus controller allows a PIO

operation, a DMA read, and a DMA write all to be in progress at the same time.

The bus controller also handles allocation of the merge buffer. A DMA write that

requires the merge buffer is held off until it is available. Once the merge buffer is

allocated, the bus controller will not allow any other DMA operation to be initiated

until the merged data is written back to the UPA.

3.3.4 UPA Master / Slave

The UPA Master / Slave (UMS) block is U2P’s interface to the UPA_A request bus.

When U2P is addressed as a UPA slave (PIO requests), the UMS always writes the

request into the U2P Header FIFO.

When U2P is performing a DMA request, the UMS arbitrates for use of the UPA_A

bus and drives the request out from the P2U Header FIFO.

As with the UPA Reply block, the UMS runs at the UPA clock frequency, up to 100

Mhz. Signals from other internal U2P blocks are 2-clock synchronized by the UMS

before being used. Likewise, status and control which is an output of the UMS block

is 2-clock synchronized with the U2P main clock (66.7 Mhz) before being used.

3-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

3.3.5 UPA Reply

The UPA Reply unit manages replies to the system controller. P_REPLY requests are

received from the PIO Control Unit and forwarded to the UPA bus. For PIO reads,

P_REPLY indicates that U2P has read data ready in the PIO_RD FIFO. For PIO

writes, P_REPLY indicates that U2P has removed write data from the PIO_WR FIFO.

P_REPLY is not used for DMA.

S_REPLY is used for both PIO and DMA cycles. For PIO reads, S_REPLY indicates

that the system controller is ready to read data out of the PIO_RD FIFO. For PIO

writes, S_REPLY indicates that data is being written into the PIO_WR FIFO. For

DMA reads, S_REPLY indicates that data is being delivered into the DMA_RD FIFO,

and for DMA writes, S_REPLY indicates that the system controller is ready to read

data out of the DMA_WR FIFO.

The UPA Reply unit is responsible for reading and writing the appropriate data

FIFO’s and enabling the UPA Data outputs if necessary. In addition, the UPA Reply

unit must control the ECC check logic. When data is arriving at U2P (related to a

PIO write or DMA read), the data is ECC checked. The UPA Reply unit must

accumulate the ECC results for the entire packet, which may be between 1 and 64

bytes in length. The UPA Reply unit manages a separate packet status FIFO which

signals the PIO and DMA CTL units of error conditions.

3.3.6 ECC Generate / Check

The ECC unit is split into separate generate and check functions. ECC is always

calculated on 64 bits of data. The ECC generate logic is positioned on the “internal”

side of all of the data FIFO’s. (There is not enough time between receiving S_REPLY

and providing data to generate the ECC if the logic is on the UPA side of the FIFO.)

This also allows more flexibility in the circuit timing since the UPA clock is faster

than the internal U2P clock. In some situations, it is necessary for U2P to generate

intentionally bad ECC with the data. When this is needed, bits [1:0] of the outgoing

ECC are inverted to provide a guaranteed Uncorrectable Error.

The ECC check logic will detect Correctable and Uncorrectable ECC errors. (CE and

UE errors.) Refer to the ECC chapter for the rules for detecting and correcting errors.

For a correctable error, the data will be repaired before being sent to the internal

destination block. None of the internal U2P units will be aware of CE errors. For

both UE and CE errors, the ECC unit will signal the Mondo Dispatch Unit to

generate a Mondo Vector (interrupt) if enabled.

Chapter 3 U2P Functional Description 3-7

3.3.7 DMA Merge Buffer

The DMA Merge Buffer block is used for servicing cacheable DMA Writes of less

than 64 bytes (partial writes). This is required in a UPA based system because there

is no way to write cacheable memory in sub-line increments. (There are at least 2

problems that force this; the SIMMS do not have individual byte controls and ECC is

generated on 8-byte boundaries.). In order to perform a sub-line write, U2P performs

a UPA Read-to-Own (P_RDO_REQ) transaction to gain control of the line, merge the

new data into the line and then flush the line to memory with a UPA Writeback

(P_WRB_REQ) transaction. Once the Merge Buffer’s request for a Read-to-Own

transaction is granted internally, no other DMA requests will be serviced until the

writeback completes.

The only blocks capable of partial writes are the two PBM’s and the two streaming

caches. The Merge Buffer contains a 64-byte buffer for storing the partial line while

waiting for data from the P_RDO_REQ transaction. There are valid bits for each byte

in the buffer, so it is able to handle completely arbitrary byte enables on a consistent

write from a PCI device. Although the merge buffer could also handle arbitrary byte

enables on a streaming access, U2P does not support this because the streaming

cache only stores a begin and end pointer for valid data, and not individual byte

enables.

To avoid the complexity of having to participate in system coherence during a

merge, the external system controller is responsible for blocking all requests to the

line for which U2P has issued a Read-to-Own until the data merge is completed and

U2P has issued a Writeback of the line to memory. U2P will not issue any other

transactions between the Read-to-Own and the Writeback.

The DMA Merge Buffer is not intended to be a high performance solution for sub-

line DMA writes from a PCI bus; rather its purpose is to provide correct

functionality given the UPA bus constraints. The streaming cache (STC) can be used

to improve PCI performance by buffering data into 64-byte lines before flushing to

memory. STC line flushes that contain a complete 64 bytes will be able to bypass the

Merge Buffer by doing a Write Invalidate (P_WRI_REQ) on the UPA.

3.3.8 PCI Bus Module (PBM)

Each PCI Bus Module block implements a complete PCI Master and Slave interface.

Each PBM implements all of the required host bridge functions for PCI, and also acts

as the central resource for: arbitration, reset, and system error (SERR#) monitoring.

The PBM handles the timing of PIO requests to the PCI bus. These are handled one

at a time. The PBM handles target disconnects, retries and various error conditions

during the PIO. If necessary, multiple PCI transactions will be generated for each

3-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

PIO (up to 16 transactions in the case of 64-byte block reads or writes). While the

multiple transactions of a single PIO are occurring on the PCI bus, DMA requests

from other devices on that bus can be still be serviced.

Only 1, 2, 4, 8, 16 or 64-byte aligned PIO read accesses are allowed to the PCI bus

Memory Space. Writes to the PCI bus Memory Space may be of any size supported

on the UPA. For most PIO’s, the command used on the PCI bus will be Memory

Read or Memory Write. 64-byte PIO reads will use the Memory Read Line

command. Other command types can be generated by PIO’s to special regions in the

PCI address space. These include the Configuration Read, Configuration Write, I/O

Read, I/O Write, and Special Cycle commands. With these command types, only 4-

byte or smaller PIO’s are supported.

The PBM also responds as a target to other PCI masters. The PBM will respond to

any PCI Memory Space transaction for which address bit 31 is on. Typically, the

transaction address is treated as a virtual address, and translated to a physical

address by the IOMMU. These transactions are referred to as DVMA transactions.

The PBM communicates with the IOMMU and STC blocks as needed to complete

DVMA cycles to/from the PCI bus. (An IOMMU bypass mode is also available,

which can directly access the entire UPA physical address space using PCI Dual-

Address Cycles.) DVMA data can be moved from the PCI bus to either the

associated STC or directly to the UPA. Peer-to-peer DMA is also allowed between

two devices on the same PCI bus segment, but due to the way PCI addressing is

defined, U2P is not involved in these transfers (except as the central arbiter for bus

request and grant signals).

The PBM will only respond, as a target, to PCI memory space commands (Memory

Read, Memory Read Line, Memory Read Line Multiple, Memory Write, and Memory

Write & Invalidate). All other PCI command types are ignored.

All PCI transactions targeting U2P will be disconnected by the PBM if the master

attempts to cross a 64-byte boundary. Under certain conditions, the PBM will issue a

retry for an incoming PCI transaction. These conditions include:

■ PBM requests the IOMMU to do a tablewalk to get mapping for this

transaction.

■ STC indicates that it is initiating a request to get the desired read data.

■ Due to congestion, resources (buffers) are currently lacking to accept a

transaction.

For DVMA transactions to cacheable memory, based on the IOMMU mapping

information for the virtual address, the PBM will treat the DVMA cycle as a

consistent or streaming access (accesses made in IOMMU bypass mode are always

treated as consistent). Consistent accesses are sent directly to the UPA and have

strict ordering constraints; The performance of consistent accesses can be worse than

streaming accesses (particularly for reads or sub-line writes), and DVMA pages

should only be marked consistent-mode when necessary. DVMA accesses to non-

cacheable memory is always treated in consistent mode.

Chapter 3 U2P Functional Description 3-9

For consistent DVMA reads, the PBM treats all three PCI memory read commands

identically. For streaming reads, the PBM passes the information on which command

was used to the streaming cache so that a decision can be made on prefetching data.

For all DVMA write transactions, both PCI memory write commands are treated the

same.

For DVMA reads, the DVMA master may drive arbitrary byte enables on the PCI

bus, which will be ignored. DVMA reads always generate 64-byte requests on the

UPA bus, and correct data is returned for all byte lanes on the PCI bus, regardless of

the byte enables.

For consistent DVMA writes, arbitrary byte enables are also allowed. The byte

enables for the transaction are stored along with the data, and are passed on to the

Merge Buffer for partial line writes to cacheable space. For non-cacheable partial

writes, the byte enables are passed on to the Bus Controller/DMA Controller, which

uses them for the Bytemask field of the outgoing P_NCWR_REQ packet(s).

For streaming DVMA writes, arbitrary byte enables are not allowed. Within a single

PCI transaction, all data must be contiguous bytes. If any byte holes are detected, the

PBM will set a status bit, and an interrupt will be generated if enabled. Meanwhile,

the transaction continues as if the byte hole were not there, and the appropriate byte

enables were on. This will cause incorrect data to be eventually be written to

memory for these bytes. This only applies to a single continuous PCI transaction -

gaps between the end address of one transaction and the start address of the next are

allowed, and correctly handled by the streaming cache (although they may cause

performance degradation).

The PBM also helps to enforce certain ordering constraints between consistent

DVMA writes (cacheable or non-cacheable) and the following synchronization

events:

■ PIO reads of PCI registers.

■ Interrupts.

■ Other consistent DVMA writes (e.g. a descriptor update).

For PIO reads (to PCI space, not internal registers), the PBM for the targeted bus

communicates with the DMA Controller to ensure that all of its previous consistent

DVMA writes have completed before allowing the PIO to complete.

For PCI related interrupts, the MDU notifies the appropriate PBM when an interrupt

is received. The PBM then notifies the MDU when all of its outstanding consistent

DVMA writes have been flushed. The MDU will not generate the interrupt packet

until the PBM has flushed data.

Descriptor updates are correctly handled by the strict ordering of all consistent

DVMA accesses.

The only PCI bus function that is not handled by the PBM is the interrupt logic. This

is contained in the MDU block.

3-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

3.3.9 IOMMU

This block is used for PCI DVMA cycles. It maps 32-bit PCI Virtual Addresses to 41-

bit UPA Physical Addresses for both PBM blocks. There is a single 16-entry

Translation Look-aside Buffer (TLB) to cache recently used translations. The TLB

entries are replaced on an LRU basis, without regard to the bus of origin. The

IOMMU can provide 2 levels of service when a PBM presents a virtual address for

translation:

■ First, the IOMMU examines the TLB to see if a translation for the virtual address

is already available.

■ If there is a miss in the TLB, the IOMMU block will perform a HW table-walk to

get the translation if requested by the PBM (since the PBM also checks the

streaming cache for a translation, this may not be necessary). The IOMMU does

this by reading from the TSB table by issuing a DMA read to main memory. This

is only a single-level table search, unlike previous Sun MMU models.

The IOMMU allows only a single translation to be in progress at a time. This

includes the tablewalk portion of a translation, so if one PBM has requested a

tablewalk, translation requests from the other PBM are held off until the tablewalk

completes.

In the case of simultaneous translation requests by both PBM’s, priority is given to

PBM A.

3.3.10 Streaming Cache

Each Streaming Cache (STC, but sometimes referred to as a Streaming Buffer) is used

to accelerate DVMA traffic to/from its associated PCI bus. It contains a pool of 16

64-byte entries. These entries are tagged by virtual page number, and are managed

as a fully-associative cache. Only one entry will be valid for any given virtual page.

Entries are assigned as needed by the STC logic. An LRU algorithm is used to assign

new pages to entries when all of the entries are valid. All 16 entries are available for

either read or write streams, although at a given time, each entry is only valid for a

single direction.

For DVMA writes, the STC will buffer up data in an entry until a 64 byte has been

reached. The STC will then flush the completed line into a flush buffer. As soon as

the internal busses are available, data in the flush buffer is sent to the UPA block.

The flush is guaranteed to occur if the last word of the line has been written - there

is no possibility of a completed dirty line being left in the streaming cache for an

indeterminate amount of time. For DVMA reads, the STC will often be able to

prefetch a new 64 byte line into a prefetch buffer, and then copy it into the correct

streaming cache entry before it is needed by the requesting device. This prefetch is

initiated whenever the Memory Read Line or Memory Read Line Multiple

commands are used on the PCI bus, as signalled to the STC by the PBM, and there is

Chapter 3 U2P Functional Description 3-11

not already an outstanding prefetch request waiting for data. A prefetch is also

initiated if it has not already been issued and the last word of a line is read.

Prefetches are never issued when a page boundary is reached.

The STC expects that the DVMA device is accessing data in sequential and

increasing order, without any byte holes. If the actual device access pattern is

different, the STC, in concert with the PBM, will maintain data correctness but the

performance gains will not be as high. One exception to data correctness is if a

device generates byte-holes within a single write transaction. When this happens,

the byte enables in the byte hole are treated as if they were on (thus possibly causing

data corruption), and a Streaming Byte Hole Interrupt is signalled (if enabled).

Data which is stored in the STC does not participate in the UPA cache coherence

protocol. The STC implements a flush command to allow system software to

explicitly remove virtual pages from the STC when a DVMA transfer is done or

when an IOMMU demap operation occurs. In order to ensure that the STC flush

data has reached UPA memory, a special synchronization register is provided.

The two streaming caches in U2P do not communicate with each other. There is no

snooping done to determine if the same virtual page is in use in both caches. It is up

to software to ensure that either no devices from separate busses access the same

virtual page in streaming mode, or, if they do, that they do not access the same 64-

byte lines within the page. (Note that the same warning applies to having multiple

virtual addresses in either or both streaming caches map to the same physical

address.)

3.3.11 MDU

The Mondo Dispatch Unit is U2P’s vehicle for dispatching Interrupt packets to an

Interrupt Handler on the UPA bus (primarily a CPU). The MDU will generate a

special type of UPA packet (a Mondo Vector, P_INT_REQ). The MDU block accepts

external interrupt requests from PCI or UPA devices (encoded onto a 6-bit

INT_NUM bus) as well as internal U2P interrupt sources and dispatches Interrupt

packets to the UPA. The contents and target of the interrupt packet are controlled

through the Interrupt Number Registers (INR) within the MDU. Each INR is 16 bits,

with 5 of these bits indicating the MID of the target CPU. For simplicity, no data

other than the interrupt number (INO) is sent in the 64-byte interrupt packet from

U2P (unused bits are all sent as 0s).

There are 38 external interrupt sources that can have their requests serviced through

the MDU. In order to conserve pins on U2P, these are handled by an external

interrupt concentrator (e.g. the RIC chip). The interrupt concentrator sends interrupt

requests to the U2P by encoding them onto a 6 bit interface.

3-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

Once an interrupt is received from the external concentrator, it is put into one of 2

groups, based on the least significant bit of the target MID programmed into the

corresponding INR (U2P is optimized for a system with 2 CPU’s, but can be used in

systems with up to 4 CPU’s). Within each of these groups, the MDU performs a

priority arbitration to determine which interrupt to send.

Before any PCI related interrupt packet is sent to the UPA, the MDU checks with the

appropriate PBM block to see if it has any posted consistent DMA write data. If so,

the MDU waits until the PBM indicates that the write data has been sent to the UPA

block.

The Mondo Interrupt packet is then sent to the target CPU using the same UPA

queue that is used for DMA writes. The Mondo packet can be either ACKed or

NACKed by the UPA. If the packet is NACKed (rejected), the CPU is already busy

servicing another Mondo. In this case, the MDU will resubmit the packet at a later

time based on a free-running retry interval counter. (This retry interval is

programmable.) In the meantime, Mondo packets can still be sent to other CPU’s (as

long as they differ in the LSB of the MID). To simplify the design, U2P can only have

one Mondo vector outstanding (i.e. waiting for ACK or NACK) at any time.

3.3.12 Timer / Counters

There are two identical, independent 29-bit timer/counters in U2P. Each can provide

either periodic interrupts or single-event interrupts to a selected processor. The

interrupt is delivered to the target CPU using a Mondo vector, and each counter can

target a different CPU. The counters are driven by the TMR_CLK input, which is

nominally at 10MHz. This clock is scaled down by a factor of 10 first, so the counters

will typically increment once a microsecond, which allows periodic interrupt

intervals of up to 536 seconds.

Each counter has an associated Limit Register, and a Periodic enable bit. When a

counter reaches its limit value, an interrupt is generated (if enabled). If the Periodic

bit is set, the count is reset to 0, otherwise it is left alone (the count is also reset to 0

whenever the Limit Register is written). To obtain a periodic interrupt every ‘N’

microseconds, the limit value should be set to ‘N-1’.

3.3.13 Reset

A synchronous reset is implemented in U2P. UPA_RST_L is the source of this reset

and it is distributed to 3 internal clock domains and to the PCI bus.

Chapter 3 U2P Functional Description 3-13

To the UPA domain UPA_RST_L is registered on input and distributed to the various

modules within the domain. Each of those modules further registers the reset before

distribution to the destination flops. This gives a 3 cycle delay between the external

reset pin and the time the internal logic is reset.

In the PSYCLK domain UPA_RST_L will occur at the destination flops either 1 or 2

clocks from the time of it’s assertion. This is due to the fact that UPA_RST_L is based

in the UPACLK time domain and is thus asynchronous to the PSYCLK domain. The

de-assertion of UPA_CLK_L will occur at the destination flops a maximum of 3

PSYCLK cycles later. This is accomplished by sending UPA_RST_L through a dual

rank synchronizer which feeds an AND function, and at the same time by-passing

the synchronizer with UPA_RST_L to feed the other term of the AND function.

To the PCI bus, UPA_RST_L is asserted asynchronously and de-asserted

synchronously. This is accomplished using the dual rank synchronizer and AND

function described in the previous paragraph. The PCI signal PCI_RST_ will be

asserted in the same cycle as UPA_RST_L and will be de-asserted 2 PSYCLK cycles

after UPA_RST_L.

3.3.14 Testability

U2P has a JTAG (IEEE 1149.1) compliant TAP controller and boundary scan. In

addition, all internal functional flip-flops are scannable. Several other scan based test

and debug features are implemented as well, including Built-In Self-Test (BIST)

circuitry for internal memories that are not directly accessible via PIO accesses. The

Design-for-Testability (DFT) features of U2P are further documented in Chapter 12.

3-14 UPA to PCI Interface (U2P) User’s Manual • May 1997

4-1

CHAPTER 4

DMA/PIO Transactions Flow

This chapter describes the flow of DMA and PIO transactions through U2P’s UPA

(Unified/UltraSPARC Port Architecture) bus interface. The major generic blocks

involved in any DMA transaction are the Bus Controller, DMA controller, and UPA

bus interface (and the Merge Buffer for coherent DMA writes of less than 64 Bytes).

The major blocks involved in any PIO transaction are the Bus Controller, PIO

Decoder, and the UPA bus interface.

Figure 4-1 shows a top level block diagram of the interconnection between the

blocks responsible for DMA and PIO transactions control.

Note – This chapter assumes that the reader is familiar with the basics of the UPA

(Unified/UltraSPARC Port Architecture) Interconnect. Please refer to “UPA

Interconnect Architecture” Release 2.0, Document Part Number 960-1156-01.

4-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

4.1 Block Diagram

Figure 4-1 Top level block diagram for DMA and PIO transactions flow/control

UPA

UPA

DMA HDR

PIO HDR

DMA WR

DMA RD

DATA

DATA

PIO WR

PIO RD

DATA

DATA

SREPLY

PREPLY

UPA

PIO
DECODER

PIO CTRL

DMA

DMA ADDR

DMA

DMA

PIO READ DATA

PIO WRITE DATA

DMA WRITE DATA

DMA READ DATA

MERGE
BUFFER

PIO
ARB/CTRL

DMA
ARB/CTRL

PIO ADDR

DMA CTRL

ADDRESS

DATA

BUS CTRL.

DMA CTRL.

UPA BLOCK

REPLY

Scoreboard

REQUEST

REPLY

MASTER/
SLAVE

PIO CTRL

DMA CTRL
PIO CTRL

DMA CTRL
ECC

&
DATA

BUSSES

BUSSES

Chapter 4 DMA/PIO Transactions Flow 4-3

■ UPA Block: This block is U2P’s interface to the UPA bus. It is composed of three

major sub-blocks:

a. UPA Master/Slave: This block is so called because it simultaneously operates

in two different modes, Master and Slave. In Master mode, it arbitrates for the

UPA bus and puts a UPA request on the UPA address bus after it wins

arbitration. In slave mode, it listens to the UPA address bus waiting for a

transaction.

b. UPA Reply/Data: This block contains all data FIFO’s needed to buffer DMA

and PIO data. It also handles P_REPLY and S_REPLY packets.

c. ECC: This block generates ECC on data sent from U2P to the UPA bus, and

checks ECC on data received from the UPA bus.

■ DMA Controller: This block is responsible for building DMA transaction packets

sent to the UPA bus and for keeping track of them. It is composed of three major

sub-blocks:

a. DMA Request: DMA requests from U2P’s internal blocks are sent to this block

under control from the Bus Controller. The DMA Request block then builds the

appropriate UPA transaction and inserts it in the DMA header FIFO in UPA

Master/Slave. At the same time it sends all information related to the DMA

transaction to the Scoreboard to be stored until the DMA transaction is

completely serviced (i.e., DMA read data has been received, or DMA write

data has been taken).

b. DMA Reply: The UPA Reply/Data block forwards all DMA related S_REPLY’s

to this block to be decoded. If the S_REPLY is related to an outstanding DMA

read, the DMA reply arbitrates for U2P’s internal busses to deliver the DMA

read data and removes the DMA request from the scoreboard. If the S_REPLY

is related to an outstanding DMA write, the DMA Reply just removes the

DMA write request from the scoreboard. This block also drives the appropriate

Ack and Nack signals to U2P’s internal blocks based on the S_REPLY type.

c. Scoreboard: The scoreboard keeps a record of all outstanding DMA

transactions to the UPA. It stores the following DMA related information:

i. Transaction direction (Read/Write).

ii. Cacheable bit to indicates transaction destination (memory vs. IO).

iii. 16-bit Byte Mask.

iv. ID of the block that initiated the DMA transaction.

v. Special field (4 bits) that can be used by the block which initiated the DMA

to store any type of information. The Streaming Cache, for example, stores

an index number to its 16 buffers. This index number is returned to the

streaming cache along with the DMA read data.

vi. DMA address (used for DMA read error recording).

4-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ PIO Decoder: The UPA Master/Slave passes UPA transactions to this block to be

decoded. The PIO Decoder extracts from the UPA transaction the PIO address,

destination, direction (read or write), byte mask, and transfer size. Outputs of this

block are used by the Bus Controller to initiate the PIO access internally.

■ Bus Controller: This block is in charge of concurrently coordinating DMA and

PIO transactions inside U2P. It is composed of three major sub-blocks. The first

one controls PIO transactions to all internal blocks. The second one is responsible

for arbitration between internal blocks and for passing DMA requests to the DMA

Controller. The third block communicates with the DMA Reply to deliver DMA

read data to the requesting block.

■ Merge Buffer: The merge buffer concept was introduced to eliminate the need for

U2P to participate in the UPA cache coherence protocol. Its main function is to

handle coherent DMA writes to main memory which are less than 64 Bytes. When

the Bus Controller detects that the size of the write transaction is less than 64

Bytes it informs the merge buffer. The merge buffer fetches the addressed data

block (64 Bytes) from the memory and merges the new data, then it writes the

data block back into the memory.

U2P’s internal blocks that issue DMA transactions destined for the UPA are called in

this chapter Requesting Sources or Blocks. These sources include the PBM Modules

(A & B), the Streaming Caches (A & B), the Merge Buffer, the Mondo Dispatch Unit

(Interrupts are treated as DMA Writes), and the IOMMU. Blocks that can be accessed

in slave mode (PIO) are called Destination Blocks. These blocks include, in addition

to all requesting blocks, the UPA interface, the ECC block, the Timer block, the

Scoreboard, and the Performance registers.

The acronyms below are used in the following sections:

■ DMA_HDR: A 70 bit DMA header which is basically the two cycles of a UPA

transaction (side by side) without the parity bits.

■ DMA_HDR FIFO: DMA Header FIFO used to buffer UPA transactions until U2P

wins the UPA bus arbitration.

■ DMA_WR FIFO: DMA Write Data FIFO.

■ DMA_RD FIFO: DMA Read Data FIFO.

■ P2U_DD: PCI-to-UPA DMA Data (DMA Write Data).

■ U2P_DD: UPA-to-PCI DMA Data (DMA Read Data).

■ P2U_DA: PCI-to-UPA DMA Address.

■ PIO_HDR: A 71 bit PIO header which is basically the two cycles of a UPA

transaction received from the UPA bus (side by side) without the parity bits. Bit

71 is set if a parity error is detected in either of the two cycles.

■ PIO_HDR FIFO: PIO Header FIFO used to buffer UPA transactions forwarded to

U2P from the SC.

■ PIO_WR FIFO: PIO Write Data FIFO.

■ PIO_RD FIFO: PIO Read Data FIFO.

Chapter 4 DMA/PIO Transactions Flow 4-5

■ U2P_PD: UPA-to-PCI PIO Data (PIO Write Data).

■ P2U_PD: PCI-to-UPA PIO Data (PIO Read Data).

■ U2P_PA: UPA-to-PCI PIO Address.

4.2 DMA Transaction Flow
This section describes the flow of a DMA request and reply through the DMA

Controller. Refer to the figures provided below for each step described in the

transaction flow (a step number is shown on the corresponding figure in a circle).

The delta between the numbers in circles does not necessarily represent the actual

number of clock cycles between steps.

The following discussion uses a simplified signal handshake protocol between the

requesting DMA source and the Bus Controller. See Chapter 3 for more details.

Note – U2P uses class 0 only for all UPA transactions. Class 1 is not used.

4-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

4.2.1 DMA Write Transactions

4.2.1.1 64 and 16 Byte DMA Writes to IO Space

Figure 4-2 DMA Write to IO space

Note – PBMA and PBMB are the only blocks which access IO space

PBMA is used as an example of a requesting block.

1. PBMA raises a request for a transfer. It indicates a write with the C bit clear (non-

Cacheable). It also indicates the size which can be either 64 bytes or any arbitrary

number of bytes less than or equal to 16. The Bus Controller begins arbitration.

2. Two things happen:

a. PBMA wins arbitration.

b. PBMA drives address and data busses. Data is entered into DMA_WR FIFO.

REQUESTING
SOURCE

(PBMA or PBMB)

2a

41P2U_DA

BUS
ARB/CTRL

1REQUEST

GRANT

2b

642b
P2U_DD

UPA
PACKET

BUILD

3

DRQ

Scoreboard

70

DMA_HDR

4a

4b
DMA_HDR

DMA_WR

DMA_RD
64U2P_DD

S_REPLY

P_REQ
5

S_REPLY
6

UPA_D

UPA_D
7

DRP

DMA
REPLY

8

MERGE
BUFFER

REQUEST

GRANT

REQUEST

GRANT
REPLY

BE 8

Chapter 4 DMA/PIO Transactions Flow 4-7

3. The DMA header (DMA_HDR) is formed in the DMA request block (DRQ). If the

size is less than or equal to 16 bytes, the value on the Byte Enable (BE) lines from

PBMA is used to determine the Bytemask field in the UPA transaction.

4. Two things happen:

a. The Request is entered in the DMA Scoreboard.

b. The Request is entered in the DMA header (DMA_HDR) FIFO in the UPA

interface.

5. P_REQ packet is issued on the UPA bus. Table 4-1 shows the type of P_REQ

packets issued and the type of possible S_REPLY.

6. S_REPLY received from SC (System Controller). Table 4-2 briefly describes the

action taken by U2P based on the type of S_REPLY it receives.

Table 4-1 Type of P_REQ and S_REPLY used for DMA write to IO space

Source Size (byte) P_REQ S_REPLY

PBMA,

PBMB

1 - 16 P_NCWR_REQ S_WAS

64 P_NCBWR_REQ S_WAB

Table 4-2 Type of S_REPLY’s U2P receives

S_REPLY Description

S_WAS Write Ack Single. U2P sources 16B of data from DMA_WR FIFO.

S_WAB Write Ack Block. U2P sources 64B of data from DMA_WR FIFO.

S_INAK Interrupt NACK. No data is transferred. U2P retries sometime later.

S_RBU Read Block Ack. Unshared. U2P receives 64B of data into DMA_RD FIFO.

S_RBS Read Block Ack. Shared. U2P receives 64B of data into DMA_RD FIFO.

S_SWB Write Block Ack. U2P receives 64B data into PIO_WR FIFO.

S_SWS Write Single Ack. U2P receives 16B data into PIO_WR FIFO.

S_SRB Read Block Ack. U2P sources 64B data from PIO_RD FIFO.

S_SRS Read Single Ack. U2P sources 16B data from PIO_RD FIFO.

S_ERR Error. No data is transferred.

S_RTO Read Time Out. No data is transferred.

4-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

7. U2P sources write data from DMA_WR data FIFO to UPA data bus.

8. The DMA Reply Controller is informed of the reply. It removes the transaction

from the scoreboard. U2P considers the DMA write transaction complete.

4.2.1.2 64 Byte DMA Write to Memory

Figure 4-3 64 Bytes DMA Writes to Memory

Note – PBMA, PBMB, STCA, STCB, and Merge Buffer (MRG) do 64 bytes DMA

writes to memory. Interrupt transactions from MDU have identical flow.

PBMA is used as an example of a requesting block.

1. PBMA raises a request for a transfer. It indicates a 64B write with the C bit set

(Cacheable). The Bus Controller begins arbitration.

2. Two things happen:

a. PBMA wins arbitration.

b. PBM drives address and data busses. Data is entered into DMA_WR FIFO.

REQUESTING
SOURCE

(PBMA, PBMB,

2a

41P2U_DA

BUS
ARB/CTRL

1REQUEST

GRANT

2b

642b
P2U_DD

UPA
PACKET

BUILD

3

DRQ

Scoreboard

70

DMA_HDR

4a

4b
DMA_HDR

DMA_WR

DMA_RD
64U2P_DD

S_REPLY

P_REQ
5

S_REPLY
6

UPA_D

UPA_D
7

DRP

DMA
REPLY

8

MERGE
BUFFER

REQUEST

GRANT

REQUEST

GRANT
REPLY

STCA, STCB,
MDU, or MRG)

MRG

Chapter 4 DMA/PIO Transactions Flow 4-9

3. The UPA header is formed in the DRQ. 64 Byte writes bypass the merge buffer.

4. Two things happen:

a. The Request is entered in the DMA Scoreboard.

b. The Request is entered in the DMA_HDR FIFO in the UPA interface.

5. P_REQ packet is issued on the UPA bus. Table 4-3 shows the type of P_REQ

packets issued and the type of possible S_REPLY.

6. S_REPLY received from SC (System Controller). See Table 4-2 for brief description

of the action taken by U2P based on the type of S_REPLY it receives. It is assumed

here that U2P receives S_WAB.

7. U2P sources write data from DMA_WR data FIFO to UPA data bus.

8. The DMA Reply Controller is informed of the reply. It removes the transaction

from the scoreboard. U2P considers the DMA write transaction complete.

1. The flow of interrupt transaction is similar to 64 byte DMA write transactions, therefore it is shown here.

Table 4-3 Type of P_REQ and S_REPLY used for 64 byte DMA writes to memory

Source Size (byte) P_REQ S_REPLY

PBMA, PBMB 64 P_WRI_REQ S_WAB

STCA, STCB 64 P_WRI_REQ S_WAB

MRG 64 P_WRB_REQ S_WAB

MDU 64 P_INT_REQ1 S_WAB | S_INAK

4-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

4.2.1.3 Less than 64 Byte DMA Write to Memory

Figure 4-4 Less than 64 Bytes DMA Writes to Memory

Note – Only PBMA, PBMB, STCA, & STCB issue less than 64 Bytes DMA write.

PBMA is used as an example of a requesting block.

1. PBMA raises a request for a transfer. It indicates a write with the C bit set

(Cacheable). It also indicates that the size is less than 64 bytes. The size can be any

arbitrary number of bytes less than or equal 63 bytes. The Bus Controller begins

arbitration.

2. Two things happen:

a. PBMA wins arbitration. DMA Requests from all other blocks are blocked.

b. PBMA drives address and data busses (and byte enable lines).

REQUESTING
SOURCE

(PBMA, PBMB,

2a

41P2U_DA

BUS
ARB/CTRL

1REQUEST

GRANT

2b

642bP2U_DD

UPA
PACKET

BUILD

DRQ

Scoreboard

70

DMA_HDR

4a

4b
DMA_HDR

DMA_WR

DMA_RD
64U2P_DD

S_REPLY

P_REQ
5

S_REPLY
6

UPA_D

UPA_D

DRP

DMA
REPLY

MERGE
BUFFER

REQUEST

GRANT

REQUEST

GRANT
REPLY

3a

3b

7

11

12 13

14a

14b

15

16a

16b

17

18

19

20

3b

8

9

10a

14b

BE 8

STCA, & STCB)

Chapter 4 DMA/PIO Transactions Flow 4-11

3. Two things happen:

a. The DMA header is formed in the DMA request block (DRQ). The DRQ

recognizes that it is less than 64 Byte write to memory, so it forms a Read-To-

Own transaction to read the whole block (64B) that contains the addressed data

and forwards it to the merge buffer upon return.

Note – Read-To-Own (P_RDO_REQ) transaction is issued with DVP bit set.

b. Write address and data are sent to the merge buffer along with the value on the

Byte Enable (BE) lines.

4. Two things happen:

a. The Request is entered in the DMA Scoreboard. The requestor ID is changed

from PBMA to Merge buffer (MRG) before the transaction is entered in the

scoreboard.

b. The Request is entered in the DMA_HDR FIFO in the UPA interface.

5. P_REQ packet is issued on the UPA bus. Table 4-4 shows the type of P_REQ

packets issued and the type of possible S_REPLY.

6. S_REPLY received from SC (System Controller). See Table 4-2 for brief description

of the action taken by U2P based on the type of S_REPLY it receives. It is assumed

here that U2P receives S_RBU for P_RDO_REQ and S_WAB for P_WRB_REQ.

7. U2P latches read data into DMA_RD data FIFO.

8. The DMA Reply Controller is informed of the reply. It removes the transaction

from the scoreboard.

9. The DMA Reply raises a request to return the data to the merge buffer (DMA

Reply gets the requestor ID from the scoreboard). The bus controller begins

arbitration.

10. Two things happen:

a. The DMA Reply wins arbitration.

Table 4-4 Type of P_REQ and S_REPLY used for less than 64 byte DMA writes

Source Size (byte) P_REQ S_REPLY

PBMA, PBMB 1-63 P_RDO_REQ S_RBU | S_ERR |S_RTO

STCA, STCB 1-63 P_RDO_REQ S_RBU | S_ERR |S_RTO

MRG 64 P_WRB_REQ S_WAB

4-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

b. Bus controller informs the Merge Buffer to receive the read data by asserting

signal Reply (not shown).

11. Data is sourced from DMA_RD data FIFO to merge buffer.

12. Data is merged inside the merge buffer (the byte enable value received earlier is

used during the merge).

13. Merge buffer raises a request to write back the merged data. It wins arbitration

next clock because DMA requests from other blocks are stalled.

14. Two things happen:

a. Merge Buffer wins arbitration.

b. Merge Buffer drives address and data busses. Data is entered into DMA_WR

FIFO.

15. The DMA header is formed in the DMA request block (DRQ).

16. Two things happen:

a. The Request is entered in the DMA Scoreboard.

b. The Request is entered in the DMA_HDR FIFO in the UPA interface.

17. P_REQ packet is issued on the UPA bus (See Table 4-4).

18. S_REPLY received from SC (System Controller).

19. U2P sources write data from DMA_WR data FIFO to UPA data bus.

20. The DMA Reply Controller is informed of the reply. It removes the transaction

from the scoreboard. DMA Activity is allowed to proceed. U2P considers this less

than 64 byte DMA write transaction complete.

Note – Possible overlapping between the steps above is not shown.

Chapter 4 DMA/PIO Transactions Flow 4-13

4.2.2 DMA Read Transactions

Figure 4-5 DMA read request to memory or IO space

Note – PBMA, PBMB, STCA, STCB, and MMU submit DMA read requests. Only

PBMA and PBMB blocks access IO space.

PBMA is used in the example below.

1. PBMA raises a request for a transfer. It indicates a read and the request size. The

Bus Controller begins arbitration.

2. Two things happen:

a. PBMA wins arbitration.

b. PBMA drives the address bus.

3. The DMA header is formed in the DMA request block (DRQ). Reads from

coherent domain are sent out as a 64 byte transactions regardless of size, with the

extra data ignored upon return.

4. Two things happen:

REQUESTING
SOURCE

(PBMA, PBMB

2a

41P2U_DA

BUS
ARB/CTRL

1REQUEST

GRANT

2b

64P2U_DD

UPA
PACKET

BUILD

3

DRQ

Scoreboard

70DMA_HDR

4a

4b
DMA_HDR

DMA_WR

DMA_RD
64U2P_DD

S_REPLY

P_REQ
5

S_REPLY
6

UPA_D

UPA_D

DRP

DMA
REPLY

MERGE
BUFFER

REQUEST

GRANT

REQUEST

GRANT
REPLY

117

STCA, STCB,
or MMU)

8

9

10a

10b

4-14 UPA to PCI Interface (U2P) User’s Manual • May 1997

a. The Request is entered in the DMA Scoreboard.

b. The Request is entered in the DMA_HDR FIFO in the UPA interface.

5. P_REQ packet is issued on the UPA bus. Table 4-5 shows the type of P_REQ

packets issued and the type of possible S_REPLY.

6. S_REPLY received from SC (System Controller). See Table 4-2 for brief description

of the action taken by U2P based on the type of S_REPLY it receives. It is assumed

here that S_REPLY is not of type S_ERR or S_RTO.

7. U2P latches read data into DMA_RD data FIFO.

8. The DMA Reply Controller is informed of the reply. It removes the transaction

from the scoreboard.

9. The DMA Reply raises a request to return the data to the requesting block.

10. Two things happen:

a. The DMA Controller wins arbitration.

b. Bus controller inform the requesting block to receive the read data by asserting

signal Reply.

11. Data is sourced from DMA_RD data FIFO. U2P considers the DMA read

transaction complete.

4.3 PIO Transaction Flow
This section describes the flow of PIO transactions through U2P. Size of PIO reads

can be 1, 2, 4, 8, 16, or 64 bytes. Size of PIO writes can be 64 bytes or any arbitrary

number of bytes from 1 to 16 bytes. PIO accesses destined to U2P’s internal blocks

are restricted to be 8 bytes or less.

1. Cacheable bit (1=Cacheable, 0=Non-Cacheable)

Table 4-5 Type of P_REQ and S_REPLY used for DMA reads

Source C 1 Size (byte) P_REQ S_REPLY

PBMA, PBMB 1 Any size P_RDD_REQ S_RBS | S_ERR | S_RTO

0 Any size P_NCBRD_REQ S_RBU | S_ERR | S_RTO

STCA, STCB 1 64 P_RDD_REQ S_RBS | S_ERR | S_RTO

MMU 1 64 P_RDD_REQ S_RBS | S_ERR | S_RTO

Chapter 4 DMA/PIO Transactions Flow 4-15

Note – Only 1 PIO transaction is processed at a time in U2P.

4.3.1 PIO Write

Figure 4-6 PIO Write Transaction Flow

1. Two things happen:

a. A PIO Write request enters the PIO_HDR FIFO.

b. The corresponding S_REPLY enters S_REPLY FIFO. The S_REPLY tells U2P

that write data is valid next cycle.

Note – Since the address and data paths on the UPA bus are independent, P_REQ

and corresponding S_REPLY can arrive in any order. It is assumed here for

simplicity that they both arrive at the same time.

DESTINATION
BLOCK

41 U2P_PA

BUS
ARB/CTRL

STROBE

2b

64P2U_PD

DECODER
PIO

PDC

71
PIO_HDR

PIO_RD

PIO_WR
64U2P_PD

P_REPLY

P_REQ

P_REPLY

UPA_D

UPA_D

REQUEST

ADVANCE

2c

2a

SIZE, BE, R/W 2b

DESTINATION 2b 3

5a

SEND P_REPLY 5b

READY 4

6

3

S_REPLYS_REPLY

2d

1b

1a

4-16 UPA to PCI Interface (U2P) User’s Manual • May 1997

Table 4-6 lists all valid write P_REQ’s and S_REPLY’s that U2P receives as well as

the P_REPLY’s it generates in response. Table 4-7 provides brief description of the

P_REPLY’s generated by U2P. See Table 4-2 for description of S_REPLY.

2. Four things happen:

a. PIO header is decoded by the PIO decoder (PDC). Size, destination, and

direction of PIO transaction are determined.

b. PIO transaction information is made available to the bus controller. U2P_PA,

size, and direction of transaction are visible to all internal blocks. Byte Enable

(BE) lines are used by PBMA and PBMB only.

c. A request signal is sent from the PIO_HDR FIFO in the UPA interface to the

bus controller.

d. UPA data is entered into PIO_WR FIFO. Bus Controller is informed.

3. The Bus Controller sees the request along with the PIO transaction size (and byte

enable lines), destination, and direction. It asserts Strobe signal which indicates

that address, size, byte enable, direction, and data on U2P_PD are valid.

1. Default P_REPLY is P_IDLE.

Table 4-6 Type of write P_REQ’s U2P receives and type of P_REPLY it generates

Destination Size (byte) P_REQ P_REPLY 1 S_REPLY

PBMA, PBMB 1 - 16 P_NCWR_REQ P_WAS | P_FERR S_SWS

64 P_NCBWR_REQ P_WAB | P_FERR S_SWB

Other Blocks 1 - 8 P_NCWR_REQ P_WAS | P_FERR S_SWS

Table 4-7 Type of P_REPLY’s generated by U2P

P_REPLY Description

P_IDLE Idle. This is the default P_REPLY.

P_RAS Read Ack Single. Tells SC 16B of read data is ready in PIO_RD data FIFO.

P_RAB Read Ack Block. Tells SC 64B of read data is ready in PIO_RD data FIFO.

P_WAS Write Ack Single. Tells SC 16B of write data has been absorbed.

P_WAB Write Ack Block. Tells SC 64B of write data has been absorbed.

P_RERR Read Error. No data is transferred.

P_FERR Fatal Error. No data is transferred.

P_RTO Read Time Out. No data is transferred.

Chapter 4 DMA/PIO Transactions Flow 4-17

4. The destination block asserts signal READY indicating that it took the data.

Note – For multi-cycle PIO’s (size > 8 bytes), signal READY is asserted for every

data cycle (see Bus Controller chapter for details).

5. Two things happen:

a. The Bus Controller notifies the UPA interface to advance PIO_HDR FIFO and

begins processing the next request.

b. The Bus Controller inserts the P_REPLY packet from PIO decoder into

P_REPLY FIFO in the UPA interface.

6. UPA interface sends the P_REPLY packet. PIO transaction is complete as far as

U2P is concerned.

4.3.2 PIO Read

Figure 4-7 PIO Read Transaction Flow

DESTINATION
BLOCK

41 U2P_PA

BUS
ARB/CTRL

STROBE

2b

64P2U_PD

DECODER
PIO

PDC

71
PIO_HDR

PIO_RD

PIO_WR
64U2P_PD

P_REPLY

P_REQ
1

P_REPLY

UPA_D

UPA_D

REQUEST

ADVANCE

2c

2a

SIZE, BE, R/W 2b

DESTINATION 2b 3

5a

SEND P_REPLY 5b

READY 4a

6

S_REPLYS_REPLY
7

4b8

4-18 UPA to PCI Interface (U2P) User’s Manual • May 1997

1. A PIO Read request enters the PIO_HDR FIFO.

Table 4-8 lists all valid read P_REQ’s and S_REPLY’s that U2P receives as well as the

P_REPLY’s it generates in response. Table 4-7 provides brief description of the

P_REPLY’s generated by U2P. See Table 4-2 for description of S_REPLY.

2. Three things happen:

a. PIO header is decoded by the PIO decoder (PDC). Size, destination, and

direction of PIO transaction is determined.

b. PIO transaction information is made available to the bus controller. U2P_PA,

size, and direction of transaction are visible to all internal blocks. Byte Enable

(BE) lines are used by PBMA and PBMB only.

c. A request signal is sent from the PIO_HDR FIFO in the UPA interface to the

bus controller.

3. The Bus Controller sees the request along with the PIO transaction size (and byte

enable lines), destination, and direction. It asserts Strobe signal which indicates

that address, size, byte enable, and direction are valid.

4. Two things happen:

a. The destination block asserts signal READY indicating that it is driving the

data.

Note – For multi-cycle PIO’s (size > 8 bytes), signal READY is asserted for every

data cycle (see Bus Controller chapter for details).

b. Data is valid on P2U_PD bus.

5. Two things happen:

a. The Bus Controller notifies the UPA interface to advance PIO_HDR FIFO and

begins processing the next request.

1. Default P_REPLY is P_IDLE.

Table 4-8 Type of read P_REQ’s U2P receives and type of P_REPLY it generates

Destination Size (byte) P_REQ P_REPLY 1 S_REPLY

PBMA, PBMB 1, 2, 4, 8, 16 P_NCRD_REQ P_RAS | P_PERR | P_RTO | P_FERR S_SRS

64 P_NCBRD_REQ P_RAB | P_PERR | P_RTO | P_FERR S_SRB

Other Blocks 1, 2, 4, 8 P_NCRD_REQ P_RAS | P_PERR | P_RTO | P_FERR S_SRS

Chapter 4 DMA/PIO Transactions Flow 4-19

b. The Bus Controller inserts the P_REPLY packet from PIO decoder into

P_REPLY FIFO in the UPA interface.

6. UPA interface sends the P_REPLY packet.

7. UPA interface receives S_REPLY from the SC to tell U2P to source the data from

PIO_RD FIFO.

8. PIO read data is sourced from PIO_RD. PIO read transaction is complete as far as

U2P concerned.

4-20 UPA to PCI Interface (U2P) User’s Manual • May 1997

5-1

CHAPTER 5

IOMMU

The IOMMU performs virtual to physical address translation during DVMA cycles.

PCI master devices provide 32-bit virtual address at the beginning of a DVMA

transfer. The IOMMU translates them into 41 bits of physical address.

The IOMMU consists of a 16-entry fully-associative TLB (Translation Lookaside

Buffer) implemented in the U2P ASIC and a TSB (Translation Storage Buffer) which

is a software managed data structure (one-level) in main memory. Hardware

performs TSB lookup (also known as a hardware table walk) when the translation

cannot be found in the TLB. The TLB stores recently used translation information.

An error is returned to the PCI master device if TSB lookup fails to locate a valid

mapping.

The U2P IOMMU supports two different page sizes, 8K and 64K. Mixed page sizes

can be used in the system, but in that case the TSB table lookup only assumes the

smaller page size. No overlapping of pages is allowed. Bypass operation is

supported to allow devices having their own translation facility to bypass IOMMU.

This chapter provides a high level description of IOMMU operations.

5-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

5.1 Block Diagram
One IOMMU provides translation for both PCI Buses (A & B).

Figure 5-1 IOMMU top level block diagram

5.2 TLB Entry Format
A TLB entry consists of TLB tag in the CAM and TLB data in the RAM.

TLB

ARB/

32VA

HIT

STREAM/CACHE

PBMA

PBMB

CTRL

CTRL

CAM

TLB
RAM

CTRL

41PA

DMA Interface
for Table Walks

12PA
PIO Interface

DATA

CTRL

DATA

41PA

32VA

HIT

STREAM/CACHE

CTRL

41PA

to access TLB &
internal Reg’s

PCI A

PCI B

Chapter 5 IOMMU 5-3

5.2.1 TLB CAM Tag

5.2.2 TLB RAM Data

Table 5-1 Description of TLB Tag Fields

Field Bits Description Type

ERRSTS 24:23 Error Status:

00 = Protection Error,

01 = Invalid Error,

10 = Time Out Error,

11 = ECC Error (UE).

RW

ERR 22 When set to 1 indicates that there is an error

associated with this entry

RW

W 21 Writeable, when set, the page mapped by

this TLB has write permission granted.

RW

S 20 Stream bit to determine stream vs. consis-

tent access.

RW

SIZE 19 0 mean 8K page, 1 means 64K page. RW

VA [31:13] 18:0 19-bit VPN (Virtual Page Number) RW

Table 5-2 TLB Data Format

Field Bits Description Type

V 30 Valid bit, when set, the TLB data field is

meaningful.

RW

RESERVED 29 RESERVED

C 28 Cacheable bit. 1=Cacheable access, 0=Non-

cacheable.

RW

PA[40:13] 27:0 28-bit Physical Page Number RW

VA[31:13]

018

SIZES

1920

W

21

ERR

22

ERRSTS

2324

PA[40:13]

0

C

2829

V

30 27

5-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

5.3 DVMA Operation Modes
U2P IOMMU operates in three different DVMA modes: translation, bypass, and

pass-through. Its operation mode is determined by the value of “MMU_EN” bit of

IOMMU Control Register, PCI addressing mode used: 64 bits Dual Address Cycle

(DAC) vs. 32 bits Single Address Cycle (SAC), and PCI virtual address (bit 31 in SAC

mode, bits 63:50 in DAC mode).

5.3.1 Translation Mode

Translation is initiated by the PBM block (PBMA or PBMB) by providing a 32-bit

virtual address. The IOMMU hardware performs a TLB lookup first. If the lookup

results in a TLB hit, the IOMMU returns a 41 bits physical address to the PBM block.

If a TLB miss happens, hardware will start a TSB lookup unless the streaming cache

lookup resulted in a hit (see hardware section for details on launching a table walk).

If TSB lookup locates a valid mapping for the virtual page, information in the TSB

entry will be loaded into TLB and translation continues. If TSB lookup results in a

miss, an error will be returned to the PBM.

Table 5-3 PCI DVMA Modes of Operation

Mode Addr<31> MMU_EN Addr<63:50> Result

SAC 0 X N/A PCI peer-to-peer
(Ignored by U2P)

SAC 1 0 N/A Pass-through

SAC 1 1 N/A IOMMU Translation (DVMA)

DAC X X 0x0000-
0x3FFE

Ignored by U2P

DAC X X 0x3FFF Bypass (DMA)

Chapter 5 IOMMU 5-5

The virtual address consists of two fields, virtual page number and page offset. Page

offset stays the same from virtual address to physical address. The conversion of

virtual address to physical address for page sizes 8K and 64K is shown below.

Figure 5-2 Virtual to physical address translation for 8K page size

Figure 5-3 Virtual to physical address translation for 64K page size

5.3.2 Bypass Mode

The implementation of U2P IOMMU allows PCI devices to have their own MMU

and bypass the IOMMU supported by the system. A PCI device is operating in

bypass mode if all conditions in the last row in Table 5-3 are met. In this mode UPA

physical address PA[40:0] = PCI_ADDR[40:0].

Figure 5-4 Physical address formation in bypass mode (8K and 64K)

12 031 13
Virtual Page Number Page Offset

0121340
Page OffsetPhysical Page Number

PCI

UPA

Translation

39

031
Virtual Page Number Page Offset

016

15

15
Physical Page Number

16

Page Offset

Translation

40 39

PCI

UPA

040
Physical Page Number Page Offset

040
Physical Page Number Page Offset

63 50
0x3FFF PCI

UPA
39

39

5-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

A PCI device operating in bypass mode has direct access to the entire physical

address space. Bit 40 of PCI_ADDR indicates whether the PCI device is accessing the

coherent space (PA[40] = 0) or the IO space (PA[40] = 1).

5.3.3 Pass-through Mode

The IOMMU operates in pass-through mode if all conditions in the second row in

Table 5-3 are met. Pass-through mode allows access to 2 GB of memory address

space. If the higher 10 bits of physical address are padded with 0. A DVMA access in

pass-through mode will always be to the coherent space.

Figure 5-5 Physical address formation in pass-through mode (8k and 64K)

5.4 Translation Storage Buffer
Translation Storage Buffer, or TSB, is a translation table in memory. It contains one-

level mapping information for the virtual pages. IOMMU hardware will look up this

table if a translation cannot be found in the TLB. A TSB entry is called Translation

Table Entry, or TTE, and takes 8 bytes.

Several TSB table sizes are supported in the system. The size of the TSB table is

specified by the TSB_SIZE field of IOMMU Control Register. TSB table sizes

supported are 1K, 2K, 4K, 8K, 16K, 32K, 64K and 128K entries (not bytes). This gives

support for DVMA address space of 8M to 1G for an 8K page, and 64K to 2G for a

64K page (128K and 64K TSB sizes are not supported with 64K page). Software must

set up TSB before it allows translation to start.

031
Physical Page Number Page Offset

040
Page OffsetPhysical Page Number

30
0

39
0

31 30
000000000

PCI

UPA

Chapter 5 IOMMU 5-7

5.4.1 Translation Table Entry

Translation Table Entries (TTE) contain translation information for virtual pages. The

IOMMU hardware reads one TTE during a table walk and stores it in the TLB. A

TTE entry has valid information only when bit “DATA_V” is set. Information stored

in the TTE is shown in the following table.

Caution – “LOCALBUS” bit is not stored in the TLB. The MMU hardware drops

this bit after a table walk.

5.4.2 TSB Lookup

During the TSB lookup physical address for the TTE entry is formed based on the

following information.

■ Base address of the TSB table.

■ Assumed page size during TSB lookup (as specified by TBW_SIZE bit in IOMMU

Control Register).

■ Size of TSB table.

TSB Base Address Register contains physical address of the first TTE entry in the

TSB table. Lower order 13 bits of this register are all zeros because the TSB table

must be aligned on 8K boundary regardless of TSB size. Physical address for an

Table 5-4 TTE Data Format

Field Bits Description

DATA_V <63> Valid bit (1 = TTE entry has valid mapping)

DATA_SIZE <61> Page size of the mapping (0 = 8K, 1 = 64K).

STREAM <60> Stream bit (1 = streamable page, 0 = consistent page).

LOCALBUS <59> Local Bus bit. Not used.

DATA_SOFT_2 <58:51> Reserved for software use

DATA_PA <40:13> Contains bits <40:13> of physical address. Bits 15:13 are not

used for 64K page.

DATA_SOFT <12:7> Reserved for software use.

CACHEABLE <4> Cacheable (1 = cacheable page, 0 = non-cacheable page).

DATA_W <1> Set if this page is writeable

5-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

entry in TSB table is formed by adding the base address and an offset generated as

shown in Table 5-5. The lower order 3 bits of the offset are set to 0x0 because each

TTE entry is 8 bytes in size.

Figure 5-6 Computation of TTE Entry Address

TBW_SIZE should be set to 0 if 8K page size or mixed (8K and 64K) page sizes are

used for DVMA mappings. If mixed page sizes are used, each 64K page will use up

8 entries of TTE. Software must fill all 8 entries with the same information.

TBW_SIZE should be set to 1 if 64k page size is used for DVMA mappings.

1. The MMU returns an error if it detect illegal combinations.

Table 5-5 Offset to TSB Table

TSB Table Size N Offset (8K TSB
lookup page size)
(TBW_SIZE=0)

Offset (64K TSB
lookup page size)
(TBW_SIZE=1)

1K 12 [VA<22:13>, 000] [VA<25:16>, 000]

2K 13 [VA<23:13>, 000] [VA<26:16>, 000]

4K 14 [VA<24:13>, 000] [VA<27:16>, 000]

8K 15 [VA<25:13>, 000] [VA<28:16>, 000]

16K 16 [VA<26:13>, 000] [VA<29:16>, 000]

32K 17 [VA<27:13>, 000] [VA<30:16>, 000]

64K 18 [VA<28:13>, 000] Not allowed1

128K 19 [VA<29:13>, 000] Not allowed1

01240

000000000000

13

000

023

Base Address

Offset

TTE Entry Physical Address

Add

N

040

Chapter 5 IOMMU 5-9

5.5 PIO Operations
To prevent random PIO operations from interfering with the internal states of the

translation, IOMMU implements some interlocking mechanism. The mechanism is

described below.

■ PIO operations to the IOMMU are held off during address translation.

■ PIO operations to the IOMMU are held off during service of TLB Miss.

■ If there is a pending PIO request, the IOMMU will begin the PIO operation

once it completes the current translation or TLB miss service. In other words,

when IOMMU is in idle state, it gives higher priority to PIO requests than

address translations.

5.6 Translation Errors
Translation errors detected by the IOMMU are:

■ Invalid Errors.

An invalid error happens if bit DATA_V in the TTE read by IOMMU hardware

indicates that the TTE is invalid (DATA_V = 0).

■ Protection Error.

A protection error is detected if the PCI device is doing DVMA write to a page

which is mapped as read-only (bit W = 0 in the TLB tag or bit DATA_W = 0 in the

TTE).

■ ECC Error.

If a correctable ECC error occurred during table walk, the ECC unit will correct the

error and the TTE received by the IOMMU is error free. If the ECC error is

uncorrectable, the received TTE will be invalid and the IOMMU will flag an error.

■ Time Out Error.

A time out error is a result of a time out on the UPA interconnect during a table

walk.

■ Out-Of-Range Virtual Address Error.

The combination of TSB_SIZE and TBW_SIZE determines the range of valid virtual

addresses as described in Table 13-28 in the Programmer’s Model Chapter. The

MMU returns error if it detects any out-of-range virtual address. The MMU also

return an error if it detects illegal combinations of TSB_SIZE and TBW_SIZE.

5-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

Errors detected by the IOMMU will be reported to the requesting PBM immediately

after detection if the PBM is still connected. Under certain conditions the PBM can

disconnect after a table walk is initiated. In such cases an error bit along with 2-bit

error status (see Table 5-1) are loaded along with the received TTE.

5.7 IOMMU Demap
After the mapping between virtual address and physical address spaces is

established, any change to the mapping information needs to demap the existing

mapping before a new mapping can be used by the device. Demap is required for

the following occasions: taking down existing mapping to make physical memory

available to other virtual addresses, or changing access permission to a page.

During an IOMMU demap, the PCI device is not allowed to use the page that is

being demapped. If a device tries to access a page that is being demapped,

unexpected results may happen. The following events are needed to demap a page

in the IOMMU.

■ Update proper TSB entry with new information.

■ Perform TLB flush with virtual page number.

■ Flush the streaming cache if the page is marked streamable.

TLB flush is initiated by writing to IOMMU Flush Address Register with specified

virtual page number. Match criteria are different for 8K and 64K page sizes.

Hardware performing the flush will adjust the match criteria based on the page size.

The matched entry in the TLB will be marked invalid.

5.8 TLB Initialization and Diagnostics
IOMMU provides direct access to its internal resources, such as TLB Tag, TLB Data,

LRU Queue and Match Comparison Logic. Please see the hardware and the

programmer’s model sections for more details.

After power is turned on, all TLB entries are invalid. Before any DVMA is allowed to

proceed, software may want to ensure that none of the entries is marked valid as a

result of the diagnostic operations during booting. This is done by writing “0” to the

“V” bit in every entry of TLB Data RAM.

6-1

CHAPTER 6

PCI Bus Interface

6.1 Introduction
This chapter describes the PCI Bus interface block of U2P. It goes by the abbreviation

“PBM” for ‘PCI Bus Module’. It is a host-PCI bridge and can be instantiated alone or

as a pair of peer Host-PCI bridges. In U2P two PBM’s are used to interface to two

PCI bus segments. The Α segment is a 64-bit wide, 33/66MHz capable PCI bus

which supports 4 external master devices, and the B segment is a 64-bit wide,

33MHz capable PCI bus which supports 6 external master devices. Both segment

clocks are synchronous to the internal 66MHz clock. The PBM’s main features are:

■ Compliant with PCI Local Bus Specification, version 2.1.

■ Operates with a PCI clock rate of either 1X or 0.5X the internal clock rate.

■ Internal interfaces to:

■ Streaming Cache.

■ IOMMU.

■ UPA Interface & Merge Buffer.

■ Mondo Interrupt Controller.

■ Dual 64-byte DMA write buffers, single 64-byte DMA Read buffer, and a single

64-byte PIO write buffer.

■ Little-endian access to the bus and to internal configuration space.

■ Source configurable for a 32- or 64-bit PCI data bus - same source code for both

segments.

6.1.1 Supported PCI features:
■ 64-bit Bus Extension (as a target only, for DMA, not as master for PIO).

■ 64-bit Addressing (Dual Address Cycle) for IOMMU bypass.

■ Required adapter and host-bridge configuration space header registers.

6-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ Fast Back-to-Back cycles as a target.

■ Arbitrary byte enables (Consistent mode only).

■ Ability to generate memory, I/O, and configuration read and write cycles.

■ Ability to generate special cycles.

■ Responds only to memory space accesses.

■ Peer-to-peer DMA on a single segment.

6.1.2 Unsupported PCI features:
■ Exclusive Access to main memory (LOCK).

■ Peer-to-peer DMA between different PCI bus segments.

■ Local (on-PCI) cache support.

■ External arbiter.

■ Cache-line Wrap Addressing Mode.

■ Fast Back-to-Back cycles as a PIO master.

■ Address/Data Stepping.

■ Subtractive decode.

■ Any DOS compatibility features.

6.2 PCI Bus Operations

6.2.1 Bus Master Operation (PIO)

Read and write transactions occur as specified in the PCI specification but are also

described here for completeness. Figure 6-1 illustrates a read transaction. Figure 6-2

illustrates a write transaction.

U2P is capable of generating aligned PIO reads of 1,2,4,8,16, and 64 bytes to memory

space and 1,2, and 4 byte accesses to I/O and configuration space. It is also capable

of generating PIO writes with arbitrary byte enables with 0-16 bytes transferred to

memory space, and 0-4 bytes transferred to I/O or configuration space. In addition,

64-byte PIO writes with all bytes enabled can be generated to memory space. PIO

write data is posted to the 64B write buffer to be dispatched by the PBM which

handles target retries and disconnects transparently to other control blocks. PIO read

data is loaded directly from the PCI bus to U2P’s internal bus in 64-bit quantities.

The PBM cannot generate 64-bit PIO cycles nor PIO’s with Dual Address Cycles

Chapter 6 PCI Bus Interface 6-3

Figure 6-1 Basic PCI Read Transaction

Figure 6-2 Basic PCI Write Transaction

Errors on PIO writes are handled asynchronously; status is logged in the AFSR and

configuration status registers, and address is logged in the AFAR. Errors on reads

are returned to the processor synchronously.

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

adr d0 d1 d2

cmd be’s

wait

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

adr d0 d1 d2

cmd be’s

wait

6-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

6.2.2 Target Operation (DMA)

The PBM handles both consistent and streaming mapped DMA. The PBM responds

with medium DEVSEL# timing (2 clocks) to any PCI address with A/D[31] equal to

a 1. The PBM resolves the address before asserting TRDY# to the master. Address

resolution is done by either the IOMMU translating the address, or by hitting the

Streaming Cache. Errors or “busy” signals from either of these units may be

communicated back to the master device via target-aborts or retries. DMA errors are

the responsibility of the bus master so no interrupts are issued, however status is

logged in the configuration status register.

Address resolution may also occur in two other ways; Bypass, which occurs on Dual

Address Cycles (DAC), wherein a valid 64-bit physical address is provided by the

master, and Pass-through, where the IOMMU is disabled and the physical address is

composed by bit extending the 32-bit address PCI address with zeroes. To avoid

claiming the entire 64-bit PCI address space, U2P responds only to DAC’s where the

top 14 bits of address are ones.

DMA writes are posted to dual 64B buffers. One buffer can drain to U2P’s internal

data bus while the other is filling from the PCI bus. Byte enables are stored along

with the data. DMA reads are singly buffered in the PBM to insulate the internal

data bus from disconnects and pauses due to master wait states, master latency

time-outs, slower bus speeds, and narrower bus width.

When a DMA burst transfer attempts to go past a cache line (64B) boundary, U2P

generates a disconnect. This should cause the master device to attempt the

transaction again beginning at the address of the next untransferred data.

Arbitrary byte enables are supported for Consistent DMA transactions. In Streaming

mode, U2P only supports contiguous byte enable patterns: if a byte hole is

encountered in streaming mode, U2P will complete the transaction but the data for

those disabled bytes will be unknown. If enabled, the PBM will generate an interrupt

and set a status bit indicating the detection of a byte hole. A byte hole is defined as

any byte enable pattern in a single bus transaction which would cause a byte to not

be written while writing bytes both before and after it. Byte holes that are a result of

two separate bus transactions do not cause any errors in either consistent or

streaming mode.

Any DMA transaction which requests 64-bit data transfer will receive a 64-bit

acknowledgment from U2P.

Chapter 6 PCI Bus Interface 6-5

6.2.3 Transaction Termination Behavior

6.2.3.1 Retries

A retry is depicted in Figure 6-3. A count is kept of the number of retries for a given

PIO transaction. When this value exceeds the Retry Limit Count the PBM ceases to

attempt the transaction and issues an interrupt to the processor. The Retry Limit

Count is fixed at 16,384.

Figure 6-3 Retry Cycle

For DMA, U2P can generate retries at the request of the streaming cache, for

consistent reads which miss the IOMMU, and when the DMA write buffers are full.

6.2.3.2 Disconnects

A PBM disconnect is depicted in Figure 6-4. As a target, the PBM only disconnects at

line boundaries. No count is kept of disconnects.

6.2.3.3 Master-aborts

A master-abort is depicted in Figure 6-5. This is the case when no device responds to

the PIO address.

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

cmd be’s

adr d0

6-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

.

Figure 6-4 Disconnect Cycle

6.2.3.4 Target-aborts

A target-abort is depicted in Figure 6-6. A target-abort may be received for a variety

of error conditions and may be generated by U2P for illegal addresses, address

parity errors, and protection errors. All cases for which U2P may signal a target-

abort are given in Chapter 11.

Figure 6-5 Master-abort Cycle

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

adr d0 d1 d2

cmd be’s

adr d2

cmd be’s

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

adr d0

cmd be’s

fast med slow sub

Chapter 6 PCI Bus Interface 6-7

Figure 6-6 Target-abort Cycle

6.2.4 Addressing Modes

Only the Linear Incrementing addressing mode is supported. Reserved and Cache

Line Wrap address mode accesses are disconnected after the first data phase,

allowing the master to complete the transfer one data word at a time.

6.2.5 Configuration Cycles

U2P can generate both Type 0 and Type 1 configuration accesses. The type generated

depends on the bus number field within the configuration address and the bus

number and subordinate bus number registers in the bridge configuration header.

See Section 13.2.2.1, “PCI Configuration Space” for details.

6.2.6 Special Cycles

A PCI special cycle is shown in Figure 6-7. The PCI address is a don’t care and the

message (data written) is passed on the first data phase on AD[31:0]. No additional

data phases may be generated. The cycle ends in a master abort with no error

reported and the RMA status register bit not set.

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

adr d0

cmd be’s

d1

be’s

6-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

Figure 6-7 Special Cycle

6.2.7 Exclusive Access

U2P does not implement locking at all and the LOCK# signal is not connected. Any

exclusive access will proceed as if it were a non-exclusive access.

6.2.8 Fast Back-to-Back Cycles

The PBM is capable of handling Fast Back-to-Back DMA transactions as a target

device. The Fast Back-to-Back Capable bit in the Status register is hardwired to ‘1’. It

handles the master-based mechanism (required) and is capable of decoding the

target-based mechanism as well. The address is checked and masters presenting an

invalid address receive a target-abort termination just as in the normal case.

Figure 6-8 illustrates several Fast Back-to-Back cycles on a PCI bus. The specification

requires that TRDY#, DEVSEL#, and STOP# be delayed by one cycle unless this

device was the target of the previous transaction. This causes writes to be extended

by a cycle but is hidden on reads.

The PBM is not capable of generating Fast Back-to-Back PIO transactions and does

not implement the Fast Back-to-Back enable bit in the Command Register in the

configuration header. A Fast Back-to-Back PIO would remove the idle cycle between

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

STOP#

indd msg

spcl be’s

Chapter 6 PCI Bus Interface 6-9

two transactions to the same target as long as the first transaction was a write.

Observe that this feature would place the burden on U2P of knowing which device

is targeted for each transaction.

Figure 6-8 Fast Back-to-Back Cycles

6.3 Functional Topics

6.3.1 PCI Arbiter

6.3.1.1 Arbitration Scheme

The PBM provides the arbiter for its PCI bus segment. The arbitration scheme

implemented is fair arbitration where all enabled requests are serviced in round-

robin fashion.

6.3.1.2 Bus Parking

The ARB_PARK bit in the PCI Control Register causes the grant for the last active

bus master to be asserted when no other requests are asserted. This results in a 1

clock savings for the parked device in the “cold-start” case, and a 1 clock delay for

devices in other slots.

CLK

FRAME#

A/D

C/BE#

IRDY#

DEVSEL

TRDY#

adr d0 d1 d1 adr d0adr d0 d1

cmd be0 be1 be1 cmd be0cmd be0 be1

normal fast write fast read
any target same target

required
dead
cycle

hidden
dead
cycle

6-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

6.3.2 Endianess

U2P’s main internal data busses are connected to the PBM in a “byte-twisted”

fashion where the logical byte lanes are connected together. For byte 0, the U2P data

bits [63:56] are connected to the PBM data bits [7:0], and so on. The PBM internal

control registers, which are big-endian, are byte-twisted again internally.

6.3.3 PCI Commands

Table 6-1 defines the commands the PBM is able to generate as well as how it

responds to all commands as a target.

Table 6-1 PCI Command Generation and Response

Command C/BE# Generate? Response

Interrupt Acknowledge 0000 No Ignored

Special Cycle 0001 Yes Ignored

I/O Read 0010 Yes Ignored

I/O Write 0011 Yes Ignored

Reserved 0100 No Ignored

Reserved 0101 No Ignored

Memory Read 0110 Yes Perform read access

Memory Write 0111 Yes Perform write access

Reserved 1000 No Ignored

Reserved 1001 No Ignored

Configuration Read 1010 Yes Ignored

Configuration Write 1011 Yes Ignored

Memory Read Multiple 1100 No Perform read (with prefetch if streamable)

Dual Address Cycle 1101 No Bypass access

Memory Read Line 1110 Yes Perform read (with prefetch if streamable)

Memory Write &
Invalidate

1111 No Equivalent to Memory Write command

Chapter 6 PCI Bus Interface 6-11

6.3.4 Diagnostic Modes

U2P has the ability to count certain PBM operations such as tablewalks, retries due

to tablewalks, and number of DMA bytes transferred, via the performance monitor

block.

There is a diagnostic bit that puts the PBM interface in loopback mode. This results

in all PIO being looped back through the DMA interface and back to memory. Any

valid PIO cycle may be looped back in consistent, streaming, or pass-through mode.

There are three bits that invert parity generation for PIO address, PIO write data,

and DMA read data individually. For the DMA read data PAR64 is also inverted.

6.3.5 Clocks

The clocks are driven from an external low-skew clock driver chip. This provides the

PCI A and B clocks as well as the U2P source clock. All PBM internal registers are

clocked by the internal 66MHz U2P clock, the PCI CLK signal is only used for

reference, to determine bus speed (1X or 0.5X), and phasing.

PCI specifies a signal, “M66EN”, which indicates the ability of all devices on the bus

to run at 66MHz. To save a pin, U2P doesn’t have M66EN as an input but instead

samples PCI CLK with respect to the U2P clock to determine the correct state of

M66EN.

6.3.6 Reset

The PCI reset line are driven as a function of the chip reset signal UPA_RST_L.

6-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

7-1

CHAPTER 7

Streaming Cache Operation

7.1 Overview
The STreaming Cache (STC) implemented in the U2P ASIC is a small size fully

associative cache managed by both hardware and software, to accelerate certain PCI

bus DVMA to and from system memory.

There are two STC modules instantiated in U2P, one for PCI bus A, and one for PCI

bus B. This chapter specifies the size, functionality and algorithms of a single STC

module, but the reader should realize that all statements can be applied to both

instances, unless otherwise specified.

The U2P streaming cache performs three primary functions. The first is to

accumulate sequentially addressed PCI write bursts into quantities the size of a

system block. The second function is to speculatively prefetch the next (increasing)

sequential block of memory for an active PCI read stream. The third function is to

act as a local cache for PCI read accesses to the same block.

The implementation of the U2P streaming cache features:

■ A fully associative pool of 16 entries shared among read and write streams.

■ Dual ported data RAM for concurrent write/flush and read/fill operations.

■ 64 bit wide interface to both the PBM and UPA modules.

■ Least Recently Used entry allocation scheme.

■ Virtual address tags for low lookup latency.

■ Physical address page translation for each entry to reduce flush and prefetch

latencies.

■ One entry allotment per virtual page to reduce the problem of individual

misbehaved devices from thrashing the cache.

7-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ Individual byte write enables to support PCI bus byte granularity.

Only accesses to virtual pages that are designated by software as streamable pages

can use the streaming cache’s functions. The cache is located in non-coherent

memory, therefore software intervention is required to ensure a consistent memory

image. PCI devices will see program order functionality; reads followed by writes

and writes followed by reads will see the correct results.

7.1.1 Streaming Cache Conceptual Overview

The streaming cache conceptually resides in close proximity to the PCI Bus

Controller Module (PBM) so that low latency will be observed by the cards on each

streaming access. A very tight coupling exists between the PBM and the streaming

cache, with the STC almost appearing as a slave device to the PBM.

The streaming cache also has its own interface to the internal bus of the U2P. One

reason is that the STC needs to pass different information to the DMA controller

than the PBM. Another reason is that there are occasions when both the STC and the

PBM would like to communicate with the UPA interface. The U2P internal bus

controller can handle this arbitration more effectively than PBM controlled arbiter

since it has superior knowledge of the resources available (merge buffer, UPA

queue). Separate internal bus interfaces mean that streaming read replies will not be

synchronized with the PBM; the data will first be placed into the cache and then the

PCI bus can consume it.

IOMMU lookups are handled as a natural part of the PBM’s functionality. The PBM

will communicate all necessary information to the STC, therefore there is no direct

connection between the STC and the IOMMU.

The STC is essentially a intermediate buffer for streaming data transfer between the

UPA and PCI busses. There is no need for the STC to generate interrupts, therefore

no connection to the Mondo Unit is necessary. Error information from the UPA on

read replies will be stored in the STC to be used by the PBM at a later time. PCI

parity error information on write requests will be stored in the STC and be used to

corrupt the ECC of the outbound data.

7.1.1.1 STC Subsections

The streaming cache is partitioned into four major subsections: the STC Central

Control Unit, the Tag block, the Data block, and the Master Request Port.

The STC Central FSM handles control signal communication between the STC and

PBM module. It also, along with the Master request Port, handles STC

communication with the U2P Bus Controller module (BCT).

Chapter 7 Streaming Cache Operation 7-3

The Tag block contains all of the address and status information concerning the

entries within the cache. This includes the virtual page number, the corresponding

physical page number, the byte locations of dirty data within a block, and the status

of the line (invalid, fetching).

The Data block holds the actual data associated with the block of memory. It also

contains error status in the form of 32 total bits, two bits per entry, one bit associated

with PCI writes, one bit associated with PCI reads.

The Master Request Port handles most communication between the U2P internal bus

structure and the streaming cache. It is responsible for posting DMA requests and

subsequently sinking/sourcing data. To decouple streaming cache operation from

the delays and protocol associated with using U2P’s internal busses, the Master

Request Port has both a 64-byte prefetch buffer and a 64-byte flush buffer.

7.2 Streaming Cache Functional Description
The STC is first consulted whenever a PCI DMA request occurs. The virtual address

appearing on the PCI bus is compared with the VA tags to see if the page is

streamable and active in the cache. If there is a hit, then the appropriate action is

taken on the matching entry as described in the following paragraphs. If the virtual

page is not found in the STC, then this initial transaction will be ignored and the

internal state reset. A page not found in the cache does not mean that the page is not

streamable; just that it is not active in the cache at this time. The PCI controller

module will return if the results of the IOMMU lookup indicate that the page was

indeed marked streamable. In this case, the least recently used entry will be

allocated and its contents invalidated (if clean) or flushed to memory (if the contents

are dirty).

7.2.1 Streaming Writes

The STC receives write data from the PBM and fills the appropriate cache line in the

hopes of eventually accumulating an entire system block quantity of data. This block

can then be sent to memory without having to perform a read-merge-write

operation. If the write ends at a block boundary, then after the data is inserted into

the cache, the entry will be copied into the 64-byte flush buffer, from which it will be

copied to the UPA block as soon as allowed by U2P’s Bus Controller. If the flush

buffer is already full when a DMA write ends at a block boundary, the streaming

cache will wait until the flush buffer begins emptying to the UPA, then it will

transfer the entry to the flush buffer. During this wait, no further requests from the

PBM will be acknowledged. This guarantees that all completed 64-byte blocks will

be flushed without software intervention.

7-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

7.2.1.1 Byte Holes and Zero Byte Writes

Byte holes within a single PCI write data stream (i.e. byte enable bit is off, while byte

enable to the left and right are on), and zero byte writes are defined to be an error

condition if the page is marked streamable. The PBM detects these conditions,

signals the DVMA master, and cleanly ends its transaction with the streaming cache.

7.2.2 Streaming Reads

Streaming reads fall into one of three categories; either the requested data is already

located in the cache, the data must be fetched from memory, or the data is currently

being fetched from memory.

If the data is in the cache, and the last byte of the block will not be read, then the

data is simply fed to the PCI device. If the last byte is expected to be read, as

signalled by the PBM when it services a PCI Memory Read Line or Memory Read

Line Multiple command, then a prefetch of the next increasing sequential block of

memory will also be attempted, as long as there is not already an outstanding

prefetch request. If the master request port is not busy, the prefetch will be launched

immediately, otherwise the fetch will try to occur after the data is provided to the

PCI device. When the prefetch data arrives, it is put into the prefetch buffer. As soon

as the Data Block is not busy, the prefetch data is copied to it, provided that the last

word of the line being overwritten was really read by the PCI device. If the PCI

device did not access the last word (even though it issued a Memory Read Line or

Memory Read Line Multiple command), the prefetch (and some UPA bandwidth)

will be wasted. A prefetch can also be issued if the PCI device reads the last word of

a line. This covers the normal PCI read case (i.e. the op is not a Memory Read Line

or Memory Read Line Multiple).

If the data is not in the streaming cache (either the page or the line is not valid in the

cache), then the data must be fetched from memory. The entry will be allocated by

the fetch and marked as fetch outstanding. A demand fetch is then posted. In this

scenario, the PCI controller will be informed that the PCI device should be retried.

This is done to free up the PCI bus to perform other transactions during the memory

read latency.

If the PCI device hits on an entry in the cache that is currently marked fetch

outstanding, the streaming cache will wait while the fetch completes, then proceed

as above.

Chapter 7 Streaming Cache Operation 7-5

7.2.3 Entry Flushing

There are several occasions when an entry containing dirty data needs to be flushed

toward coherent memory. These are:

■ End of line flush: When a DVMA write reaches end of a cache line, the hardware

will perform a line flush if the flush buffer is available, or wait until the flush

buffer is available and then perform the flush.

■ Non-sequential write to the same line: Any non-sequential write to a cache line

will cause the existing line to be flushed before new data can be accepted.

■ Line eviction on the same page: If a line is partially filled and is dirty and the

device starts writing to a new line on the same page, buffered data for the

previous write has to be flushed before new data can be accepted.

■ Line eviction different page: This happens when all the cache lines are used up

and the incoming DVMA accesses a page with no line allocated to it. If the LRU

line has dirty data, it needs to be flushed before the line can be allocated to a new

page.

■ Read from page currently mapped for Writes: If a DVMA read occurs to a cache

line currently being used for writes, and the line is dirty, then the buffer must be

flushed before the read data is accepted.

■ Software triggered flush: Software needs to flush the Streaming Buffer cache line

on any DVMA write transfers which end on sub-line boundaries.

Of the preceding, only the software triggered flush is visible to the software.

To make sure all previous flush operations are completed at the coherence domain,

U2P provides a mechanism to synchronize the flush operation. The flush

synchronization involves a PIO write to the Streaming Buffer Flush Synchronization

Register with the physical address of the flush flag provided as PIO write data. Only

one write of the synchronization register is required as a barrier for all previous

flush/invalidate writes to that streaming cache.

In all of the mentioned cases, it is possible that the entry may not contain an entire

system block of data to be written to memory. This situation requires a sub-block to

be delivered to the Merge Buffer block, whereupon the sub-block can be merged

with the rest of the block of coherent memory.

7-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

7.3 Streaming Cache Programming Model

7.3.1 Performance Issues

Extracting the most performance out of the streaming cache involves following

several guidelines concerning DMA accesses. Not prescribing to these guidelines

will result in less than ideal observed performance. Some access patterns may, in

fact, incur a penalty which causes the streaming cache to yield poorer performance

than equivalent non-streamable accesses.

DMA Writes

DMA writes to a block within a streamable virtual page should always access

memory in increasing total sequential order (i.e. no gaps). Failure to do so will cause

unnecessary flushing of the cache entry (and byte holes within a single DMA write

will cause errors). Better performance is exhibited when writing large sized bursts

(32 to 64 bytes). While writes within a block should be increasing and sequential, no

hardware imposed performance impact is made in regard to accesses across blocks

or pages.

DMA Reads

DMA reads from a block within a streamable virtual page should access memory in

increasing sequential order, and should use the appropriate PCI bus commands

based on amount of data to be read. Failure to do so will cause unnecessary

prefetching.

U2P always disconnects from the PCI bus at 64 byte boundaries. Optimum

performance is achieved by using PCI Memory Read Line or PCI Memory Read Line

Multiple (treated the same by U2P) in conjunction with 64 byte accesses. If a transfer

will not be reading to an aligned 64 byte boundary it should use the Memory Read

command and not the Read Line commands. Failure to adhere to this method can

result in extra UPA prefetching and PCI bus Retrys occurring on every other

transaction.

Reads across blocks should also be in increasing and sequential order. Failure to do

so will waste the prefetching, reducing the maximum read bandwidth to no more

than non-streaming reads. Prefetches are not launched if they would cross a page

boundary.

Chapter 7 Streaming Cache Operation 7-7

Since there is only one entry allotted per virtual page, multiple devices should not

interleave their accesses to the same virtual page. If it is desired to have multiple

devices accessing non-overlapping portions of the same page, aliasing should be

used to map different virtual pages to the same physical page.

7.3.2 Memory Coherency Maintenance

The streaming cache resides outside of the coherent memory domain, therefore it

must rely on software maintenance to guarantee correctness to the PCI devices. Two

mechanisms have been defined to provide software access to the operation of the

streaming cache.

The first means of software maintenance is the “page invalidate/flush” command

(henceforth referred to simply as flush command). Software can issue a flush

command to force the streaming cache to remove any entry that matches the

indicated virtual page. If the page contains dirty data, a DMA write will be issued to

flush the data to memory. Regardless of the contents of the entry, both the virtual

page entry and its corresponding physical page translation will be invalidated from

the cache. De-mapping a streamable page must involve flush command(s) to the

streaming cache to ensure a valid virtual to physical page translation.

The flush command is enacted by performing a PIO write of the appropriate virtual

page to the streaming cache flush port. Multiple page flush commands are allowed

to be outstanding at anytime. The PIO writes will be serviced in the order received

by the cache.

Note – The streaming cache considers all pages to be 8K in size, therefore virtual

pages to be flushed need to have bits 31 through 13 to be significant. When dealing

with a 64K page size, eight separate flush commands will have to be issued to

ensure that the entire 64K page is consistent between memory and the streaming

cache.

The second mechanism provided for software to help maintain the cache is a means

to synchronize with the DMA flush stream. The positive acknowledge to the PIO

write command on a flush operation is not sufficient to indicate whether the data

from the appropriate virtual page has been flushed all the way into the coherent

memory domain. There is no ordering enforced between the PIO and DMA

datapaths; the data from the cache entry can reside in an intermediate write buffer

for an unknown period of time after the PIO acknowledge has been received by the

processor. The “synch” command has been created to properly inform software

when the flush data has actually reached the coherent domain. The command is

launched by issuing a PIO write to the streaming cache synch port with a (block

7-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

aligned) physical address pointer. The cache will subsequently launch a DMA block

write (data = 0x00000000 00000001, 0x0) to the supplied physical address to indicate

that the flush operation has completed.

Since PIO accesses are serviced by the STC in the order received, and write requests

across the U2P are strongly ordered, only one synch operation is needed to indicate

that all previous flush commands for a particular streaming cache have completed

and their data has entered the coherent memory domain.

7.3.3 Error Recovery

Whenever any DVMA read results in a UPA error (including uncorrectable ECC

errors), the corresponding virtual page must be invalidated in the streaming cache.

In some cases, software will only be provided with the physical address of the

erroneous location. It is software’s responsibility to determine the virtual page(s)

that correspond to the error and subsequently invalidate them. Failure to conform to

this procedure will result in a PCI device to be continuously error acked due to the

presence of the error bit in the streaming cache entry. In the case of an uncorrectable

ECC error, no further interrupts will be launched by the ECC unit, and the (stale)

entry will most likely never be replaced in the cache (on it’s own, by a prefetch)

since it will be continually accessed and error acked.

No software intervention is required for DVMA write errors. These errors (which are

the result of PCI parity errors) cause bad ECC to be written back to memory when

the bad entry is flushed. Since flushing invalidates the line the error will not repeat.

8-1

CHAPTER 8

Mondo Dispatch Unit

This chapter describes the Mondo Dispatch Unit (MDU) which handles interrupts

from the PCI bus, other external sources and U2P internal sources.

8.1 Overview
The Mondo interrupt transfer mechanism used by UltraSPARC systems is designed

to reduce interrupt service overhead through the use of processor and system-based

supports. On the processor side, SPARC V9 CPUs will provide a dedicated set of

registers to be used exclusively for servicing interrupts. This eliminates the need for

the processor to save its current register set to service an interrupt, and then restore

it later. On the system side, requests for interrupt service are converted into interrupt

request packets which are sent over the memory interconnect to the processor. An

interrupt packet contains a Mondo vector which has three double words designed to

assist the processor in servicing the interrupt.

Limitations of the Mondo vector approach include: Only one interrupt request

packet can be in serviced at a time. There is no priority level associated with Mondo

vector interrupts; they are serviced on first come, first served basis. Flow control

must be done at the interconnect level to prevent loss of interrupt packets.

8.1.1 Mondo Dispatch Overview

The Mondo Dispatch Unit is responsible for fielding interrupts from external PCI

sources, other external sources, and internal U2P sources, building the UPA

Interrupt packet, and sending the interrupt packet to the appropriate CPU.

8-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

External interrupt sources include 6 PCI slots (four separate interrupts each) on two

separate PCI busses, the onboard IO devices, a graphics interrupt, and the expansion

UPA slot. These interrupts are concentrated in an external ASIC and are presented to

the Mondo Unit one at a time. Internal interrupt sources include the ECC (errors),

PBMA & PBMB (PCI bus errors), Timer/Counters, and the Power Management

Wakeup interrupt (which combines wakeup interrupts from the Timer, PBMA and

PBMB). These sources are discussed in further detail later in this chapter.

Figure 8-1 Mondo Dispatch Unit in U2P

MDU_DA

S_REPLY

UPA Interface

P2U Header

DMA
CTL

Mondo
Dispatch

Unit

P2U_DA
41

ECC

PBMA

Timer
Counters

Internal
Interrupt
Requests

6 INT_NUM

From
Interrupt

Concentrator
in RIC

Other DMA
Sources

Interrupt
Ack, Nack

UPA Interrupt
Request

PBMA

2

2

2

3

External
Interrupt
Requests

DMA Write Fifo P2U_DD

64

Bus
CTL

Other DMA
Sources

MDU_MRQ_

MDU_GNT_

MDU_DD

Chapter 8 Mondo Dispatch Unit 8-3

8.1.2 Mondo Dispatch Block Diagram

Figure 8-2 Mondo Dispatch Overview Block Diagram

The figure above shows the general flow through the Mondo Dispatch Unit. Each

triangle in a block indicates a clock cycle of latency. Thus, the overall latency

through the Mondo Dispatch Unit from the External Interrupt Concentrator to

issuing the request to the internal U2P Bus Controller is 6 cycles.

8.2 Mondo Unit Functional Description
The Mondo Unit is responsible for generating a UPA Mondo Vector Request Packet

for interrupt clients. This section contains the following:

1. An overview of Mondo Interrupts.

UPA req

45

UPA data

Interrupt
Receiver

6

From the External
Interrupt Concentrator

INT_NUM

CPU
Decoder

From the Internal
U2P Sources

ecc0_int_
ecc1_int_
pbma_int_
pbmb_int_
tmr0_int_
tmr1_int_
pawu_int_
pbwu_int_
twu_int_

INR
Register 45

38 External Interrupts
6PCI slots * 4 Interrupts

+ 12 OBIO Interrupts
+ Graphics + UPA Expansion

Interrupt
Arbiter

for
CPU 0

Interrupt
Arbiter

for
CPU 1

45

Each CPU has
38 External +7 Internal =

45 Interrupt Sources

45

CPU
Arbiter 1

1

Interrupt
Packet
Buffer
CPU 0

Interrupt
Packet
Buffer
CPU 1

INR
SRAM

Build
FSM

Dispatch
FSM

int_vld_

intr_

8-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

2. Interrupt Types.

3. Flow of an interrupt through the Mondo Dispatch Unit.

8.2.1 Mondo Vectors

Before a functional discussion on the Mondo Dispatch Unit, it is necessary to

provide a brief overview of Mondo Vectors. Refer to Sun-4U Architecture

Specification for a more detailed description.

8.2.1.1 Overview of an Interrupt

Interrupts are delivered to the process in a packet format which looks like a 64 byte

write on the UPA; this implies 4 cycles of 128 bits of data (or 8 cycles of 64 bits of

data). However, only 3 double words are used to carry “pertinent” information.

Note that U2P does not deliver interrupt data, only the Interrupt Number.

Figure 8-3 Mondo Vector Format on UPA Data Bus

The first data cycle contains the interrupt number (11 bits). The second and third

data cycles contain 64 bits of data. These data fields may contain interrupt specific

information such as address, timer values, error information, status register values,

etc. Again note that U2P does not deliver Data 0 and Data 1. All other bits are not

used (driven to 0 on the data bus).

Data Cycle

1

2

3

4

1280 646310

Int Num

1280 6463

Data 0

1280 6463

Data 1

1280 6463

Chapter 8 Mondo Dispatch Unit 8-5

As much as possible, the interrupt number is specific to each interrupt source, which

allows software to uniquely identify the source of the interrupt without having to

poll all interrupt sources, thus reducing overhead in processing interrupts.

Note that there is no priority associated with the interrupt packet. Thus, interrupts

are processed on a first-come-first-serve basis.

Each CPU can process only one interrupt at a time. All subsequent interrupts that

are delivered to a busy CPU will get Nacked on the UPA. The interrupt source must

then retry later.

8.2.1.2 Interrupt Number Register

Generally, each interrupt source has an Interrupt Number Register (INR) associated

with it. The INR is either fully or partially software programmable and contains the

Interrupt Number, which is delivered in the first data cycle, the MID of the processor

the interrupt is to be sent, and a valid bit which enables or disables the interrupt.

Figure 8-4 Full INR Contents

As shown the INR has 3 fields:

1. Valid bit (1 bit) - enables the interrupt when set to 1. Note that when an interrupt

is present and the valid bit is 0, the interrupt is prevented from being delivered.

However, once the valid bit is set to 1, the interrupt is delivered.

2. Target Processor (5 bits) - used to determine the address of the Interrupt in the

UPA header. The Mondo Dispatch Unit also uses the LSB of the Target to

determine which of two arbitration pools the interrupt will go into.

3. Interrupt Number (11 bits) - delivered in the first data cycle.

For most of the interrupts, the Interrupt Number field is broken further broken

down into two separate fields: the Interrupt Group Number (IGN) and the Interrupt

Number Offset (INO). The IGN is the same for all of these interrupts, and is set in

U2P’s main Control/Status register. The INO is a fixed value depending on the

interrupt. So for these interrupts, the Interrupt Number in the INR is read-only. For

two of the interrupts that U2P handles (graphics and UPA expansion), the Interrupt

Number is fully programmable in the INR.

1130 2526

ReservedTarget Processor Interrupt Number

010

V

31

8-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

Figure 8-5 Partial INR Contents

8.2.2 Interrupt Types

Interrupts that U2P processes are classified by four characteristics:

1. Internal/External.

2. Level/Pulse.

3. Priority.

4. Synchronization with DMA.

8.2.2.1 Internal/External

Internal Interrupts

Internal Interrupts refer to those interrupts that are generated within U2P. Each

internal interrupt source has a dedicated set of signals to the Mondo Unit for raising

an interrupt. There are a total of 7 internal interrupts.

■ ECC - The ECC unit will raise an interrupt when it detects a correctable or

uncorrectable error for PIO Writes Requests or DMA Read Replies. There are 2

ECC interrupt lines, one for correctable and one for uncorrectable errors.

■ Power Management - The Power Management interrupt is issued by U2P in order

to wake up a system that is sleeping. It can be triggered by a wakeup request

from a timer, or by wakeup requests from either PBM (due to DMA activity).

■ PCI Bus Modules - Each PBM has an interrupt which will be asserted for error

conditions on its associated PCI bus.

■ Timer/Counters - Each Timer/Counter will raise an interrupt when its counter

has reached its programmed limit. There are 2 Timer/Counter interrupts (1 for

each Timer/Counter).

1130 2526

ReservedTarget Processor Int. Group. Number

010

V

31

Int. Num. Offset

6 5

Chapter 8 Mondo Dispatch Unit 8-7

External Interrupts

External Interrupts refer to those interrupts that are generated external to U2P. All

external sources for interrupts (PCI, OBIO, Graphics, and UPA) go through the

Interrupt Concentrator. The Interrupt Concentrator logic resides external to U2P (e.g.

in the RIC ASIC).

The Interrupt Concentrator samples all interrupts lines and in round-robin fashion,

presents one of them at a time to U2P. The 38 interrupt lines are encoded into a 6 bit

value to U2P. This was done to save pins on U2P.

■ PCI - U2P supports 6 total PCI slots on two separate busses. Each PCI slot has 4

interrupt lines. So, there are 24 interrupt lines from PCI.

■ OBIO (On-board IO Devices) - There are 12 interrupts from OBIO devices.

■ Graphics/UPA - 2 UPA slot interrupts are supported. These are the only two

interrupts that are of pulse type (see paragraph 8.2.2.2). These are also the only

interrupts with the full INR register (fully software programmable). All other

interrupts have a IGN and INO fields.

8.2.2.2 Level/Pulse

An interrupt can be either level or pulse driven. Level interrupts have three states

associated with them: Idle, Received, and Pending, (see Figure 8-6). Level interrupts

include all interrupts except for the Graphics and UPA interrupts.

Table 8-1 Level Interrupt States

State Description

00 Idle - no interrupt has been received yet

01 Received - the source has raised an interrupt; the interrupt is going

through decoding and arbitration

11 Pending - the interrupt has won arbitration; it will be or has been

delivered; the interrupt is disabled until a process PIO writes the state

register to set the interrupt back to IDLE

10 Reserved

8-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

Figure 8-6 Level Interrupt States

Pulse Interrupts only have two states: Idle and Received. After the U2P delivers the

interrupt, the interrupt returns to the Idle state. No software intervention is needed

as in the Level interrupts case. Pulse interrupts include the Graphics and UPA

Interrupts.

8.2.2.3 Priority

Each interrupt has a priority associated with it. There are a total of 8 priority levels

(8 being the highest priority, 1 being the lowest).

Priority is taken into account during interrupt arbitration. When multiple interrupts

are present, the highest priority interrupt is delivered first. If multiple interrupts

with the same priority are present, the interrupts are delivered in a round-robin

fashion. When all interrupts at the highest priority level are delivered, the next

highest priority level is processed.

Table 8-2 Interrupt Receiver State Register

Level Number of Interrupts Source

8 6 Audio Record, Power Fail, Floppy, UE ECC,

CE ECC, PBMA Error

7 6 Kbd/mouse/serial, Serial Int, PBMB Error,

Audio Playback

PCI_A0_INTA#, PCI_A1_INTA#

IDLE

Rec Pend

no interrupt

interrupt received
from interrupt
concentrator

waiting for decoding
and arbitration

interrupt won
arbitration

waiting for delivery
and Ack from

processor

processor PIO Writes
and resets the
interrupt back

to the IDLE state

Chapter 8 Mondo Dispatch Unit 8-9

8.2.2.4 Synchronization with DMA writes

When the end of a DMA write operation is signalled to software via an interrupt,

U2P guarantees that all the DMA write data will actually be written to memory

before the interrupt is seen. In order for this to happen, the MDU and PBM blocks

communicate for any interrupt that is coming from a PCI source. Just before the

MDU block dispatches any PCI interrupt request, it notifies the appropriate PBM

block that an interrupt is pending. If there is any buffered DMA write data in the

PBM, it will stall the MDU until that write data has been sent to the UPA block of

U2P. New DMA write data that comes in while waiting for old data to flush will not

cause additional stalling.

Onboard IO devices are considered to be PCI bus B sources.

8.2.3 Interrupt Table

Table 8-3 summarizes all of the interrupts that U2P handles. For each interrupt, the

source, type, priority and any synchronization of the interrupt is listed. For external

interrupts, the value of the INT_NUM bus from the external concentrator that will

cause that interrupt is listed (this will not in general match the INO). Also included

is the name of the pin on the RIC ASIC which will cause the correct INT_NUM to be

Level Number of Interrupts Source

6 6 Timer 0, Timer 1

PCI_B0_INTA#, PCI_B1_INTA#

PCI_B2_INTA#, PCI_B3_INTA#

5 6 OB Graphics, UPA64S Int

PCI_A0_INTB#, PCI_A1_INTB#

PCI_A0_INTC#, PCI_A1_INTC#

4 6 Keyboard Int, Mouse Int

PCI_B0_INTB#, PCI_B1_INTB#

PCI_B2_INTB#, PCI_B3_INTB#

3 6 SCSI Int, Ethernet Int

PCI_B0_INTC#, PCI_B1_INTC#

PCI_B2_INTC#, PCI_B3_INTC#

2 4 Parallel Port, Spare Int

PCI_A0_INTD#, PCI_A1_INTD#

1 5 Power Management

PCI_B0_INTD#, PCI_B1_INTD#

PCI_B2_INTD#, PCI_B3_INTD#

Table 8-2 Interrupt Receiver State Register (Continued)

8-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

asserted. The RIC ASIC is the standard external concentrator found in UltraSPARC

systems, and since it was originally designed for SBus based systems, there is the

potential for some confusion when hooking it up in a system with U2P.

Table 8-3 Summary of Interrupts

Offset Interrupt Int/Ext Source Type Priority Synch To INT_NUM RIC pin

000000 PCI A Slot 0, INTA# Ext PCI Level 7 PBMA 000111 SB0_INTREQ7

000001 PCI A Slot 0, INTB# Ext PCI Level 5 PBMA 000101 SB0_INTREQ5

000010 PCI A Slot 0, INTC# Ext PCI Level 5 PBMA 010101 SB2_INTREQ5

000011 PCI A Slot 0, INTD# Ext PCI Level 2 PBMA 000010 SB0_INTREQ2

000100 PCI A Slot 1, INTA# Ext PCI Level 7 PBMA 001111 SB1_INTREQ7

000101 PCI A Slot 1, INTB# Ext PCI Level 5 PBMA 001101 SB1_INTREQ5

000110 PCI A Slot 1, INTC# Ext PCI Level 5 PBMA 011101 SB3_INTREQ5

000111 PCI A Slot 1, INTD# Ext PCI Level 2 PBMA 001010 SB1_INTREQ2

010000 PCI B Slot 0, INTA# Ext PCI Level 6 PBMB 000110 SB0_INTREQ6

010001 PCI B Slot 0, INTB# Ext PCI Level 4 PBMB 000100 SB0_INTREQ4

010010 PCI B Slot 0, INTC# Ext PCI Level 3 PBMB 000011 SB0_INTREQ3

010011 PCI B Slot 0, INTD# Ext PCI Level 1 PBMB 000001 SB0_INTREQ1

010100 PCI B Slot 1, INTA# Ext PCI Level 6 PBMB 001110 SB1_INTREQ6

010101 PCI B Slot 1, INTB# Ext PCI Level 4 PBMB 001100 SB1_INTREQ4

010110 PCI B Slot 1, INTC# Ext PCI Level 3 PBMB 001011 SB1_INTREQ3

010111 PCI B Slot 1, INTD# Ext PCI Level 1 PBMB 001001 SB1_INTREQ1

011000 PCI B Slot 2, INTA# Ext PCI Level 6 PBMB 010110 SB2_INTREQ6

011001 PCI B Slot 2, INTB# Ext PCI Level 4 PBMB 010100 SB2_INTREQ4

011010 PCI B Slot 2, INTC# Ext PCI Level 3 PBMB 010011 SB2_INTREQ3

011011 PCI B Slot 2, INTD# Ext PCI Level 1 PBMB 010001 SB2_INTREQ1

011100 PCI B Slot 3, INTA# Ext PCI Level 6 PBMB 011110 SB3_INTREQ6

011101 PCI B Slot 3, INTB# Ext PCI Level 4 PBMB 011100 SB3_INTREQ4

011110 PCI B Slot 3, INTC# Ext PCI Level 3 PBMB 011011 SB3_INTREQ3

011111 PCI B Slot 3, INTD# Ext PCI Level 1 PBMB 011001 SB3_INTREQ1

100000 SCSI Ext OBIO Level 3 PBMB 100000 SCSI_INT

100001 Ethernet Ext OBIO Level 3 PBMB 100001 ETHERNET_INT

100010 Parallel Port Ext OBIO Level 2 PBMB 100010 PARALLEL_INT

Chapter 8 Mondo Dispatch Unit 8-11

8.2.4 Processing an Interrupt

The Mondo Dispatch Unit in U2P is optimized for a two processor system. The

Mondo Dispatch Unit is composed of 4 main blocks: Interrupt Receiver, Interrupt

Decoder, Interrupt Arbiter, and the Interrupt Dispatcher. These blocks are described

as follows.

Offset Interrupt Int/Ext Source Type Priority Synch To INT_NUM RIC pin

100011 Audio Record Ext OBIO Level 8 PBMB 100100 AUDIO_INT

100100 Audio Playback Ext OBIO Level 7 PBMB 011111 SB3_INTREQ7

100101 Power Fail Ext OBIO Level 8 PBMB 100101 POWER_FAIL_INT

100110 Kbd/Mouse/Serial Ext OBIO Level 7 PBMB 101000 KEYBOARD_INT

100111 Floppy Ext OBIO Level 8 PBMB 101001 FLOPPY_INT

101000 Spare Hardware Ext OBIO Level 2 PBMB 101010 SPARE_INT

101001 Keyboard Ext OBIO Level 4 PBMB 101011 SKEY_INT

101010 Mouse Ext OBIO Level 4 PBMB 101100 SMOU_INT

101011 Serial Ext OBIO Level 7 PBMB 101101 SSER_INT

101100 Timer 0 Int Timers Level 6

101101 Timer 1 Int Timers Level 6

101110 Uncorrectable ECC Int ECC Level 8

101111 Correctable ECC Int ECC Level 8

110000 PCI Bus A Error Int PBMA Level 8

110001 PCI Bus B Error Int PBMB Level 7

110010 Power Management Int Timers,

PBMA,

PBMB

Level 1

From

INR

Graphics Ext UPA Pulse 5 100011 GRAPHIC1_INT

From

INR

UPA Expansion Slot Ext UPA Pulse 5 100110 GRAPHIC2_INT

N/A No interrupt Ext None N/A N/A 111111

Table 8-3 Summary of Interrupts (Continued)

8-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

8.2.4.1 Interrupt Receiver

The Interrupt Receiver receives all of the internal interrupt requests, as well as

external interrupt numbers from the Interrupt Concentrator one at a time. It decodes

the interrupt and stores it in a 2 bit state register. There is one state register for each

interrupt source (45 total). The Graphics and UPA interrupts have a 1 bit state

register, since they are Pulse Interrupts.

When an interrupt is in the received state, its interrupt line will be asserted to the

next block, the Interrupt Decoder block.

8.2.4.2 Interrupt Decoder

The Interrupt Decoder uses the INR for each interrupt to determine the destination

CPU for that interrupt. This is optimized for a systems of one or two CPUs, as only

the least significant bit of the CPU’s ID is used. The 45 interrupt lines from the

Interrupt Receiver are fed into this block. The Mondo Unit keeps the INR of all

interrupts, external and internal.

The output of the Interrupt Decoder is 2 sets of 45 interrupt lines (45 interrupt lines

for each CPU). These are fed into the next block, the Interrupt Arbiter.

8.2.4.3 Interrupt Arbiter

The Interrupt Arbiter arbitrates among two sets of 45 interrupt lines and chooses a

winner. The first stage of arbitration involves choosing one winner for each CPU.

The highest priority level interrupts are chosen first. Then a round-robin among

those interrupts picks the winner.

After a winner has been chosen for each CPU, a round-robin chooses between the

two CPUs for a winner. This is fed into the next block, the Interrupt Dispatcher.

8.2.4.4 Interrupt Dispatcher

The Interrupt Dispatcher is composed of the following three sub-blocks.

Packet Builder FSM

The Packet Builder takes the winner from the Interrupt Arbiter and assembles the

interrupt packet in the appropriate CPU’s Packet Buffer. There is one Packet Buffer

for each CPU. Once the Packet Buffer contains an interrupt, it prevents that CPU

from winning arbitration until the buffer is cleared (i.e. - the interrupt delivered and

Acked).

Chapter 8 Mondo Dispatch Unit 8-13

Dispatcher FSM

The Dispatcher checks each Packet Buffer in a round-robin fashion. If the Packet

Buffer contains a valid interrupt that is ready to be sent, the Dispatcher will raise a

request to the U2P Bus Controller to deliver an interrupt packet (which looks like a

64 byte write) to the UPA interface.

After delivering the interrupt, the Dispatcher waits for the Ack or Nack from the

System Controller. If the interrupt is Acked, the Packet Buffer is cleared. If the

interrupt is Nacked, the Dispatcher clears the Retry Bit in the Packet Buffer. In both

cases, the Dispatch proceeds to the next Packet Buffer.

Note that this means that the Mondo Unit dispatches only one interrupt at a time,

and waits for the Ack or Nack before dispatching the next interrupt.

Retry FSM

There is a Retry FSM associated with each Packet Buffer. When the Retry Bit is

cleared (by the Dispatcher), the Retry FSM waits for a common free-running counter

to roll over twice then sets the Retry Bit.

Setting the Retry Bit sets the Packet Buffer into the ready state for when the

Dispatcher comes around the next time.

8-14 UPA to PCI Interface (U2P) User’s Manual • May 1997

9-1

CHAPTER 9

U2P Timer/Counter

9.1 Overview
There are two independent but identical timers in U2P. Each provides either periodic

interrupts or alarm-clock (callout) interrupts to a selected processor.

The features supported:

■ Limit Register - to set the interrupt enable, reload, periodic bits, and the counter

interrupt comparison value.

■ Count Register - for loading the counter on write and for returning the current

count on read.

■ Periodic interrupts can be generated.

■ Interrupt can be disabled.

■ 29-bit counter which allows a maximum count of 0x1FFFFFFF or 536 seconds

using a 1 microsecond count interval.

9-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

9.2 Timer Functional Description
It is expected that the two timers will have independent functions; one used for

system callout events, and the other for operating system profiling. It is up to the

processor to issue cross-calls to other processors if broadcast is needed. Each timer

has separate Count and Limit registers. In order for the processor to uniquely

identify the source of the timer interrupts, each timer will also have its own

Interrupt Number Register.

The two timers operate as follows:

■ Writes to the Limit Register set the LIMIT value, and cause the corresponding

timer to reset to zero if (RELOAD == 1).

If (RELOAD == 0), then the LIMIT gets set without affecting the value of COUNT.

■ When (COUNT == LIMIT) and (INT_EN == 1), an interrupt request is made.

When granted, the Mondo Vector with the corresponding INR is dispatched.

■ If (PERIODIC == 1), whenever (COUNT == LIMIT) then the counter is reset to

zero and continues counting.

Else if (PERIODIC == 0), when (COUNT == LIMIT) then the counter continues to

count normally without taking an intermediate reset. Note that the counter will still

wrap-around to zero if the current count has reached 0x1FFFFFFF.

■ To obtain a periodic interrupt every ‘N’ microseconds, the LIMIT should be set to

‘N-1’.

Note – If (INT_EN == 0), when (COUNT == LIMIT) then the counter will not send

interrupt. However, counter might be reset depending on the state of PERIODIC.

10-1

CHAPTER 10

Little-Endian Support

On one side of U2P, the UPA bus is big-endian. On the other side, each PCI bus is

little-endian. U2P provides the necessary support to connect the two together. The

main feature is called “byte twisting”: from a hardware perspective, the bytes on the

datapath from a PCI bus are twisted around before connecting to any other datapath

within U2P, so that bits 63:56 map to bits 7:0, bits 55:48 map to bits 15:8, etc. From

another perspective, this ensures that logical byte lanes are connected: the byte at

address 0 on the big-endian side is directly wired to the byte at address 0 on the

little-endian side. As a result, all byte-sized PIOs and byte-stream DMA is handled

correctly. This, along with other features built into SPARC V9 processors, allows all

PIO and DMA activity to/from the PCI bus to take place correctly.

10.1 Big-and Little-endian regions

10.1.1 Address Space

U2P’s 8Gb UPA address space consists of several regions. The lower 16Mb, from

0x0.0000.0000-0x0.0100.0000 allows access to internal registers within U2P. This

portion of the address space is big-endian. There is no byte twisting done for

accesses within this range.

There is a large region of unused/reserved address space from 0x0.0202.0000-

0x0.ffff.ffff. Reads to this address range cause an error response (P_RERR), and

writes are simply ignored, so there is nothing on which to perform byte twisting.

The remaining address regions are little-endian. The upper 4Gb, from 0x1.0000.0000-

0x1.ffff.ffff is used for accesses to PCI bus memory space. The 16Mb region from

0x0.0100.0000-0x0.01ff.ffff is used for access to PCI configuration space, and there are

10-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

two 64Kb regions from 0x0.0200.0000-0x0.0201.ffff that are used to access PCI bus I/

O space. All of these address ranges are little-endian, and all accesses to them use

byte twisting.

If U2P provides the path to the system PROM, the PROM is found at offsets

0x1.f000.0000-0x1.f0ff.ffff within U2P’s UPA port. This falls in the upper 4Gb region,

which U2P considers little-endian, and does byte-twisting. In spite of the byte-

twisting, and because of the way the PROM is programmed, the PROM appears to

the system correctly as a big-endian device. This is explained in more detail below.

10.1.2 Internal blocks

Most of U2P’s internal blocks are big-endian: the 64-bit data paths within these

blocks are connected to the UPA’s 64-bit data bus with no byte twisting. The only

exceptions are the two PBM blocks. Since these blocks control the little-endian PCI

busses, they are considered little-endian. For each data interface from a PBM block

to the rest of U2P (in addition to interfacing to the main internal busses, each PBM

has a data interface with a streaming cache block), byte twisting is in effect.

Note – Each PBM contains some registers mapped into the lower 16Mb of U2P’s

UPA port, which is a big-endian address region. So that these registers are not

affected by the byte twisting of the PBM’s data paths to the rest of the chip, within

the PBM, the data path to these registers is “retwisted”.

10.2 Byte Twisting
Figure 10-1 diagrams what is meant by byte twisting. It shows how data is

manipulated from a 32-bit little-endian PCI bus to a 64-bit big-endian UPA bus. The

case of a 64-bit PCI bus is a straightforward modification of this diagram, and won’t

be shown.

For each bus, a typical connection to memory is shown, along with the byte

addresses of the memory. This is mainly for reference - it is one way of showing

exactly what is meant by big- or little-endian. It helps to show that the “logical”

byte lanes of each bus are correctly connected thru U2P.

Chapter 10 Little-Endian Support 10-3

Figure 10-1 U2P Byte Twisting

63 0

0

1

2

3

4

5

6

7

addr[2]=1 addr[2]=0
63 0

0

1

2

3

4

5

6

7
31 0

UPA bus

U2P

UPA

STC

MMU

etc.

PBM

PCI bus

Memory

Memory

63 0

10-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

10.3 Specific Cases
The following sections detail specific types of data transfers, and how correct byte

ordering is maintained in each case.

10.3.1 PIOs

Normal

Due to the byte twisting, all byte sized PIOs work correctly. The byte lane used for

a given address on the big-endian side is directly wired to the byte lane used for that

address on the little-endian side.

For any access larger than a byte, byte-twisting is not sufficient. For example, if the

32-bit value 0x12345678 is written to a 32-bit register on a PCI device, the PCI device

will see the value 0x78563412 instead.

To correct for this, SPARC V9 CPUs have special support for little-endian access. By

either marking the page containing the PCI register as little-endian in the processor’s

MMU, or by using one of the little-endian Address Space Identifiers (ASIs), the CPU

will alter its ordering of the bytes so that the PCI device correctly sees 0x12345678.

PROM accesses

Instruction fetches from the PROM are a special case because they are unable to use

the little-endian features of SPARC V9 processors. PROM instruction fetches, like all

instruction fetches, are always done in big-endian mode.

The PROM is a byte device on the EBus2, controlled by PCIO. PCIO allows 32-bit

access to the PROM, and stacks the bytes in little-endian format, such that the byte

at address 0 in the PROM appears on PCI bus data bits 7:0, byte 1 is on bits 15:8, etc.

To function correctly with the byte-twisting of U2P, and lack of other byte re-

ordering by the processor, the PROM needs to be programmed in big-endian order -

byte 0 in the PROM should be the MSB of the first instruction.

If this is done, PROM instruction fetches will have the correct byte ordering.

Chapter 10 Little-Endian Support 10-5

Because of this required byte programming ordering for the PROM, data accesses to

the PROM should not use the little-endian byte re-ordering of the processor, even

though the PROM is located within the little-endian PCI space. If only big-endian

accesses are made to the PROM, PIOs of any size return data with the correct byte

order.

10.3.2 DMA

Data streams

Because byte lanes at the same address are connected, DMA of byte streams works

correctly without any further intervention. A PCI device that receives the byte

stream (01,02,03,04) would pack the bytes into a 32-bit register starting with the LSB

of the register, i.e. 0x04030201. After transferring to memory on the PCI bus, the

value 0x01 would be at the lowest memory location, as desired.

After byte twisting, the value that appears on the UPA bus would be 0x01020304.

Since the MSB on the UPA bus is the lowest memory location, the value 0x01 is still

stored at the lowest memory location, as desired.

Descriptors

This case is similar to PIOs of size greater than one byte. With just byte twisting, a

DMA descriptor access would get the wrong byte ordering. For example, if the

value 0x12345678 were set up in an address field in a descriptor, a PCI device using

DMA to fetch the descriptor would see the value as 0x78563412 instead.

To avoid this, the little-endian features of the processor are used again. Processor

loads and stores to the descriptors should be specified as little-endian. This will re-

order the bytes in memory when the descriptor is built so that after byte twisting,

the PCI device sees the correct value.

10-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

11-1

CHAPTER 11

Error Handling

11.1 Overview
This chapter describes the error detection, correction, and error reporting

mechanisms supported by U2P.

Errors detected in the system are classified as either fatal errors or non-fatal

hardware errors. A fatal error may result in a system reset if the error reset is

enabled by software. Actions taken on non-fatal hardware errors include generating

interrupts, setting status register bits, or no action at all.

11.1.1 Fatal Hardware Errors

The only type of fatal error detectable by U2P is UPA address parity error.

11.1.1.1 UPA Address Parity Error

The UPA address bus carries address and control information for UPA transactions.

The format of the address packet is described in the UPA Interconnect Architecture

document. U2P supports parity generation/checking on its UPA address bus. The

parity bit is driven by a master UPA port at the same time the address packet is

driven onto the bus.

Address parity error is taken as a fatal error to the system. Any UPA device

including U2P can detect address parity errors. The action taken on an address

parity error is as follows:

11-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ The device detecting address parity error sends a P_FERR reply to the system

controller (SC) if it is enabled to do so. The SC will generate reset to the system if

the EN_FATAL bit is set in the SC Control Register. The SC will log the fatal error

condition in the SC Port Status Register and SC Control Register.

11.1.2 Non-fatal Hardware Error

11.1.2.1 UPA Datapath Uncorrectable Error

U2P connects to a 64 bit wide UPA data bus, with 8 bits of ECC, and does support

generation and checking of ECC syndrome and automatic correction of correctable

errors on all UPA transactions.

Two types of ECC errors are checked by UPA ports like U2P: Correctable Errors (CE)

and Uncorrectable Errors (UE). CE’s and UE’s can come from the following sources:

■ Corruption on the UPA or memory datapaths.

■ A faulty device, such as DRAM, XB1, or a UPA device.

In addition to these normal error sources, there are other cases where a device can

force a UE to the system. U2P will translate parity errors on PCI transactions into

forced UE errors on the UPA. Information related to a U2P generated UE is logged in

the U2P PCI Control/Status Register.

If U2P detects a CE, data is corrected before it is used. Data transfer continues as if

there was no error. U2P will log and report the error if enabled. Upon a UE, U2P will

also log and report the error if enabled. In addition, the error will be carried along

with the data, showing up on the PCI bus as a Target Abort, to make sure the

erroneous data is not consumed. PIO writes to U2P with UE errors are aborted.

U2P detects and corrects ECC errors on the data it receives. The checking and

correction are done on the following operations:

■ PIO writes to U2P and devices controlled by U2P.

■ PCI DVMA reads from memory and UPA devices.

■ PCI DVMA partial line writes to memory.

U2P reports ECC errors to the processor via interrupt as long as ECC checking and

ECC interrupt are both enabled. Error information is logged in the UE or CE AFSR/

AFAR. For more information about the ECC control register and UE/CE

asynchronous error registers please refer to Chapter 13, Programmers Model.

Chapter 11 Error Handling 11-3

11.1.2.2 UPA Timeout

A UPA timeout can be generated by U2P in response to a PIO read to a non-existing

PCI location or non-responsive PCI device. A UPA timeout can be received by U2P

for any non-cacheable read transactions it generates.

PIO writes to U2P and non-cacheable write transactions generated by U2P cannot

result in timeout responses.

11.1.2.3 UPA Read Error

Other than address parity errors the UPA does not provide for error replies to write

transactions. A UPA device can only send error replies to read transactions. Errors

detected by a UPA slave port should be reported through an interrupt. A UPA slave

can send a UPA read error reply for various reasons. For example U2P will respond

with a read error reply if a connected PCI target device issues a target-abort to it.

11.1.2.4 PCI Data Parity Error

PCI mandates that all devices generate parity for the address/data and cmd/byte

enable busses. For 32-bit transfers, a single bit parity is provided for the 32 bits of

address/data and 4-bit cmd/byte enable bus. For 64-bit data transfers, an additional

parity bit covers the high 32 bits of address/data and the high 4 lines of the cmd/

byte enable bus. PCI implements even parity.

This section covers only parity errors on data phases, address parity errors are

covered in section 11.1.2.9.

U2P’s parity checking and generation are always enabled. Error reporting may be

disabled via the PER bit in the Configuration space Command register. Setting PER

enables U2P to report PIO data parity errors to the processor and DVMA data parity

errors to the bus master. When a data parity error is detected or signalled U2P does

not terminate the transaction prematurely but attempts to take it to completion.

If PER is enabled, a parity error detected on PIO read will be reported by providing

data on the UPA bus with an intentional UE-ECC error, and by setting the DPE and

DPD bits in the Configuration space Status register. U2P also asserts the PCI signal

‘PERR#’ to indicate to the target that it received bad parity. A parity error signalled

via PERR# on a PIO write will be logged as an asynchronous error. DPE, and DPD

will be set, the AFSR P_PERR/S_PERR bits will be set, AFAR will be loaded with the

PIO address, and a PCI interrupt will be generated.

If PER is enabled, a parity error detected during a DVMA write will be reported by

asserting PERR# to the bus master and by setting the DPE Status bit. Subsequent

action taken by the master is device dependent. If the DVMA write is targeted for a

11-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

UPA device or memory, U2P will provide data with a UE-ECC. A parity error

signalled via PERR# on a DVMA read will be reported by setting the DPE Status bit.

Subsequent action taken by the bus master is device dependent.

Note that for the PIO and DVMA cases above, if PER is disabled only the DPE Status

bit is set - no other error reporting action is taken and data is transferred as if there

had been no error.

11.1.2.5 PCI Target-Abort

If an error occurs during an access to a PCI device, the device may terminate the

transaction with a target-abort. Examples are unsupported byte enables, an

unsupported addressing mode, an address parity error, and device specific errors.

Any data that may have been transferred during the transaction before the target-

abort occurred is corrupt and must not be used by the recipient.

A PIO read terminated with a target-abort results in an P_RERR reply being sent to

SC with the RTA bit in U2P’s Status register set. A PIO write which is terminated

with a target-abort results in an asynchronous error. The P_TA/S_TA bit is set in the

U2P AFSR and the physical address loaded into the AFAR. The RTA Status bit is also

set for writes.

U2P will issue a target-abort in the following cases: taking an IOMMU address

translation error, and receiving a UE ECC error on data from the UPA bus. U2P sets

the STA Status bit, but in all cases it is up to the bus master to report the error to the

system.

11.1.2.6 PCI Timeout

U2P will return a UPA Timeout Reply (P_RTO) under a variety of PIO read error

cases. If no device is mapped (or responds) to the PCI address the transaction is

terminated with a master-abort and the U2P RMA Status bit is set. If a device

terminates a PIO read with too many retries (disconnect with no data transfer) U2P

will stop retrying the access and issue a P_RTO. U2P’s Retry Limit is set to 16,384

successive retries.

PCI has no timeout mechanism once a transaction has been claimed (via DEVSEL_)

if the target never terminates. However, the PCI specification does recommend that

all targets issue a retry when more that 16 PCI clocks will be consumed waiting for

the first data transfer. When a device claims the transaction but never signals that it

is ready to transfer data, U2P will hang. This will only happen because of a device

hardware error and is equivalent to a UPA device hardware error which could also

hang the system.

Chapter 11 Error Handling 11-5

11.1.2.7 DVMA ECC Error

The UPA UE-AFSR/AFAR registers and the PCI AFSR/AFAR registers log DVMA

errors. Errors are logged in the following manner:

1. If UE interrupts are enabled, an interrupt will be posted when U2P detects a UE.

2. Data will be ignored by the Streaming Buffer when a UE occurs on a prefetch, and

the buffer entry will be marked invalid.

3. A UE on a read from a streamable page will cause a target-abort to the PCI master

device when any data from that cacheline is requested, even if the UE does not

happen on the particular 8 byte quantity requested.

4. A UE on a DVMA read from a consistent page will cause a target-abort to the PCI

master device only if the UE happens on the 8 bytes of data requested. Error free

bytes will be transferred without error.

5. A UE on a DVMA partial write: if the DVMA transaction totally overwrites the 8

bytes with UE, no error will reported. Good data and check bits will be provided

for the data when writing it back to memory. If a DVMA transaction does not

overwrite, or only partially overwrites, the UE data, U2P will force a UE-ECC to

memory.

11.1.2.8 IOMMU Translation Error

The IOMMU translates the PCI DVMA address to a physical page address. The

IOMMU also checks for access violations. Errors that can be detected by the IOMMU

are out of range access, access to a invalid page and access with protection violation.

An out of range access is a transaction that targets what is normally DMA space, but

which is outside the currently programmed TSB table size. An invalid error happens

when the DVMA page address does not have a valid physical page mapped to it. A

protection error happens when the PCI master tries to write to a page that is marked

as read-only. All of these errors will be reported with a target-abort to the device.

The actual reporting of translation errors from the device to the system is device

dependent.

11.1.2.9 PCI Address Parity Error

PCI Address parity errors may be reported during PIO operations and detected or

reported during DVMA transfers. PCI’s mechanism for reporting address parity

errors is the “System Error”. Address parity error reporting can be disabled (along

with all parity error reporting) via the PER Command register bit.

11-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

When a DVMA address parity error is detected by U2P, it decodes and completes the

transaction as normal, sets the SSE and DPE bits in the Status register, sets the

PCI_SERR bit in the PCI CSR, and generates a PCI interrupt. U2P does not indicate a

system error on the bus, however, any number of devices may simultaneously check

address parity and generate a system error.

When a PIO address parity error is reported by a device via a system error, U2P will

report the system error as described in section 11.1.2.10. Upon detecting the address

parity error the target device has the option of:

1. Not claiming the transaction, thus generating a UPA timeout.

2. Issuing a target-abort, resulting in an P_RERR reply for reads and an

asynchronous error for writes.

3. Completing the cycle as if there were no error and either generating a system

error or an interrupt at some later time.

11.1.2.10 PCI System Error

The PCI System Error may occur on address parity errors as well as device specific

fatal errors. System Error reporting can be disabled by the SERR_EN Command

register bit.

Any PCI device may generate a system error at any time but only U2P is capable of

detecting and reporting it to system software. When a system error is detected U2P

generates a PCI interrupt and sets the PCI_SERR bit in the PCI CSR. The device(s)

that generated the system error is required to set it’s SSE Status register bit. Multiple

system errors generated before the system software clears the PCI CSR will not cause

additional interrupts, so it is important that software check all device Status

registers.

11.1.3 Summary of Error Reporting

Table 11-1 summarizes the reporting of fatal errors detected by U2P.

Table 11-1 Summary of Fatal Error Reporting

Error Type Type of
operation

System
Action

Error Register

UPA Address

Parity Error

All Reset U2P Control/Status

Register (APERR bit)

Chapter 11 Error Handling 11-7

Table 11-2 summarizes non-fatal error detection/reporting in U2P. Some U2P register

abbreviations are: CSR for the PCI Control/Status Register, UE, CE, PCI-AFRs for

the various AFSR/AFARs, and Status for the PBM’s Configuration space Status

register.

Table 11-2 Summary of Non-Fatal Error Reporting

Transaction Error Type UPA
Response

Error
Register(s)

PCI Bus

PIO Read Data parity Force bad

ECC

CSR, Status Complete

Transaction

Master-abort P_RTO Status Master-abort

Target-abort P_RERR Status Target-abort

Retry Limit P_RTO Status Cease Retries

Timeout1 - - Hang

PIO Write UE-ECC UE Interrupt UE-AFRs No Transaction

CE-ECC CE Interrupt CE-AFRs Complete

Transaction

Master-abort PCI Interrupt PCI-AFRs,

Status

Master-abort

Target-abort PCI Interrupt PCI-AFRs,

Status

Target-abort

Retry Limit PCI Interrupt PCI-AFRs Cease Retries

Data Parity PCI Interrupt PCI-AFRs,

Status

Complete

Transaction

Timeout1 - - Hang

Any PIO Address Parity

Error

- - Device

dependent2

Special Cycle No Error - - Master-abort

Data parity - - Device

dependent2

11-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

1. The target device claims the transaction but is never ready to transfer data.

2. A system error will likely be generated.

3. Master device should report error.

4. Error taken only if bad cacheline accessed

5. Sub-line writes only.

DMA Read UE-ECC UE Interrupt UE-AFRs, Status Target-abort

CE-ECC CE Interrupt CE-AFRs Complete

Transaction

Data Parity - Status Complete

Transaction3

Prefetch ECC

Error4
UE Interrupt UE-AFRs Target-abort

DMA Write UE-ECC5 UE Interrupt UE-AFRs Complete

Transaction

CE-ECC5 CE Interrupt CE-AFRs Complete

Transaction

Data Parity Force bad

ECC

CSR, Status Assert PERR#,

complete

transaction3

Any DMA Address Parity PCI Interrupt Status Complete

transaction

Translation

Error

- Status Target-abort

PCI System

Error

PCI System

Error

PCI Interrupt CSR, Status SERR# sampled

active

Table 11-2 Summary of Non-Fatal Error Reporting (Continued)

Transaction Error Type UPA
Response

Error
Register(s)

PCI Bus

Chapter 11 Error Handling 11-9

11.2 Unreported Errors
Certain error conditions are not reported by the U2P. Examples of these errors are

listed below. Please beware that this list may not enumerate all unreported errors.

■ A non-cacheable write from U2P to a non-existing or disconnected UPA port.

■ A write to a read-only register in U2P is ignored.

■ A non-cacheable write transaction from U2P that is directed to cacheable address

space.

■ A read from a write-only register in U2P returns unknown data, but no error.

■ A UPA bus error or timeout during a DVMA write is ignored.

■ Sending an interrupt to a non-existing or disconnected UPA port.

11-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

12-1

CHAPTER 12

JTAG

12.1 Introduction
This chapter documents describes the features of the JTAG Test Access Port (TAP)

for U2P. The JTAG macro which implements the IEEE 1149.1-1990 provides access to

the test structures on the chip.

The TAP includes the TAP controller state machine, a instruction register, a bypass

register, a device identification register and the necessary decoding logic. The TAP

requires five dedicated pads: test data input (TDI), test data output (TDO), test mode

select(TMS), test clock (TCK) and test reset (TRST).

12-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

12.2 TAP Controller

Figure 12-1 TAP Controller Block Diagram

The U2P JTAG TAP Controller is based around a standard IEEE 1149.1-1990 TAP

controller. The TAP controller is a synchronous finite state machine which

transitions on values of TMS (jtag_tms) and TCK (jtag_tclk). The TDI (jtag_tdi) and

TDO (jtag_tdo) ports can be used to serially load one of several test modes as well as

read and write data to the chip internals.

In addition to the required instructions used to manipulate the standard bypass and

boundary scan registers, the JTAG controller has several additional instructions to

control the internal scan register, two clock control registers as well as run several

different test modes. (See Section 12.2.2 Instruction Register and Section 12.4 Special
JTAG Instructions)

jtag_tclk

jtag_tms

jtag_tdi

jtag_trst_l

jtag_tdo_en

bscan_cdr
bscan_tdi

bscan_sdr
bscan_udr
bscan_omc

iscan_clk2
iscan_clk1

 bscan_tdo

jtag_tdo

iscan_sdr

JTAG_TAP

iscan_tdo

iscan_tdi

psyclk_mux_sel
treset_l

upaclk_mux_sel
tmrclk_mux_sel
probe_mode1
probe_mode2
runbist_select
runbist_run
runbist_cdr
runbist_sdr

Chapter 12 JTAG 12-3

Figure 12-2 U2P Data registers

Descriptions of the I/O signals of the JTAG module can be found in Table 12-2.

Table 12-1 Description of signals in JTAG macro

Signal Description

jtag_tclk JTAG clock from chip pads

jtag_tdi JTAG test data in from chip pads

jtag_tdo JTAG test data out to chip pads

jtag_tms JTAG mode select from chip pads

jtag_trst_l JTAG test reset from chip pads

TDI
atpg_select_l
jtag_tclk

MUX

MUX

Boundary Scan Register

Internal Scan Register

JTAG ID Register

Bypass Register

test mode selects

dr_clock

dr_clock

dr_clock

RUNBIST Register

Clock Control Registerdr_clock

Clock Stop Registerdr_clock
MUX

atpg_select_l
iscan_clk1
iscan_clk2

MUX

cs_select_l

TDO

ir_clock JTAG Instruction Register

12-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

 The blocks which make up the U2P TAP controller can be found in Table 12-3.

jtag_tdo_en JTAG test data out enable to chip pads

bscan_tdi Boundary scan data input (to bscan cells)

bscan_tdo Boundary scan test data output

bscan_omc Boundary scan output mode control

bscan_cdr Boundary scan capture data register

bscan sdr Boundary scan shift data register

bscan_udr Boundary scan update data register

iscan_sdr Internal scan mode shift enable signal

iscan_clk1 Internal scan capture clock (domain 1)

iscan_clk2 Internal scan capture clock (domain 2)

iscan_tdi Internal scan data input

iscan_tdo Internal scan test data output

treset_l Boundary scan output enable reset (buffered

trst_l)

psyclk_mux_sel Internal Scan mode select w/clock stop

upaclk_mux_sel Internal Scan mode select w/clock stop

tmrclk_mux_sel Internal Scan mode select w/clock stop

probe_mode1 probe_mode enable signal

probe_mode2 probe_mode enable signal

runbist_select enable BIST logic

runbist_run run BIST test(s)

runbist_cdr RUNBIST capture data register

runbist_sdr RUNBIST shift data register

Table 12-2 Components of the U2P TAP controller

Synchronous FSM and Decode logic

 Instruction register

 Instruction decode logic

 Bypass register

Table 12-1 Description of signals in JTAG macro (Continued)

Signal Description

Chapter 12 JTAG 12-5

The following sections describe each of these blocks.

12.2.1 Synchronous FSM and Decode

The TAP controller is made up of two modules: a 4-bit, 16 state finite state machine

and a block of state decode logic. Transitions between states occur synchronously at

the rising edge of jtag_tclk in response to the jtag_tms signal or when jtag_trst_l goes

low.

12.2.2 Instruction Register

The instruction register is used to select the test to be performed and/or the test data

register to be accessed. The U2P instruction register is 4-bit wide shift register with

parallel load and parallel outputs. At the start of an instruction register shift cycle

(during the CAPTURE-IR state) the least two significant bits are loaded with ‘01’

pattern. During the TEST-LOGIC-RESET controller state the instruction register is

loaded with the IDCODE. The instruction register is right shifted by one bit at each

rising edge of jtag_tclk when the state machine is in Shift-IR and is updated at the

falling edge of the jtag_tclk in Update-IR.

The instructions found in Table 12-4 are supported in U2P.

 Internal register clocking logic

 JTAG ID register

 JTAG Boundary scan control logic

Clock Control Register

Clock Stop Logic

 TDO mux logic

Table 12-3 Instructions supported by U2P JTAG controller

Value Instruction Scan Chain OMC BCAP ICAP

0000 extest boundary 1 1 0

0001 sample boundary 0 1 0

0010 intscan internal 0 0 1

0011 atpg atpg 1 1 1

Table 12-2 Components of the U2P TAP controller (Continued)

12-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

OMC defines the value of the output Mode Control for the boundary scan chain.

Where OMC=1, the boundary cell output is driven by the internal update register;

where OMC=0, the boundary cell output is driven from the core logic for output

cells and from the pin for input cells.

BCAP indicates that a capture clock is generated for the boundary scan chain during

the capture-DR state. Similarly, ICAP indicates that a capture clock is generated for

the internal scan chain.

12.2.3 Instruction Decode Logic

The instruction decode logic decodes the value at the parallel outputs of the

instruction register and selects the appropriate scan data register and control signals.

12.2.4 Bypass Register

The Bypass register provides a minimum length path between the test data input

and the test data output. It consists of a single shift-register stage that loads a

constant 0 in the Capture-DR TAP controller state when the mandatory BYPASS

instruction is selected.

0100 debug internal 1 0 0

0101 delay internal 0 0 1

0110 clamp bypass 1 0 0

0111 intest boundary 0 1 0

1000 int_omc internal 1 0 1

1001 sel_ccr ccr 0 0 0

1010 probe1 bypass 0 0 0

1011 probe2 bypass 0 0 0

1100 sel_cs cs 0 0 0

1101 runbist runbist 0 0 0

1110 idcode id 0 0 0

1111 bypass bypass 0 0 0

Table 12-3 Instructions supported by U2P JTAG controller (Continued)

Value Instruction Scan Chain OMC BCAP ICAP

Chapter 12 JTAG 12-7

12.2.5 Internal Register Clocking Logic

This module generates the scan clocks for the internal scan flops (iscan_clk1 and

iscan_clk2) and the scan enable to enable serial shifting of the internal scan chain.

Clocks are generated during Capture-DR and Shift-DR for parallel captures and

serial shifting, respectively.

12.2.6 JTAG ID Register

This is a 32 bit shift register which has four fields. The least significant bit is a one,

the next 11 bits [11:1] are the Manufacturer ID, the next 16 bits [27:12] are the chip

ID, and the most significant 4 bits [31:28] are the chip version. For version 3.1, the

fields are as follows:

Version 4’b0100

Manufacturer ID 11’b00000011101

Chip ID 16’b0001100101010100

Thus the JTAG id for U2P is 3195403b hex.

12.2.7 Boundary Scan Control Logic

This block generates the boundary scan capture, shift and update signals which

forms part of the boundary scan control bus that runs along the boundary scan

chain. This control bus feeds the boundary scan cells.

12.2.8 BIST Control Logic

This block generates the BIST control signals to run the BIST tests, performs a

capture of the BIST test results (BIST Flags) and allows the BIST test results to be

shifted out. This control bus feeds the BIST control block in the core logic.

runbist_run is asserted when the TAP controller enters the Run/Test-Idle state and

indicates to the BIST controller that the BIST test should be run. Upon entering

Capture-DR, runbist_cdr is asserts in order to capture the BIST test results into the

scan register. runbist_sdr is asserted during Shift-DR to enable the scan register to

be serial shifted. The result registers (made up on the BIST flags and the BIST control

state) are connected between TDI and TDO for the entire time that the instruction is

selected.

12-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

12.2.9 Clock Control Registers

This module actually contains two functional blocks: a Clock Stop register and a

Clock Control register. The Clock Stop register is a 2-bit register used to initialize

the clock stop logic in the TAP controller. Bit [0] enables the clocks to be stopped

upon receiving an External Event signal (a rising edge from the pin, EXT_EVENT),

which then allows the CLOCK_STOP logic to mux out the system clocks. Bit [1]

forces a clock stop event by sending a clock_stop_force signal to the CLOCK_STOP

logic. The signals clock_stop_en and clock_stop_force may be changed either by

shifting in new control data through the TAP or by asserting a hard test reset

(jtag_trst_l) which will reset the bits to 0.

The Clock Control register is a 3-bit shift register which is used to control the

generation of capture clocks (in the Capture-DR state) when using the ATPG

instruction. (See Section 12.4.2 The ATPG Instruction) Bit [0] controls the generation

of the boundary scan capture enable signal (bscan_cdr) and bit [1] and [2] control the

generation of iscan_clk1 (psyclk) and iscan_clk2 (upaclk), respectively. This logic

may be reset by asserting a test reset (either hard or soft).

The two chains are muxed through ccr_tdo, which is controlled by the Clock Stop

register enable signal, cs_select_l.

12.2.10 Clock Stop Logic

This block implements the clock stopping logic used by the Clock Control Register.

The module generates the mux select signals which are used to mux in the capture

clocks (and mux out the functional clocks) during scan mode.

12.2.11 TDO MUX logic

This block implements the muxing of the signal which is to appear at the TDO

output pin. It has one flop to ensure that changes on the TDO pin happen on the

falling edge of jtag_tclk when the data is not being shifted in the data registers.

When data is not being shifted through the chip, TDO is set to a high impedance

state. (The jtag_tdo_en signal is generated by the TAP controller logic since it is

based on the state of the JTAG FSM.)

This block also contains logic which muxes together the special ATPG chain.

Chapter 12 JTAG 12-9

12.3 Scan Chains
U2P has several scan chains which are controlled by different instructions in the TAP

controller. A summary of the accessible chains and their lengths is provided in

Table 12-5.

12.3.1 Boundary Chain

The boundary chain is IEEE 1149.1-1990 (JTAG) compliant. The described earlier, the

TAP controller fully supports the required Bypass, Sample/Preload and Extest

instructions, as well as providing Idcode and Intest instructions.

It should be noted that the signals PSYCLOPS_CLK, PSYCLOPS_CLKR, UPA_CLK

and UPA_CLK_L (clock signals which feed the PLL) are not scannable due to the

impact on the PLL feedback loop.

12.3.2 The Internal Scan Chain

The internal scan chain is a chain made up of all the sequential elements within the

core logic of the chip. For U2P, this also includes the registered I/O, which resides

in the boundary ring, but are still clocked by the internal system clocks.

Table 12-4 U2P scan chains

Scan Chain Name Chain Length

Boundary 643

Internal 7039

atpg 7685

id 32

RUNBIST 30

ccr 3

cs 2

bypass 1

12-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

12.3.3 ATPG Chain

The ATPG chain is primarily made up of the internal scan chain and boundary scan

chain and the Clock control register. Including the boundary chain gives us the

ability to apply ATPG vectors to the chip in-system.

12.4 Special JTAG Instructions
In addition to the mandatory instructions U2P JTAG implements some special

instructions.

12.4.1 INTEST

Intest can be used to apply stimulus to test the on chip logic when the chip sits on a

board. This requires that the core be driven off the input boundary scan cells and the

core drives the output boundary scan cells. Clocks must be applied either from a

tester or via the TAP controller using either the Int_OMC or ATPG instructions (by

cycling through Capture-DR without entering Shift-DR.) Intest can also be used to

apply burn-in vectors if the burn-in tester is pin limited and can’t accommodate all

the U2P pins.

12.4.2 The ATPG Instruction

The ATPG instruction is used to apply ATPG vectors to U2P. As described in Section
12.3.3 ATPG Chain, the ATPG chain includes the registers in both the internal scan

chain and boundary chain. During Shift-DR, both chains are loaded with a known

state, the core being driven off the input boundary scan cells rather than the I/O.

During Capture-DR, outputs are captured on the output boundary scan cells. Thus,

ATPG vectors can be applied to a chip in-system.

Like the Intscan instruction, the ATPG utilizes an unusual clocking scheme in order

to address the multiple clock domains. However, the ATPG also muxes in the 3-bit

Clock Control register in order to select which of the 3 time domains to clock. (See

Section 12.2.9 Clock Control Registers).

Chapter 12 JTAG 12-11

Figure 12-3 JTAG control signals during ATPG instruction

12.4.3 The RUNBIST Instruction

U2P will be implementing Built-In Self-Test (BIST) as a means of testing the on-chip

memory cells which are more difficult to access via internal scan. The instruction

initiates the tests which are run while the TAP state machine is in Run-Test/Idle.

Once a specified time has elapsed, the results are captured into the RUNBIST data

register which is connected between TDI and TDO.

12.5 Test Coverage Information

12.5.1 ATPG

Total parallel vectors 1357

Total Fault Coverage 95.92%

Testable Fault Coverage 99.47%

jtag_tclk

captureDRselectDR shiftDR exit1DR updateDR selectDRJTAG State

Bscan_cdr

Bscan_sdr

Bscan_udr

Iscan_sdr

Iscan_clk1

Iscan_clk2

12-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

12.5.2 BIST

The actual BIST control logic (including state machines, address, pattern generators

and compare logic) is not contained within the JTAG TAP controller. U2P uses a

shared resource methodology to reduce area cost. Testable memories are grouped by

address size. There is a single control state machine and a single set of address and

pattern generators. Compare logic is duplicated for each BISTed RAM. All test

result flags (BIST flags) are registered and accessible via the TAP controller.

The BIST control logic is based on Lucent’s standard BIST algorithm which provides

100% fault coverage for stuck-at faults, transition faults, stuck-at-open faults, multi-

access port faults, static single coupling faults, dynamic single coupling faults,

linked transition and coupling faults, and addressing faults.

There are a total of 30 register files which are tested via BIST.

Table 12-5 BIST register files

Type Instance

R8X36 MRG.MB.MBL

R8X36 MRG.MB.MBU

R8X32 PBMA.dp.drb.rdhi

R8X32 PBMA.dp.drb.rdlo

R16X36 PBMA.dp.dwb.rdhi

R16X36 PBMA.dp.dwb.rdlo

R8X36 PBMA.dp.pwb.rdhi

R8X36 PBMA.dp.pwb.rdlo

R8X32 PBMB.dp.drb.rdhi

R8X32 PBMB.dp.drb.rdlo

R16X36 PBMB.dp.dwb.rdhi

R16X36 PBMB.dp.dwb.rdlo

R8X36 PBMB.dp.pwb.rdhi

R8X36 PBMB.dp.pwb.rdlo

R8X32 STCA.mrp.fill_q.drd_data0

R8X33 STCA.mrp.fill_q.drd_data1

R8X32 STCA.mrp.fsh_q.drd_data0

R8X33 STCA.mrp.fsh_q.drd_data1

R8X32 STCB.mrp.fill_q.drd_data0

Chapter 12 JTAG 12-13

The following register files are tested by applying the BIST algorithm via directed

functional tests.

R8X33 STCB.mrp.fill_q.drd_data1

R8X32 STCB.mrp.fsh_q.drd_data0

R8X33 STCB.mrp.fsh_q.drd_data1

R16X36 UPA.URD.u_pfifo_dmawr.dmawr_fifo_l

R16X36 UPA.URD.u_pfifo_dmawr.dmawr_fifo_u

R8X36 UPA.URD.u_pfifo_piord.u_pfifo_piord_h

R8X36 UPA.URD.u_pfifo_piord.u_pfifo_piord_l

R16X33 UPA.URD.u_ufifo_dmard.u_ufifo_dmard_h

R16X32 UPA.URD.u_ufifo_dmard.u_ufifo_dmard_l

R16X32 UPA.URD.u_ufifo_piowr.u_ufifo_piowr_h

R16X32 UPA.URD.u_ufifo_piowr.u_ufifo_piowr_l

Table 12-6 Non-BIST register files

Type Instance

R28X5 MDU.IDA.INR

S16X28 MMU.u_mmu_tlb.u_mmu_ram

B12832 STCA.dat.dt_data_ram.word_slice0

B12832 STCA.dat.dt_data_ram.word_slice1

R16X6 STCA.tag.lrm

R16X28 STCA.tag.prm

B12832 STCB.dat.dt_data_ram.word_slice0

B12832 STCB.dat.dt_data_ram.word_slice1

R16X6 STCB.tag.lrm

R16X28 STCB.tag.prm

Table 12-5 BIST register files (Continued)

Type Instance

12-14 UPA to PCI Interface (U2P) User’s Manual • May 1997

13-1

CHAPTER 13

Programmer’s Model

This chapter documents the software visible features of U2P.

All of the addresses shown in this chapter are 33-bit offsets within U2P’s UPA space,

and are not full physical addresses. For systems in which U2P occupies the main I/

O UPA port, the full physical address is constructed by adding 0x1FE.0000.0000 to

the addresses shown here.

Terms and Abbreviations Used:

R - Read only

W - Write only

R/W - Read/Write

R/W1C - Read/Write with 1 to clear

Warning – Registers which are designated as Write Only may be read, but the data

returned is UNDEFINED. No error is reported for such an access. Software should

never rely on the value returned. Writes to Read Only registers have no effect. No

error is reported for such an access.

13.1 Internal Registers
Register accesses to U2P can be in any size from one byte up to 8 bytes. Sizes and

locations for the registers are given in the sections which follow. Reads of any size

up to 8 bytes to any register are supported regardless of whether reads of that size

makes sense. Writes of any size up to 8 bytes are also supported regardless of

whether writes of that size makes sense. Writes of any size MAY corrupt unwritten

bits in the register (i.e., writes may result in all 8 bytes being written regardless of

13-2 UPA to PCI Interface (U2P) User’s Manual • May 1997

the indicated write size). Software must insure that only the proper sized accesses

are used. No hardware checking is performed. Burst access to U2P registers is not

permitted and will result in an error return for reads, and silent failure for writes.

Addresses which are not specified below should be neither read nor written by

software. Reads will return undefined data, which software should never rely upon.

Writes to such addresses may corrupt data contained in other registers.

As a general rule, the appropriate part of U2P must be inactive when changes are

made to important control registers. This includes ensuring that there are no DMA

transactions active on the corresponding PCI bus segment when the streaming buffer

control register or PBM control/status register is modified. There should be no DMA

transactions active on either bus when the IOMMU control register is modified, and

there should be no DMA or interrupts active when the U2P control/status register or

the UPA configuration register are modified.

13.1.1 U2P Control/Status Register

Table 13-1 Offset of Control Register

Register Offset Access Size

U2P Control Register 0x0.0000.0010 8 bytes

Table 13-2 U2P Control Register

Field Bits Description Type

IMPL 63:60 Implementation number of U2P R

VER 59:56 Revision number of this implementation.

0x0 = Psycho pass 1

0x1 = Psycho pass 2

0x2 = Psycho pass 3 (never manufactured)

0x3 = Psycho+ pass 3

0x4 = Psycho+ pass 3.1

R

MID 55:51 UPA Module ID for U2P. Software must set up

correct MID value before allowing U2P to

generate interrupts or DMA.

Reset to 0x1f.

R/W

Chapter 13 Programmer’s Model 13-3

The design of U2P is optimized with the assumption that UPA is running faster than

U2P clock. This assumption is true in normal operation of existing systems.

However, in the debug or bringup stage of a system, this assumption may not be

true. The “MODE” bit, which enables full-handshaking between UPA and PCI when

set to 0, allows the UPA to run slower than the U2P clock at the expense of

performance.

IGN 50:46 Interrupt Group Number; this field supplies

the upper 5 bits of the 11-bit Interrupt Number

Offset in the first word of interrupt packets

generated by U2P.

Reset to 0.

R/W

RESERVED 45:4 Reserved, read as 0 R

APCKEN 3 UPA Address parity check enable. When set,

any parity error detected results in a P_FERR

reply. When clear, parity errors are logged in

APERR bit, but transaction completes

normally.

Reset to 0.

R/W

APERR 2 Incoming UPA address parity error. Persistent

across reset. Initial value upon power-up is

undefined. Set regardless of value of

APCKEN.

R/W1C

IAP 1 Invert UPA address parity. Reset to 0. U2P

generates odd parity when this bit is set to 0

and even parity when set to 1.

R/W

MODE 0 When set to 0, it enables full-handshaking

between UPA and PCI clocks. When set to 1, it

enables performance mode which assumes

that UPACLK > 0.9 * PSYCLK (calculated limit

- not proven in the lab). Set to 0 upon reset.

R/W

Table 13-2 U2P Control Register (Continued)

Field Bits Description Type

13-4 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.2 UPA Registers

13.1.2.1 UPA Port ID Register

This register includes information about identification and capability of U2P UPA

interface. This register is read-only.

Table 13-3 Offset of UPA Registers

Register Offset Access Size

UPA Port ID Register 0x0.0000.0000 8 bytes

UPA Configuration Reg 0x0.0000.0008 8 bytes

Table 13-4 UPA Port ID Register

Field Bits Description Type

Cookie 63:56 Value is 0xFC, which is the FCODE for FERR.

Software attempts to read this register as

FCODE will be readily identifiable as errors.

R

Reserved 55:35 Reserved, read as 0. R

ECCNotValid 34 Indicates whether port can generate ECC

when sourcing data.

Hardwired to 0, indicating that ECC will be

generated.

R

ONEREAD 33 Set if the slave port can allow only one

outstanding slave read P_REQ transaction at a

time. This bit is hardwired to 0, indicating

multiple reads allowed.

R

Reserved 32:31 Reserved and reads as 0. Would encode

PINT_RDQ for ports implementing this

feature.

R

PREQ_DQ 30:25 Specifies the size of data queue in 16-byte unit.

This field is 0x8 for U2P which has 128 bytes

of data queue.

R

Chapter 13 Programmer’s Model 13-5

13.1.2.2 UPA Configuration Register

This register indicates the queue sizes for each class of UPA request. Please refer to

the UPA Architecture manual for the description of classes. U2P only uses one

request class (class 0) for its transfers. The depth of queue supported by SC for U2P

is 2, therefore SCIQ0 field should be programmed with 0x2. The initial value after

reset is 0x1.

1.Note: Software must insure that no DMA is taking place when this field is changed.

Once set, the value may not be reduced; it can only be increased.

PREQ_RQ 24:21 Specify the size of PREQ_RQ queue. U2P can

support 2 pending PREQ, this field is 0x2.

R

UPACAP 20:16 Bit <16>: Set if the port has master capability,

set to 1.

Bit <17>: Set if the port has a cache, set to 0.

Bit <18>: Set if port interrupts via

UPA_Slave_Int_L signal, set to 0.

Bit <19>: Set if the port can generate interrupt,

set to 1.

Bit <20>: Set if the port can service interrupt,

set to 0.

R

JEDEC 15:00 JEDEC identification

0x1954 for all passes of U2P

R

Table 13-5 UPA Configuration Register

Field Bits Description Type

Reserved 63:8 Reserved, read as 0 and write has no effect. R

SCIQ1 7:4 Unused. Read as 0 and write has no effect. R

SCIQ0 3:0 Size of input request queue for one master

class in SC. Software should set it to 0x2

during initialization.1

R/W

Table 13-4 UPA Port ID Register (Continued)

Field Bits Description Type

13-6 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.3 ECC Registers

13.1.3.1 ECC Control Register

This register controls enable/disable of ECC checking and generation of ECC error

related interrupts. All bits are 0 upon reset.

Note – The timing of changes to these enable bits when a PIO write is performed is

somewhat indeterminate. If software wants to ensure that a change takes effect

before proceeding, it should follow the PIO write by a PIO read of this register.

Table 13-6 Offset of ECC Registers

Register Offset Access Size

ECC Control Register 0x0.0000.0020 8 bytes

UE AFSR 0x0.0000.0030 8 bytes

UE AFAR 0x0.0000.0038 8 bytes

CE AFSR 0x0.0000.0040 8 bytes

CE AFAR 0x0.0000.0048 8 bytes

Table 13-7 ECC Control Register

Field Bits Description Type

ECC_EN 63 Enables ECC Checking. ECC Generation is

always enabled.

R/W

UE_INTEN 62 Enable interrupt generation on uncorrectable

error (UE).

R/W

CE_INTEN 61 Enables interrupt on correctable ECC errors

(CE).

R/W

Chapter 13 Programmer’s Model 13-7

The following table shows how the ECC_EN and UE_INTEN/CE_INTEN controls

the ECC checking, error handling in U2P.

13.1.3.2 Uncorrectable Error Asynchronous Fault Status/Address
Register

Any uncorrectable ECC error detected by the UPA interface of U2P will log the error

in the UE AFSR/AFAR. Uncorrectable errors can happen during PIO write, DVMA

read or DVMA partial write. Two sets of status bits are defined in this register. Bits

<63:61> are the primary error status and bits <60:58> are the secondary status. One

and only one of the primary error status can be set at any time. Primary error status

can be set only when either:

■ none of the primary error condition exists prior to this error.

■ a new error is detected at the same time software is clearing the primary error;

the same time means on coincident clock cycles. Setting takes precedence over

clearing.

Secondary bits are set whenever a primary bit is set (one and only one primary bit

can be set at a time). The secondary bits are cumulative and always indicate that

information has been lost as no address information has been captured. Setting of

the primary error bits is independent.

Table 13-8 ECC Error Reporting

ECC_EN INTEN Description

0 X No ECC checking and reporting, every UPA

transaction proceed as if there is no ECC error. Data

flows through from UPA to PCI bus.

1 0 ECC checking will be done, but no interrupt will be

sent on ECC error. UE on PIO write will not be

performed on PCI bus, UE on DVMA read will

terminate PCI access with target-abort

Error is logged in ARSR/AFAR but no interrupt is

generated. Software should clear error status before

enabling interrupt.

1 1 U2P sends interrupt on ECC error. UE on PIO write

will not be performed on PCI bus, UE on DVMA

read will terminate PCI access with target-abort.

13-8 UPA to PCI Interface (U2P) User’s Manual • May 1997

The AFAR and bits <47:23> of AFSR log address and status of the primary UE.

Further UE will not be logged into these bits until software clears the primary error,

which makes the AFAR and part of the AFSR available to log new error. An

interrupt is generated whenever the AFAR logs the new error address.

Table 13-9 UE AFSR

Field Bits Description Type

P_PIO 63 Set if primary UE is caused by PIO write R/W1C

P_DRD 62 Set if primary UE is caused by PCI DVMA read R/W1C

P_DWR 61 Set if primary UE is caused by PCI DVMA write R/W1C

S_PIO 60 Set if secondary UE is caused by PIO write R/W1C

S_DRD 59 Set if secondary UE is caused by PCI DVMA read R/W1C

S_DWR 58 Set if secondary UE is caused by PCI DVMA write R/W1C

Reserved 57:48 Reserved, read as 0. R

BYTEMASK 47:32 16-bit UPA bytemask for the failing transaction R

DW_OFFSET 31:29 Offset of doubleword containing ECC error in 64 byte

block, relative to PA modulo 64 bytes.

R

UPA_MID 28:24 UPA MID that causes the error transaction R

BLK 23 Set to 1 if the error transaction was a block read or

write, in which case BYTEMASK is not valid.

R

Reserved 22:0 Reserved, read as 0. R

Table 13-10 UE AFAR

Field Bits Description Type

Reserved 63:41 Reserved, read as 0. R

UE_PA 40:00 Physical address of error transaction R

Chapter 13 Programmer’s Model 13-9

13.1.3.3 Correctable Error Asynchronous Fault Status/Address
Register

U2P logs the correctable ECC error in the CE AFSR/AFAR. Correctable errors can

happen during PIO write, DVMA read or DVMA partial write. Two sets of status

bits are defined in this register. Bits <63:61> are the primary error status and bits

<60:58> are the secondary error status. One and only one of the primary error status

can be set at any time. Primary error status can be set only when either:

■ none of the primary error condition exists prior to this error.

■ a new error is detected at the same time software is clearing the primary error;

the same time means on coincident clock cycles. Setting takes precedence over

clearing.

Secondary bits are set whenever a primary bit is set (one and only one primary bit

can be set at a time). The secondary bits are cumulative and always indicate that

information has been lost as no address information has been captured. Setting of

the primary error bits is independent.

The AFAR and bits <55:23> of AFSR log address and status of the primary CE.

Further CE will not be logged into these bits until software clears the primary error,

which makes the AFAR and part of the AFSR available to log new error. An

interrupt is generated whenever the AFAR logs the new error address.

Table 13-11 CE AFSR

Field Bits Description Type

P_PIO 63 Set if primary CE is caused by PIO access R/W1C

P_DRD 62 Set if primary CE is caused by PCI DVMA read R/W1C

P_DWR 61 Set if primary CE is caused by PCI DVMA write R/W1C

S_PIO 60 Set if secondary CE is caused by PIO access R/W1C

S_DRD 59 Set if secondary CE is caused by PCI DVMA read R/W1C

S_DWR 58 Set if secondary CE is caused by PCI DVMA write R/W1C

Reserved 57:56 Reserved, read as 0. R

E_SYND 55:48 CE Syndrome bits R

BYTEMASK 47:32 16-bit UPA bytemask for failing transaction R

DW_OFFSET 31:29 Offset of doubleword containing ECC error in 64 byte

block, relative to PA modulo 64 bytes.

R

13-10 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.4 DMA Scoreboard Diagnostic Support

The DMA Scoreboard stores information associated with outstanding DMA

transactions. Software can perform PIO accesses to the DMA Scoreboard SRAM for

Diagnostic or status tracking purposes. Note the VALID bit is read-only, write has no

effect. Reading the DMA Scoreboard while DVMA is in progress may get stale

information. U2P can generate maximum of two pending UPA transactions, two

entries are supported in U2P as indicated in Table 13-13. The ordering of the

registers is not significant and they do not form a FIFO. Therefore, any transaction

can be in either register. The valid bit must be checked to determine whether a valid

entry exists.

UPA_MID 28:24 UPA MID that causes the error transaction R

BLK 23 Set to 1 if the error transaction was a block transaction,

in which case the BYTEMASK field is not valid.

R

Reserved 22:00 Reserved, read as 0. R

Table 13-12 CE AFAR

Field Bits Description Type

Reserved 63:41 Reserved, read as 0. R

UE_PA 40:00 Physical address of error transaction R

Table 13-13 Offset of DMA Scoreboard Diagnostic Access

Register Offset Access Size

DMA Scoreboard Diag Reg 0 0x0.0000.A000 8 bytes

DMA Scoreboard Diag Reg 1 0x0.0000.A008 8 bytes

Table 13-11 CE AFSR (Continued)

Field Bits Description Type

Chapter 13 Programmer’s Model 13-11

Note – The address stored in the DMA scoreboard is the address of the original

DMA transaction, not necessarily the address of the transaction performed on the

UPA. In particular, for partial line writes, U2P issues a 64-byte aligned Read To Own

transaction on the UPA, but the DMA scoreboard reflects the 8-byte aligned address

of the original DMA write request.

Table 13-14 DMA Scoreboard Diagnostic Access

Field Bits Description Type

VALID 63 Indicate this entry has valid transaction

pending

R

C 62 Set if the pending transaction is mapped

cacheable

R/W

READ 61 Set if the pending transaction is read R/W

TAG 60:57 Pending transaction identification R/W

ADDR 56:19 Physical address bits <40:3> of the pending

transaction

R/W

BYTEMASK 18:3 Bytemask of the pending transaction (only

valid if transaction is marked non-cacheable,

will be set to 0 for a block transaction to non-

cacheable space).

R/W

SRC 2:0 Source of UPA DMA transactions

0x0 = IOMMU

0x1 = Merge Buffer

0x2 = Streaming Cache A

0x3 = Streaming Cache B

0x4 = PCI Bus A module

0x5 = PCI Bus B module

0x6 = Mondo Interrupt Dispatch Unit

R/W

13-12 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.5 PCI Bus Module

U2P has two independent PCI Bus Modules (PBM), each with a set of control

registers. These registers control aspects of U2P’s PCI operations that are not defined

by the PCI specification. Each PBM also has a number of registers in PCI

Configuration Space which are defined by the PCI specification.

Note – Although these registers are part of the PBM blocks, which are “little-

endian”, the bit definitions below assume “big-endian” type accesses.

Table 13-15 Offset of PBM Registers

Register Offset Access Size

PCI Bus A Control/Status Register 0x0.0000.2000 8 bytes

PCI Bus A AFSR 0x0.0000.2010 8 bytes

PCI Bus A AFAR 0x0.0000.2018 8 bytes

PCI Bus A Diagnostic Register 0x0.0000.2020 8 bytes

PCI Bus B Control/Status Register 0x0.0000.4000 8 bytes

PCI Bus B AFSR 0x0.0000.4010 8 bytes

PCI Bus B AFAR 0x0.0000.4018 8 bytes

PCI Bus B Diagnostic Register 0x0.0000.4020 8 bytes

Chapter 13 Programmer’s Model 13-13

13.1.5.1 PCI Control/Status Register

Note – There are an unequal number of PCI devices controlled by each PBM. PBM

A supports 4 devices, PBM B supports 6 devices. Some of the bits in the PCI

Control/Status Register are replicated for each supported device. The register

description below documents the maximum number of devices. Bits for unavailable

devices should be considered reserved, are read-only, and will read back as 0.

Table 13-16 PCI Control and Status Register

 Field Bits Description R/W

Reserved 63:36 Reserved, read as 0. R

PCI_SBH_ERR 35 PCI streaming byte hole error

Set to 1 if a byte hole is detected during a

streaming DMA write. Reset to 0.

R/W1C

PCI_SERR 34 Set when SERR# signal is sampled asserted

on the PCI bus

R/W1C

PCI_SPEED 33 PCI bus speed

0 = U2P clock / 2

1 = U2P clock

The value of this bit reflects the status of the

bus speed input pin. It is calculated by

motherboard circuitry at power-on, based

on capabilities of plugged in devices.

R

Reserved 32:22 Reserved, Read as 0. R

ARB_PARK 21 PCI bus arbitration parking enable

0 = no parking

1 = previous bus owner parked (including

CPU)

Reset to 0

R/W

Reserved 20:11 Reserved, read as 0. R

SBH_INT_EN 10 Streaming byte hole interrupt enable

0 = PCI error interrupt will not be issued for

streaming byte hole errors

1 = PCI error interrupt will be issued for

streaming byte hole errors, if ERRINT_EN is

also set to 1.

Reset to 0

R/W

WAKEUP_EN 9 Power Management Wakeup Enable

Control; 1 for power management wakeup

enabled, 0 for disabled.

Resets to 0

R/W

13-14 UPA to PCI Interface (U2P) User’s Manual • May 1997

WAKEUP_EN

Used by system software when putting various parts of the system to sleep. When

set to 1, any attempt by an enabled PCI device (ones with ARB_EN == 1) to arbitrate

for the PCI bus will result in an interrupt packet being delivered to a target for the

purpose of waking up the system. Refer to the interrupt section for more details.

Arbitration for PCI devices is inhibited as long as this bit is set; in other words, with

(WAKEUP_EN == 1) the system behaves as though (ARB_EN<5:0> == 0).

Additionally, this bit enables a divide by 1000 prescaler for Timer/Counter 0 thereby

changing it from incrementing once per microsecond to once per millisecond. The

divide by 1000 prescaler is enabled when the WAKEUP_EN bit is set in either or

both of the PBM blocks.

13.1.5.2 PCI Asynchronous Fault Status/Address Registers

PCI AFSR/AFAR record error information related to PIO writes to PCI slave devices.

Only asynchronous errors reported through interrupt are recorded in these registers.

Asynchronous errors include any PIO write access terminated by Master Abort,

Target Abort, or excessive retries, as well as any PIO write during which a parity

error was signaled on the PCI bus. Although status bits for Master Abort, Target

Abort and Parity Error exist in the PCI Configuration Registers for each PBM, they

are duplicated here to provide the additional functionality of identifying which error

occurred first in the case of multiple errors, and associating an address with that

error.

 ERRINT_EN 8 Enable PCI error interrupt

0 = PCI error interrupt disabled

1 = PCI error interrupt enabled

Reset to 0

R/W

Reserved 7:6 Reserved, read as 0. R

 ARB_EN<5:0> 5:0 PCI DVMA arbitration enable. One inde-

pendent bit for each supported device on

the bus. ARB_EN<5:0> assigned to slots 5

through 0 respectively.

0 = Bus requests from corresponding PCI

device are ignored.

1 = Bus requests from corresponding PCI

device are honored.

Reset to 0x0

R/W

Table 13-16 PCI Control and Status Register (Continued)

 Field Bits Description R/W

Chapter 13 Programmer’s Model 13-15

Two sets of status bits are defined in this register. Bits <63:60> are the primary error
status and bits <59:56> are the secondary error status. One and only one of the
primary error status can be set at any time. Primary error status can be set only
when either:

■ none of the primary error conditions exist prior to this error.
■ a new error is detected at the same time software is clearing the primary error.

Secondary bits are set whenever a primary bit is set (one and only one primary bit
can be set at a time). The secondary bits are cumulative and always indicate that
information has been lost as no address information has been captured. Setting of
the primary error bits is independent.

The AFAR and bits <47:37> of AFSR log address and status of the primary PCI PIO
error. Further PCI PIO error will not be logged into these bits until software clears
the primary error, which makes the AFAR and part of the AFSR available to log new
error. An interrupt is generated whenever the AFAR logs the new error address.

Table 13-17 PCI AFSR

 Field Bits Description R/W

P_MA 63 Set if primary error detected is Master Abort R/W1C

P_TA 62 Set if primary error detected is Target Abort R/W1C

P_RTRY 61 Set if primary error detected is excessive retries R/W1C

P_PERR 60 Set if primary error detected is parity error R/W1C

S_MA 59 Set if secondary error detected is Master Abort R/W1C

S_TA 58 Set if secondary error detected is Target Abort R/W1C

S_RTRY 57 Set if secondary error detected is excessive retries R/W1C

S_PERR 56 Set if secondary error detected is parity error R/W1C

Reserved 55:48 Reserved, read as 0. R

BYTEMASK 47:32 Bytemask of failed primary transfer. Only valid if BLK is 0. R

BLK 31 Set to 1 if failed primary transfer was a block read or write R

Reserved 30 Reserved, read as 0. R

MID 29:25 UPA MID that causes error transaction R

Reserved 24:00 Reserved, read as 0. R

13-16 UPA to PCI Interface (U2P) User’s Manual • May 1997

Table 13-18 PCI AFAR

 Field Bits Description R/W

Reserved 63:41 Reserved, read as 0. R

PA 40:00 Physical address of error transaction R

Chapter 13 Programmer’s Model 13-17

13.1.5.3 PCI Diagnostic Register

Loopback Mode

When LPBK_EN is set to 1, U2P can act as both the initiator and target of a PCI

transaction. The immediate effect of Loopback Mode is that PCI address bit [31] will

Table 13-19 PCI Diagnostic Register

 Field Bits Description R/W

Reserved 63:7 Reserved, read as 0. R

DIS_RETRY 6 Disable retry limit.

When set to 1, U2P will not abort PIO operations

after 16,384 retries, but will continue indefinitely.

Reset to 0

R/W

DIS_INTSYNC 5 Disable DMA write / interrupt synchronization.

When set to 1, interrupts will not wait until associ-

ated DMA is complete before proceeding.

Reset to 0

R/W

DIS_DWSYNC 4 Disable DMA write / PIO read synchronization.

When set to 1, PIO read completion does not wait

for prior DMA writes to complete.

Reset to 0

R/W

I_DMA_D_PAR 3 Invert DMA data parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI DMA read

data phases. Both the regular parity signal and the

64-bit parity extension are effected.

Reset to 0

R/W

I_PIO_D_PAR 2 Invert PIO data parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI PIO write

data phases.

Reset to 0

R/W

I_PIO_A_PAR 1 Invert PIO address parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI PIO ad-

dress phases.

Reset to 0

R/W

LPBK_EN 0 Loopback enable

0 = Loopback disabled.

1 = Loopback enabled.

Reset to 0

R/W

13-18 UPA to PCI Interface (U2P) User’s Manual • May 1997

be set in all outgoing PIO transactions. This causes the PIO’s to match U2P’s DMA

address range, and U2P will respond accordingly.

Any transaction that can be both legally generated and accepted by U2P may be

looped back in this fashion, e.g. PIO’s to Config or IO space will not loop back, but

PIO reads/writes of Memory space will cause DMA reads/writes.

Warning – When Loopback Mode for a PCI bus is enabled, all normal PIO access to

that bus becomes disabled.

13.1.6 PBM Configuration Space

Each PBM contains a configuration header whose format is specified by the PCI

Specification. The registers in the configuration header are accessed via PCI

Configuration Address Space. Each PBM is considered to be device 0, function 0 on

its PCI bus. After a reset, PBM A will be PCI bus 1, and PBM B will be PCI bus 0.

Note – These are the offsets in effect after reset. However, since the PCI bus number

of each PBM can be changed by software, the actual offset for these spaces may be

different than what is listed above.

Note – The PCI Configuration Address Space is a little-endian address space. When

accessing configuration space registers, software should take advantage of one of the

SPARC V9 little-endian support mechanisms to get proper byte ordering. These

mechanisms include little-endian ASI’s or MMU support for marking pages little-

endian.

Table 13-20 Default offset of PCI Bridge Configuration Spaces

Register Offset

PBM A Bridge Device

Config Space

0x0.0101.0000 -

0x0.0101.00FF

PBM B Bridge Device

Config Space

0x0.0100.0000 -

0x0.0100.00FF

Chapter 13 Programmer’s Model 13-19

Table 13-21 lists the configuration header registers (one set for each PBM), as defined

by the PCI specification and PCI System Design Guide. Several of the registers are

not implemented in U2P which is indicated by shading in the table. The rule used is

that any optional register for which equivalent information exists elsewhere is not

implemented.

Table 13-21 Configuration Space Header Summary

Register Offset Size

Required PCI device configuration header:

Vendor ID 0x00 2 bytes

Device ID 0x02 2 bytes

Command 0x04 2 bytes

Status 0x06 2 bytes

Revision ID 0x08 1 byte

Programming I/F Code 0x09 1 byte

Sub-class Code 0x0A 1 byte

Base Class Code 0x0B 1 byte

Cache Line Size 0x0C 1 byte

Latency Timer 0x0D 1 byte

Header Type 0x0E 1 byte

BIST 0x0F 1 byte

Base Address 0x10-0x27 Varies

Reserved 0x28-0x2F n/a

Expansion ROM 0x30 4 bytes

Reserved 0x34-0x3B n/a

Interrupt Line 0x3C 1 byte

Interrupt Pin 0x3D 1 byte

MIN_GNT 0x3E 1 byte

MAX_LAT 0x3F 1 byte

Optional bridge configuration header:

Bus Number 0x40 1 byte

Subordinate Bus Number 0x41 1 byte

Reserved 0x42-0xFF n/a

Disconnect Counter Unspecified 1 byte

13-20 UPA to PCI Interface (U2P) User’s Manual • May 1997

Note – The sizes listed in the table above are just the logical size for each register.

Actual PIO access to the registers can be in any size from 1 to 8 bytes.

13.1.6.1 Vendor ID

Read only, VendorID<15:0> = 0x108E.

13.1.6.2 Device ID

Read only, DeviceID<15:0> = 0x8000.

Bridge Command/Status Unspecified 4 bytes

Bridge Memory Base Address Unspecified 4 bytes

Bridge Memory Limit Address Unspecified 4 bytes

DOS Read Attributes Unspecified 2 bytes

DOS Write Attributes Unspecified 2 bytes

Bridge I/O Base Address Unspecified 2 bytes

Bridge I/O Limit Address Unspecified 2 bytes

Table 13-21 Configuration Space Header Summary (Continued)

Register Offset Size

Chapter 13 Programmer’s Model 13-21

13.1.6.3 Command Register

Table 13-22 Command Register

 Field Bits Description R/W

Reserved 15:10 Reserved, read as 0. R

FAST_EN 9 Enable fast back-to-back cycles to different

targets.

Hardwired to 0 (disabled).

R

SERR_EN 8 Enable driving of SERR# pin.

Reset to 0 (disabled).

R/W

WAIT 7 Enable use of address/data stepping.

Hardwired to 0 (disabled).

R

PER 6 Enable reporting of parity errors.

Reset to 0 (disabled).

R/W

VGA 5 Enable VGA palette snooping.

Hardwired to 0 (disabled).

R

MWI 4 Enables use of Memory Write & Invalidate.

Hardwired to 0 (disabled).

R

SPCL 3 Enables monitoring of special cycles.

Hardwired to 0 (disabled).

R

MSTR 2 Enables ability to be bus master.

Hardwired to 1 (enabled).

R

MEM 1 Enables response to PCI MEM cycles.

Hardwired to 1 (enabled).

R

IO 0 Enables response to PCI I/O cycles.

Hardwired to 0 (disabled).

R

13-22 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.6.4 Status Register

13.1.6.5 Revision ID Register

Read only, RevisionID<7:0> = 0x00. This register will always read as 0. The actual

revision number for U2P is contained in the U2P Control/Status Register.

Table 13-23 Status Register

 Field Bits Description R/W

DPE 15 Set if PBM detects a parity error R/W1C

SSE 14 Set if PBM signalled a system error.

This occurs if the PBM detects a PCI address

parity error, or another device asserts

SERR#.

Reset to 0

R/W1C

RMA 13 Set if PBM receives a master-abort.

Reset to 0

R/W1C

RTA 12 Set if PBM receives a target-abort.

Reset to 0

R/W1C

STA 11 Set if PBM generates target-abort.

Reset to 0

R/W1C

DVSL 10:9 Timing of DEVSEL#.

Hardwired to 01 (medium speed response)

R

DPAR 8 Set when parity error occurs while PBM is

bus master, if PER in command register also

set.

Reset to 0

R/W1C

FASTCAP 7 Indicates ability to accept fast back-to-back

cycles as target, when the back-to-back

transactions are not to the same target.

Hardwired to 1 (allowed)

R

UDF_SUPPORT 6 User Definable Feature Support.

Hardwired to 0 (no user definable features)

R

66MHZ_CAPABLE 5 Indicates ability to run at 66MHz clock

speed. Hardwired to 1 (66MHz capable) for

PBMA and 0 for PBMB.

R

Reserved 4:0 Reserved, read as 0 R

Chapter 13 Programmer’s Model 13-23

13.1.6.6 Programming I/F Code Register

Read only, ProgrammingIFCode<7:0> = 0x00.

13.1.6.7 Sub-class Code Register

Read only, SubclassCode<7:0> = 0x00. (Specifies host bridge device).

13.1.6.8 Base Class Code Register

Read only, BaseClassCode<7:0> = 0x06. (Specifies bridge device).

13.1.6.9 Latency Timer Register

This 8-bit read/write register specifies the value of the latency timer for the PBM as

a bus master. Only the top five bits are implemented, giving a timer granularity of 8

PCI clocks. The bottom three bits will read as 0 and should be written as 0. The

maximum PIO transfer is 64 bytes, so the latency timer may come into play for

transfers to slow targets that insert many wait states. After a reset, the timer will be

set to 0x0.

Table 13-24 Latency Timer Register

 Field Bits Description R/W

LAT_TMR_HI 7:3 Programmable portion of latency timer.

Reset to 0x0

R/W

LAT_TMR_LO 2:0 Read only portion of latency timer.

Hardwired to 0x0

R

13-24 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.6.10 Header Type Register

13.1.6.11 Bus Number

This 8-bit read/write register specifies the number of the PCI bus this bridge resides

on. It’s value upon reset is 1 for PBM A, and 0 for PBM Β.

13.1.6.12 Subordinate Bus Number

This 8-bit read/write register specifies the highest subordinate bus number beneath

this bridge. It’s value upon reset is 0.

13.1.6.13 Unimplemented Registers

The following registers are defined in the PCI Specification or PCI System Design

Guide, but are not implemented in U2P’s PBM’s for the indicated reasons.

Cache Line Size - The cache line size is fixed at 64-bytes by the UPA architecture.

Base Address Registers - The bridge itself has neither memory nor I/O space. Its

configuration space is accessible only from the host and is hard-mapped.

Interrupt Line, Interrupt Pin - Do not apply. Interrupt lines are handled by the RIC

ASIC chip.

Min_Gnt, Max_Lat - There is no regular traffic pattern to programmed I/O. Values

of zero indicate there are no stringent requirements (true).

Disconnect Counter - This seems to be intended mainly for cases where the other

bus (host bus in this case) is potentially very slow. This shouldn’t apply to UPA.

Bridge Memory/IO Base and Limit Address - These registers are defined for an

entirely flat address space which the UPA and PCI busses cannot abide by.

DOS Attribute Registers - DOS compatibility is not a feature of U2P.

Table 13-25 Header Type Register

 Field Bits Description R/W

MULTI_FUNC 7 Indicates whether the PBM is a multi-func-

tion PCI device.

Hardwired to 0 (not multi-function)

R

HDR_TYPE 6:0 Defines layout of configuration header bytes

0x10-0x3F.

Hardwired to 0 (the only defined value in

PCI specification)

R

Chapter 13 Programmer’s Model 13-25

13.1.7 IOMMU Registers

13.1.7.1 IOMMU Control Register

The Control Register provides means to enable and disable the diagnostic mode, TSB

size and page size. It also contains some revision control information.

Table 13-26 Offset of IOMMU Registers

Register Offset Access Size

IOMMU Control Register 0x0.0000.0200 8 bytes

TSB Base Address Reg 0x0.0000.0208 8 bytes

IOMMU Flush Register 0x0.0000.0210 8 bytes

IOMMU Virtual Addr

Diag Reg

0x0.0000.A400 8 bytes

TLB Tag Compare Diag 0x0.0000.A408 8 bytes

IOMMU LRU Queue

Diag

0x0.0000.A500 -

0x0.0000.A57F

8 bytes

TLB Tag Diag 0x0.0000.A580 -

0x0.0000.A5FF

8 bytes

TLB Data RAM Diag 0x0.0000.A600 -

0x0.0000.A67F

8 bytes

Table 13-27 IOMMU Control Register

Field Bits Description Type

RESERVED 63:27 Reserved, read as zeros. R

XLT_ERR_STS 26:25 Reason for most recent translation error:

00 = Protection Error,

01 = Invalid Error,

10 = Time Out Error,

11 = ECC Error (UE).

R

XLT_ERR 24 When set to 1 indicates that the IOMMU has

encountered and signaled a translation error.

Reset to 0.

R/W

LRU_LCKEN 23 LRU Lock Enable Bit. Reset to 0. When set,

only the TLB entry specified by the Lock

Pointer can be replaced.

R/W

13-26 UPA to PCI Interface (U2P) User’s Manual • May 1997

1. If DVMA mappings are always 8K pages, or mixed 8K and 64K pages, set this bit to ‘0’ so that the index is con-
structed for 8K lookup. If all DVMA mappings are to 64K pages, set this bit to ‘1’ so that the index is based on
64K pages. When this bit is ‘0’, a 64K mapping should be placed in all 8 TSB entries in which it is indexed.

1. Hardware does not prevent illegal combinations from being programmed. If an illegal combination is programmed

into the IOMMU, all translation requests will be rejected as invalid.

LRU_LCKPTR 22:19 LRU Lock Pointer. Works in conjunction with

the LRU Lock Enable bit to limit TLB

replacement to a single entry

R/W

TSB_SIZE 18:16 TSB table size measured in the number of 8

byte entries.

0=1K, 1=2K, 2=4K, 3=8K,

4=16K, 5=32K, 6=64K, 7=128K.

R/W

RESERVED 15:3 Reserved, read as zeros. R

TBW_SIZE1 2 Assumed page size during TSB lookup.

0 = 8K page.

1 = 64K page

R/W

MMU_DE 1 Diagnostic mode enable, when set it enables

the diagnostic mode. See description of TLB

tag diagnostics. Reset to 0

R/W

MMU_EN 0 IOMMU enable bit, when set it enables the

translation. Reset to 0

R/W

Table 13-28 Address space size and base address determination.

 TBW_SIZ == 0 TBW_SIZ == 1

TSB_SIZE VA Space
Size

VA Base
Address

TSB Index [3] VA Space
Size

VA Base
Address

TSB_Index [3]

0 8 MB 0xFF80.0000 VA<22:13> 64 MB 0xFC00.0000 VA<25:16>

1 16 MB 0xFF00.0000 VA<23:13> 128 MB 0xF800.0000 VA<26:16>

2 32 MB 0xFE00.0000 VA<24:13> 256 MB 0xF0000000 VA<27:16>

3 64 MB 0xFC00.0000 VA<25:13> 512 MB 0xE000.0000 VA<28:16>

4 128 MB 0xF800.0000 VA<26:13> 1 GB 0xC000.0000 VA<29:16>

5 256 MB 0xF000.0000 VA<27:13> 2 GB 0x8000.0000 VA<30:16>

6 512 MB 0xE000.0000 VA<28:13> not allowed1 -- --

7 1GB 0xC000.0000 VA<29:13> not allowed1 -- --

Table 13-27 IOMMU Control Register (Continued)

Field Bits Description Type

Chapter 13 Programmer’s Model 13-27

Address space size and base address are controlled by TSB_SIZE and TBW_SIZ as

shown in Table 13-28. shows the same information is a different format. Virtual

addresses that are within U2P’s DVMA range (0x8000000-0xffffffff) but below the VA

base address determined by the value of TSB_SIZE and TBW_SIZE are rejected by

the IOMMU, and result in Target Aborts on the PCI bus.

Figure 13-1 Legal DVMA address configurations

TLB locking

For diagnostics and debugging, the IOMMU has the capability of restricting itself to

use just a single entry of the TLB. This is controlled by the LRU_LCKEN and

LRU_LCKPTR fields of the IOMMU Control Register. To properly turn locking on

the following sequence is required:

■ Set MMU_EN to 0.

12
8K

FFFF.FFFF

FF80.0000

FF00.0000

FE00.0000

FC00.0000

F800.0000

F000.0000

E000.0000

C000.0000

8000.0000

0000.0000

64
K

32
K

1K

2K

4K

8K

16
K

TSB SIZE

32
K

1K

2K

4K

8K

16
K

TSB SIZEVA

TBW SIZE = 64KTBW SIZE = 8K

13-28 UPA to PCI Interface (U2P) User’s Manual • May 1997

■ Set LRU_LCKEN to 1 (must be a separate PIO write).

■ Set LRU_LCKPTR to desired value (may be combined with previous PIO).

■ Set MME_DE to 1 (may be combined with previous PIO).

■ Invalidate all TLB entries.

■ Set MMU_EN to 1 and MMU_DE to 0.

To unlock the TLB:

■ Set LRU_LCKEN to 0.

13.1.7.2 TSB Base Address Register

The TSB Base Address Register contains the pointer to the first entry of the TSB

table. Together with part of the virtual address it uniquely identifies the address

where hardware should fetch the TTE from TSB table. The TSB table has to be

aligned on 8K boundary. The lower order 13 bits are assumed to be 0x0 during TSB

table lookup. Tables larger than 8K bytes are only constrained to be on 8K

boundaries rather than having to be size aligned.

Table 13-29 TSB Base Address Register

Field Bits Description Type

RESERVED 63:41 Reserved, read as zeros. R

TSB_BASE 40:13 Upper 28 bits of the PCI TSB’s physical address. R/W

RESERVED 12:0 Reserved, read as zeros. R

Chapter 13 Programmer’s Model 13-29

13.1.7.3 Flush Address Register

This is a write-only pseudo-register to allow software to perform an address based

flush of a mapping from the TLB. The data written to this address contains the page

number to be flushed. A TLB entry with a matching page number will be

invalidated.

Note – No hardware mechanisms exist to solve the potential race between a DVMA

translation needing a TLB entry and the write to the Flush Address Register

intended to flush that entry. Software must manage the interlock by guaranteeing

that no DVMA can be going on to the page which is being flushed.

13.1.7.4 TLB TAG Diagnostics Access

The TLB Tag Diagnostics Access provides diagnostics a path to the 16-entry TLB Tag

when the MMU_DE bit in the IOMMU Control Register is turned on.

Table 13-30 Flush Address Register

Field Bits Description Type

RESERVED 63:32 Reserved, write has no effect. W

FLUSH_VPN 31:13 31:16 = virtual page number if 64K page; bits

15:13 are don’t care.

31:13 = virtual page number if 8K page.

W

RESERVED 12:0 Reserved, write has no effect. W

Table 13-31 TLB Tag Diagnostics Access

Field Bits Description Type

RESERVED 63:25 Reserved, read as zeros. R

ERRSTS 24:23 Error Status:

00 = Protection Error,

01 = Invalid Error,

10 = Timeout,

11 = ECC Error (UE).

R/W

ERR 22 When set to 1, indicates that there is an error

associated with this TLB entry. The specific

error is indicated by the ERRSTS field.

R/W

W 21 Writable bit. When set, the page mapped by

the TLB has write permission granted.

R/W

13-30 UPA to PCI Interface (U2P) User’s Manual • May 1997

Note – Diagnostic accesses should insure that multiple match conditions are not

generated. The result of multiple matches is unpredictable.

13.1.7.5 TLB Data RAM Diagnostic Access

The TLB Data Diagnostics Access provides direct PIO accesses to 16 entries of TLB

Data RAM. MMU_DE bit in the IOMMU Control Register must be turned on to

perform the accesses. Following table shows the information included in the

returned data.

S 20 Stream bit, 1 = page is streamable, 0 = page is

not streamable.

R/W

SIZE 19 Page Size, 0=8K and 1=64K. R/W

VPN 18:0 VPN[31:13] R/W

Table 13-32 TLB Data RAM Diagnostics Access

Field Bits Description Type

RESERVED 63:31 Reserved, read as zeros. R

V 30 Valid bit, when set, the TLB data field is

meaningful.

R/W

RESERVED 29 Reserved, read as 0 (was local bus bit for

SBus).

R/W

C 28 Cacheable bit. 1=Cacheable access,

0=Non-cacheable.

R/W

PA[40:13] 27:0 28-bit Physical Page Number R/W

Table 13-31 TLB Tag Diagnostics Access (Continued)

Field Bits Description Type

Chapter 13 Programmer’s Model 13-31

13.1.7.6 LRU Queue Diagnostic Access

This LRU queue can be directly accessed by PIO read for diagnostic purpose. The

MMU_DE bit in IOMMU Control Register must be set to perform direct access.

There are 16 entries in the LRU Queue. Each entry contains a unique value from 0x0

to 0x1F. Entry 0 contains the pointer to a TLB entry which is least recently used, and

entry 15 contains the pointer to a TLB entry that is most recently used.

13.1.7.7 Virtual Address Diagnostic Register

This register is used to set up the virtual address for TLB compare diagnostic. The

virtual address is written to this register and the compare results from TLB can be

read.

Table 13-33 LRU Entry Diagnostics Access

Field Bits Description Type

RESERVED 63:4 Reserved, read as zeros R

LRU_DO 3:0 LRU entry selected R

Table 13-34 Virtual Address Diagnostic Register

Field Bits Description Type

RESERVED 63:32 Reserved, read as 0. R

VPN 31:13 Virtual page number R/W

RESERVED 12:00 Reserved, read as 0. R

13-32 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.7.8 TLB Tag Compare Diagnostic Access

Note – The TLB Tag Comparator Diagnostics Access provides diagnostics a path to

the 16-entry TLB Tag Comparator when the MMU_DE bit in the IOMMU Control

Register is turned on. Bit 0 represents the comparison result of the first TLB Tag

entry, and bit 15 represents the last.

In order to avoid invalid address translation after TLB diagnostics, the valid bits in

the TLB should be reset appropriately before doing any meaningful address

translation. Diagnostics write to read-only space or read from write-only space will

be ignored.

Table 13-35 TLB Tag Comparator Diagnostics Access

Field Bits Description Type

RESERVED 63:16 Reserved, read as zeros. R

COMP 15:0 TLB tag comparator output for each entry R

Chapter 13 Programmer’s Model 13-33

13.1.8 Streaming Buffer Registers

Table 13-36 Offset of Streaming Buffer Registers

Register Offset Access
Size

Streaming Buffer A Control Reg. 0x0.0000.2800 8 bytes

Streaming Buffer A Page Flush/Invalidate Reg 0x0.0000.2808 8 bytes

Streaming Buffer A Flush Synchronization Reg 0x0.0000.2810 8 bytes

Streaming Buffer B Control Reg. 0x0.0000.4800 8 bytes

Streaming Buffer B Page Flush/Invalidate Reg 0x0.0000.4808 8 bytes

Streaming Buffer B Flush Synchronization Reg 0x0.0000.4810 8 bytes

Streaming Buffer A Data RAM Diagnostic 0x0.0000.B000 - 0x0.0000.B3FF 8 bytes

Streaming Buffer A Error Status Diagnostics 0x0.0000.B400 - 0x0.0000.B7FF 8 bytes

Streaming Buffer A Tag Diagnostics 0x0.0000.B800 - 0x0.0000.B87F 8 bytes

Streaming Buffer A Line Tag Diagnostics 0x0.0000.B900 - 0x0.0000.B97F 8 bytes

Streaming Buffer B Data RAM Diagnostic 0x0.0000.C000 - 0x0.0000.C3FF 8 bytes

Streaming Buffer B Error Status Diagnostics 0x0.0000.C400 - 0x0.0000.C7FF 8 bytes

Streaming Buffer B Page Tag Diagnostics 0x0.0000.C800 - 0x0.0000.C87F 8 bytes

Streaming Buffer B Line Tag Diagnostics 0x0.0000.C900 - 0x0.0000.C97F 8 bytes

13-34 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.8.1 Streaming Buffer Control Register

This register controls the various functions of the selected streaming buffer.

Streaming cache entry locking

For diagnostics and debugging, each STC has the capability of restricting itself to use

just a single entry. This is controlled by the LRU_LE and LRU_LCKPTR fields of the

STC Control Register. To properly turn locking on the following sequence is

required:

■ Set SB_EN to 0.

■ Set LRU_LE to 1 (must be a separate PIO write).

■ Set LRU_LCKPTR to desired value (may be combined with previous PIO).

■ Set DE to 1 (may be combined with previous PIO).

■ Invalidate all STC entries.

■ Set SB_EN to 1 and DE to 0.

To unlock the STC:

■ Set LRU_LE to 0.

Table 13-37 Streaming Buffer General Control Register (2 copies)

Field Bits Description Type

Reserved 63:08 Reserved, read as 0 R

LRU_LPTR 7:4 LRU Lock Pointer. Works in conjunction with

LRU_LE to restrict all streaming cache

replacement operations to use a single entry.

Reset to 0

R/W

LRU_LE 3 LRU Lock Enable. Reset to 0. When set, only

the entry specified by LRU_LPTR will be

victimized.

R/W

RR_DIS 2 Rerun Disable. Reset to 0. When set, the

streaming cache will not rerun the PBM on

check or put line misses.

R/W

DE 01 Diagnostic Mode enable, Set to “1” to enable

diagnostic mode access. This bit is reset to 0.

R/W

SB_EN 00 Streaming buffer enable/disable. Set to “1” to

enable Streaming buffer. This bit is reset to 0.

R/W

Chapter 13 Programmer’s Model 13-35

13.1.8.2 Streaming Buffer Page Invalidate/Flush Register

This is a write-only pseudo register. It provides a means for software to cause an

entry in one streaming buffer with a matching tag to become invalidated/flushed.

The data written to this address contains the virtual page number to be used for

match comparison. The flush/invalidation is based on 8K page size.

13.1.8.3 Streaming Buffer Flush Synchronization Register

The Flush Synchronization Register provides a means for software to determine

when flush data has entered the coherent memory domain. Data written to this

register contains the physical address of the flush flag. Writing to this register

triggers U2P to write a 64-byte block of data to FLAG_PA, when all in progress flush

operations for the indicated streaming buffer are complete.The first doubleword of

the block will be set to 0x1, and the remaining doublewords will be set to 0x0. The

low order 6 bits of the FLAG_PA Address will be ignored. Please read the Streaming

Buffer chapter for more information of how the synchronization is done.

Table 13-38 Streaming Buffer Page Invalidate/Flush Register (2 copies)

Field Bits Description Type

FLUSH_A 31:13 8K virtual page to be invalidated/flushed W

reserved 12:0 These bits are ignored W

Table 13-39 Streaming Buffer Flush Synchronization Register (2 copies)

Field Bits Description Type

FLAG_PA 40:06 64-byte aligned physical address for synch update W

Reserved 05:00 These bits are ignored W

13-36 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.8.4 Streaming Buffer Page Tag Diagnostic Access

The Page Tags are directly accessible through PIO access. This can be done only

when the DE bit of the corresponding Stream Buffer Control Register is set to 1.

Caution – Valid bits on all entries should be reset to “0” after finishing diagnostics

of the Page Tag.

13.1.8.5 Streaming Buffer Line Tag Diagnostic Access

The Line Tag contains information related to the line in the streaming buffer. This

information can be directly accessed when streaming buffer is in diagnostic mode,

DE bit is set in the appropriate Stream Buffer Control Register.

The LTEP field should be set to zero if the page is readable. If writable, this field

should be set to one greater than the end byte address of the dirty data chunk in the

data ram (module buffer size of 64 bytes).

Caution – Valid bits on all entries should be reset to “0” after finishing diagnostics

of the Line Tag.

Table 13-40 Streaming Buffer Page Tag Format

Field Bits Description Type

PTPA 59:32 Physical page number (as an 8K page) R/W

PTVA 31:13 Virtual page number (as an 8K page) R/W

Reserved 12:02 Reserved, read as 0. R

PTVD 01 Valid bit for page R/W

PTRD 00 Read (/write_) bit for page R/W

Table 13-41 Streaming Buffer Line Tag Format

Field Bits Description Type

LRU 24:21 LRU index. Provides index of the least recently

used streaming cache line at any given time

R

LTSP 20:15 Start pointer for dirty data portion of buffer R/W

LTLA 14:08 Line address for this entry R/W

LTEP 07:02 End pointer (+1) for dirty data portion R/W

LTVD 01 Valid bit for line R/W

LTFH 00 Fetch Outstanding/Flush Necessary bit R/W

Chapter 13 Programmer’s Model 13-37

13.1.8.6 Streaming Buffer Data RAM Diagnostic Access

There are sixteen 64-byte entries in each Streaming Buffer. Physical address bit <13>

selects which Streaming Buffer, bits <9:6> selects the entry number and bits <5:3>

selects which 8-byte quantity to access in the entry.

13.1.8.7 Streaming Buffer Error Status Diagnostic Access

Each entry of Streaming Buffer has an error bit associated with it for DMA read

operations and another error bit associated with DMA write operations. These bits

are only visible to software during diagnostic mode. Each pair of error bits can be

accessed at any of 8 different addresses (one for each doubleword in the line -

addressing is the same as for the Data RAM diagnostic access), but these different

addresses are accessing the same physical bits bit.

Table 13-42 Streaming Buffer Data RAM Content Format

Field Bits Description Type

DRDA 63:00 Data R/W

Table 13-43 Streaming Buffer Data RAM Error Format

Field Bits Description Type

Reserved 63:2 Reserved R

DWER 1 DMA write error (PCI parity error) bit R/W

DRER 0 DMA read error (UPA read reply error) bit R/W

13-38 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.9 Interrupts

Interrupts delivered to the processor by U2P have the format shown in Figure 13-2.

Figure 13-2 U2P Interrupt Format

INR is an 11 bit interrupt number which indicates the source of the interrupt. Where

possible, the interrupt is precise (i.e., it points to only one interrupt source). This

permits the dispatch of the proper interrupt service routine without any register

polling. Bits 11 through 63 of the first word are guaranteed to be 0 for all U2P

generated interrupts. Software can use this knowledge to distinguish these

interrupts from others such as cross-calls. Words 1 and 2 of the interrupt packet are

also guaranteed to be 0.

For each interrupt source supported by U2P, there is an associated interrupt

mapping register (with the exception that all interrupts from a single PCI slot share

a single mapping register). These mapping registers contain the value of the INR

field that U2P will use for each interrupt. There are two formats of mapping registers

- partial and full.

For the partial format, the INR portion of the mapping register is read-only, and

consists of two parts. The upper 5 bits are the Interrupt Group Number (IGN) which

is shared by all interrupts using the partial format. It is read-only in the mapping

registers, but is writable via the U2P Control Register (see Table 13-2). The lower 6

bits of the INR are the Interrupt Number Offset (INO). This value is hardcoded by

U2P for each interrupt source, as shown in Table 13-44, and is available read-only in

the mapping register. For PCI slot interrupt mapping registers, INO<1:0> will

always be read as 00.

For the full format, which is only used by the Graphics and UPA expansion

interrupts, the full 11-bit INR field is writable, and under software control.

0

63 1110 0

0 INR

0

word 0:

word 1:

word 2:

Chapter 13 Programmer’s Model 13-39

1. This interrupt number is used in a system where the keyboard, mouse and serial interrupts are wire-
ORed together.

2. These interrupt numbers are used in systems where the keyboard, mouse and serial interrupts are
not wire-ORed together.

Table 13-44 Interrupt Number Offset Assignments

INO (binary) INO (hex) Interrupt Source

0bssnn 00-1f PCI Bus b Slot ss Interrupt nn

b = 0 for bus A, 1 for bus B

ss = 00 or 01 for bus A slots, 00-11 for bus B slots

nn = 00 for INTA#, 01 for INTB#, 10 for INTC#, 11

for INTD#

100000 20 SCSI

100001 21 Ethernet

100010 22 Parallel port

100011 23 Audio Record

100100 24 Audio Playback

100101 25 Power Fail

100110 26 Keyboard/mouse/serial1

100111 27 Floppy

101000 28 Reserved (spare HW int)

101001 29 Keyboard2

101010 2a Mouse2

101011 2b Serial2

101100 2c Timer/Counter 0

101101 2d Timer/Counter 1

101110 2e UE

101111 2f CE

110000 30 PCI Bus A Error

110001 31 PCI Bus B Error

110010 32 Power Management Wakeup

111111 3f RESERVED

13-40 UPA to PCI Interface (U2P) User’s Manual • May 1997

Each interrupt source also has a state register associated with it. This state register

can be either of type “level” or of type “pulse.”

In the level sensitive case, the state register has two bits, and there are three valid

states: IDLE, RECEIVED, and PENDING. IDLE represents the state where no

interrupts are reported. RECEIVED indicates that an interrupt has been detected and

should be delivered to the processor if the valid bit is set in its the mapping register.

PENDING is the state when the interrupt has been delivered to the processor. Any

subsequent detection of the same interrupt is ignored until software resets the state

machine back to IDLE.

The state register for each level sensitive interrupts can be set to any desired state by

software via the Clear Interrupt Registers.

In the pulse case, the state register consists of a single bit, with two states: IDLE and

RECEIVED. These states have the same meaning as for the level sensitive case. There

is no PENDING state, so the state machine transitions from RECEIVED back to IDLE

when the interrupt is dispatched to a processor.

Diagnostic access is provided to allow software to read the state register for all

interrupt sources.

See the hardware description of the Mondo Dispatch Unit if a more detailed

description of interrupt handling is needed.

13.1.9.1 Partial Interrupt Mapping Registers

The offset of each partial Interrupt Mapping Register can be derived from the

associated INO. There are two cases:

PCI Interrupts: IMR offset = 0x0.0000.0C00 + (INO & 0x3C) << 1

OBIO Interrupts: IMR offset = 0x0.0000.1000 + (INO & 0x1F) << 3

Table 13-45 Offset of Partial Interrupt Mapping Registers

Register Offset Access Size

PCI Bus A Slot 0 Int Mapping Reg 0x0.0000.0C00 8 bytes

PCI Bus A Slot 1 Int Mapping Reg 0x0.0000.0C08 8 bytes

PCI Bus B Slot 0 Int Mapping Reg 0x0.0000.0C20 8 bytes

PCI Bus B Slot 1 Int Mapping Reg 0x0.0000.0C28 8 bytes

PCI Bus B Slot2 Int Mapping Reg 0x0.0000.0C30 8 bytes

PCI Bus B Slot3 Int Mapping Reg 0x0.0000.0C38 8 bytes

SCSI Int Mapping Reg 0x0.0000.1000 8 bytes

Chapter 13 Programmer’s Model 13-41

1. The keyboard, mouse, and serial interrupts are defined for future devices which do not combine all
of the interrupts into one.

Ethernet Int Mapping Reg 0x0.0000.1008 8 bytes

Parallel Port Int Mapping Reg 0x0.0000.1010 8 bytes

Audio Record Int Mapping Reg 0x0.0000.1018 8 bytes

Audio Playback Int Mapping Reg 0x0.0000.1020 8 bytes

Power Fail Int Mapping Reg 0x0.0000.1028 8 bytes

Kbd/mouse/serial Int Mapping Reg 0x0.0000.1030 8 bytes

Floppy Int Mapping Reg 0x0.0000.1038 8 bytes

Spare HW Int Mapping Reg 0x0.0000.1040 8 bytes

Keyboard Int Mapping Reg1 0x0.0000.1048 8 bytes

Mouse Int Mapping Reg1 0x0.0000.1050 8 bytes

Serial Int Mapping Reg1 0x0.0000.1058 8 bytes

Timer 0 Int Mapping Reg 0x0.0000.1060 8 bytes

Timer 1 Int Mapping Reg 0x0.0000.1068 8 bytes

UE Int Mapping Reg 0x0.0000.1070 8 bytes

CE Int Mapping Reg 0x0.0000.1078 8 bytes

PCI A Error Int Mapping Reg 0x0.0000.1080 8 bytes

PCI B Error Int Mapping Reg 0x0.0000.1088 8 bytes

Power Management Wakeup Int

Mapping Reg

0x0.0000.1090 8 bytes

Table 13-45 Offset of Partial Interrupt Mapping Registers (Continued)

Register Offset Access Size

13-42 UPA to PCI Interface (U2P) User’s Manual • May 1997

The format for each partial interrupt mapping register is shown in Table 13-46

13.1.9.2 Full Interrupt Mapping Registers

There are only two full Interrupt Mapping Registers in U2P.

1. Accesses to either of these addresses behave identically; in other words, the registers are double
mapped.

Table 13-46 Format of Partial Interrupt Mapping Registers

Field Bits Description Type

Reserved 63:32 Reserved, read as 0 R

V 31 Valid bit

When set to 0, interrupt will not be dispatched

to CPU. Has no other impact on interrupt

state.

Reset to 0

R/W

TID 30:26 Target ID

UPA module ID of the processor that this

interrupt will be sent to.

Undefined at reset

R/W

Reserved 25:11 Reserved, read as 0. R

IGN 10:6 Interrupt Group Number. This field always

reflects the value of the IGN field in the U2P

Control Register.

R

INO 5:0 Interrupt Number Offset

The value of this field is hardwired for each

mapping register, as shown in Table 13-44.

R

Table 13-47 Offset of Full Interrupt Mapping Registers

Register Offset Access
Size

On board graphics Int Mapping Reg 0x0.0000.1098 and

0x0.0000.60001
8 bytes

Expansion UPA Int Mapping Reg 0x0.0000.10A0 and

0x0.0000.8000

8 bytes

Chapter 13 Programmer’s Model 13-43

The format for the full Interrupt Mapping Registers, shown in Table 13-48, is the

same as the partial Interrupt Mapping Registers, except for the INR field.

13.1.9.3 Clear Interrupt Registers

The offset of each Clear Interrupt Register can be derived from the associated INO.

There are two cases:

PCI Interrupts: CIR offset = 0x0.0000.1400 + (INO & 0x1F) << 3

OBIO Interrupts: CIR offset = 0x0.0000.1800 + (INO & 0x1F) << 3

The graphics and UPA expansion interrupts do not have associated Clear Interrupt

Registers (they are pulse type interrupts which are automatically cleared when sent).

Table 13-48 Format of Full Interrupt Mapping Registers

Field Bits Description Type

Reserved 63:32 Reserved, read as 0. R

V 31 Valid bit

When set to 0, interrupt will not be dispatched

to CPU. Has no other impact on interrupt

state.

Reset to 0

R/W

TID 30:26 Target ID

UPA module ID of the processor that this

interrupt will be sent to.

Undefined at reset

R/W

Reserved 25:11 Reserved, read as 0. R

INR 10:0 Interrupt Number

Undefined at reset

R/W

Table 13-49 Offset of Clear Interrupt Pseudo Registers

Register Offset Access Size

PCI Bus A Slot 0 Clear Int Regs 0x0.0000.1400 -

0x0.0000.1418

8 bytes

PCI Bus A Slot 1 Clear Int Regs 0x0.0000.1420 -

0x0.0000.1438

8 bytes

PCI Bus B Slot 0 Clear Int Regs 0x0.0000.1480 -

0x0.0000.1498

8 bytes

13-44 UPA to PCI Interface (U2P) User’s Manual • May 1997

PCI Bus B Slot 1 Clear Int Regs 0x0.0000.14A0 -

0x0.0000.14B8

8 bytes

PCI Bus B Slot 2 Clear Int Regs 0x0.0000.14C0 -

0x0.0000.14D8

8 bytes

PCI Bus B Slot 3 Clear Int Regs 0x0.0000.14E0 -

0x0.0000.14F8

8 bytes

SCSI Clear Int Reg 0x0.0000.1800 8 bytes

Ethernet Clear Int Reg 0x0.0000.1808 8 bytes

Parallel Port Clear Int Reg 0x0.0000.1810 8 bytes

Audio Record Clear Int Reg 0x0.0000.1818 8 bytes

Audio Playback Clear Int Reg 0x0.0000.1820 8 bytes

Power Fail Clear Int Reg 0x0.0000.1828 8 bytes

Kbd/mouse/serial Clear Int Reg 0x0.0000.1830 8 bytes

Floppy Clear Int Reg 0x0.0000.1838 8 bytes

Spare HW Clear Int Reg 0x0.0000.1840 8 bytes

Keyboard Clear Int Reg 0x0.0000.1848 8 bytes

Mouse Clear Int Reg 0x0.0000.1850 8 bytes

Serial Clear Int Reg 0x0.0000.1858 8 bytes

Timer 0 Clear Int Reg 0x0.0000.1860 8 bytes

Timer 1 Clear Int Reg 0x0.0000.1868 8 bytes

UE Clear Int Reg 0x0.0000.1870 8 bytes

CE Clear Int Reg 0x0.0000.1878 8 bytes

PCI A Async Error Clear Int Reg 0x0.0000.1880 8 bytes

PCI B Async Error Clear Int Reg 0x0.0000.1888 8 bytes

Power Management Wakeup Clear

Int Reg

0x0.0000.1890 8 bytes

Table 13-49 Offset of Clear Interrupt Pseudo Registers (Continued)

Register Offset Access Size

Chapter 13 Programmer’s Model 13-45

One such register exists per interrupt source. The lower 2 bits of the data word

written to this register specify the operation as shown in the table below. All other

bits should be written as 0 to guarantee future compatibility.

Note – The Interrupt Clear Registers are write only. To determine the current

interrupt state, use the interrupt state diagnostic registers instead.

13.1.9.4 Interrupt State Diagnostic Registers

The meaning of the state bits and their layout are shown in the tables below.

The locations of each set of state bits can also be derived from the associated INO

(except for Graphics and UPA expansion interrupts, for which the INO is fully

programmable):

Register: if (INO & 0x20) then OBIO Int Diag Reg else PCI Int Diag Reg.

Bits: Int Diag Reg [((INO & 0x1F)<<1)+1: ((INO & 0x1F)<<1)].

Table 13-50 Clear Interrupt Register

Field Bits Description Type

RESERVED 63:02 Reserved, undefined when read. R

STATE 01:00 State bits for the interrupt state machine

associated with this interrupt. The following

values may be written:

00 - Set state machine to IDLE state

01 - Set state machine to RECEIVED state

10 - Reserved

11 - Set state machine to PENDING state

W

Table 13-51 Offset of Interrupt State Diagnostic Registers

Register Offset Access Size Type

PCI Int State Diag Reg 0x0.0000.A800 8 bytes R

OBIO and Misc Int State Diag Reg 0x0.0000.A808 8 bytes R

13-46 UPA to PCI Interface (U2P) User’s Manual • May 1997

The Graphics and UPA expansion interrupts are pulse type interrupts, and all others

are level type interrupts.

Definitions of the registers are shown in a general way in the table below. Refer to

the formula above for specific bit positions. As an example, the bit position for PCI

Bus B Slot 1, INTB# is <43:42>.

Table 13-52 Level Interrupt State Meaning

Field Description

INT_STATE<1:0> 00 - IDLE state; no interrupt received or pending

01 - RECEIVED state; interrupt detected, but not dispatched

11 - PENDING state; interrupt is received and dispatched

10 - Illegal state

Table 13-53 Pulse Interrupt State Meanings

Field Description

INT_STATE<0> 0 - IDLE state; no interrupt received.

1 - RECEIVED state; interrupt detected, but not dispatched.

Table 13-54 PCI Int Diag Reg Definition

Bits Description

7:0 PCI Bus A Slot 0 INT# DCBA

15:8 PCI Bus A Slot 1 INT# DCBA

31:16 Reserved

39:32 PCI Bus B Slot 0 INT# DCBA

47:40 PCI Bus B Slot 1 INT# DCBA

55:48 PCI Bus B Slot 2 INT# DCBA

63:56 PCI Bus B Slot 3 INT# DCBA

Chapter 13 Programmer’s Model 13-47

.

Table 13-55 OBIO and Misc Int Diag Reg Definition

Bits Description

1:0 SCSI Int State

3:2 Ethernet Int State

5:4 Parallel Port Int State

7:6 Audio Record Int State

9:8 Audio Playback Int State

11:10 Power Fail Int State

13:12 Kbd/mouse/serial Int State

15:14 Floppy Int State

17:16 Spare HW Int State

19:18 Keyboard Int State

21:20 Mouse Int State

23:22 Serial Int State

25:24 Timer 0 Int State

27:26 Timer 1 Int State

29:28 UE Int State

31:30 CE Int State

33:32 PCI A Error Int State

35:34 PCI B Error Int State

37:36 Power Management Wakeup Int State

38 Graphics Int State

39 Expansion UPA Int State

63:40 Reserved (return 0 on read)

13-48 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.9.5 Interrupt Retry Timer Register

If an interrupt packet sent by U2P is NACK’d by the UPA interrupt handler, U2P

will wait for a certain number of clocks and resend the interrupt. This register

controls the number of clocks the interrupt dispatch unit should wait before

resending the interrupt packet. The count specified by this register is not precise: it is

a free running counter which the logic samples. It must roll through 0 twice before

the packet is retried.

Note – The Retry timer provides maximum of 1M clocks of delay before re-issuing

the interrupt to UPA. The maximum delay is approximately 31.5 msec. using the

internal U2P clock for a reference source (15.7 msec per iteration through the counter

with a worst case of nearly two complete cycles counting to 0). The minimum delay

is (count + 1) clock cycles.

Table 13-56 Offset of Interrupt Retry Timer Registers

Register Offset Access Size

Interrupt Retry Reg 0x0.0000.1A00 8 bytes

Table 13-57 Interrupt Retry Timer Register

Field Bits Description Type

RESERVED 63:20 Reserved, read as 0. R

LIMIT 19:0 Limit - the retry interval R/W

Chapter 13 Programmer’s Model 13-49

13.1.10 Counter/Timer Registers

13.1.10.1 Count Registers

Each Count Register provides means to load the timer with a preset value on write,

and return current value of timer on read. The count register normally increments

once per microsecond, however, when the WAKEUP_EN bit is set in either PBM’s

CSR, Timer/Counter 0 increments once every millisecond instead (Timer/Counter 1

continues to increment every microsecond).

Table 13-58 Offset of Counter/Timer Registers

Register Offset Access Size

Timer/Counter 0 Count Register 0x0.0000.1C00 8bytes

Timer/Counter 0 Limit Register 0x0.0000.1C08 8bytes

Timer/Counter 1 Count Register 0x0.0000.1C10 8bytes

Timer/Counter 1 Limit Register 0x0.0000.1C18 8bytes

Table 13-59 Count Register

Field Bits Description Type

RESERVED 63:29 Reserved, read as zeros R

COUNT 28:0 Value to preset counter on write, and current

count value on read.

R/W

13-50 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.1.10.2 Limit Registers

Table 13-60 Limit Register

Each Limit Register provides means to enable and disable the interrupt, reloading

the counter, setting periodic interrupt, and setting LIMIT for counter time-out

comparison.

13.1.11 Performance Monitor Registers

In order to gather useful statistics on the performance of U2P, a pair of registers

provide counts of key events. There are only two counters present, and the control

register selects the input for each of the counters.

Field Bits Description Type

Reserved 63:32 Reserved, read as 0. R

INT_EN 31 Enable interrupt from this timer. Reset to ‘0’ at

power up

R/W

RELOAD 30 Writes to LIMIT register with this bit set

causes the counter to restart at 0x0. Reads as

‘0’

W

PERIODIC 29 When set, causes counter to reset to 0x0 when

LIMIT is reached.

R/W

LIMIT 28:0 Counter interrupt comparison value R/W

Table 13-61 Offset of Performance Monitor Registers

Register Offset Access Size

Performance Monitor

Control Register

0x0.0000.0100 8 bytes

Performance Counter

Register

0x0.0000.0108 8 bytes

Chapter 13 Programmer’s Model 13-51

13.1.11.1 Performance Monitor Control Register

This register controls the events to be monitored by the Performance Counter

Register. The event counters in the Performance Counter Register will be reset when

the respective CLR{0,1} bits are written with a 1.

The table below defines the code to select monitored events in U2P.

Table 13-62 Performance Monitor Control Register

Field Bits Description Type

Reserved 63:16 Reserved, read as 0. R

CLR1 15 Clears the counter indicated by SEL1 W

Reserved 14:13 Reserved, read as 0. R

SEL1 12:8 Select event source for counter 1. Selected

source counter is cleared when CLR1 field is

written.

R/W

CLR0 7 Clears the counter indicated by SEL0 W

Reserved 6:5 Reserved, read as 0. R

SEL0 4:0 Select event source for counter 0. Selected

source counter is cleared when CLR0 field is

written.

R/W

Table 13-63 Performance Counter Event Sources

SEL0, SEL1 Event Sources

0x00 Number of streaming DVMA read transfers for PCI bus A

0x01 Number of streaming DVMA write transfers for PCI bus A

0x02 Number of consistent DVMA read transfers for PCI bus A

0x03 Number of consistent DVMA write transfers for PCI bus A

0x04 Number of streaming buffer misses for PCI bus A

0x05 Number of cycles PCI bus A is granted to DVMA1

0x06 Number of words transferred using DVMA on PCI bus A2

0x07 Number of U2P cycles PCI bus A is consumed by PIO1

0x08 Number of streaming DVMA read transfers for PCI bus B

0x09 Number of streaming DVMA write transfers for PCI bus B

0x0A Number of consistent DVMA read transfers for PCI bus B

13-52 UPA to PCI Interface (U2P) User’s Manual • May 1997

1. This is the number of internal clock cycles, which may be twice the number of PCI clock cycles on
bus A, and will be twice the number of PCI clock cycles on bus B.

2. The word count will increment whenever any of the four associated byte enables is active. If, during
the recording interval, there are any DMA’s that start or end on unaligned addresses, it won’t be
possible to determine the exact number of bytes transferred. In addition, the word count will incre-
ment twice for every data transfer on a 33MHz PCI bus, so the count should be scaled down before
using.

0x0B Number of consistent DVMA write transfers for PCI bus B

0x0C Number of streaming buffer misses for PCI bus B

0x0D Number of cycles PCI bus B is granted to DVMA1

0x0E Number of words transferred using DVMA on PCI bus B2

0x0F Number of U2P cycles PCI bus B is consumed by PIO1

0x10 Number of TLB misses

0x11 Number of interrupts

0x12 Number of interrupt NACK on UPA

0x13 Number of PIO read transfers

0x14 Number of PIO write transfers

0x15 Number of merge buffer transactions

0x16 Number of PCI DMA requests retried on bus A due to tablewalks

0x17 Number of PCI DMA requests retried on bus A due to STC

0x18 Number of PCI DMA requests retried on bus B due to tablewalks

0x19 Number of PCI DMA requests retried on bus B due to STC

0x1A-0x1F Reserved. Counter value is undefined when these sources are

chosen

Table 13-63 Performance Counter Event Sources (Continued)

SEL0, SEL1 Event Sources

Chapter 13 Programmer’s Model 13-53

13.1.11.2 Performance Counter Register

This is a 64-bit read-only register. Value read back contains the counts of two events

selected by Performance Monitor Control Register. The two counters operate

independently. When the counter reaches its maximum count, it will wrap around to

0x0 and continues counting. Software needs to detect and handle the overflow

condition.

13.2 PCI Address Spaces

13.2.1 UPA to PCI

Several regions of U2P’s UPA address space are used to access devices on the two

PCI busses supported by U2P. Most UPA transactions to these regions (exceptions

listed below) are forwarded to the appropriate bus segment, according to the

address map below. For the non-block transfers, any legal combination of bits in the

bytemask may be set (i.e. arbitrary bytemasks for writes, aligned 1, 2, 4, 8 or 16 byte

bytemasks for reads), within the size restrictions listed below. The PCI byte enables

generated by U2P for the transaction will match the UPA bytemask. The value of the

BOOT_BUS input pin affects the address map as noted in the table.

Table 13-64 Performance Counter Register

Field Bits Description Type

CNT0<31:0> 63:32 Contains value for event counter 0 R

CNT1<31:0> 31:00 Contains value for event counter 1 R

Table 13-65 Offsets for access from UPA space to PCI space

PCI Address Space UPA Offset UPA Commands Supported PCI Commands
Generated

PCI Configuration Space 0x0.0100.0000-

0x0.01FF.FFFF

P_NCRD_REQ (max 4 bytes)

P_NCWR_REQ (max 4 bytes)

Configuration Read

Configuration Write

(may also be Special Cycle)

PCI Bus A I/O Space 0x0.0200.0000-

0x0.0200.FFFF

P_NCRD_REQ (max 4 bytes)

P_NCWR_REQ (max 4 bytes)

I/O Read

I/O Write

13-54 UPA to PCI Interface (U2P) User’s Manual • May 1997

Note – All PCI address spaces use little-endian address byte ordering. Any accesses

made to a PCI address space should use one of the SPARC V9 little-endian support

mechanisms to get proper byte ordering. These mechanisms include little-endian

ASI’s or MMU support for marking pages little-endian.

13.2.1.1 PCI Configuration Space

PCI configuration cycles are generated by U2P in response to UPA reads and writes

to addresses in the PCI Configuration Space. The PCI Specification defines two

mechanisms for generating PCI configuration cycles, one of which is required to be

implemented for PC compatible systems; U2P, however, does not implement either

of those mechanisms. Instead, the following mechanism is used, which allows for

generation of both Type 0 and Type 1 configuration cycles. Type 0 configuration

cycles are used to configure devices on a PCI bus directly beneath this bridge. Type

1 configuration cycles are used to configure devices on subordinate PCI busses via

other bridges beneath this one.

A type 0 configuration cycle on a PCI bus is initiated by a host access to U2P where

address bits 32:24 equal 0x001 and bits 23:16 match the Bus Number register in the

bridge configuration header for one of the PBM blocks, and the Device Number is

not 0 (a Device Number of 0 designates the PBM itself, and the configuration cycle

will not appear on the PCI bus). The type 0 configuration cycle will be generated on

the corresponding PCI bus. Figure 13-3 shows how address bits 15:0 map to the PCI

configuration cycle address. Bits 10:0 come directly from the configuration space

address, and bits 30:11 are decoded from the Device Number field starting with

device number 0 (device number 0 is always used for the PBM itself). Bit 31 is

always 0 for a type 0 configuration cycle. PCI Bus B on U2P has no IDSEL# pins so

PCI Bus B I/O Space 0x0.0201.0000-

0x0.0201.FFFF

P_NCRD_REQ (max 4 bytes)

P_NCWR_REQ (max 4 bytes)

I/O Read

I/O Write

PCI Bus A Memory Space

(if BOOT_BUS=1, else

PCI Bus B Memory Space)

0x1.0000.0000-

0x1.7FFF.FFFF

P_NCRD_REQ

P_NCBRD_REQ

P_NCWR_REQ

P_NCBWR_REQ

Memory Read

Memory Read Line

Memory Write

Memory Write

PCI Bus B Memory Space

(if BOOT_BUS=1, else

PCI Bus A Memory Space)

0x1.8000.0000-

0x1.FFFF.FFFF

P_NCRD_REQ

P_NCBRD_REQ

P_NCWR_REQ

P_NCBWR_REQ

Memory Read

Memory Read Line

Memory Write

Memory Write

Table 13-65 Offsets for access from UPA space to PCI space (Continued)

PCI Address Space UPA Offset UPA Commands Supported PCI Commands
Generated

Chapter 13 Programmer’s Model 13-55

device IDSEL# lines must be resistively tied to individual AD[30:12] lines. It is

recommended that slot 0 be device 1, tied to AD[12]; slot 1 be device 2; tied to

AD[13], etc.

A type 1 configuration cycle is generated when the bus number field of the

configuration space address is greater than the Bus Number configuration register

value and less than or equal to the Subordinate Bus Number register for one of the

PBM blocks. Bus numbers that are outside of the Bus Number - Subordinate Bus

Number range for both PBM blocks will not generate a configuration cycle on either

bus. The type 1 configuration cycle address is constructed from the configuration

space address as shown in Figure 13-3.

Note – It is up to software to ensure that the Bus Number and Subordinate Bus

Number registers of the two PBM blocks are correctly programmed so that

configuration accesses are not passed to both PCI busses. U2P will detect such

duplicate bus ranges, and pass the configuration cycle only to bus A.

Figure 13-3 Type 0 Configuration Address Mapping

Register
Number
Function

01278101115

Number

1632

00Number
Device

Configuration Space Address

PCI Configuration Cycle Address

Register
Number
Function

0127810

Number 00

31 11

Bus Number

2324

0 0 0 0 0 0 0 0 1

0

30

2Device Number (Only one ‘1’)

Figure 13-4 Type 1 Configuration Address Mapping

Register
Number
Function

01278101115

Number

1632

00Number
Device

Configuration Space Address

PCI Configuration Cycle Address

Register
Number
Function

0127810

Number 10

31 11

Number
Device

1516

Bus NumberReserved

Bus Number

24 23

24 23

0 0 0 0 0 0 0 0 1

13-56 UPA to PCI Interface (U2P) User’s Manual • May 1997

13.2.1.2 Special Cycles

The generation of special cycles on a PCI bus is just a special case of the type 0

configuration cycle, where the Device Number and Function Number portions of the

address are all 1’s and the Register Number is all 0’s.

13.2.1.3 PCI I/O Space

PCI I/O cycles are generated by U2P in response to UPA reads and writes to

addresses in one of the PCI I/O Spaces (one for each bus). For each access to I/O

space, an I/O Read or I/O Write command is issued on the appropriate PCI bus. Bits

31:16 of the address on the PCI bus will be 0, and bits 15:0 will be a copy of UPA

address bits 15:0.

Note – It is expected that all PCI resources will be mapped by software into PCI

Memory space, and not PCI I/O space. Access to PCI I/O space is only provided to

allow for support of non-compliant PCI devices.

13.2.1.4 PCI Memory Space

PCI Memory cycles are generated by U2P in response to UPA reads and writes to

addresses in one of the PCI Memory Spaces (one for each bus). As a bus master, U2P

will never generate Dual-Address-Cycles; all PCI addresses generated will be 32 bits.

Bits 30:0 of the PCI address will be a copy of bits 30:0 of the UPA address, and bit 31

of the PCI address will always be 0. The memory command used for the PCI

transaction depends on the UPA transaction type, as shown in Table 13-65.

For PCI transactions with multiple data phases, U2P will always use Linear

Incrementing mode as defined by the PCI specification. Cache Line Toggle Mode is

not used.

Note – Because of the way the addressing is done, it is not possible for U2P to

generate an address in the range 0x8000.0000-0xFFFF.FFFF on either PCI bus.

Software should ensure that PCI targets on each bus are mapped into the correct

range so that they are accessible.

Chapter 13 Programmer’s Model 13-57

13.2.2 PCI to UPA

13.2.2.1 PCI Configuration Space

U2P does not respond to any Configuration Read or Configuration Write cycles on

either PCI bus. U2P is the central resource for each PCI bus, and is expected to be the

only device generating configuration cycles. Accesses from the UPA bus that target

configuration registers within either of the PBM blocks will be serviced by the PBM

block without generating a configuration cycle on the PCI bus.

Peer-to-peer transfers between two PCI devices on the same bus using Configuration

Read or Configuration Write commands aren’t (and can’t be) prohibited by U2P, but

are not expected to occur, since U2P is the only device that knows the correct

method for driving the IDSEL# lines.

13.2.2.2 PCI I/O Space

U2P does not respond to I/O Read or I/O Write commands on the PCI bus.

Peer-to-peer transfers between two PCI devices on the same bus using I/O Read or

I/O Write commands aren’t (and can’t be) prohibited by U2P, but they are not

expected to occur, since all PCI resources are intended to be mapped into Memory

Space.

13.2.2.3 PCI Memory Space

This is the space in which DVMA, DMA (IOMMU bypass), and PCI peer-to-peer

activity takes place. The final destination and address translation of a PCI Memory

transaction is based on:

■ Addressing mode used: 64-bit (DAC) vs. 32-bit (SAC).

■ PCI address bit <31>.

■ Value of MMU_EN in the IOMMU Control Register.

■ Value of PCI address bits <63:50> in DAC mode.

13-58 UPA to PCI Interface (U2P) User’s Manual • May 1997

Table 13-66 shows the various ways that U2P as a PCI target device deals with PCI

addresses.

Pass-through

In pass-through mode, UPA_Addr<40:31> = 0x000, UPA_Addr<30:0> =

PCI_Addr<30:0>. Pass-through transfers always generate cacheable transactions.

IOMMU Translation mode

In IOMMU translation mode, the physical address is obtained by performing a

virtual to physical translation through the IOMMU. The value of the C bit in the TTE

for the virtual page determines whether the UPA transaction generated is cacheable

or non-cacheable.

PCI peer-to-peer mode

In peer-to-peer mode, two devices on the same PCI bus transfer data without any

involvement from U2P. There is no address translation involved - the master device

simply puts out the PCI address to which the target device has been mapped. If no

device has been mapped there, the PCI master device will terminate its cycle with a

Master-Abort.

Bypass mode

In bypass mode, the UPA_Addr<40:0> = PCI_Addr<40:0>. The decision to generate

a cacheable vs. non-cacheable transaction is determined by the value of

PCI_Addr<40>, with a 0 specifying cacheable.

In all cases, U2P will only support bursts as a target device in Linear Incrementing

mode. If any of the reserved modes are used, U2P will issue a target disconnect after

the first data phase.

Table 13-66 PCI DVMA Modes of Operation

Mode Addr<31> MMU_EN Addr<63:50> Result

SAC 0 X N/A PCI peer-to-peer

(Ignored by U2P)

SAC 1 0 N/A Pass-through

SAC 1 1 N/A IOMMU Translation

(DVMA)

DAC X X 0x0000-

0x3FFE

Ignored by U2P

DAC X X 0x3FFF Bypass (DMA)

Chapter 13 Programmer’s Model 13-59

13.3 Address Map Summary

Table 13-67 Address Map Summary

Offset Register Access Size

0x0.0000.0000 UPA Port ID Register 8 bytes

0x0.0000.0008 UPA Configuration Reg 8 bytes

0x0.0000.0010 U2P Control Register 8 bytes

0x0.0000.0020 ECC Control Register 8 bytes

0x0.0000.0030 UE AFSR 8 bytes

0x0.0000.0038 UE AFAR 8 bytes

0x0.0000.0040 CE AFSR 8 bytes

0x0.0000.0048 CE AFAR 8 bytes

0x0.0000.0100 Performance Monitor Control Register 8 bytes

0x0.0000.0108 Performance Counter Register 8 bytes

0x0.0000.0200 IOMMU Control Register 8 bytes

0x0.0000.0208 TSB Base Address Reg 8 bytes

0x0.0000.0210 IOMMU Flush Register 8 bytes

0x0.0000.0C00 PCI Bus A Slot 0 Int Mapping Reg 8 bytes

0x0.0000.0C08 PCI Bus A Slot 1 Int Mapping Reg 8 bytes

0x0.0000.0C20 PCI Bus B Slot 0 Int Mapping Reg 8 bytes

0x0.0000.0C28 PCI Bus B Slot 1 Int Mapping Reg 8 bytes

0x0.0000.0C30 PCI Bus B Slot 2 Int Mapping Reg 8 bytes

0x0.0000.0C38 PCI Bus B Slot 3 Int Mapping Reg 8 bytes

0x0.0000.1000 SCSI Int Mapping Reg 8 bytes

0x0.0000.1008 Ethernet Int Mapping Reg 8 bytes

0x0.0000.1010 Parallel Port Int Mapping Reg 8 bytes

0x0.0000.1018 Audio Record Int Mapping Reg 8 bytes

0x0.0000.1020 Audio Playback Int Mapping Reg 8 bytes

0x0.0000.1028 Power Fail Int Mapping Reg 8 bytes

0x0.0000.1030 Kbd/mouse/serial Int Mapping Reg 8 bytes

13-60 UPA to PCI Interface (U2P) User’s Manual • May 1997

0x0.0000.1038 Floppy Int Mapping Reg 8 bytes

0x0.0000.1040 Spare HW Int Mapping Reg 8 bytes

0x0.0000.1048 Keyboard Int Mapping Reg 8 bytes

0x0.0000.1050 Mouse Int Mapping Reg 8 bytes

0x0.0000.1058 Serial Int Mapping Reg 8 bytes

0x0.0000.1060 Timer 0 Int Mapping Reg 8 bytes

0x0.0000.1068 Timer 1 Int Mapping Reg 8 bytes

0x0.0000.1070 UE Int Mapping Reg 8 bytes

0x0.0000.1078 CE Int Mapping Reg 8 bytes

0x0.0000.1080 PCI A Error Int Mapping Reg 8 bytes

0x0.0000.1088 PCI B Error Int Mapping Reg 8 bytes

0x0.0000.1090 Power Management Wakeup Int Mapping Reg 8 bytes

0x0.0000.1098 On board graphics Int Mapping Reg

(also mapped at 0x0.0000.6000)

8 bytes

0x0.0000.10A0 Expansion UPA Int Mapping Reg

(also mapped at 0x0.0000.8000)

8 bytes

0x0.0000.1400-

0x0.0000.1418

PCI Bus A Slot 0 Clear Int Regs 8 bytes

0x0.0000.1420-

0x0.0000.1438

PCI Bus A Slot 1 Clear Int Regs 8 bytes

0x0.0000.1480-

0x0.0000.1498

PCI Bus B Slot 0 Clear Int Regs 8 bytes

0x0.0000.14A0-

0x0.0000.14B8

PCI Bus B Slot 1 Clear Int Regs 8 bytes

0x0.0000.14C0-

0x0.0000.14D8

PCI Bus B Slot 2 Clear Int Regs 8 bytes

0x0.0000.14E0-

0x0.0000.14F8

PCI Bus B Slot 3 Clear Int Regs 8 bytes

0x0.0000.1800 SCSI Clear Int Reg 8 bytes

0x0.0000.1808 Ethernet Clear Int Reg 8 bytes

0x0.0000.1810 Parallel Port Clear Int Reg 8 bytes

0x0.0000.1818 Audio Record Clear Int Reg 8 bytes

0x0.0000.1820 Audio Playback Clear Int Reg 8 bytes

Table 13-67 Address Map Summary (Continued)

Offset Register Access Size

Chapter 13 Programmer’s Model 13-61

0x0.0000.1828 Power Fail Clear Int Reg 8 bytes

0x0.0000.1830 Kbd/mouse/serial Clear Int Reg 8 bytes

0x0.0000.1838 Floppy Clear Int Reg 8 bytes

0x0.0000.1840 Spare HW Clear Int Reg 8 bytes

0x0.0000.1848 Keyboard Clear Int Reg 8 bytes

0x0.0000.1850 Mouse Clear Int Reg 8 bytes

0x0.0000.1858 Serial Clear Int Reg 8 bytes

0x0.0000.1860 Timer 0 Clear Int Reg 8 bytes

0x0.0000.1868 Timer 1 Clear Int Reg 8 bytes

0x0.0000.1870 UE Clear Int Reg 8 bytes

0x0.0000.1878 CE Clear Int Reg 8 bytes

0x0.0000.1880 PCI A Async Error Clear Int Reg 8 bytes

0x0.0000.1888 PCI B Async Error Clear Int Reg 8 bytes

0x0.0000.1890 Power Management Wakeup Clear Int Reg 8 bytes

0x0.0000.1A00 Interrupt Retry Register 8 bytes

0x0.0000.1C00 Timer/Counter 0 Count Register 8 bytes

0x0.0000.1C08 Timer/Counter 0 Limit Register 8 bytes

0x0.0000.1C10 Timer/Counter 1 Count Register 8 bytes

0x0.0000.1C18 Timer/Counter 1 Limit Register 8 bytes

0x0.0000.2000 PCI Bus A Control/Status Register 8 bytes

0x0.0000.2010 PCI Bus A AFSR 8 bytes

0x0.0000.2018 PCI Bus A AFAR 8 bytes

0x0.0000.2020 PCI Bus A Diagnostic Register 8 bytes

0x0.0000.2800 Streaming Buffer A Control Reg. 8 bytes

0x0.0000.2808 Streaming Buffer A Page Flush/Invalidate Reg 8 bytes

0x0.0000.2810 Streaming Buffer A Flush Synchronization Reg 8 bytes

0x0.0000.4000 PCI Bus B Control/Status Register 8 bytes

0x0.0000.4010 PCI Bus B AFSR 8 bytes

0x0.0000.4018 PCI Bus B AFAR 8 bytes

0x0.0000.4020 PCI Bus B Diagnostic Register 8 bytes

Table 13-67 Address Map Summary (Continued)

Offset Register Access Size

13-62 UPA to PCI Interface (U2P) User’s Manual • May 1997

0x0.0000.4800 Streaming Buffer B Control Reg 8 bytes

0x0.0000.4808 Streaming Buffer B Page Flush/Invalidate Reg 8 bytes

0x0.0000.4810 Streaming Buffer B Flush Synchronization Reg 8 bytes

0x0.0000.6000 On board graphics Int Mapping Reg

(also mapped at 0x0.0000.1098)

8bytes

0x0.0000.8000 Expansion UPA Int Mapping Reg

(also mapped at 0x0.0000.10A0)

8bytes

0x0.0000.A000 DMA Scoreboard Diag Reg 0 8 bytes

0x0.0000.A008 DMA Scoreboard Diag Reg 1 8 bytes

0x0.0000.A400 IOMMU Virtual Address Diag Reg 8 bytes

0x0.0000.A408 TLB Tag Compare Diag 8 bytes

0x0.0000.A500-

0x0.0000.A57F

IOMMU LRU Queue Diag 8 bytes

0x0.0000.A580-

0x0.0000.A5FF

TLB Tag Diag 8 bytes

0x0.0000.A600-

0x0.0000.A67F

TLB Data RAM Diag 8 bytes

0x0.0000.A800 PCI Int State Diag Reg 8 bytes

0x0.0000.A808 OBIO and Misc Int State Diag Reg 8 bytes

0x0.0000.B000-

0x0.0000.B3FF

Streaming Buffer A Data RAM Diagnostic 8 bytes

0x0.0000.B400-

0x0.0000.B7FF

Streaming Buffer A Error Status Diagnostics 8 bytes

0x0.0000.B800-

0x0.0000.B87F

Streaming Buffer A Tag Diagnostics 8 bytes

0x0.0000.B900-

0x0.0000.B97F

Streaming Buffer A Line Tag Diagnostics 8 bytes

0x0.0000.C000-

0x0.0000.C3FF

Streaming Buffer B Data RAM Diagnostic 8 bytes

0x0.0000.C400-

0x0.0000.C7FF

Streaming Buffer B Error Status Diagnostics 8 bytes

0x0.0000.C800-

0x0.0000.C87F

Streaming Buffer B Page Tag Diagnostics 8 bytes

0x0.0000.C900-

0x0.0000.C97F

Streaming Buffer B Line Tag Diagnostics 8 bytes

Table 13-67 Address Map Summary (Continued)

Offset Register Access Size

Chapter 13 Programmer’s Model 13-63

0x0.0100.0000-

0x0.01FF.FFFF

PCI Configuration Space 1-4 bytes

0x0.0100.0000-

0x0.0100.00FF

PBM B PCI Configuration Header

(Location after reset, may be moved by SW)

1-4 bytes

0x0.0101.0000-

0x0.0101.00FF

PBM A PCI Configuration Header

(Location after reset, may be moved by SW)

1-4 bytes

0x0.0200.0000-

0x0.0200.FFFF

PCI Bus A I/O Space 1-4 bytes

0x0.0201.0000-

0x0.0201.FFFF

PCI Bus B I/O Space 1-4 bytes

0x1.0000.0000-

0x1.7FFF.FFFF

If BOOT_BUS=1, PCI Bus A Memory Space Any

0x1.0000.0000-

0x1.7FFF.FFFF

If BOOT_BUS=0, PCI Bus B Memory Space Any

0x1.8000.0000-

0x1.FFFF.FFFF

If BOOT_BUS=1, PCI Bus B Memory Space Any

0x1.8000.0000-

0x1.FFFF.FFFF

If BOOT_BUS=0, PCI Bus A Memory Space Any

All others Reserved None

Table 13-67 Address Map Summary (Continued)

Offset Register Access Size

13-64 UPA to PCI Interface (U2P) User’s Manual • May 1997

