
SchizoProgrammer’sReferenceManual

Release Date: September 30, 2007
1

Products Rights Notice:
Copyright © 1991-2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California
95054, U.S.A. All Rights Reserved

You understand that these materials were not prepared for public release and you assume all
risks in using these materials. These risks include, but are not limited to errors, inaccuracies,
incompleteness and the possibility that these materials infringe or misappropriate the
intellectual property right of others. You agree to assume all such risks.

THESE MATERIALS ARE PROVIDED BY THE COPYRIGHT HOLDERS AND OTHER
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS (INCLUDING ANY OF OWNER’S PARTNERS, VENDORS AND
LICENSORS) BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THESE MATERIALS, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Sun, Sun Microsystems, the Sun logo,
Solaris, OpenSPARC T1, OpenSPARC T2 and UltraSPARC are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in
the U.S. and other countries. Products bearing SPARC trademarks are based upon architecture
developed by Sun Microsystems, Inc. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd. The Adobe logo is a registered
trademark of Adobe Systems, Incorporated. Part of the products covered by these materials may
be derived from the Berkeley BSD systems licensed by the University of California. Sun
Microsystems, Inc. has intellectual property rights relating to technology embodied in the
product described in these materials. This distribution may include materials developed by third
parties who have intellectual property rights therein. Products covered by and information
contained in these materials may be controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or
nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or re-export to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists
may be prohibited
2 Schizo Programmer’s Reference Manual

1. Schizo Overview. 7

1.1 Introduction . 7

1.2 Schizo Summary . 8

1.2.1 Technology . 8

1.2.2 Package . 8

1.2.3 Design Size . 8

1.2.4 Custom Cells . 8

1.2.5 Frequency of Operation . 8

1.2.6 Power Consumption . 9

1.3 Design and Performance goals . 10

1.4 Schizo External Interfaces . 11

1.5 Schizo Block Diagram. 12

1.6 Schizo Block Overviews . 13

1.6.1 Safari Interface Overview . 13

1.6.1.1 Introduction. 13

1.6.1.2 Block Diagram. 13

1.6.1.3 Sub-Block Descriptions . 14

1.6.2 PCI Leaf Overview . 15

1.6.2.1 Introduction. 15

1.6.2.2 Block Diagram. 16

1.6.2.3 Sub-Block Descriptions . 16

2. Address Spaces and Translations. 20

2.1 Safari => Leaf interfaces . 20

2.1.1 Safari Cacheable Space. 20

2.1.2 Safari Non-cacheable Space. 20

2.1.2.1 Accesses to UPA . 22

2.1.2.2 Accesses to PCI . 23

2.1.3 Safari Interrupt Space. 24

2.1.4 Safari Admin Space . 24

2.2 UPA => Safari . 24

2.3 PCI => Safari . 24
1

2.3.1 PCI Configuration Space . 24

2.3.2 PCI IO Space . 24

2.3.3 PCI Memory Space . 24

2.3.3.1 PCI Address Translation Modes . 24

2.3.3.2 Safari Transactions Generated. 25

2.3.4 Interrupts . 26

3. Little-endian Address Spaces . 28

3.1 Overview . 28

3.2 Big- and Little-endian regions . 28

3.2.1 Address Space . 28

3.2.2 Internal blocks. 29

3.3 Byte Twisting . 29

3.4 Specific Cases. 30

3.4.1 PIOs . 31

3.4.2 DMA. 31

4. Register Descriptions. 32

4.1 General Information . 32

4.1.1 Abbreviations Used . 32

4.1.2 Access Size. 32

4.1.3 Unimplemented Addresses . 33

4.1.4 Physical Addresses. 33

4.2 Safari Interface. 34

4.2.1 Safari Device ID Register . 35

4.2.2 Address Match and Mask Registers . 35

4.2.3 Schizo Control/Status Register. 38

4.2.4 Safari Error Control/Log Registers . 41

4.2.5 ECC Control Register . 44

4.2.6 Correctable and Uncorrectable Error Asynchronous Fault Status Registers
45

4.2.7 Correctable and Uncorrectable Error Asynchronous Fault Address Register
47

4.2.8 Safari Energy Star Control Register . 48
2 Fire Programmer’s Reference Manual -

4.2.9 Safari Soft Pause Register . 48

4.2.10 Queue Control Register . 49

4.2.11 Safari DTag Diagnostic Registers . 50

4.2.12 Safari Debug Registers . 50

4.2.13 Safari Performance Control Register . 54

4.2.14 Safari Performance Counters Register . 55

4.3 UPA Leaf . 55

4.3.1 UPA64S Slot0 and Slot 1 Configuration Registers 55

4.3.2 UPA64S Interface Configuration Register . 56

4.3.3 UPA Energy Star Control Register . 57

4.4 PCI Leaf . 58

4.4.1 PCI Bus Module . 58

4.4.1.1 PCI Control/Status Register . 58

4.4.1.2 PCI Asynchronous Fault Status/Address Registers. 61

4.4.1.3 PCI Diagnostic Register . 63

4.4.1.4 PCI Energy Star (E*) Register . 64

4.4.1.5 PBM Configuration Space . 65

4.4.2 IOMMU Registers. 70

4.4.2.1 Translation Storage Buffer Overview . 70

4.4.2.2 IOMMU Control Register . 71

4.4.2.3 TSB Base Address Register . 74

4.4.2.4 Flush Page Register . 74

4.4.2.5 Flush Context Register . 75

4.4.2.6 TLB TAG Diagnostics Access . 75

4.4.2.7 TLB Data RAM Diagnostic Access . 76

4.4.2.8 LRU Queue Diagnostic Access . 76

4.4.2.9 TLB Compare Setup Diagnostic Register. 76

4.4.2.10 TLB Compare Result Diagnostic Access 77

4.4.3 Streaming Cache Operation . 77

4.4.3.1 Streaming Cache Overview . 77

4.4.3.2 Streaming Cache Functional Description. 79
3

4.4.3.3 Streaming Cache Programming Model 81

4.4.4 Streaming Cache Registers . 85

4.4.4.1 Streaming Cache Control Register . 85

4.4.4.2 Streaming Cache Page Invalidate/Flush Register 86

4.4.4.3 Streaming Cache Flush Synchronization Register 86

4.4.4.4 Streaming Cache Context Invalidate/Flush Register. 86

4.4.4.5 Streaming Cache Context Match Register 87

4.4.4.6 Streaming Cache Page Tag Diagnostic Access 87

4.4.4.7 Streaming Cache Line Tag Diagnostic Access 88

4.4.4.8 Streaming Cache Data RAM Diagnostic Access 89

4.4.4.9 Streaming Cache Error Status Diagnostic Access 89

4.4.5 Interrupt Registers . 90

4.4.5.1 Interrupt Mapping Registers . 92

4.4.5.2 Interrupt Clear Registers . 92

4.4.5.3 Interrupt State Diagnostic Registers. 93

4.4.5.4 Interrupt Retry Timer Register . 94

4.4.5.5 PCI Consistent DMA Flush/Sync Register 94

4.4.6 PCI Performance Monitor Registers. 95

4.4.6.1 Performance Monitor Control Register 96

4.4.6.2 PCI Performance Counter Register. 97

4.4.6.3 PCI Configuration/Idle Check Diag Register 97

5. Error Handling . 100

5.1 Overview . 100

5.2 Error Detection and Reporting . 100

5.2.1 Error Detection . 100

5.2.1.1 Detectable Safari Bus Errors . 100

5.2.1.2 Detectable PCI Bus Error . 102

5.2.1.3 Detectable UPA64S Errors . 103

5.2.1.4 Other Detectable Errors . 103

5.2.2 Error Reporting. 103

5.2.2.1 Summary of Error Reporting. 103
4 Fire Programmer’s Reference Manual -

5.3 Undetected Errors . 106
5

6 Fire Programmer’s Reference Manual -

SchizoOverview 1
1.1 Introduction
The Schizo chip is the primary connection between the Safari Bus and the I/O
Subsystem. Schizo features include:

• Full master and slave port connection to the high-speed Safari bus. Safari is a split
address / data packet-switched bus:
• Schizo provides controls for external switch required to reduce 256-bit Safari data

bus to 64-bit Schizo connection.
• Maximum data throughput of 1.2 Gbyte/sec.(150MHz Safari)
• Safari data is ECC protected.

• A UPA64S leaf, controlling a high-speed, slave only, UPA bus segment:
• UPA Datapath external to Schizo (Schizo provides switch controls)
• Compliant with UPA Specification Revision 1.1
• Support for two slave devices
• Sustainable write data throughput of 800Mb/sec.

• Two independent PCI leafs, each controlling a single PCI bus segments, each with
full master and slave support:

PCI Bus A has the following features:
• 5 volt or 3.3 volt signalling
• 64-bit data bus (also supports 32-bit devices)
• Compatible with the PCI Specification (Revision 2.1)
• PCI arbiter with support for up to six master devices

PCI Bus B has the following features:
• 5 volt or 3.3 volt signalling
• 64-bit data bus (also supports 32-bit devices)
• Compatible with the PCI Specification (Revision 2.1)
• Compatible with the PCI 66MHz extensions (3.3 volt only)
• PCI arbiter with support for up to two master devices

Additionally, each PCI leaf provides the following services:
• A 16-entry streaming cache for accelerating some kinds of PCI DVMA activity.
• An IOMMU with 16-entry TLB for mapping DVMA addresses.
7

1

• A “Mondo-Vector” Dispatch Unit, or MDU for delivering interrupt requests to a
CPU module. Each MDU provides support for several internal interrupt sources,
external PCI interrupts from up to six total slots (or external interrupts from
standard on-board IO devices in place of one of the slots). External interrupts are
delivered from a separate external interrupt concentrator via a simple 7-bit
interface.

1.2 Schizo Summary

1.2.1 Technology
• 0.35 micron, 3 level metal, 3.3 volt optimized CMOS standard cell library.

1.2.2 Package
• The Schizo die has 639 signal pads and 364 VSS/VDD pads for an approximate total

pad count of 1002.

• Schizo uses a flip-chip technology, and be packaged in a 1012 ball PBGA

1.2.3 Design Size
• 820+K gates

• 164K bits RAM

1.2.4 Custom Cells
The following non-standard cells are used in the Schizo design:

• Universal (5V/3.3V compliant) PCI I/O buffers

• 66MHz capable PCI I/O buffers

• Safari DTL I/O buffers

• PLL and PECL receiver for Safari clock

• PLL and PECL receiver for UPA clock

• PLL for each PCI leaf clock

1.2.5 Frequency of Operation
• Safari operation up to 150 MHz (6.7 ns) (may be reduced).

• UPA operation up to 120 MHz (8.33 ns).

• PCI bus A operation up to 33 MHz (30 ns) (internal logic at 66 MHz)

• PCI bus B operation up to 66 MHz (15 ns)
Schizo Overview 8

1

1.2.6 Power Consumption
• Maximum power consumption: 15 Watts
Schizo Overview 9

1

1.3 Design and Performance goals
Schizo is designed for high-speed data transfers between the Safari bus and each leaf
block (UPA, PCI-A, PCI-B). Table 1-1 shows the performance goals for each leaf block
considered independently. When multiple leaf blocks are active simultaneously,
performance can be less. Also .

These numbers are maximum performance estimates, and are based on the following
assumptions. Performance will degrade in cases where some of the assumptions are
not met.

• Only one leaf block is active at a time

• Associated leaf block is operating in highest performance mode (e.g. 66.7MHz, 64-
bit, no wait states for PCI)

• All necessary lookups hit (IOMMU, STC)

• Specific memory system performance: For the above estimates, 170 ns memory
latency was used (Typical of an excalibur system). For larger systems with bigger
memory latencys dma performance will be less then the numbers listed above.

• No additional load on Safari bus

Table 1-1 Schizo Performance Goals

Leaf Operation Latency Throughput

UPA PIO Read single (16
bytes)

UPA PIO Write single (16
bytes)

350 ns 800 Mb/sec

UPA PIO Read block (64 bytes)

UPA PIO Write block 800 Mb/sec

PCI PIO Read single 40 Mb/sec

PCI PIO Write single 100 Mb/sec

PCI PIO Read block 130 Mb/sec

PCI PIO Write block 285 Mb/sec

PCI Consistent DVMA Read using 170 ns
memory latency

76 Mb/sec

PCI Consistent DVMA Write using 170 ns
memory latency

358 Mb/sec

PCI Streaming DVMA Read using 170 ns
memory latency

204 Mb/sec

PCI Streaming DVMA Write using 170 ns
memory latency

392 Mb/sec
Schizo Overview 10

1

1.4 Schizo External Interfaces
Table 1-2 summarizes the signal pins required for the external interfaces of Schizo.

Table 1-2 Schizo External interface summary

Interface Pins Notes

Safari bus
Interface

124 Safari 64 bit interface

Schizo specific 130 Schizo specific data switch bus

Schizo Safari
debug

0 Schizo Safari debug pins are
multiplexed on the Z_AID lines
and Z_SYSCODE lines

UPA Interface 107 UPA Slave 64 bit interface

PCIA Interface 105 66MHz, 64 bit PCI interface

PCIA debug 6 66MHz, 64 bit PCI debug signals

PCIB Interface 124 33MHz, 64 bit PCI interface

PCIB debug 6 66MHz, 64 bit PCI debug signals

Safari PLL 9 bypass,clkout,tst,vdd,vss,clkneg,cl
kpos, bias,bias_vss

UPA PLL 9 bypass,clkout,tst,vdd,vss,clkneg,cl
kpos, bias,bias_vss

PCIA PLL 7 bypass,clkout,vdd,vss,leaf_clk,
bias,bias_vss

PCIB PLL 7 bypass,clkout,vdd,vss,leaf_clk,
bias,bias_vss

Test 5 JTAG port and diagnostics

Signal Total 639

Safari 232 64-bit datapath
Schizo Overview 11

1

1.5 Schizo Block Diagram
Figure 1-1 shows a conceptual block diagram of Schizo.

Figure 1-1 Schizo Conceptual Block Diagram

Data Access Command

DMA FSM PIO FSM

Merge Buffer
Safari
Interface
Block

UPA64S

Misc/
ArbJTAG

PBMMDU

STCMMU

CTRL
PCI-A
Leaf

5

PBMMDU

STCMMU

CTRL
PCI-B
Leaf

Leaf

Ctrl

10 MHz 150 MHz 100 MHz

66 MHz

64-bit, 33MHz PCI, 6 devices 64-bit, 66/33MHz PCI, 2/4 devicesRiscX

7

JTAG

Data/ECC AddressArb/Or

72

Ctrl

Addr

Ctrl

Switch CtrlSafari Interface

UPA64S
2 ports

Clocks/Misc
Schizo Overview 12

1

1.6 Schizo Block Overviews

1.6.1 Safari Interface Overview

1.6.1.1 Introduction

The Safari Interface provides the Safari specific functionality for the Schizo I/O chip.
This major block provides a consistent internal interface for multiple “leaves”,
implements the caching necessary to merge partial writes into coherent memory, retries
transactions when necessary for completion, and orders out-of-order data when
required.

Provision is made for three standard leaf ports, nominally two PCI and a NewLink
controller. It also provides an optimized slave-only interface for UPA64S graphics
accelerators.

1.6.1.2 Block Diagram

The blocks in the top level are organized functionally. The Command block deals with
the Safari Transaction Request group, i.e. commands and addresses. It includes the bus
or DTags (“dual” tags) for snooping, the command decoding logic and the mapping, or
address range, comparators. The Data Access block, deals with the Safari Data and
Data Transfer groups as well as the control of the Safari and Schizo ports of SDS
(Schizo Data Switch.) The Merge block implements the CTags, or local cache tags, and
the data store used for coherent writes. The DMA FSM and PIO FSM’s keep track of
unfinished transactions. They also manage the command and data flow to and from
the leaves.
Schizo Overview 13

1

Figure 1-1 Safari Interface Top Level Block Diagram

1.6.1.3 Sub-Block Descriptions

1.6.1.3.1 Command Block

The Command block contains the Safari snoop and address decode logic. It must
sustain a one command per cycle rate and meet fixed latencies on its outputs. Once
identified as accessing this Schizo, or its UPA, commands are queued to await more
leisurely processing.

Data Access Command

UPA64S

Merge Buffer

DMA FSM PIO FSM

Data Cmd/Addr

UPA

DTransId
DStat

TTransId
TargId AddrArb S,O,MSwitch

Control
Switch
Control

125 MHz 100 MHz
Schizo Overview 14

1

1.6.1.3.2 Data Access Block

The Data Access block takes care of transferring data to or from Schizo on Safari. It
controls the Safari and Schizo ports of SDS (Schizo Data Switch) and implements the
TTransId / TargId logic.

1.6.1.3.3 Merge Buffer

The Merge Buffer implements the coherency necessary to execute partial block writes
in a Safari based system. It will be use for DMA write transactions of less than 64-bytes
addressing coherent memory. While technically a cache, the merge buffers are used
only for writes, not to improve the performance of read operations.

1.6.1.3.4 Direct Memory Access Finite State Machine Block

The DMA FSM block tracks and reassembles outstanding DMA operations for the leaf
cells. It also manages the SI side of up-bound fifo in the asynchronous Internal
Interface.

1.6.1.3.5 PIO Finitie State Machine Block

The PIO FSM block tracks PIO operations sent to the leaf cells. It translates Safari
packets to Internal packets, it manages the SI side of the down-bound asynchronous
fifo in the Internal Interface, and it implements transaction level flow control for the
leaves.

1.6.2 PCI Leaf Overview

1.6.2.1 Introduction

The PCI leaf communicates between the internal interface to the Safari block, and a
single PCI bus segment. The main purpose of the PCI leaf is to allow PIO and DMA
operations to/from the PCI bus, as well as interrupts from PCI devices. In support of
the PCI bus segment, a streaming cache is used to improve the performance of certain
types of DMA access, and an IOMMU is provided for translating PCI DMA addresses
to physical addresses.

Figure 1-1 shows a block diagram for the PCI leaf. The paths shown are not actual
datapaths, but merely the main paths of communications between sub-blocks (not all
paths are shown).
Schizo Overview 15

1

1.6.2.2 Block Diagram

1.6.2.3 Sub-Block Descriptions

1.6.2.3.1 Interface Controller Block

The IFC, or interface controller, controls the PCI leaf’s communication with the internal
interface to the Safari block. This is almost entirely new logic for Schizo. The Interface
Controller (IFC) is responsible for controlling all the transactions between the other
blocks in the PCI leaf (STC, PBM, MDU, IOMMU, etc.) and the asynchronous packet
fifos to/from the Safari interface.

This includes:

Receiving, decoding and issuing PIO requests

Returning PIO read data and PIO write completion responses

Arbitrating amongst DMA requests

Forwarding DMA and interrupt requests, and keeping track of outstanding requests

Forwarding DMA write data

Receiving DMA read replies, and routing them to the appropriate block.

Tracking DMA write replies for retiring completed transactions and proper flow
control

Figure 1-1 PCI Leaf Top Level Block Diagram

PBM

IOMMUSTCMDU PRF

IFC

DMA PIO

Asynchronous Leaf Interface

64 6 slots

ArbCtrlData

6

RISCx
33/66 MHz PCI Bus

150 MHz

66 MHz
Schizo Overview 16

1

Forwarding interrupt replies (acks/nacks) to MDU block

handling PIO reads and writes, DMA reads and writes, MDU interrupts, acks and
nacks.

1.6.2.3.2 PCI Bus Module

The PBM, or PCI Bus Module, is the block directly responsible for operating on the PCI
bus as a master and slave device. It operates as a host-PCI bridge, and provides a
number of central resources for the PCI bus that it “controls.”

The PBM’s main features are;

Compliant with PCI Local Bus Specifcation, Revision 2.1.

Supports 33MHz and 66MHz PCI operation

Supports 64-bit DMA and PIO data operations

Supports 64-bit addressing as a target

Dual 64-byte DMA write buffers, quad 64-byte DMA Read buffer, a dual 64-byte PIO
write buffer, and a dual 64-byte PIO read buffer

As a PCI central resource, provides arbitration for up to 6 master devices.

As a PCI central resource, provides mechanism for generating PCI Configuration
cycles and PCI Special cycles

1.6.2.3.3 Streaming Cache

The streaming cache performs three primary functions. The first is to accumulate
sequentially addressed PCI write bursts into quantities the size of a system block. The
second function is to speculatively prefetch the next (increasing) sequential block(s) of
memory for an active PCI read stream. The third function is to act as a local cache for
small PCI read accesses to the same block.

The implementation of the streaming cache features:

A fully associative pool of 16 entries shared among read and write streams.

Each entry has storage for two 64-byte blocks of data.

Both reads and writes can ping-pong between lines, and stay connected for large PCI
burst sizes.

Dual ported data RAM for concurrent write (flush) and read (fill) operations.

64-bit wide datapaths

Least Recently Used entry allocation scheme

Virtual address tags for low lookup latency.

Physical address page translation for each entry to avoid IOMMU traffic.

One entry allotment per virtual page to reduce the problem of individual misbehaved
devices from thrashing the cache.
Schizo Overview 17

1

Individual byte write enables to support PCI bus byte granularity.

Only accesses to virtual pages that are designated by software as streamable pages can
use the streaming cache’s functions. The cache is not considered to be part of the
coherency domain, therefore software intervention is required to ensure a consistent
memory image. PCI devices, however, will see program order functionality without
any software intervention; reads following writes to the same address will see correct
data.

1.6.2.3.4 IO Memory Management Unit

The IOMMU performs virtual to physical address translation during DVMA cycles.
PCI master devices provide 32-bit virtual address at the beginning of a DVMA transfer.
The IOMMU translates it into 43 bits of physical address plus a cacheable/non-
cacheable identifier.

Translations are performed via a 16-entry fully-associative TLB (Translation Lookaside
Buffers) implemented in hardware and a TSB (Translation Storage Buffer) which is a
software managed data structure (one-level) in memory. The IOMMU performs a TSB
lookup (also known as hardware tablewalk) when the translation cannot be found in
the TLB, which stores recently used translation information. An error is returned to the
PCI master device if the TLB and TSB lookups fails to locate a valid mapping.

The Schizo IOMMU supports two different page sizes, 8K and 64K. Mixed page sizes
can be used in the system, but the TSB table lookup only assumes the smaller page
size. No overlapping of pages is allowed. Bypass operation is supported to allow
devices having their own translation facility to bypass IOMMU.

Translations may be flushed from the TLB via PIO operations. They can be flushed
either singly, by their virtual page-number, or in groups, by their context number (the
context number is an 8-bit field stored for each translation, which allows related
translations to be grouped).

1.6.2.3.5 Mondo Dispatch Unit

The MDU, or Mondo Dispatch Unit, is responsible for generating interrupt packets
(Mondo vectors). It has a seven-bit interface to an external interrupt concentrator
(RISCx), as well as several internal interrupt lines (timers, ECC logic, PBM errors, etc.).
The interface is shared between both MDU blocks (one in each PCI leaf).

When interrupts have been received, they are prioritized by the MDU, and one is
dispatched to the Safari bus via the internal interface. The MDU then waits for an ACK
or NACK for the interrupt. If the interrupt is NACK’d, the MDU will resend the
interrupt after a programmable interval. Only a single interrupt packet is handled by
the MDU at any given time.

Before dispatching any PCI related interrupt, the MDU block handshakes with the
PBM block to ensure that any outstanding DMA write data will be in memory before
the interrupt is received.
Schizo Overview 18

1

1.6.2.3.6 Performance Monitor

The PRF block is a performance monitor. It contains two 32-bit counters which can
each be programmed to count one of several different event types (such as interrupts,
TLB misses, words transferred, etc.).
Schizo Overview 19

AddressSpacesandTranslations 2
This chapter documents the regions of physical address space which Schizo can
generate transactions for, or will respond to on each of its interfaces (Safari, UPA, PCI-
A, and PCI-B). It also documents the modifications made to addresses as they pass
from one interface to another.

All Schizo operations involve at least one transaction on the Safari bus. Transactions
which logically transfer data between two leaf blocks do so by way of the Safari bus, so
they can conceptually be broken up into separate Leaf⇒ Safari and Safari⇒ Leaf
transactions which are documented below. Transactions in which Schizo does not
participate (e.g. peer-to-peer transfers between two devices on the same PCI bus) are
not documented here.

2.1 Safari =>Leaf interfaces

2.1.1 Safari Cacheable Space
Schizo does not implement any memory in cacheable space, and will not assert
Mapped for any Safari cacheable transaction. Schizo does have a small 8-entry cache
(Merge Buffer), so it does respond to cacheable transactions by asserting Owned when
necessary.

2.1.2 Safari Non-cacheable Space
Schizo decodes and responds to up to 9 separate regions in Safari non-cacheable space.
The first region is an 8Mb region that is allocated to every Safari agent. It is located at
physical address (0x80.0000*AID) in non-cacheable space, where AID is Schizo’s Safari
Agent ID. In addition, there are two programmable regions each for UPA, PCI-A, and
PCI-B. The base address and actual size for these regions are programmable via
registers in the Safari Interface Block. The regions are summarized in Table 2-1. The
20

2

Base Address IDs from the table are used later to refer to these regions. BE/LE
indicates whether the regions use a Big Endian convention or Little Endian convention
for byte ordering.

Some of these regions are further divided into distinct sections with specific meanings
(for example, SafariBase is divided into multiple sections so that each leaf block has
space for mapping its internal registers). These subdivisions are summarized in
Table 2-2. Again, the section IDs from the table will be used later to refer to
particular sections of within Schizo’s address regions.

Table 2-1 Schizo decoding of Safari non-cacheable space

Base Address ID Usage BE/
LE

Region
Size

Supported
Safari Transactions

Generated
Leaf Transactions

SafariBase Maps internal registers for all
Schizo leaf blocks.

BE 8 Mb See Table 2-2

Upa0Base Maps UPA64S Slot 0 slave
space

BE 2-8 Gb RIO UPA P_NCRD_REQ

RBIO UPA P_NCBRD_REQ

WIO UPA P_NCWR_REQ

WBIO UPA P_NCBWR_REQ

Upa1Base Maps UPA64S Slot 1 slave
space

BE 2-8 Gb RIO UPA P_NCRD_REQ

RBIO UPA P_NCBRD_REQ

WIO UPA P_NCWR_REQ

WBIO UPA P_NCBWR_REQ

PCI-A_MemBase Maps PCI-A Memory Space LE 2-4 Gb RIO PCI Memory Read

RBIO PCI Memory Read

WIO PCI Memory Write

WBIO PCI Memory Write

PCI-A_CfgIOBase Maps PCI-A Configuration
Space and PCI-A I/O Space

LE 32 Mb See Table 2-2

PCI-B_MemBase Maps PCI-B Memory Space LE 2-4 Gb RIO PCI Memory Read

RBIO PCI Memory Read

WIO PCI Memory Write

WBIO PCI Memory Write

PCI-B_CfgIOBase Maps PCI-B Configuration
Space and PCI-B I/O Space

LE 32 Mb See Table 2-2

Table 2-2 Subdivision of Schizo Address Regions

Section ID Usage BE/
LE

Base Address Size Supported
Safari Transactions

Generated
Leaf Transaction

FCode Safari device ID reg-
ister (Schizo does
not support optional
FCode prom).

BE SafariBase+
0x000000

4 Mb RIO (8 byte, aligned) Internal register
access

WIO (8 byte, aligned)
Address Spaces and Translations 21

2

The Safari physical address for any given Safari non-cacheable transaction to which
Schizo will respond can thus be divided as BaseAddress + Offset, where BaseAddress
is one of the above regions or sections, and Offset is less than the size of the
corresponding region/section. Software must guarantee that the regions do not
overlap so that this division is unique for a given address. Schizo’s behavior is
undefined if the regions do overlap. As the physical address is passed to the leaf block,
it typically undergoes some transformation, which is documented below for each
different destination.

2.1.2.1 Accesses to UPA
• UPA<38:33> = 000000
• UPA<32:4> = Offset<32:4>

SafariCSRBase Safari and UPA
interface blocks
internal registers

BE SafariBase+
0x400000

1 Mb RIO (8 byte, aligned) Internal register
access

WIO (8 byte, aligned)

PCI-A_CSRBase PCI-A leaf internal
registers

BE SafariBase+
0x600000

1 Mb RIO (8 byte, aligned) Internal register
access

WIO (8 byte, aligned)

PCI-B_CSRBase PCI-B leaf internal
registers

BE SafariBase+
0x700000

1 Mb RIO (8 byte, aligned) Internal register
access

WIO (8 byte, aligned)

PCI-A_ConfigBase Maps PCI-A
Configuration Space

LE PCI-A_CfgIOBase+
0x0000000

16 Mb RIO (0-4 bytes, spanning
single word only)

PCI Configuration
Read

WIO (0-4 bytes, spanning
single word only)

PCI Configuration
Write

PCI-A_IOBase Maps PCI-A
I/O Space

LE PCI-A_CfgIOBase+
0x1000000

16 Mb RIO (0-4 bytes, spanning
single word only)

PCI I/O Read

WIO (0-4 bytes, spanning
single word only)

PCI I/O Write

PCI-B_ConfigBase Maps PCI-B
Configuration Space

LE PCI-B_CfgIOBase+
0x0000000

16 Mb RIO (0-4 bytes, spanning
single word only)

PCI Configuration
Read

WIO (0-4 bytes, spanning
single word only)

PCI Configuration
Write

PCI-B_IOBase Maps PCI-B
I/O Space

LE PCI-B_CfgIOBase+
0x1000000

16 Mb RIO (0-4 bytes, spanning
single word only)

PCI I/O Read

WIO (0-4 bytes, spanning
single word only)

PCI I/O Write

Table 2-2 Subdivision of Schizo Address Regions

Section ID Usage BE/
LE

Base Address Size Supported
Safari Transactions

Generated
Leaf Transaction
Address Spaces and Translations 22

2

2.1.2.2 Accesses to PCI

2.1.2.2.1 PCI Configuration Space

When accessing PCI Configuration Space, Offset<23:16> defines the PCI Bus Number
that is being addressed, Offset<15:11> defines the Device Number, Offset<10:8> defines
the Function Number, and Offset<7:2> defines the Register Number.

If the Bus Number for a configuration access matches the Bus Number of the PCI Leaf
being accessed, a Type 0 Configuration Cycle will be generated. If the Bus Number is
greater than the PCI Leaf’s Bus Number, but less than or equal to the PCI Leaf’s
Subordinate Bus Number, a Type 1 Configuration Cycle will be generated. Otherwise,
the transaction will cause an error.

For Type 0 Configuration Cycles, the PCI address that is issued is built as follows:
• PCI<31:11> = 2 ^ DeviceNumber[i.e. PCI<11+DeviceNumber> will be set to 1, all

other bits in PCI<31:11> will be set to 0].
• PCI<10:8> = Function Number
• PCI<7:2> = Register Number
• PCI<1:0> = 00

In addition, if DeviceNumber falls within the supported range (1-4 for PCI-A, and 1-6
for PCI-B), one of Schizo’s IDSEL outputs will be asserted as follows:

• IDSEL<n:0> = 2 ^ (DeviceNumber-1) [i.e. IDSEL<DeviceNumber-1> will be set to
1, all other bits in IDSEL<n:0> will be set to 0. For PCI-A, n=3, and for PCI-B, n=5].

Example: if Offset<23:0> = 0x121C00, the configuration access is to Bus Number 0x12,
Device Number 3, Function Number 4. If the Bus Number of the PCI Leaf is 0x12, a
Type 0 Configuration Cycle will be generated with PCI<31:0> = 0x00004400, and
IDSEL<n:0> = 0x04.

A PCI Special Cycle is simply a special case of a Type 0 Configuration Cycle, where
Offset<15:2> = 0x3fc0.

For Type 1 Configuration Cycles, the PCI address that is issued is built as follows:
• PCI<31:24> = 00000000
• PCI<23:2> = Offset<23:2>
• PCI<1:0> = 01

See the PCI Specification for more details on the format of Configuration Space
addresses.

2.1.2.2.2 PCI IO Space

• PCI<31:24> = 00000000
• PCI<23:2> = Offset<23:2>
• PCI<1:0> = 00

2.1.2.2.3 PCI Memory Space

• PCI<31:2> = Offset<31:2>
• PCI<1:0> = 00
Address Spaces and Translations 23

2

2.1.3 Safari Interrupt Space
Schizo does not respond to any Safari Interrupt transactions.

2.1.4 Safari Admin Space
Schizo does not respond to any Safari Admin transactions.

2.2 UPA =>Safari
The UPA64S is a slave only interface, so there are no transactions for Schizo to respond
to on this bus.

2.3 PCI =>Safari
PCI-A and PCI-B are identical in terms of how the PCI address spaces are handled; this
section applies to both.

2.3.1 PCI Configuration Space
Schizo does not respond to any Configuration Read or Configuration Write cycles on
the PCI bus. Schizo is the central resource for each of its PCI buses, and is expected to
be the only device generating configuration cycles. Accesses from the Safari bus that
target configuration registers that are internal to a PCI Leaf Block will be serviced by
the PCI Leaf without generating a configuration cycle on the PCI bus.

2.3.2 PCI IO Space
Schizo does not respond to any PCI IO Space transactions (IO Read or IO Write
command types).

2.3.3 PCI Memory Space
This is the space in which DVMA, and DMA (IOMMU bypass) activity take place. PCI
peer-to-peer activity may also use this address space, and is included in the tables
below, although Schizo is not involved in these transfers.

2.3.3.1 PCI Address Translation Modes

The final destination and address translation of a PCI Memory transaction is based on:

• PCI addressing mode used: 64-bit (DAC) vs. 32-bit (SAC)

• PCI address bit <31> in SAC mode

• Value of MMU_EN in the IOMMU Control Register

• Value of PCI address bits <63:50> in DAC mode
Address Spaces and Translations 24

2

In all cases, Schizo will only support bursts as a target device in Linear Incrementing
mode (i.e. PCI<1:0> must be 00). If any of the reserved modes are used, Schizo will
only transfer a data phase, and then issue a target disconnect.

The following table shows the various ways that Schizo as a PCI target device deals
with PCI Memory Space addresses.

2.3.3.1.1 Pass-through

In pass-through mode, Safari<42:31> = 0x000, Safari<30:4> = PCI<30:4>. Pass-through
transfers always generate cacheable transactions on Safari, and are always done in
consistent mode.

2.3.3.1.2 IOMMU Translation mode

In IOMMU translation mode, the physical address is obtained by performing a virtual
to physical translation through the IOMMU. The value of the cacheable (C) bit in the
TTE for the virtual page determines whether the Safari transaction generated is
cacheable or non-cacheable. The value of the streamable (S) bit in the TTE determines
whether the transaction used consistent or streaming mode.

2.3.3.1.3 PCI peer-to-peer mode

In peer-to-peer mode, two devices on the same PCI bus transfer data without any
involvement from Schizo. The master device simply puts out the PCI address to which
the target device has been mapped. Whether there is any subsequent address
translation involved is device dependent. If no device has been mapped at the target
address, the PCI master device will terminate its cycle with a Master-Abort.

2.3.3.1.4 Bypass mode

In bypass mode, the Safari<42:4> = PCI<42:4>. A cacheable Safari transaction will be
generated if PCI<42> = 0, otherwise a non-cacheable transaction type will be used.
Bypass mode transactions are always done in consistent mode.

2.3.3.2 Safari Transactions Generated

The exact Safari transaction(s) initially generated for a given PCI DMA transaction
depends upon:

Table 2-3 PCI DVMA Modes of Operation

Mode Addr<31> MMU_EN Addr<63:50> Result

SAC 0 X N/A PCI peer-to-peer
(Ignored by Schizo)

SAC 1 0 N/A Pass-through

SAC 1 1 N/A IOMMU Translation (DVMA)

DAC X X 0x0000-
0x3FFE

Ignored by Schizo

DAC X X 0x3FFF Bypass (DMA)
Address Spaces and Translations 25

2

• Transfer direction: read/write

• Cacheability (C), as documented above.

• Transfer size.

The transfer size can be a complete cache line (64 bytes), or a partial cache line, in
which case the size refers not to the number of valid bytes, but to the number of bytes
spanned by the valid bytes, and then extended to the nearest 8-byte aligned boundary
on either side (e.g a transfer in which only bytes 31 and 32 are valid has a 16-byte
transfer size)

In consistent mode, the transfer size is determined solely by the burst length on the
PCI bus and the byte enables of each data phase. Schizo does not allow a consistent
mode transfer to cross a 64-byte aligned boundaries, and will disconnect on the PCI if
this is attempted.

In streaming mode (which is always cacheable), the transfer size is determined by the
circumstances that cause the streaming cache to issue a Safari request, and by the
recent history of the streaming cache line.

Note that this table does not show all of the potential Safari transactions that may be
issued in servicing a PCI DMA request. Extra transactions may be generated due to
SSM intervention.

2.3.4 Interrupts
For any interrupts generated by the PCI leaf (this includes all interrupts that Schizo is
currently capable of generating), a Safari INT transaction will be issued by Schizo,
using the following Safari address:

• Safari<42:39> = 0000
• Safari<38:34> = Schizo’s Node ID (NId field of Schizo Control/Status Register)
• Safari<33:29> = Schizo’s Agent ID (programmed via Schizo’s Z_AID pins, readable

in AID field of Schizo Control/Status Register)
• Safari<28:24> = 00000

Table 2-4 Safari Transactions generated for PCI DMA activity

C R/W Size
(bytes)

Safari Result(s)

0 Read Any ReadStream

0 Write 64 WriteStream

0 Write Partial
0-64

ReadToOwn
WriteBack

1 Read Any ReadBlockIO

1 Write 64 WriteBlockIO

1 Write Partial
0

WriteIO

1 Write Partial
8-64

n WriteIO transactions, where
n = Size / 8
Address Spaces and Translations 26

2

• Safari<23:19> = Target Node ID (T_NodeID field of Interrupt Mapping Register for
interrupt being generated)

• Safari<18:14> = Target Agent ID (T_AgentID field of Interrupt Mapping Register
for interrupt being generated)

• Safari<13:4> = 0000000000
Address Spaces and Translations 27

Little-endianAddressSpaces 3
3.1 Overview
The main interface of Schizo, the Safari bus, is big-endian. Other interfaces, notably the
two PCI buses, are little-endian. Schizo provides the necessary support to connect the
two together in a consistent fashion. The main feature is called “byte twisting”: from a
hardware perspective, the bytes on the datapath from a PCI bus are twisted around
before connecting to any other datapath within Schizo, so that bits 63:56 map to bits
7:0, bits 55:48 map to bits 15:8, etc. From another perspective, this ensures that logical
byte lanes are connected: the byte at address 0 on the big-endian side is directly wired
to the byte at address 0 on the little-endian side. As a result, all byte-sized PIOs and
byte-stream DMA is handled correctly. This, along with other features built into
SPARC V9 processors, provides a mechanism for all PIO and DMA activity to/from
the PCI bus to take place correctly.

3.2 Big- and Little-endian regions

3.2.1 Address Space
Schizo responds to several different regions of non-cacheable address space on the
Safari bus, as documented in Chapter , “Address Spaces and Translations.” As
indicated there, the following regions are little-endian, and all accesses to them use
byte twisting.
• PCI-A_MemBase
• PCI-A_ConfigBase
• PCI-A_IOBase
• PCI-B_MemBase
• PCI-B_ConfigBase
• PCI-B_IOBase

All other address regions are big-endian, and there is no byte twisting done for
accesses other than for the regions listed above.
28

3

3.2.2 Internal blocks
Given the above breakdown of address regions, most of Schizo’s internal blocks are in
big-endian address space: the 64-bit data paths within the Schizo design blocks are
connected to the Schizo’s Safari data bus with no byte twisting. The exceptions are the
PBM blocks within each PCI leaf. Since the PBM controls the little-endian PCI bus, it is
considered to be a little-endian block. For each data interface entering/leaving a PBM
block, byte twisting is in effect (in addition to interfacing to PIO and DMA buses
within the PCI leaf, each PBM has data interfaces with its associated streaming cache
block).

Note – Each PBM also contains some internal control/status registers mapped into big-
endian spaces (PCI-A_CSRBase and PCI-B_CSRBase). So that these registers are not
affected by the byte twisting of the PBM’s data paths to the rest of the chip, within the
PBM, the data path to these registers is “retwisted”.

3.3 Byte Twisting
Figure 3-1 diagrams what is meant by byte twisting. It shows how data is manipulated
from a 32-bit little-endian PCI bus to a 64-bit big-endian Safari bus. The case of a 64-bit
PCI bus is a straightforward modification of this diagram, and won’t be shown.

For each bus, a typical connection to memory is shown, along with the byte addresses
of the memory. This is mainly for reference - it is one way of showing exactly what is
meant by big- or little-endian. It helps to show that the “logical” byte lanes of each bus
are correctly connected through Schizo.
Little-endian Address Spaces 29

3

3.4 Specific Cases
The following sections detail specific types of data transfers, and how correct byte
ordering is maintained in each case.

63 0

0

1

2

3

4

5

6

7

addr[2]=1 addr[2]=0
63 0

0

1

2

3

4

5

6

7
31 0

Safari bus

Schizo

UPA64S
PCI-IOMMU
etc.

PBM

PCI bus

Memory

Memory

63 0

Figure 3-1 Schizo Byte Twisting

Saf. Block
Little-endian Address Spaces 30

3

3.4.1 PIOs

3.4.1.0.1 Normal

Due to the byte twisting, all byte sized PIOs work correctly. The byte lane used for a
given address on the big-endian side is directly wired to the byte lane used for that
address on the little-endian side.

For any access larger than a byte, byte-twisting is not sufficient. For example, if the 32-
bit value 0x12345678 is written to a 32-bit register on a PCI device, the PCI device will
interpret the value as 0x78563412 after byte twisting.

To correct for this, SPARC V9 CPUs have special support for little-endian access. By
either marking the page containing the PCI register as little-endian in the processor’s
MMU, or by using one of the little-endian Address Space Identifiers (ASIs), the CPU
will alter its ordering of the bytes, in effect undoing the byte-twisting that will be done
by Schizo, so that the PCI device correctly sees 0x12345678.

3.4.2 DMA

3.4.2.0.1 Data streams

Because byte lanes at the same address are connected, DMA of byte streams works
correctly without any further intervention. A PCI device that receives the byte stream
0x01 0x02 0x03 0x04 would pack the bytes into a 32-bit register starting with the LSB of
the register, i.e. 0x04030201. If this were transferred to memory on the PCI bus, the
value 0x01 would be at the lowest memory location, as desired.

After byte twisting, the value that appears on the Safari bus would be 0x01020304.
Since the MSB on the Safari bus is the lowest memory location, the value 0x01 is still
stored at the lowest memory location, as desired.

3.4.2.0.2 Descriptors

This case is similar to PIOs of size greater than one byte. With just byte twisting, a
DMA descriptor access would get the wrong byte ordering. For example, if the value
0x12345678 were set up in an address field in a descriptor, a PCI device using DMA to
fetch the descriptor would see the value as 0x78563412 instead.

To avoid this, the little-endian features of the processor are used again. Processor loads
and stores to the descriptors should be specified as little-endian. This will re-order the
bytes in memory when the descriptor is built so that after byte twisting, the PCI device
sees the correct value.
Little-endian Address Spaces 31

RegisterDescriptions 4
4.1 General Information
The following notes, warnings and restrictions apply to the registers throughout all
parts of Schizo.

4.1.1 Abbreviations Used
The following abbreviations are used throughout this chapter:

• R - Read only: a register field that is not writable
• R/W - Read/write: A standard register field
• R/W1C - Read / write 1 to clear: Writing a 0 to bits in this field has no affect, but

writing a 1 to a bit in this field will cause that bit to be set to 0.
• W - Write only: reads of this field return undefined data
• DMA - Direct Memory Access: A transaction initiated by a leaf block resulting in a

Safari transaction
• DVMA - Direct Virtual Memory Access: A subclass of DMA transactions in which

the address of the leaf transaction is treated as a virtual address and translated by
an MMU.

4.1.2 Access Size
Each register in Schizo has a natural access size, which is documented below. For most
registers this size is 8 bytes, but there are exceptions. Register accesses should always
be done with the indicated access size, or undefined behavior may result, including,
but not limited to:

• Incorrectly sized writes may still write data to the entire register
• Incorrectly sized reads may not trigger a side-effect (if any) of the register
• Reads or writes that are too large (span multiple registers) can return incorrect data

or corrupt any of the addressed registers.
32

4

4.1.3 Unimplemented Addresses
Any address within Schizo’s register address space that is not documented here as
belonging to a specific register is reserved and should not be read or written by
software. A read will return undefined data, and a write can corrupt the contents of
another register within Schizo, as Schizo may only decode as few address bits as
needed to distinguish existing registers.

4.1.4 Physical Addresses
Complete Safari physical addresses are not shown in here for any registers, since each
address region, except SafariBase, that Schizo responds to is directly relocatable. The
physical address for SafariBase is:

{10’h200, NID, AID, 23’d0}

where NID is Schizo’s Safari Node ID and AID is Schizo’s Safari Agent ID, (from the
Schizo Control/Status Register.)

Instead, all register addresses are documented as offsets within a particular address
region. Unless otherwise indicated, all offsets are with respect to the SafariBase region
(this accounts for almost all of Schizo’s registers).
Register Descriptions 33

4

4.2 Safari Interface

Table 4-1 Safari Register Offsets

Register Offset Access Size

Safari Device ID Register 0x00.0000 8 bytes

UPA0 Address Match Register 0x40.0000 8 bytes

UPA0 Address Mask Register 0x40.0008 8 bytes

UPA1 Address Match Register 0x40.0010 8 bytes

UPA1 Address Mask Register 0x40.0018 8 bytes

PCI-A_Mem Address Match Register 0x40.0040 8 bytes

PCI-A_Mem Address Mask Register 0x40.0048 8 bytes

PCI-A_Cfg_IO Address Match Register 0x40.0050 8 bytes

PCI-A_Cfg_IO Address Mask Register 0x40.0058 8 bytes

PCI-B_Mem Address Match Register 0x40.0060 8 bytes

PCI-B_Mem Address Mask Register 0x40.0068 8 bytes

PCI-B_Cfg_IO Address Match Register 0x40.0070 8 bytes

PCI-B_Cfg_IO Address Mask Register 0x40.0078 8 bytes

Schizo Control/Status Register 0x41.0000 8 bytes

Safari Error Control Register 0x41.0008 8 bytes

Safari Interrupt Control Register 0x41.0010 8 bytes

Safari Error Log Register 0x41.0018 8 bytes

ECC Control Register 0x41.0020 8 bytes

UE AFSR 0x41.0030 8 bytes

UE AFAR 0x41.0038 8 bytes

CE AFSR 0x41.0040 8 bytes

CE AFAR 0x41.0048 8 bytes

Safari Energy Star Control Register 0x41.0050 8 bytes

Safari Soft Pause Register 0x41.0058 8 bytes

Schizo Queue Control Register 0x41.1000 8 bytes

Safari DTag Diagnostic Registers 0x41.2000 - 0x41.2070 8 bytes

Safari CTag Diagnostic Registers 0x41.3000 - 0x41.3070 8 bytes

Safari Debug Registers 0x41.4000 - 0x41.4018 8 bytes

Safari Performance Control Register 0x41.7000 8 bytes

Safari Performance Counter Register 0x41.7008 8 bytes
Register Descriptions 34

4

4.2.1 Safari Device ID Register

4.2.2 Address Match and Mask Registers
Schizo is using a common implementation for all of its address match and mask
registers although in some cases this leads to extra bits that are not strictly necessary as
they allow Schizo to map a region larger than what is implemented by the
corresponding I/O bus (UPA64S or PCI).

Table 4-2 Safari Device ID Register

Bits Field Description Default Value Type

63:56 Cookie This field is provided so that the open boot PROM
code detects that Schizo does not support an
Fcode PROM.

0xFC R

55:27 Rsvd Reserved. Read as zero R

26:22 NID Safari Node ID. The Node ID is read-only here,
but may be set via JTAG or through the Schizo
Control and Status register.

0x00 R

21:17 AID Safari Agent ID. The Agent ID is read-only here,
but is set during reset from external pins on
Schizo, and may also be set via JTAG.

- R

16 M/S Master/Slave. Schizo is both a master and slave
device on Safari

1 R

15:10 MID Manufacturer ID. (SCHIZO)= 0x2A, (ELE) = 0x2B. 0x2A R

9:4 MT Module Type. 0x15 R

3:0 MR Module Revision. The following values of MR are
currently in use:

0x0 - Schizo 1.0 netlist (Schizo 1.0 parts)
0x2 - Schizo 2.0 netlist (Schizo 2.0 parts)
0x3 - Schizo 2.1 netlist (Schizo 2.1 parts)
0x4 - Schizo 2.2 netlist (Schizo 2.2 parts)
0x5 - Schizo 2.3 netlist (Schizo 2.3 parts, ELE

1.0 parts)
0x6 - Schizo 2.4 netlist (Schizo 2.4 parts)

Latest rev:
0x7 - Schizo 2.5 netlist (Schizo 2.5 parts, ELE

1.1 parts)

0x7 R
Register Descriptions 35

4

All incoming Safari addresses are checked by the Safari interface block against the
values programmed in all of the Address Match and Mask registers to decide if Schizo
is the target of the transaction. The address filtering is performed as described by the
picture below:

Note – Note both Mask and Match values should be programmed before setting Valid.
This can be done by writing the Mask register and then the Match register (with a
Match value and Valid.)

Figure 4-1 Address Filtering in Schizo

When a Safari request is filtered positively it is forwarded to the appropriate block
(Safari registers, UPA, PCI A or PCI B).

The format of the Address Match registers is:

Table 4-3 Address Match Register

Bits Field Description
Reset
Value Type

63 V Valid. Mapping is enabled when set to 1. Disabled
when set to 0

0 R/W

62:43 Rsvd Reserved. Read as zero. 0x0 0000 R

42:24 Match Match Value. This is the value of the base address
to be matched against.

Undefined R/W

23:0 Rsvd Reserved. Read as zero. 0x00 0000 R

Safari Address (PA)

42 24 23 0

Address Match Register (MATCH)

42 24 23 04363
Mask Value 0....................00...............0

Address Mask Register (MASK)

1919 19
42 24 23 04362

V Match Value 0....................00...........0

1 => Process
0 => Ignore

19

==

19 19

Process = valid & ((PA & MASK) == (MATCH & MASK))
Register Descriptions 36

4

The format of the Address Mask registers is:

Each pair of Address Match and Mask register can map a space between 16 MB and 64
GB, although not all possible sizes make sense. Table 4-5 lists the maximum, minimum
and recommended sizes for each address space. Internally, Schizo will ignore any

address bits beyond the maximum size listed here. If programmed to a larger size, the
given address space will be mirrored as many times as necessary in the Safari physical
address space.

UPA0 and UPA1 spaces are also qualified by slot empty and soft reset, so that
MappedOut is not asserted when a device is not able to respond. (See UPA CSR
definitions.)

Table 4-4 Address Mask Register

Bits Field Description
Reset
Value Type

63:43 RESERVED Reserved, read as 0. 0x00.0000 R

42:36 MASK_HI High order mask bits, always set to 1s. 0x7F R

35:24 Mask Mask Value. This mask is used to remove the least
significant bits before matching. It defines the size
of the mapped region. It must be string of 1
followed by a string of 0.

Undefined R/W

23:0 Rsvd Reserved. Read as zero 0x00 0000 R

Table 4-5 Address Match/Mask size limitations

Address Space
Min
Size

Max
Size

Recommended

CommentsSize Mask[35:24]

UPA0 2GB 8GB 8GB 0xE00 Existing UPA framebuffers require 2GB, future
devices may require up to 8GB. UPA does not
support >8GB per port.

UPA1

PCI-A_Mem 16MB 4GB 2GB 0xF80 Limits amount of slave space available for
mapping PCI devices. PCI doesn’t support more
than 4GB, while Schizo normally limits slave space
to 2GB at most. 4GB should only be used for
diagnostic loopback mode.

PCI-B_Mem

PCI-A_Cfg_IO 32MB 32MB 32MB 0xFFE If set to 16MB, either PCI Config transactions or
PCI IO transactions will be disabled (determined
by value of Match[24]).

PCI-B_Cfg_IO
Register Descriptions 37

4

4.2.3 Schizo Control/Status Register

Table 4-6 Schizo Control/Status Register

Bits Field Description Reset Value Type

63:58 Rsvd Reserved. Read as zero. 0x00 R

57:34 DTL Mode DTL mode for Driver/Receiver groups. Each pair
of bits represents the operating mode for an
independent group of DTL I/Os in Schizo. Group
0 is bits [35:34]. The groups are defined in
Table 4-7 (see Safari Electrical Spec for more
details). Encodings are:
0x0 - Reserved
0x1 - DTL-end mode
0x2 - DTL-mid mode
0x3 - DTL-2 mode
This field is read-only here. The DTL modes are
set upon reset from a table indexed by the value of
the Z_SYSCODE inputs to Schizo. The DTL modes
are JTAG Shadow R/W.

- R

33:32 STO Safari Time-Out interval. Values are:
• 0x0 => (Safari timeouts disabled)
• 0x1 => 228 Safari clock cycles (normal)
• 0x2 => 215 Safari clock cycles (debug)
• 0x3 => 29 Safari clock cycles (simulation)
This controls the duration of each Safari timeout
event defined in Table 4-11. All timeouts are
imprecise, and fall into the following range:
STO <= Actual Timeout <= 2 * STO
See cautions on changing STO while any timeout
events are enabled below.
The STO value is JTAG Shadow R/W.

0x0 R/W

31:30 Rsvd Reserved. Read as zero. 0x0 R

29:25 NID Safari Node ID. See warning below. The NID value
is JTAG Shadow R/W.

0x00 R/W

24:20 AID Safari Agent ID. The Agent ID is read-only here,
but is set during reset from external pins on
Schizo. The AID value is JTAG Shadow R/W.

- R

19:15 Rsvd Reserved. Read as zero. 0x00 R

14:9 LPA_BND Local Physical Address Bound. 0x3f R/W

8:3 LPA_BASE Local Physical Address Base.
The Local Physical Address Base and Bound are
used to define the Local Physical Address range
for COMA SSM system. It defines addresses that
are in COMA space. A Safari address is decoded
as “local” to a node if LPA_BASE ≤ PA[42:37] <
LPA_BND.

0x00 R/W

∞

Register Descriptions 38

4

4.2.3.0.1 Safari Time-Out

Timeouts may be changed between “disabled” (0x0) and any “enabled” state without
causing spurious timeouts. When in the “disabled” state timeouts are frozen, the
interval is literally infinite.

Warning – Changing the timeout interval between “enabled” states may cause
spurious timeouts. Changing the timeout interval from one “enabled” state, to the
“disabled” state, and then to a different “enabled” state may timeout in the shorter of
the two intervals.

4.2.3.0.2 Schizo NodeID

Warning – Changing the NID field in the Schizo Control/Status register causes the
location of Schizo’s registers to move in physical address space. The timing of this
change is imprecise. A subsequent access using the old address may still work, while a
subsequent access with the new address may fail.

The following sequence may be used to update the NID field (assuming that loads are
blocking):

• store @old_CSR_address, new_NID
• load @old_CSR_address (this load may receive an unmapped error)
• load @new_CSR_address (this load should work unless a real error occurs)

Because of the delays associated with writing to a Schizo register, the potential error in
the above sequence will typically not occur, although it is possible under some
conditions.

2 SLOWSNP Slow snoop. Controls SNOOP_DELAY parameter
from Safari spec:
SLOWSNP=0 => SNOOP_DELAY=0
SLOWSNP=1 => SNOOP_DELAY=2
Value is set upon reset from a table indexed by the
value of the Z_SYSCODE inputs to Schizo (see
Table 4-7). Also JTAG Shadow R/W.

- R

1 HBM Hierarchical Bus mode (ADDR_REP in Safari
spec).
HBM=0 => No address repeaters in system
HBM=1 => System has address repeaters
Value is set upon reset from a table indexed by the
value of the Z_SYSCODE inputs to Schizo (see
Table 4-7). Also JTAG Shadow R/W.

- R

0 SSM Scalable Shared Memory mode enable.
This bit may not be changed while DMA is
enabled. Also JTAG Shadow R/W.

0 R/W

Table 4-6 Schizo Control/Status Register

Bits Field Description Reset Value Type
Register Descriptions 39

4

4.2.3.0.3 Schizo Syscode Table

Schizo has an on-chip table which is used to initialize several fields in the Schizo
Control/Status register. The table is indexed by the value of the Z_SYSCODE[2:0] pins
on Schizo during reset. The values in the table are:

Table 4-7 Schizo Syscode Table

Excalibur Daktari Serengeti Reserved
Verif-
only

Z_SYSCODE[2:0] 5 (MP) 7 (UP) 3 (Mid) 2 (End) 0 4,1 6

HBM (S_CSR[1]) 0 0 1 1 1 - 0

SLOWSNP (S_CSR[2]) 0 0 0 0 1 - 1

DTL GROUP 0 (S_CSR[35:34]):
• S_COMMAND_L[1:0]
• S_ADDRESS_L[42:4]
• S_MASK_L[9:0]
• S_ATRANSID_L[8:0]
• S_ADDRPTY_L

3
(DTL-2)

1
(DTL-
end)

2
(DTL-
mid)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 1 (S_CSR[37:36]:
• S_INCOMING_L
• S_PREREQIN_L

1
(DTL-
end)

1
(DTL-
end)

2
(DTL-
mid)

1
(DTL-
end)

1
(DTL-end)

- 3
(DTL-2)

DTL GROUP 2 (S_CSR[39:38]):
• S_ADDRARBOUT_L
• S_ADDRARBIN_L[4:0]

3
(DTL-2)

1
(DTL-
end)

2
(DTL-
mid)

1
(DTL-
end)

1
(DTL-end)

- 3
(DTL-2)

DTL GROUP 3 (S_CSR[41:40]):
• S_PAUSEOUT_L
• S_MAPPEDOUT_L
• S_SHAREDOUT_L
• S_OWNEDOUT_L

3
(DTL-2)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 4 (S_CSR[43:42]):
• S_PAUSEIN_L
• S_OWNEDIN_L
• S_SHAREDIN_L
• S_MAPPEDIN_L
• Z_PAUSEIN1_L
• Z_OWNEDIN1_L
• Z_SHAREDIN1_L
• Z_MAPPEDIN1_L

1
(DTL-
end)

1
(DTL-
end)

2
(DTL-
mid)

1
(DTL-
end)

1
(DTL-end)

- 3
(DTL-2)

DTL GROUP 5 (S_CSR[45:44]):
• S_DTRANSID_L[8:0]
• S_DTARG_L
• S_DSTAT_L[1:0]

3
(DTL-2)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 6 (S_CSR[47:46]):
• S_TARGID_L[8:0]
• S_TTRANSID_L[8:0]

3
(DTL-2)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)
Register Descriptions 40

4

Note – Z_PAUSEIN1_L, Z_OWNEDIN1_L, Z_SHAREDIN1_L, & Z_MAPPEIN1_L
need external pullups when Z_SYSCODE = 0x3, i.e. Daktari Mid configurations.

Note – S_ERROR_L, S_FREEZE_L, S_FREEZEACK, & S_CHANGE_L need external
pullups when Z_SYSCODE = 0x5 or 0x7, either Excalibur configuration.

Note – S_FREEZEACK has been specially modified to tri-state when “driving high”
and configured as “DTL-mid”. (I.e. it isn’t true DTL-mid.)

4.2.4 Safari Error Control/Log Registers

The Safari Error Control Register controls which of several possible errors will result in
the assertion of the S_ERROR_L signal by Schizo on the Safari bus. The Safari Interrupt
Control Register controls which of the same set of possible errors will cause Schizo to
issue a Safari Error Interrupt, and the Safari Error Log Register logs which of the errors
have been detected.

DTL GROUP 7 (S_CSR[49:48]):
• S_DATAARBGNT_L
• S_DATAARBREQ_L
• S_TARGARBGNT_L
• S_TARGARBREQ_L
• Z_DATAARBGNT1_L
• Z_DATAARBREQ1_L
• Z_TARGARBGNT1_L
• Z_TARGARBREQ1_L

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 3
(DTL-2)

DTL GROUP 8 (S_CSR[51:50]):
• S_PARITYSINGLE_L
• S_PARITYBIDI_L
• Z_PARITYSINGLE1_L
• Z_PARITYBIDI1_L

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 9 (S_CSR[53:52]):
• Z_DATA_L[71:0]
• Z_DPAR_L

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 10 (S_CSR[55:54]):
• Z_SCTL#_L[1:0] (# = 0,1,2,3)
• Z_ZCTL#_L[2:0] (# = 0,1,2,3)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-
end)

1
(DTL-end)

- 2
(DTL-
mid)

DTL GROUP 11 (S_CSR[57:56]):
• S_ERROR_L
• S_FREEZE_L
• S_FREEZEACK
• S_CHANGE_L

2
(DTL-
mid)

2
(DTL-
mid)

2
(DTL-
mid)

2
(DTL-
mid)

1
(DTL-end)

- 3
(DTL-2)

Table 4-7 Schizo Syscode Table

Excalibur Daktari Serengeti Reserved
Verif-
only

Z_SYSCODE[2:0] 5 (MP) 7 (UP) 3 (Mid) 2 (End) 0 4,1 6
Register Descriptions 41

4

All three registers share a similar format. The common portion is detailed in Table 4-11.

Table 4-8 Safari Error Control Register

Field Bits Reset Description Type

ERREN 63 0 Global error report enable. When set to 0, no
errors are reported on S_ERROR_L. When set to
1, errors enabled in the rest of this register are
reported on S_ERROR_L.

R/W

Individual Error Enables 62:0 - See Table 4-11 for bit assignments.
Reserved bits are read only, all others are R/W.
When any of these bits are set to 1, Schizo will
assert S_ERROR_L if the associated error is
detected and ERREN is also 1.
The value of these enables is persistent across
reset. Bits are JTAG Shadow R/W.

R/W

Table 4-9 Safari Interrupt Control Register

Field Bits Reset Description Type

SE_INTEN 63 0 Global error interrupt enable. When set to 0, no
errors are reported via a Safari Error Interrupt.
When set to 1, errors enabled in the rest of this
register are reported as a Safari Error Interrupt.

R/W

Individual Interrupt
Enables

62:0 - See Table 4-11 for bit assignments.
Reserved bits are read only, all others are R/W.
When any of these bits are set to 1, Schizo will
issue a Safari Error Interrupt if the associated
error is detected and SE_INTEN is also 1.
The value of these enables is persistent across
reset. Bits are JTAG Shadow R/W.

R/W

Table 4-10 Safari Error Log Register

Field Bits Reset Description Type

ERR_OUT 63 - Error Out Asserted. This bit is set to a 1 anytime
Schizo asserts S_ERROR_L. It is persistent across
reset, and can only be cleared by writing to this reg-
ister.

R/W1C

Individual
Error Logs

62:0 - See Table 4-11 for bit assignments.
Reserved bits are read only, all others are R/W1C.
Schizo will unconditionally set a log bit to 1 when
the associated error is detected, regardless of the
state of error and interrupt enables.
The value of these enables is persistent across reset.
Bits are JTAG Shadow R/W.

R/W1C
Register Descriptions 42

4

Note – When CPU1 is not present, CPU1_Parity_Single and CPU1_Parity_BiDi must
not be enabled. Without the CPU generating correct parity false parity errors will be
logged, and if enabled will be reported causing system problems.

Table 4-11 Safari common error bit assignments

Error Bit Description

Bad_Safari_Cmd 62 Unrecognized Safari command received

SSM_Disabled 61 Safari SSM command received and SSM mode not set

Bad_MIT-A_Cmd 60 Unrecognized command received from internal PCI-A leaf

Bad_MIT-B_Cmd 59 Unrecognized command received from internal PCI-B leaf

(Bad_MIT-N_Cmd) 58 Unused

Reserved 57:14 Reserved, read-only bits, read as 0

CPU1_Parity_Single 13 Parity error from CPU1 detected among signals protected by
ParitySingle.
Detected only when Schizo is in Excalibur mode

CPU1_Parity_BiDi 12 Parity error from CPU1 detected among signals protected by
ParityBidi.
Detected only when Schizo is in Excalibur mode

CPU0_Parity_Single 11 Parity error from CPU0 detected among signals protected by
ParitySingle.
Detected only when Schizo is in Excalibur mode

CPU0_Parity_BiDi 10 Parity error from CPU0 detected among signals protected by
ParityBidi.
Detected only when Schizo is in Excalibur mode

Safari_CIQ_Timeout 9 Transaction at head of CIQ longer than timeout interval

Safari_LPQ_Timeout 8 Transaction at head of LPQ longer than timeout interval

Safari_SFPQ_Timeout 7 Transaction at head of SFPQ longer than timeout interval

Safari_UFPQ_Timeout 6 Transaction at head of UFPQ longer than timeout interval

Safari_Addr_Par_Err 5 Safari Address Parity Error

Safari_Unmapped_Err 4 MappedIn snoop input not seen for transaction initiated by
Schizo

Reserved 3 Reserved, read-only bits, read as 0.

Safari_BusError_DStat 2 Schizo received a Safari data packet for a non-cacheable
DMA read with DStat indicating a Bus Error

Safari_Timeout_DStat 1 Schizo received a Safari data packet for a non-cacheable
DMA read with DStat indicating a Timeout

Safari_Illegal_DStat 0 Schizo received a Safari data packet with an illegal DStat
value. Illegal DStat combinations consist of BusError or
Timeout DStat received in response to anything other than an
RIO or RBIO transaction.
Note that Schizo does not check PIOW’s to UPA for this
error.
Register Descriptions 43

4

4.2.5 ECC Control Register
The Safari data path is protected by an Error Correcting Code. Each 128 bits of data is
protected by a 9-bit SEC-DED-S4ED ECC field. The Mtag field is also protected by a 4-
bit SEC-DED ECC field.

The ECC Control Register controls Schizo’s handling of the Safari ECC fields, and
associated error interrupts. In addition to the enables that are contained here, the Safari
bus has a mechanism for dynamically signalling whether ECC is to be checked (via the
DStat field). ECC must be enabled both in the ECC Control Register and the DStat field
in order for Schizo to perform ECC checking.

Note – The timing of changes to this register when a PIO write is performed is
somewhat indeterminate. If software wants to ensure that a change takes effect before
proceeding, it should follow the PIO write by a PIO read of this register.

Table 4-12 ECC Control Register

Bits Field Description Reset Value Type

63 ECC_EN ECC Enable. ECC is checked on incoming data
when set to one, and DStat allows it. ECC is
always generated on outgoing data.

0 R/W

62 UE_INTEN Uncorrectable error interrupt enable. When set to
one a UE interrupt will be generated if an
uncorrectable error is detected.

0 R/W

61 CE_INTEN Correctable error interrupt enable. When set to
one a CE interrupt will be generated if a
correctable error is detected. The data is
automatically corrected by the Schizo, so this
interrupt is provided primarily for logging.

0 R/W

60:19 Rsvd Reserved. Read as zero. 0x000 0000 0000 R

18 FMT Force MTag ECC. For diagnostics only. When this
bit is set to one the MTag ECC is copied from the
FMECC field rather than being generated by
Schizo’s ECC logic.

0 R/W

17:14 FMECC Forced MTag ECC. ECC value for all outgoing
MTag when the FMT bit is set to one.

0x0 R/W

13 FMD Force Data ECC. For diagnostics only. When this
bit is set to one, the data ECC (for each 128 bits of
data) is copied from the FDECC field instead of
being generated by Schizo’s ECC logic.

0 R/W

12:4 FDECC Forced Data ECC. ECC value for all outgoing data
when the FMD bit is set to one.

0x000 R/W

3:0 Rsvd Reserved. Read as zero. 0x0 R
Register Descriptions 44

4

The following table shows how the ECC_EN and UE_INTEN/CE_INTEN controls the
ECC checking, error handling in Schizo. Further details on how transactions with
errors are handled can be found in Chapter 5, “Error Handling.”

4.2.6 Correctable and Uncorrectable Error Asynchronous Fault Status
Registers

These registers (CE AFSR and UE AFSR) log correctable and uncorrectable ECC errors
detected by the Safari interface in Schizo. ECC errors may occur on PIO writes, DVMA
reads and partial DVMA writes which incur a read-modify-write operation.

“Primary” errors correspond to the first occurrence of a correctable ECC error logged
into the CE AFSR and to the first occurrence of an uncorrectable ECC error logged into
the UE AFSR. “Secondary” errors corresponds to errors which occur when a primary
error is already logged and has not been cleared. This implies that a secondary error bit
is set if one of the primary error bit is already set.

The order which defines primary and secondary error is the Safari data bus order
which is not guaranteed to be the same order as the request. It should also be noted
that ECC is checked only for data which is brought on chip, not necessarily all data
transferred on the Safari data bus.

Secondary errors are cumulative, this means that more than one secondary error bit
can be set if two or more errors occurred on different ECC words while a primary error
was already logged. It also means that in the case where only one secondary error bit
is set, more than one uncorrectable error may have occurred. It should be noted that
only a single primary error bit can be set.

UPA64S accesses are treated differently as by definition UPA64S does not support ECC.
PIO writes to UPA64S devices are received by Schizo with ECC. The ECC is checked by
Schizo before being stripped off when the transaction is forwarded onto the UPA64S
bus. Error logging, however, is incomplete when an ECC error is detected for a PIO
write targeting a UPA64S device. The address is not recorded and some fields
identifying the Safari transaction are not recorded either (see tables below).

Table 4-13 ECC Error Reporting

ECC_EN Safari DStat INTEN Description

0 X X No ECC checking and reporting, every Safari
transaction proceed as if there is no ECC error.

1 1-3 X Incoming Safari data is either invalid or does not
have valid ECC, so ECC is not checked.

1 0 0 ECC checking is done. If an error is detected,
error is logged in AFSR/AFAR but no interrupt is
generated. Software should clear error status
before enabling interrupt.

1 0 1 ECC checking is done. If an error is detected,
error is logged in AFSR/AFAR and Schizo gener-
ates an interrupt.
Register Descriptions 45

4

The Correctable and Uncorrectable Error Asynchronous Fault Status registers have the
following format:

Table 4-14 UE/CE Asynchronous Fault Status Registers

Bits Field Description Reset Value Type

63 P_PIO Primary Error (CE or UE) on PIO. Set to one when
the error is detected.

X R/W1C

62 P_DRD Primary Error (CE or UE) on DVMA Read. Set to
one when the error is detected.

X R/W1C

61 P_DWR Primary Error (CE or UE) on partial DVMA write
which incurred a load of the merge buffer. Set to
one when the error is detected.

X R/W1C

60 S_PIO Secondary Error (CE or UE) on PIO. Set to one
when the error is detected.

X R/W1C

59 S_DMA Secondary Error (CE or UE) on DVMA Read or
partial Write which incurred a load of the merge
buffer. Set to one when the error is detected.

X R/W1C

58 Rsvd Reserved. Read as 0. 0 R

57:56 ErrPNDG Error Pending. These bits are zero when the error
log is stable. When the error log is in the process
of being updated this field is non-zero. Any PIO
read which returns a non-zero value should be
retried until this field is clear.
(ErrPDNG[57] is related to P_PIO and
ErrPNDG[56] is related to P_DRD and P_DWR.)

0x0 R

55:42 Rsvd Reserved. Read as 0. 0x0000 R

41:32 MASK 10 bit Safari Mask (includes ByteMask and
DWordMask) for the Safari transaction on which
the primary error was detected. Valid only if
P_PIO is set and PARTIAL is set, and undefined
for UPA64S PIO Write.

0xXXX R

31:30 QW_OFFSET Quad Word Offset inside the 64 byte block on
which the primary error was detected.
Undefined for UPA64S PIO Write.

0xX R

29 Rsvd Reserved. Read as 0. 0 R

28:24 AGENT_ID Safari Agent ID of the device that initiated the
transaction that had faulty data.
Undefined for UPA64S PIO Write.

0xXX R

23 PARTIAL Partial Transaction. Set to one if the primary error
was detected on a PIO write or DMA Read of I/O
space which was for a byte, half-word, word or
double-word in size.
Undefined for UPA64S PIO Write.

X R

22 OWNED_IN Set to one if the primary error occurred on a
coherent DVMA read or partial DVMA write and
the data was OwnedIn was asserted for the
transaction. Valid only for cacheable DMA reads.

X R

21:20 Rsvd Reserved. Read as zero. 0xX R
Register Descriptions 46

4

4.2.7 Correctable and Uncorrectable Error Asynchronous Fault Address
Register

These registers (CE AFAR and UE AFAR) log the physical address of the data on which
a primary correctable or uncorrectable error occurred.

The format of the address logged is dependent of the transaction on which the error
occurred. For PIO writes a pre-decoded address is recorded. The format in this case is
the following:

19:16 MTagECCSynd Syndrome for the failing MTag 0xX R

15:13 MTAG MTag value, (as received.) 0xX R

12:9 Rsvd Reserved. Read as zero. 0xX R

8:0 ECCSynd ECC Syndrome for the failing data. 0xXXX R

Table 4-15 UE/CE Asynchronous Fault Address Register

Bits Field Description Reset Value Type

63:44 Rsvd Reserved. Read as zero 0 R

43 I/O_Mem_Cmd I/O or Memory Safari Command. When this bit is
set to one, the error was detected on a Safari I/O
transaction. When this bit is set to zero, the error
was detected on a Safari memory transaction.

X R

42:4 Address PA[42:4] or pre-decoded address on PIO writes
(see Table 4-16)

0xXXXXXXXXXX R

3:0 Rsvd Reserved. Read as zero 0 R

Table 4-16 Address Format for PIO Writes

UEAFAR[42:39] UEAFAR[38:36] UEAFAR[35:4] Region

0xF Reserved. Read as 0. Undefined. UPA64S Space

0x8 Reserved. Read as 0. PA[35:4]

0xA Reserved. Read as 0. PA[35:4]

0xB Reserved. Read as 0. PA[35:4]

0x4 Reserved. Read as 0. PA[35:4] PCI A Interface registers

0x6 Reserved. Read as 0. PA[35:4] PCI A Memory Address Space

0x7 Reserved. Read as 0. PA[35:4] PCI A Configuration and I/O Spaces

0x0 Reserved. Read as 0. PA[35:4] PCI B Interface registers

0x2 Reserved. Read as 0. PA[35:4] PCI B Memory Address Space

0x3 Reserved. Read as 0. PA[35:4] PCI B Configuration and I/O Spaces

0xC Reserved. Read as 0. PA[35:4] Safari and UPA64S interface registers

Table 4-14 UE/CE Asynchronous Fault Status Registers

Bits Field Description Reset Value Type
Register Descriptions 47

4

4.2.8 Safari Energy Star Control Register

One and only one bit shall be set at a time.

Note – This register is writable only when the PLL is operating in normal mode. When
S_PLL_BYPASS is asserted this register is held in its reset state.

4.2.9 Safari Soft Pause Register

Used during Dynamic Reconfiguration to inhibit DMA traffic from Schizo. Setting this
bit causes the internal value of S_PAUSEIN_L to be asserted. Schizo will behave as if
external flow control logic had asserted the signal, primarily it will drive idle
commands when it receives the Safari bus grant. Other operations will continue as
normal, but with latency increased by the pause period while waiting for Safari
commands to be issued.

This register must be used only with the greatest care to avoid deadlocks and other
system failures. Specific, but not complete, hints include reading the register value
back after setting the bit to know the write has completed. And all other PIO accesses
to Schizo, (preferably to the whole I/O subsystem,) should be inhibited between
setting and clearing this bit to avoid deadlocks.

Table 4-17 Safari Energy Star Control Register

Bits Field Description Reset Value Type

63:6 Rsvd Reserved. Read as zero. 0 R

5 1/32 Speed Operate Safari bus and interface logic at 1/32nd
input frequency.

0 R/W

4:2 Rsvd Reserved. Read as zero. 0 R

1 1/2 Speed Operate Safari bus and interface logic at 1/2 the
frequency of the input clock.

0 R/W

0 Full Speed Operate Safari bus and interface logic at the same
frequency as the input clock.

1 R/W

Table 4-18 Safari Soft Pause Register

Bits Field Description Reset Value Type

63:1 Rsvd Reserved. Read as zero. 0 R

0 Soft Pause Assert internal value of S_PAUSEIN_L. 0 R/W
Register Descriptions 48

4

4.2.10 Queue Control Register
This register is provided for diagnostic purposes only (mainly for simulation).

The write timing of these bits is imprecise. Any write should be followed by a read to
check for completion.

WIOs to clear the SFPQ, CIQ and UFPQ bits are not guaranteed to execute. When the
SFPQ bit is set WIO transactions will not be processed. When the CIQ or UFPQ bits are
set and the queues fill, the PAUSE flow control mechanism will be asserted and no
transactions can be sent on the Safari bus.

Table 4-19 Queue Control Register

Bits Field Description Reset Value Type

63:34 Rsvd Reserved. Read as zero. 0 R

33 PCIA IS Upbound queue. Forced empty is set to one. 0 R/W

32 Rsvd Reserved. Read as zero. 0 R

31 PCIB IS Upbound queue. Forced empty is set to one. 0 R/W

30 Rsvd Reserved. Read as zero. 0 R

29 Rsvd Reserved. 0 R/W

28 Rsvd Reserved. Read as zero. 0 R

27 MB IS Upbound queue. Forced empty is set to one. 0 R/W

26 MB RS Downbound queue. Forced empty is set to one. 0 R/W

25 CSR IS Upbound queue. Forced empty is set to one. 0 R/W

24 CSR RS Downbound queue. Forced empty is set to one. 0 R/W

23:18 Rsvd Reserved. Read as zero. 0 R

17 SWIDQ Forced empty is set to one 0 R/W

16 UWIDQ Forced empty is set to one 0 R/W

15:14 Rsvd Reserved. Read as zero. 0 R

13 Rsvd Reserved. Read as zero. 0 R

12 DDIQ Forced empty is set to one 0 R/W

11 Rsvd Reserved. Read as zero. 0 R

10 PDIQ Forced empty is set to one 0 R/W

9 UDOQ Forced empty is set to one 0 R/W

8 UDIQ Forced empty is set to one 0 R/W

7:5 Rsvd Reserved. Read as zero. 0 R

4 SRQ Forced empty is set to one 0 R/W

3 LPQ Forced empty is set to one 0 R/W

2 UPFQ Forced empty is set to one 0 R/W

1 SFPQ Forced empty is set to one 0 R/W

0 CIQ Forced empty is set to one 0 R/W
Register Descriptions 49

4

4.2.11 Safari DTag Diagnostic Registers
The DTags are the dual tags that are used to maintain consistency on the contents of
the merge buffer. The merge buffer is a small I/O cache of eight 64 bytes entries. It is
used for any partial DMA writes (quantities of less than 64 bytes) to cacheable
addresses. When an entry is allocated inside the merge buffer, Schizo assumes
ownership of that line, and uses the DTags to snoop requests on the Safari Address and
Command bus.

The DTags are made accessible for diagnostic purposes. It should be noted that read
latency is large when compared to the snoop delay. If Safari transactions are changing
the values, the value read may differ significantly from its value when the RIO was on
the bus.

The DMA Id identifies the Partial DMA Write using the merge buffer. (It equals
AtransID[3:0] used the RTO and WB commands.)

Note – There are 8 separate DTag diagnostic registers (one for each merge buffer entry)
aligned on 16 byte boundaries although they are only 8 byte long.

4.2.12 Safari Debug Registers
Schizo includes some limited support for debug. These registers control the Safari and
UPA specific logic and expose select internal nodes for added visibility. The debug
logic and these registers are not guaranteed from version to version. Practically they
need to be used with RTL code in hand and never should be enabled in normal
operation (as some may cause strange system specific problems.)

These registers are all part of the JTAG Shadow Scan chain, and typically more usefully
accessed there.

Table 4-20 DTag Diagnostic Register

Bits Fields Description Reset Value Type

63 V Valid when set to one. 0 R

62:60 Rsvd Reserved. Read as zero. 0 R

59:56 Id DMA Id 0x0 R

55:43 Rsvd Reserved. Read as zero. 0 R

42:6 PA[42:6] Physical Address 0x00 0000 0000 R

5:0 Rsvd Reserved. Read as zero. 0 R
Register Descriptions 50

4

The first controls the Safari Debug mux selecting 8 internal nodes to be driven on the,
normally input, Z_AID[4:0] and Z_SYSCODE[2:0] pins.

Many of the internal state bits are made visible. These bits can be read with JTAG or at
these PIO addresses. Since these are not cycle accurate and can only be read with
relatively high latency they must be taken as approximations.

Table 4-21 Safari Debug Mux Select Register (0x414000)

Bits Fields Description Reset Value Type

63:34 Rsvd Reserved. Read as zero. 0 R

33 UPA_En Enable UPA Debug mode 0 R/W

32 Saf_En Enable Safari Debug Mux
outputs

0 R/W

31:27 Rsvd Reserved. Read as zero. 0 R

26:24 Mod_Sel0 Select for Safari Module
driving Mux0

0 R/W

23:21 Rsvd Reserved. Read as zero. 0 R

20:16 Sel0 Select for Mux0 0 R/W

15:11 Rsvd Reserved. Read as zero. 0 R

10:8 Mod_Sel1 Select for Safari Module
driving Mux1

0 R/W

7:5 Rsvd Reserved. Read as zero. 0 R

4:0 Sel1 Select for Mux1 0 R/W

Table 4-22 Safari Debug Register (0x414008)

Bits Fields Description
Reset
Value Type

63:19 Rsvd Reserved. Read as zero. 0 R

18:11 DTag Valid Which DTag entries are in
use.

- R

10 UFPQ_HW UFPQ reached High
Water mark

0 R

9 CIQ_HW CIQ reached High Water
mark

0 R

8 UWIDQ_HW UWIDQ reached High
Water mark

0 R

7 PDOQ_Full PDOQ is full 0 R

6 Rsvd Reserved. Read as zero. 0 R

5 B_RS_Full MIT RS FIFO to PCI-B is
Full

0 R

4 A_RS_Full MIT RS FIFO to PCI-A is
Full

0 R

3 MB_IS_Full MIT IS FIFO to Merge
Buffer is Full

0 R
Register Descriptions 51

4

The bits in the following registers are expected to be zero when the Safari interface is
idle. (Note that PIO Reads will make the Safari interface not idle.)

2 MB_RS_Full MIT RS FIFO to Merge
Buffer is Full

0 R

1 R_IS_Full MIT IS FIFO to Safari
Registers is Full

0 R

0 R_RS_Full MIT RS FIFO to Safari
Registers is Full

0 R

Table 4-23 Safari Idle0 Register (0x414010)

Bits Fields Description
Reset
Value Type

63:22 Rsvd Reserved. Read as zero. 0 R

21 DTags Valid One or more DTags is in use. - R

20 CTags Valid One of more CTags, Merge
Buffer lines, is in use.

0 R

19 ORQ Empty ORQ is Empty when 0 0 R

18 SRQ Empty SRQ is Empty when 0 0 R

17 CIQ Empty CIQ is Empty when 0 0 R

16 LPQ Empty LPQ is Empty when 0 0 R

15 SFPQ Empty SFPQ is Empty when 0 0 R

14 UWIDQ Empty UWIDQ is Empty when 0 0 R

13 SWIDQ Empty SWIDQ is Empty when 0 0 R

12 SRQ Empty SRQ is Empty when 0 0 R

11:10 Rsvd Reserved. Read as zero. 0 R

9:8 B_PIO_Count Pending PCI-B PIO Count 0 R

7:6 A_PIO_Count Pending PCI-A PIO Count 0 R

5:2 Rsvd Reserved. Read as zero. 0 R

1 MB_IS_Empty MIT IS FIFO from Merge
Buffer is Empty when 0

0 R

0 R_IS_Empty MIT IS FIFO from Safari
Registers is Empty when 0

0 R

Table 4-22 Safari Debug Register (0x414008)

Bits Fields Description
Reset
Value Type
Register Descriptions 52

4

Note that DDOQ and DDIQ valid bits will not be cleared on some errors and can
therefore appear busy even after all transaction have ended.

Table 4-24 Safari Idle1 Register (0x414018)

Bits Fields Description
Reset
Value Type

63 B_IS_Empty MIT IS FIFO from PCI-B is
Empty when 0

0 R

62 A_IS_Empty MIT IS FIFO from PCI-A is
Empty when 0

0 R

61 Rsvd Reserved. Read as zero. 0 R

60 FSM_MB_Idle DMA FSM’s MB Interface is Idle
when 0

0 R

59 FSM_R_Idle DMA FSM’s Safari Registers
Interface is Idle when 0

0 R

58 FSM_B_Idle DMA FSM’s PCI-B Interface is
Idle when 0

0 R

57 FSM_A_Idle DMA FSM’s PCI-B Interface is
Idle when 0

0 R

56 Rsvd Reserved. Read as zero. 0 R

55 MB_RS_Empty MIT RS FIFO to MB is Empty
when 0

0 R

54 R_RS_Empty MIT RS FIFO to Safari Registers
is Empty when 0

0 R

53 UDOQ_Empty UDOQ FIFO is Empty when 0 0 R

52 UFPQ_Empty UFPQ FIFO is Empty when 0 0 R

51 UPA_FSM_Idle UPA FSM is Idle when 0 0 R

50 Pndg_P_Reply UPA P_Reply Pending 0 R

49 UDIQ_Pkt_Pndg UPA Write Data Pending 0 R

48:41 PDIQ Valid PDIQ Buffer valid flags 0 R

40:25 UDIQ Valid UDIQ Buffer valid flags 0 R

24 PDOQ Empty PDOQ FIFO is Empty when 0 0 R

23:16 DDOQ Valid DDOQ Buffer valid flags,
statically allocated 23:20 for PCI-
B and 19:16 for PCI-A

0 R

15:12 Rsvd Reserved. Read as zero. 0 R

11:4 DDIQ Valid DDIQ Buffer valid flags,
statically allocated 11:8 for PCI-B
and 7:4 for PCI-A

0 R

3:0 Rsvd Reserved. Read as zero. 0 R
Register Descriptions 53

4

4.2.13 Safari Performance Control Register
Schizo includes two 32-bit counter that can be used to gather statistics on Safari related
hardware events.

The type of events that are counted by the performance counters is specified through
the Safari Performance Control register. The format is:

The list of events with their selection codes is:

Table 4-25 Safari Performance Control Register

Bits Fields Description Reset Value Type

63:16 Rsvd Reserved. Read as zero. 0 R

15:11 Cnt1 Select Event selection for
counter 1

0 R/W

10:9 Rsvd Reserved. Read as zero. 0 R

8:4 Cnt0 Select Event selection for
counter 0

0 R/W

3:0 Rsvd Reserved. Read as zero. 0 R

Table 4-26 Safari Events Selection codes:

Code Safari Event

0x00 Counting Disabled.

0x01 Safari Bus cycles

0x02 Cycles Pause is asserted by this Schizo (flow control).

0x03 Foreign Coherent transactions (i.e. RTO, RTOR, RTS, RTSR, RTSM, RS,
RSR, WS with an ID other than this Schizo.)

0x04 Foreign coherent hits (i.e active sharing with the contents of the merge
buffer).

0x05 Schizo’s own coherent transactions (RTO, RTOR, RS, RSR, & WS with
my ID)

0x06 Schizo’s coherent hits in its own Merge Buffer (i.e transfers requiring
self-copybacks).

0x07 Foreign I/O transactions (i.e. RIO, RBIO, WIO, & WBIO with an ID
other than mine.)

0x08 Foreign I/O hits (i.e. transaction in I/O space mapped to this Schizo).

0x09 Partial writes in merge buffer (RTO, RTOR with my ID.)

0x0a Interrupts issued. (INT with my ID.)

0x0b (Reserved)

0x0c PIO accesses to Schizo’s internal registers

0x0d UPA accesses

0x0e PCI A accesses

0x0f PCI B accesses

0x10 (Reserved)
Register Descriptions 54

4

Note – Some transactions will be counted twice. These include Interrupts which are
NAck’d and reissued, and in SSM systems all commands which are reissued (by
asserting Safari Owned line. R_* commands are not counted.)

4.2.14 Safari Performance Counters Register
The performance counters are wrap around counters. They are 32 bit wide so with a
150 Mhz Safari clock they wrap in about 28.6 seconds when counting bus cycles. Note
that since the only legal access size is 8 bytes, both count fields must be updated (e.g.
set to 0) together. Also note that the values are not reset automatically when the
counted events are changed.

4.3 UPA Leaf

4.3.1 UPA64S Slot0 and Slot 1 Configuration Registers
The UPA64S Slot Configuration registers are provided for compliance with the UPA
specification. The reset bit has moved to the UPA64S Interface Configuration register.

0x11 Cycles of Pause in System (i.e. cycles we receive S_PAUSEIN_L
asserted.)

0x12 DVMA Read. (RS, RSR, RIO, RBIO with my ID.)

0x13 DVMA Write. (RTO, RTOR, WS, WIO, WBIO with my ID.)

0x14 ORQ Full.

0x15 ZData Input. (Cycles I receive data on Z_DATA_L pins.)

0x16 ZData Output. (Cycles I drive data on Z_DATA_L pins.)

0x17 -
0x1F

Reserved

Table 4-27 Safari Performance Counters Register

Bits Fields Description Reset Value Type

63:32 Cnt1 Counter 1 0 R/W

31:0 Cnt10 Counter 0 0 R/W

Table 4-28 UPA Register Offsets

Register Offset Access Size

UPA Slot0 Configuration Register 0x48.0000 8 bytes

UPA Slot1 Configuration Register 0x48.0008 8 bytes

UPA Interface Configuration Register 0x48.0010 8 bytes

UPA Energy Star Control Register 0x48.0018 8 bytes

Table 4-26 Safari Events Selection codes:

Code Safari Event
Register Descriptions 55

4

The format for both Slot Configuration registers is:

I/O space address decoding (see Safari Address Match and Mask Registers) is
qualified by the presence of a device in the UPA slot. That is, when Slot Empty is set
the corresponding address decoder is disabled and MappedOut is not asserted for the
address region. This prevents transactions from timing out because no device is
present to respond.

4.3.2 UPA64S Interface Configuration Register
The format for the UPA64S Interface Configuration register (UPA64S_ICR) is:

Table 4-29 UPA64S Slot 0 and Slot 1 Configuration Register

Bits Fields Description Reset Value Type

63 Slot Empty This field is used to detect the presence of a board
in the slot. It is set to one if the slot is empty and
cleared to zero if a board is detected.
If a slot is empty its corresponding Address Match
and Mask registers are considered invalid
Also JTAG Shadow R/W.

- R

62:32 Rsvd Reserved. Read as zero. 0 R

31 Rsvd Reserved. Read as one. 1 R

30:28 Rsvd Reserved. Read as zero. 0 R

27:24 SPRQS Slave P_Req queue size.
Schizo maintains a single count and uses the lower
SPRQS value of slots with present devices.
Schizo also implements a maximum of 7
outstanding transactions and uses 7 when SPRQS
is set to a greater value.
SPRQS may not be decreased.

0x1 R/W

23:18 SPDQS Slave Port Data queue size. Schizo does not use
this parameter. It always assumes that SPDQS = 4
* SPRDQS.

0x4 R

17:16 Rsvd Reserved. Read as zero. 0 R

15 SQUEN Slave Queues Enable. This bit must be set to one
when writing this register. It is always read as
zero.

0 (R0) W

14 OneRead Read as one. 1 R

13:0 Rsvd Reserved. Read as zero. 0 R

Table 4-30 UPA64S Interface Configuration Register

Bits Fields Description Reset Value Type

63:2 Rsvd Reserved. Read as zero. 0 R

1 UPA_POK Power OK. The UPA_POWER_OK output of Schizo
always reflects the value of this bit.

0 R/W

0 UPA_RST_L Reset. The UPA_RESET_L output of Schizo always
reflects the exact value of this bit (no inversion).

0 R/W
Register Descriptions 56

4

4.3.2.0.1 Reset

Whenever Schizo is reset (by any reset condition), these two bits are cleared. Any
UPA64S devices are held in reset until these bits are set to 1 by software. To ensure that
UPA64S devices come out of reset correctly with their PLLs locked, the following
sequence is required:

• store @UPA64S_ICR, 0x2
• wait for PLL to lock (typically ~1 ms is sufficient)
• store @UPA64S_ICR, 0x3

4.3.2.0.2 Energy Star

The reset bits in the UPA64S_ICR can also be used for (heavy-hammer) Energy Star
control. In Energy Star mode, any UPA64S framebuffers probably don’t need to be
active, and can be held in a reset and powered down state. In order to enter this state,
the following sequence should be used:

• store @UPA64S_ICR, 0x2
• load @UPA64S_ICR (used to provide guaranteed short delay, load must be

blocking)
• store @UPA64S_ICR, 0x0

When coming out of Energy Star mode, the sequence for coming out of reset above
should be used.

I/O space address decoding (see Safari Address Match and Mask Registers) is
qualified by the assertion of UPA reset. That is, when UPA_RST_L is clear the
corresponding address decoders are disabled and MappedOut is not asserted for either
UPA address region. This prevents transactions from timing out because no device is
functioning and able to respond.

4.3.3 UPA Energy Star Control Register
Is used to affect the operating frequency of the on-chip UPA logic when the external
UPA bus is forced idle with UPA_RST_L. This allows a power reduction.

One and only one bit shall be set at a time.

Table 4-31 UPA Energy Star Control Register

Bits Field Description Reset Value Type

63:7 Rsvd Reserved. Read as zero. 0 R

6 1/64 Speed Operate UPA interface logic at 1/64 the frequency
of the input clock.

0 R/W

5:2 Rsvd Reserved. Read as zero. 0 R

1 1/2 Speed Operate UPA interface logic at 1/2 the frequency
of the input clock.

0 R/W

0 Full Speed Operate UPA interface logic at the same frequency
as the input clock.

1 R/W
Register Descriptions 57

4

4.4 PCI Leaf

Note – Schizo contains two nearly identical copies of a PCI Leaf Block. The
programmer’s model for both copies is identical. Register addresses are shown with
respect to the base address PCI_CSRBase, whose real value should be one of the two
base addresses PCI-A_CSRBase or PCI-B_CSRBase. Registers which are in PCI
Configuration Space are shown with respect to PCI_ConfigBase, which again should be
the appropriate PCI-A_ConfigBase or PCI-B_ConfigBase address.

4.4.1 PCI Bus Module
Within a PCI Leaf, the block directly responsible for the PCI transactions and protocol
is the PCI Bus Module (PBM), which has a set of control/status registers. Some of these
registers control aspects of Schizo’s PCI operations that are not completely defined, or
left implementation dependent by the PCI specification. These PBM registers are
placed into the PCI_CSRBase address region. The PBM also has a number of registers
in PCI Configuration Space which are defined by the PCI specification.

4.4.1.1 PCI Control/Status Register

.

Table 4-32 Offset of PBM Registers

Register Address Access Size

PCI Control/Status Register PCI_CSRBase+0x0.0000.2000 8 bytes

PCI AFSR PCI_CSRBase+0x0.0000.2010 8 bytes

PCI AFAR PCI_CSRBase+0x0.0000.2018 8 bytes

PCI Diagnostic Register PCI_CSRBase+0x0.0000.2020 8 bytes

PCI Energy Star Register PCI_CSRBase+0x0.0000.2028 8 bytes

Table 4-33 PCI Control and Status Register

Field Bits Reset Description R/W

BUS_UNUSABLE 63 0 PCI bus has been left in an inconsistent
state, and is expected to be unusable.
While this bit is set, Schizo will not per-
form any PIO operations to the PCI
bus, but will instead treat each PIO as
an error. Should only be cleared when
PCI bus is known to be usable again.

R/W1C

Reserved 62:52 0 Reserved, read as 0 R

DMA_WR_PERR 51 0 Set to 1 if a DMA write parity error is
detected.

R/W1C
Register Descriptions 58

4

ERR_SLOT 50:48 0 Error slot.
Tracks the current master on the PCI
bus. Locks whenever a PCI interrupt is
signalled. Set to the encoded slot num-
ber of the current PCI master device:
0x0 = Device receiving GNT[0]
...
0x5 = Device receiving GNT[5]
0x6 = Schizo
0x7 = Reserved

R

Reserved 47:39 0 Reserved, read as 0 R

PCI_TTO_ERR 38 0 PCI TRDY# Timeout error
Set to 1 when a TRDY# timeout is de-
tected during any PIO by Schizo

R/W1C

PCI_RTRY_ERR 37 0 PCI Excessive Retry error
Set to 1 if the maximum retries are ex-
ceeded during any PIO.

R/W1C

PCI_MMU_ERR 36 0 PCI IOMMU error
Set to 1 if an IOMMU error is detected
for any DMA.

R/W1C

PCI_SBH_ERR 35 0 PCI streaming byte hole error
Set to 1 whenever a byte hole is detect-
ed during a streaming DMA write.

R/W1C

PCI_SERR 34 0 Set when SERR# signal is sampled as-
serted on the PCI bus

R/W1C

PCI_SPEED 33 - PCI bus speed.
0 = Schizo clock / 2
1 = Schizo clock
The value of this bit reflects the status
of the bus speed input pin. It is calcu-
lated by motherboard circuitry at pow-
er-on, based on capabilities of plugged
in devices

R

Reserved 32:26 0 Reserved, Read as 0. R

PTO 25:24 0 PCI Timeout interval.
See Table 4-34 for definition.

R/W

Reserved 23:20 0 Reserved, Read as 0. R

MMU_INT_EN 19 0 IOMMU error interrupt enable
0 = MMU errors will not cause a PCI
error to be issued
1 = MMU errors will cause a PCI error
to be issued

R/W

Table 4-33 PCI Control and Status Register

Field Bits Reset Description R/W
Register Descriptions 59

4

4.4.1.1.1 PCI Timeouts

Schizo is capable of detecting several different types of timeouts as error conditions on
the PCI bus:

• Discard Timeout (DTO) - If a PCI master has not reissued a PCI Delayed Read
Request within a certain number of cycles, Schizo discards any data it may have
for the read transaction, and signals this error.

• TRDY# Timeout (TTO) - When Schizo is a PCI master and a slave that has already
claimed the cycle with DEVSEL# takes too many cycles to assert TRDY#, Schizo
will attempt to terminate the transaction, will signal this error, and will mark the
PCI bus as unusable via the BUS_UNUSABLE bit.

• Max retries exceeded (RTRY) - When Schizo is a PCI master doing a PIO read or
write, and the target device terminates the transaction with a retry more than the
specified number of times in a row, Schizo will abort the transaction and signal this
error.

SBH_INT_EN 18 0 Streaming byte hole interrupt enable
0 = PCI error interrupt will not be is-
sued for streaming byte hole errors
1 = PCI error interrupt will be issued
for streaming byte hole errors, if
ERRINT_EN is also set to 1.

R/W

ERRINT_EN 17 0 Enable PCI error interrupt.
0 = PCI error interrupt disabled
1 = PCI error interrupt enabled

R/W

ARB_PARK 16 0 PCI bus arbitration parking enable.
0 = no parking
1 = previous bus owner parked (includ-
ing CPU)

R/W

Reserved 15:9 0 Reserved, read as 0. R

PCI_RST 8 0 PCI bus reset. When set to 1, Schizo as-
serts the PCI_RST_L signal for this bus.

R/W

Reserved 7:6 0 Reserved, read as 0. R

ARB_EN<5:0> 5:0 0 PCI DMA arbitration enable. One inde-
pendent bit for each potentially sup-
ported master device on the bus.
0 = Bus requests from corresponding
PCI device are ignored
1 = Bus requests from corresponding
PCI device are honored.

R/W

Table 4-33 PCI Control and Status Register

Field Bits Reset Description R/W
Register Descriptions 60

4

The durations of each of these timeouts are controlled globally by the PTO field in the
PCI Control/Status Register, which has the following definition:

The Interval Timer is used for both the DTO and TTO timeouts in an inexact fashion.
The Interval Timer is always running. Under the proper conditions, if the Interval
Timer reaches its maximum value twice, then Schizo will signal the appropriate error.
As a result, each of these timeouts can have the following range of values:

(Max Interval Timer) < DTO/TTO timeout <= 2 * (Max Interval Timer)

Note – The global disable provided by PTO=0x0 is in addition to individual disables
that may exist (e.g. for max retries and TTO error).

4.4.1.2 PCI Asynchronous Fault Status/Address Registers

PCI AFSR/AFAR record error information related to PIO writes to PCI slave devices.
Only asynchronous errors reported through interrupt are recorded in these registers.
Asynchronous errors include any PIO write access terminated by Master Abort, Target
Abort, or excessive retries, as well as any PIO write during which a data parity error
was signaled on the PCI bus. Although status bits for Master Abort, Target Abort and
Parity Error exist in the PCI Configuration Registers for each PBM, they are duplicated
here to provide the additional functionality of identifying which error occurred first in
the case of multiple errors, and associating an address with that error.

Two sets of status bits are defined in this register. Bits <63:60> are the primary error
status and bits <59:56> are the secondary error status. One and only one of the primary
error status can be set at any time. Primary error status can be set only when

• none of the primary error condition exists prior to this error OR
• new error detected at the same time software is clearing the primary error.

Secondary bits are set whenever a primary bit is set (one and only one primary bit can
be set at a time). The secondary bits are cumulative and always indicate that
information has been lost as no address information has been captured. Setting of the
primary error bits is independent.

Table 4-34 PCI Timeout Intervals

PTO<1:0>
Maximum Retries
(in # retries)

Interval Timer
(in # bus cycles) Intended Purpose

00 (disabled) (disabled) Reset value. Used for
debug/boot.

01 2^14 2^15 Standard value.

10 2^11 2^12 Bringup/lab testing

11 2^7 2^9 Simulation

∞ ∞
Register Descriptions 61

4

The AFAR and bits <47:37> of AFSR logs address and status of the primary PCI PIO
error. Further PCI PIO error will not be logged into these bits until software clears the
primary error, which makes the AFAR and part of the AFSR available to log new error.
An interrupt is generated, if enabled, whenever the AFAR logs the new error address.

Table 4-35 PCI AFSR

Field Bits Reset Description R/W

P_MA 63 X Set if primary error detected is Master Abort R/W1C

P_TA 62 X Set if primary error detected is Target Abort R/W1C

P_RTRY 61 X Set if primary error detected is excessive retries R/W1C

P_PERR 60 X Set if primary error detected is data parity error R/W1C

P_TTO 59 X Set if primary error detected is TRDY# timeout R/W1C

P_UNUSABLE 58 X Set if primary error detected is BUS_UNUSABLE
error

R/W1C

S_MA 57 X Set if secondary error detected is Master Abort R/W1C

S_TA 56 X Set if secondary error detected is Target Abort R/W1C

S_RTRY 55 X Set if secondary error detected is excessive retries R/W1C

S_PERR 54 X Set if secondary error detected is data parity error R/W1C

S_TTO 53 X Set if secondary error detected is TRDY# timeout R/W1C

S_UNUSABLE 52 X Set if secondary error detected is
BUS_UNUSABLE error

R/W1C

Reserved 51:42 0 Reserved, read as 0 R

MASK 41:32 X Safari Mask of failed primary transfer
(MASK<9:8> is Safari DWordMask<1:0>, and
MASK<7:0> is Safari ByteMask<7:0>).
Only valid if BLK is 0

R

BLK 31 X Set to 1 if failed primary transfer was a block read
or write

R

ConfigSpace 30 X Set to 1 if failed primary transaction was to
PCI Configuration Space.

R

MemorySpace 29 X Set to 1 if failed primary transaction was to
PCI Memory Space

R

IOSpace 28 X Set to 1 if failed primary transaction was to
PCI IO Space

R

Reserved 27:0 0 Reserved, read as 0 R

Table 4-36 PCI AFAR

Field Bits Reset Description R/W

Reserved 63:32 0 Reserved, read as 0. R

PA_Offset 31:0 X Offset of physical address of error trans-
action.

R

Register Descriptions 62

4

4.4.1.3 PCI Diagnostic Register

Table 4-37 PCI Diagnostic Register

Field Bits Reset Description R/W

Reserved 63:11 0 Reserved, read as 0. R

STOP_DATA 10 0 Stop data from being written to memory
when a parity error is detected.
When set = 0, parity errors that Schizo de-
tects during non-streaming DMA writes
will allow the data to pass to Safari.
When set to 1, parity errors that Schizo de-
tects during DMA writes will prevent data
from being passed to Safari (non-streaming
only). For streaming DMA’s regardless of
the value of STOP_DATA, data is passed to
Safari.
In either case, the DPE bit will get marked
and an interrupt generated, but NO Target
abort will be generated. ECC is never actu-
ally corrupted.

R/W

DIS_BYPASS 9 0 Disable MMU Bypass mode
When set to 1, Schizo will not respond to
PCI Dual-Address Cycles, thus disallowing
MMU bypass mode.

R/W

DIS_TTO 8 0 Disable TRDY# timeout errors.
When set to 1, Schizo will not terminate
any transactions as master due to excessive
delays in TRDY#.

R/W

DIS_RTY_ARB 7 0 Disable retry arbitration priority.
When set to 1, Schizo will not give PCI de-
vices that have been previously retried pri-
ority over other devices when arbitrating
for the PCI bus.

R/W

DIS_RETRY 6 0 Disable retry limit.
When set to 1, Schizo will not abort PIO
operations after 16,384 retries, but will con-
tinue indefinitely.

R/W

DIS_INTSYNC 5 0 Disable DMA write / interrupt synchroni-
zation.
When set to 1, interrupts will not wait until
associated DMA is complete before pro-
ceeding.

R/W

Reserved 4 0 Reserved, read as 0. R

I_DMA_D_PAR 3 0 Invert DMA data parity
0 = Correct parity asserted
1 = Incorrect parity asserted for all PCI
DMA read data phases. Both the regular
parity signal and the 64-bit parity exten-
sion are affected.

R/W
Register Descriptions 63

4

4.4.1.3.1 Loopback Mode

There is a diagnostic Loopback mode in which a PCI Leaf in Schizo can act as both the
initiator and target of a PCI transaction. This is not, however, enabled by a bit in the
PCI Diagnostic Register. It is instead enabled by simply allocating a 4 Gb address range
for PCI Memory Space via the appropriate PCI-{A,B}_Mem Address Mask Register in
the Safari Interface Block (since the upper 2 Gb of PCI Memory Space is reserved for
DMA, 2Gb is normally the largest address space needed for mapping PIOs to PCI
Memory Space). If the entire 4 Gb address space is mapped, an outgoing PIO in the
upper 2 Gb of the address space will be sent to the PCI bus, but will also be interpreted
by Schizo as a DMA transaction, and the PCI Leaf will respond accordingly.

Any transaction that can be both legally generated and accepted by Schizo may be
looped back in this fashion (e.g. streamable, consistent, pass-through, non-cacheable).

4.4.1.4 PCI Energy Star (E*) Register

4.4.1.4.1 Energy Star Mode

When the ESTAR_MODE bit is set in Schizo, Schizo dynamically changes the PCI clock
frequency based on bus activity. If ESTAR_MODE is set, whenever the bus is idle (no
current transactions, no pending arbitration requests), Schizo initiates a frequency
slowdown by signalling the external clock generator by way of the A/
B_SLOW_CLOCK outputs. At the same time, Schizo slows its internal clock down by a
factor of 32.

I_PIO_D_PAR 2 0 Invert PIO data parity
0 = Correct parity asserted
1 = Incorrect parity asserted for all PCI PIO
write data phases.

R/W

I_PIO_A_PAR 1 0 Invert PIO address parity
0 = Correct parity asserted
1 = Incorrect parity asserted for all PCI PIO
address phases.

R/W

Reserved 0 0 Reserved, read as 0. R

Table 4-38 PCI Energy Star Register

Field Bits Reset Description R/W

Reserved 63:1 0 Reserved, read as 0. R

ESTAR_MODE 0 0 Energy Star Mode
When this bit is set, Schizo will dynamical-
ly request the PCI clock frequency to
change (by way of the A_SLOW_CLOCK
and B_SLOW_CLOCK outputs) based on
PCI bus activity.

R/W

Table 4-37 PCI Diagnostic Register

Field Bits Reset Description R/W
Register Descriptions 64

4

While the clocks are in slow mode, no transactions are allowed on the bus. If a PCI
arbitration request gets asserted, Schizo will deassert A/B_SLOW_CLOCK, bring its
internal clock to full speed, wait until the PCI bus is stable again, and then issue a
GNT# to the requesting device. This applies to the internal GNT# used for pio
transactions as well.

4.4.1.5 PBM Configuration Space

The PBM also contains a configuration header whose format is specified by the PCI
Specification. The registers in the configuration header are accessed in PCI
Configuration Address Space. The PBM is considered to be device 0, function 0 on its
PCI bus. After a reset, the PBM’s Bus Number register is set to 0

Note – These are the addresses in effect after reset. However, since the PCI bus number
of the PBM can be changed by software, the actual offset for these spaces may be
different than what is listed above.

Note – The PCI Configuration Address Space is a little-endian address space. When
accessing configuration space registers, software should take advantage of one of the
SPARC V9 little-endian support mechanisms to get proper byte ordering. These
mechanisms include little-endian ASIs or MMU support for marking pages little-
endian.

The table below lists the configuration header registers, as defined by the PCI
specification and PCI System Design Guide. Several of the registers are not
implemented in Schizo which is indicated by shading in the table. The rule used is that
any optional register for which equivalent information exists elsewhere is not
implemented..

Table 4-39 Default addresses PCI Leaf’s internal PCI
Configuration Registers

Register Address

PBM Config Registers PCI_ConfigBase+0x000000 -
PCI_ConfigBase+0x0000FF

Table 4-40 Configuration Space Header Summary

Register Offset Size

Required PCI device configuration header:

Vendor ID 0x00 2 bytes

Device ID 0x02 2 bytes

Command 0x04 2 bytes

Status 0x06 2 bytes

Revision ID 0x08 1 byte

Programming I/F Code 0x09 1 byte

Sub-class Code 0x0A 1 byte
Register Descriptions 65

4

Note – The sizes listed in the table above are just the logical size for each register.
Actual PIO access to the registers can be in any size from 1 to 4 bytes, provided the
access doesn’t span multiple 32-bit words.

4.4.1.5.1 Vendor ID

Read only, VendorID<15:0> = 0x108E.

4.4.1.5.2 Device ID

Read only, DeviceID<15:0> = 0x8001.

Base Class Code 0x0B 1 byte

Cache Line Size 0x0C 1 byte

Latency Timer 0x0D 1 byte

Header Type 0x0E 1 byte

BIST 0x0F 1 byte

Base Address 0x10-0x27 Varies

Reserved 0x28-0x2F n/a

Expansion ROM 0x30 4 bytes

Reserved 0x34-0x3B n/a

Interrupt Line 0x3C 1 byte

Interrupt Pin 0x3D 1 byte

MIN_GNT 0x3E 1 byte

MAX_LAT 0x3F 1 byte

Optional bridge configuration header:

Bus Number 0x40 1 byte

Subordinate Bus Number 0x41 1 byte

Reserved 0x42-0xFF n/a

Disconnect Counter Unspecified 1 byte

Bridge Command/Status Unspecified 4 bytes

Bridge Memory Base Address Unspecified 4 bytes

Bridge Memory Limit Address Unspecified 4 bytes

DOS Read Attributes Unspecified 2 bytes

DOS Write Attributes Unspecified 2 bytes

Bridge I/O Base Address Unspecified 2 bytes

Bridge I/O Limit Address Unspecified 2 bytes

Table 4-40 Configuration Space Header Summary

Register Offset Size
Register Descriptions 66

4

4.4.1.5.3 Command Register

4.4.1.5.4 Status Register

Table 4-41 Command Register

Field Bits Reset Description R/W

Reserved 15:10 0 Reserved, read as 0. R

FAST_EN 9 0 Enable fast back-to-back cycles to different targets.
Hardwired to 0 (disabled).

R

SERR_EN 8 0 Enable driving of SERR# pin when 1. R/W

WAIT 7 0 Enable use of address/data stepping
Hardwired to 0 (disabled).

R

PER 6 0 Enable reporting of parity errors when 1. R/W

VGA 5 0 Enable VGA palette snooping
Hardwired to 0 (disabled).

R

MWI 4 0 Enables use of Memory Write & Invalidate
Hardwired to 0 (disabled).

R

SPCL 3 0 Enables monitoring of special cycles
Hardwired to 0 (disabled).

R

MSTR 2 1 Enables ability to be bus master
Hardwired to 1 (enabled).

R

MEM 1 1 Enables response to PCI MEM cycles
Hardwired to 1 (enabled).

R

IO 0 0 Enables response to PCI I/O cycles.
Hardwired to 0 (disabled).

R

Table 4-42 Status Register

Field Bits Reset Description R/W

DPE 15 X Set if PBM detects a parity error R/W1C

SSE 14 0 Set if PBM signalled a system error.
This occurs if the PBM detects a PCI ad-
dress parity error, or another device as-
serts SERR#.

R/W1C

RMA 13 0 Set if PBM receives a master-abort R/W1C

RTA 12 0 Set if PBM receives a target-abort R/W1C

STA 11 0 Set if PBM generates target-abort R/W1C

DVSL 10:9 0x1 Timing of DEVSEL#.
Hardwired to 01 (medium speed re-
sponse)

R

DPAR 8 0 Set when parity error occurs while PBM
is bus master, if PER in command register
also set.

R/W1C
Register Descriptions 67

4

4.4.1.5.5 Revision ID Register

Read only, RevisionID<7:0> = 0x00. This register will always read as 0. The actual
revision number for Schizo is contained in the Schizo Control/Status Register.

4.4.1.5.6 Programming I/F Code Register

Read only, ProgrammingIFCode<7:0> = 0x00.

4.4.1.5.7 Sub-class Code Register

Read only, SubclassCode<7:0> = 0x00. (Specifies host bridge device).

4.4.1.5.8 Base Class Code Register

Read only, BaseClassCode<7:0> = 0x06. (Specifies bridge device).

4.4.1.5.9 Latency Timer Register

This 8-bit read/write register specifies the value of the latency timer for the PBM as a
bus master. Only the top five bits are implemented, giving a timer granularity of 8 PCI
clocks. The bottom three bits will read as 0 and should be written as 0.

FASTCAP 7 1 Indicates ability to accept fast back-to-
back cycles as target, when the back-to-
back transactions are not to the same tar-
get.
Hardwired to 1 (allowed)

R

UDF_SUPPORT 6 0 User Definable Feature Support
Hardwired to 0 (no user definable fea-
tures)

R

66MHZ_CAPABLE 5 - Indicates ability to run at 66MHz clock
speed. Hardwired to 1 (66MHz capable)
for PBMA and 0 for PBMB.

R

Reserved 4:0 0 Reserved, read as 0 R

Table 4-43 Latency Timer Register

Field Bits Reset Description R/W

LAT_TMR_HI 7:3 0x00 Programmable portion of latency timer. R/W

LAT_TMR_LO 2:0 0 Read only portion of latency timer.
Hardwired to 0.

R

Table 4-42 Status Register

Field Bits Reset Description R/W
Register Descriptions 68

4

4.4.1.5.10 Header Type Register

4.4.1.5.11 Bus Number

This 8-bit read/write register specifies the number of the PCI bus this bridge resides
on. It’s value upon reset is 0.

4.4.1.5.12 Subordinate Bus Number

This 8-bit read/write register specifies the highest subordinate bus number beneath
this bridge. It’s value upon reset is 0.

4.4.1.5.13 Unimplemented Registers

The following registers are defined in the PCI Specification or PCI System Design
Guide, but are not implemented in Schizo’s PBMs for the indicated reasons.

Cache Line Size - The cache line size is fixed at 64-bytes by the Safari architecture.

BIST - Built-In-Self-Test is not implemented in Schizo in a way that would need to
be controlled via PCI Configuration registers.

Base Address Registers - The bridge itself has neither memory nor I/O space. It’s
configuration space is accessible only from the host and is hard-mapped.

Interrupt Line, Interrupt Pin - Do not apply. External PCI interrupt lines are
handled by the RISC asic, while internal PBM interrupts are signalled directly to
the Mondo block, and are not signalled on PCI interrupt lines.

Min_Gnt, Max_Lat - There is no regular traffic pattern to programmed I/O. Values
of zero indicate there are no stringent requirements (true).

Disconnect Counter - This seems to be intended mainly for cases where the other
bus (host bus in this case) is potentially very slow. This shouldn’t apply to Safari.

Bridge Memory/IO Base and Limit Address - These registers are defined for an
entirely flat address space which the Safari and Schizo cannot abide by.

DOS Attribute Registers - DOS compatibility is not a feature of Schizo.

Table 4-44 Header Type Register

Field Bits Reset Description R/W

MULTI_FUNC 7 0 Indicates whether the PBM is a multi-
function PCI device.
Hardwired to 0 (not multi-function).

R

HDR_TYPE 6:0 0 Defines layout of configuration header
bytes 0x10-0x3F.
Hardwired to 0 (the only defined value in
PCI specification)

R

Register Descriptions 69

4

4.4.2 IOMMU Registers

4.4.2.1 Translation Storage Buffer Overview

The IOMMU fetches translation information from a Translation Storage Buffer (TSB) in
memory. The TSB contains one-level mapping information for the virtual DMA pages.
A single TSB entry is called Translation Table Entry (TTE), and takes 8 bytes.

Schizo supports several TSB table sizes, specified by the TSB_SIZE field of IOMMU
Control Register. TSB table sizes supported are 1K, 2K, 4K, 8K, 16K, 32K, 64K and 128K
entries (not bytes), which allows a DVMA address space of 8M to 1G using 8K pages,
and 64K to 2G using 64K pages (a DVMA address space larger than 2G is not
supported, so 128K and 64K TSB sizes are not supported with a 64K page size).
Software must set up TSB before it allows translation to start.

4.4.2.1.1 Translation Table Entry

Translation Table Entries (TTE) contain translation information for virtual pages. The
IOMMU hardware reads one TTE during a table walk and stores it in the TLB. A TTE
entry has valid information only when bit DATA_V is set. Information stored in the
TTE has the following format:

Note – The LOCALBUS bit is not meaningful in a PCI environment, and is not stored
in the TLB. The MMU hardware drops this bit after a table walk.

Table 4-45 TTE Data Format

Field Bits Description

DATA_V 63 Valid bit (1 = TTE entry has valid mapping)

Reserved 62 Reserved.

DATA_SIZE 61 Page size of the mapping (0 = 8K, 1 = 64K)

STREAM 60 Stream bit (1 = streamable page, 0 = consistent page)

LOCALBUS 59 Local Bus bit. Not used

CONTEXT 58:47 Context number for this page, used in flushing multiple
related pages.

Reserved 46:43 Reserved.

DATA_PA 42:13 Contains bits <42:13> of physical address. Bits 15:13 are
not used for 64K page.

DATA_SOFT 12:7 Reserved for software use.

Reserved 6:5 Reserved.

CACHEABLE 4 Cacheable (1 = cacheable page, 0 = non-cacheable page)

Reserved 3:2 Reserved.

DATA_W 1 Set if this page is writeable

Reserved 0 Reserved.
Register Descriptions 70

4

4.4.2.1.2 Tablewalk

During an IOMMU tablewalk (TSB lookup) the physical address for the TTE entry that
will be fetched is calculated from the DVMA address (VirtAddr) as follows:

Table Size = 2 ^ (TSB_SIZE + 10)

Page Bits = (TBW_SIZE == 1) ? 15 : 12

Entry# = (VirtAddr >> Page Bits) & (Table Size - 1)

TTE Address = TSB_BASE + 8 * Entry#

The TSB is always accessed using cacheable Safari transactions.

4.4.2.1.3 Register Summary

4.4.2.2 IOMMU Control Register

The Control Register provides means to enable and disable the IOMMU and diagnostic
mode, and set the TSB size and page size.

Table 4-46 Addresses of IOMMU Registers

Register Address Access Size

IOMMU Control Register PCI_CSRBase+0x00.0200 8 bytes

TSB Base Address Reg PCI_CSRBase+0x00.0208 8 bytes

IOMMU Flush Page Register PCI_CSRBase+0x00.0210 8 bytes

IOMMU Flush Context Register PCI_CSRBase+0x00.0218

TLB Compare Setup Diag Reg PCI_CSRBase+0x00.A400 8 bytes

TLB Compare Result Diag Reg PCI_CSRBase+0x00.A408 8 bytes

IOMMU LRU Queue Diag Regs PCI_CSRBase+0x00.A500 -
PCI_CSRBase+0x00.A57F

8 bytes

TLB Tag Diag Regs PCI_CSRBase+0x00.A580 -
PCI_CSRBase+0x00.A5FF

8 bytes

TLB Data RAM Diag Regs PCI_CSRBase+0x00.A600 -
PCI_CSRBase+0x00.A67F

8 bytes

Table 4-47 IOMMU Control Register

Field Bits Reset Description Type

RESERVED 63:24 0 Reserved, read as zeros R

LRU_LCKEN 23 0 LRU Lock Enable Bit. When set, only the TLB
entry specified by the Lock Pointer can be
replaced.

R/W

LRU_LCKPTR 22:19 X LRU Lock Pointer. Works in conjunction with the
LRU Lock Enable bit to limit TLB replacement to
a single entry.

R/W

TSB_SIZE 18:16 X TSB table size measured in the number of 8 byte
entries.
0=1K, 1=2K, 2=4K, 3=8K,
4=16K, 5=32K, 6=64K, 7=128K.

R/W
Register Descriptions 71

4

RESERVED 15:3 0 Reserved, read as zeros R

TBW_SIZE1 2 X Assumed page size during TSB lookup.
0 = 8K page
1 = 64K page

R/W

MMU_DE 1 0 Diagnostic mode enable, when set it enables the
diagnostic mode. See description of TLB tag diag-
nostics.

R/W

MMU_EN 0 0 IOMMU enable bit, when set it enables transla-
tions.

R/W

1. If DVMA mappings are always 8K pages, or mixed 8K and 64K pages, set this bit to ‘0’ so that the index is constructed
for 8K lookup. If all DVMA mappings are to 64K pages, set this bit to ‘1’ so that the index is based on 64K pages.
When this bit is ‘0’, a 64K mapping should be placed in all 8 TSB entries in which it is indexed.

Table 4-48 Address space size and base address determination.

TBW_SIZ == 0 TBW_SIZ == 1

TSB_SIZE VA Space Size VA Base Address TSB Index [3] VA Space Size VA Base Address TSB_Index [3]

0 8 MB 0xFF80.0000 VA<22:13> 64 MB 0xFC00.0000 VA<25:16>

1 16 MB 0xFF00.0000 VA<23:13> 128 MB 0xF800.0000 VA<26:16>

2 32 MB 0xFE00.0000 VA<24:13> 256 MB 0xF0000000 VA<27:16>

3 64 MB 0xFC00.0000 VA<25:13> 512 MB 0xE000.0000 VA<28:16>

4 128 MB 0xF800.0000 VA<26:13> 1 GB 0xC000.0000 VA<29:16>

5 256 MB 0xF000.0000 VA<27:13> 2 GB 0x8000.0000 VA<30:16>

6 512 MB 0xE000.0000 VA<28:13> not allowed1

1. Hardware does not prevent illegal combinations from being programmed. If an illegal combination is programmed into the IOMMU, all
translation requests will be rejected as invalid.

-- --

7 1GB 0xC000.0000 VA<29:13> not allowed1 -- --

Table 4-47 IOMMU Control Register

Field Bits Reset Description Type
Register Descriptions 72

4

Address space size and base address are controlled by TSB_SIZE and TBW_SIZ as
shown in Table 4-48. Figure 4-1 shows the same information is a different format.
Virtual addresses that are within Schizo’s DVMA range (0x8000000-0xffffffff) on the
PCI bus, but below the VA base address determined by the value of TSB_SIZE and
TBW_SIZE are rejected by the IOMMU, and result in Target Aborts on the PCI bus

Figure 4-1 Legal DVMA address configurations.

4.4.2.2.1 TLB locking

For diagnostics and debugging, the IOMMU has the capability of restricting itself to
use just a single entry of the TLB. This is controlled by the LRU_LCKEN and
LRU_LCKPTR fields of the IOMMU Control Register. To properly turn locking on the
following sequence is required:

• Set MMU_EN to 0
• Set LRU_LCKEN to 1 (must be a separate PIO write)
• Set LRU_LCKPTR to desired value (may be combined with previous PIO)
• Set MME_DE to 1 (may be combined with previous PIO)
• Invalidate all TLB entries
• Set MMU_EN to 1 and MMU_DE to 0.

To unlock the TLB:
• Set LRU_LCKEN to 0

12
8K

FFFF.FFFF

FF80.0000

FF00.0000

FE00.0000

FC00.0000

F800.0000

F000.0000

E000.0000

C000.0000

8000.0000

0000.0000

64
K

32
K

1K

2K

4K

8K

16
K

TSB SIZE

32
K

1K

2K

4K

8K

16
K

TSB SIZEVA

TBW SIZE = 64KTBW SIZE = 8K
Register Descriptions 73

4

4.4.2.3 TSB Base Address Register

The TSB Base Address Register contains the pointer to the first-entry of the TSB table.
Together with part of the virtual address it uniquely identifies the address where
hardware should fetch the TTE from the TSB table. The TSB table has to be aligned on
8K boundary. The lower order 13 bits are assumed to be 0x0 during TSB table lookup.
Tables larger than 8K bytes are only constrained to be on 8K boundaries rather than
having to be size aligned.

4.4.2.4 Flush Page Register

This is a write-only register that allows software to perform address based flushes of a
mapping from TLB. The data written to this address contains the page number to be
flushed. If there is a TLB entry with a matching page number, it will be invalidated.

Note – No hardware mechanisms exist to solve the potential race between a DVMA
translation needing a TLB entry and the write to the Flush Page Register intended to
flush that entry. Software must manage the interlock by guaranteeing that no DVMA
can be going on to the page which is being flushed.

Table 4-49 TSB Base Address Register

Field Bits Reset Description Type

RESERVED 63:43 0 Reserved, read as zeros R

TSB_BASE 42:13 X Upper 30bits of the PCI TSB’s physical address R/W

RESERVED 12:0 0 Reserved, read as zeros R

Table 4-50 Flush Page Register

Field Bits Reset Description Type

Reserved 63:32 n/a Reserved, write has no effect W

FLUSH_VPN 31:13 n/a 31:16 = virtual page number if 64K page; bits
15:13 are don’t care
31:13 = virtual page number if 8K page

W

Reserved 12:0 n/a Reserved, write has no effect W
Register Descriptions 74

4

4.4.2.5 Flush Context Register

This is a write-only register that allows software to perform context based flushes of
multiple mappings from TLB. The data written to this address contains the context
number to be flushed. If there are any TLB entries with matching context numbers,
they will be invalidated.

Note – No hardware mechanisms exist to solve the potential race between a DVMA
translation needing a TLB entry and the write to the Flush Context Register intended
to flush that entry. Software must manage the interlock by guaranteeing that no DVMA
can be going on to the context which is being flushed.

4.4.2.6 TLB TAG Diagnostics Access

The TLB Tag Diagnostics Access provides diagnostics path to the 16-entry TLB Tag
when the MMU_DE bit in the IOMMU Control Register is turned on.

Note – Diagnostic accesses should insure that multiple page match conditions are not
generated. The result of multiple page matches is unpredictable (multiple context
matches are allowed)

Table 4-51 Flush Context Register

Field Bits Reset Description Type

Reserved 63:12 n/a Reserved, write has no effect W

FLUSH_CONTEXT 11:0 n/a Context number to flush. Context numbers have
no inherent meaning to the IOMMU, but are used
by software to group related pages.

W

Table 4-52 TLB Tag Diagnostics Access

Field Bits Reset Description Type

RESERVED 63:37 0 Reserved, read as zeros R

CONTEXT 36:25 X Context Number R/W

ERRSTS 24:23 X Error Status:
00 = No Error
01 = Invalid Error
10 = Timeout
11 = ECC Error (UE)

R/W

ERR 22 X When set to 1, indicates that there is an error asso-
ciated with this TLB entry. The specific error is
indicated by the ERRSTS field.

R/W

W 21 X Writable bit. when set, the page mapped by the
TLB has write permission granted.

R/W

S 20 X Stream bit, 1 = page is streamable, 0 = page is not
streamable

R/W

SIZE 19 X Page Size, 0=8K and 1=64K. R/W

VPN 18:0 X VPN[31:13] R/W
Register Descriptions 75

4

4.4.2.7 TLB Data RAM Diagnostic Access

The TLB Data Diagnostics Access provides direct PIO accesses to 16 entries of TLB
Data RAM. MMU_DE bit in the IOMMU Control Register must be turned on to
perform the accesses. Following table shows the information included in the returned
data.

4.4.2.8 LRU Queue Diagnostic Access

This LRU queue can be directly accessed by PIO read for diagnostic purpose. The
MMU_DE bit in IOMMU Control Register must be set to perform direct access. There
are 16 entries in the LRU Queue. Each entry contains a unique value range from 0x0 to
0x1F. Entry 0 contains the pointer to a TLB entry which is least recently used, and entry
15 contains the pointer to a TLB entry that is most recently used.

4.4.2.9 TLB Compare Setup Diagnostic Register

This register is used to set up the virtual address or context number for TLB compare
diagnostics. The virtual address or context number is written to this register along with
a flag indicating which one should be used, and the compare results from TLB can be
read from the TLB Compare Result Diag Register.

Table 4-53 TLB Data RAM Diagnostics Access

Field Bits Reset Description Type

RESERVED 63:33 0 Reserved, read as 0. R

V 32 0 Valid bit, when set, the TLB data field is meaning-
ful.

R/W

RESERVED 31 0 Reserved, read as 0 (was local bus bit for SBus) R/W

C 30 X Cacheable bit. 1=Cacheable access, 0=Non-
cacheable.

R/W

PA[42:13] 29:0 X 30-bit Physical Page Number. R/W

Table 4-54 LRU Entry Diagnostics Access

Field Bits Reset Description Type

RESERVED 63:4 0 Reserved, read as zeros R

LRU_DO 3:0 X LRU entry selected. R

Table 4-55 TLB Compare Setup Diagnostic Register

Field Bits Reset Description Type

RESERVED 63:33 0 Reserved, read as 0. R

MATCH_TYPE 32 X Set to 0 to select lookup by virtual page number,
or 1 to select lookup by context number.

R/W
Register Descriptions 76

4

4.4.2.10 TLB Compare Result Diagnostic Access

Note – The TLB Tag Comparator Diagnostics Access provides diagnostics path to the
16-entry TLB Tag Comparator when the MMU_DE bit in the IOMMU Control Register
is turned on. Bit 0 represents the comparison result of the first TLB Tag entry, and bit
15 represents the last.

In order to avoid invalid address translation after TLB diagnostics, the valid bits in the
TLB should be reset appropriately before doing any meaningful address translation.

4.4.3 Streaming Cache Operation

4.4.3.1 Streaming Cache Overview

The Streaming Cache (STC) implemented in Schizo is a small size fully associative
cache managed by both hardware and software, to accelerate certain PCI bus DVMA to
and from system memory.

Each PCI leaf within Schizo contains a STC module. This chapter specifies the size,
functionality and algorithms of a single STC module, but the reader should realize that
all statements can be applied to both copies of the STC.

The Schizo streaming cache performs three primary functions. The first is to
accumulate sequentially addressed PCI write bursts into quantities the size of a system
block. The second function is to speculatively prefetch the next (increasing) sequential
block of memory for an active PCI read stream. The third function is to act as a local
cache for PCI read accesses to the same block.

The implementation of the Schizo streaming cache features:

A fully associative pool of 16 entries shared among read and write streams.

Two 64-byte blocks of data per entry.

Dual ported data RAM for concurrent write/flush and read/fill operations.

64 bit wide interface to both the PBM and IFC modules

VPN 31:13 X Virtual page number. R/W

RESERVED 12 0 Reserved, read as 0. R

CONTEXT 11:0 X Context number for compare. R/W

Table 4-56 TLB Tag Comparator Diagnostics Access

Field Bits Reset Description Type

RESERVED 63:16 0 Reserved, read as zeros R

COMP 15:0 X TLB tag comparator output for each entry. R

Table 4-55 TLB Compare Setup Diagnostic Register

Field Bits Reset Description Type
Register Descriptions 77

4

Least Recently Used entry allocation scheme

• Virtual address tags for low lookup latency.

• Physical address page translation for each entry to reduce flush and prefetch
latencies.

• One entry allotment per virtual page to reduce the problem of individual
misbehaved devices from thrashing the cache.

• Individual byte write enables to support PCI bus byte granularity.

Only accesses to virtual pages that are designated by software as streamable pages can
use the streaming cache’s functions. The streaming cache does not, however,
participate in the system cache coherency protocol, and the data in the cache is out of
the coherency domain, so software intervention is required to ensure a consistent
memory image when transfers are complete. PCI devices will see program order
functionality; reads followed by writes and writes followed by reads will see the
correct results.

4.4.3.1.1 Streaming Cache Conceptual Overview

The streaming cache conceptually resides in close proximity to the PCI Bus Controller
Module (PBM) so that low latency will be observed by the cards on each streaming
access. A very tight coupling exists between the PBM and the streaming cache, with
the STC almost appearing as a slave device to the PBM.

The streaming cache also has its own interface to the interface controller (IFC) of the
PCI leaf. One reason is that the STC needs to pass different information to the IFC than
the PBM. Another reason is that there are occasions when both the STC and the PBM
would like to communicate with the IFC. The Schizo IFC can handle this arbitration
more effectively than a PBM controlled arbiter since it has superior knowledge of the
resources available.

IOMMU lookups are handled as a natural part of the PBM’s functionality. When an
entry is allocated in the STC, the PBM sends all necessary information, including the
physical address for the page, therefore there is no direct connection between the STC
and the IOMMU.

The STC is essentially an intermediate buffer for streaming data transfer between the
Safari and PCI buses. There is no need for the STC to generate interrupts, therefore no
connection to the Mondo Unit is necessary. Error information from Safari on read
replies will be stored in the STC to be passed through to the PBM at a later time. PCI
parity error information on write requests will be stored in the STC and transferred to
the Safari interface, no corruption of ECC is performed for outbound data. It passes the
data as is to the Safari core.

4.4.3.1.2 STC Subsections

The streaming cache is partitioned into four major subsections: the STC Central
Control Unit, the Tag block, the Data block, and the Master Request Port.

The STC Central FSM handles contol signal communication between the STC and PBM
module. It also, along with the Master request Port, handles STC communication with
the PCI leaf’s Interface Controller.
Register Descriptions 78

4

The Tag block contains all of the address and status information concerning the entries
within the cache. This includes the virtual page number, the context number, the
corresponding physical page number, the byte locations of dirty data within the data
blocks, and the status of the line (invalid, fetching).

The Data block holds the actual data associated with the blocks of memory. It also
contains error status in the form of 64 total bits, four bits per entry: one bit associated
with PCI writes, and one bit associated with PCI reads for each of the two data blocks
of that entry.

The Master Request Port handles most communication between the PCI leaf’s internal
bus structure and the streaming cache. It is responsible for posting DMA requests and
subsequently sinking/sourcing data. To decouple streaming cache operation from the
delays and protocol associated with using the PCI leaf’s internal busses, the Master
Request Port has both a prefetch buffer with four 64-byte entries, and a 64-byte flush
buffer.

4.4.3.2 Streaming Cache Functional Description

The STC is first consulted whenever a PCI DMA request occurs. The virtual address
appearing on the PCI bus is compared with the VA tags to see if the page is streamable
and active in the cache. If there is a hit, then the appropriate action is taken on the
matching entry as described in the following paragraphs. If the virtual page is not
found in the STC, then this initial transaction will be ignored and the internal state
reset. A page not found in the cache does not mean that the page is not streamable; just
that it is not active in the cache at this time. The PCI controller module will return if
the results of the IOMMU lookup indicate that the page was indeed marked
streamable. In this case, the least recently used entry will be allocated and its contents
invalidated (if clean) or flushed to memory (if the contents are dirty).

4.4.3.2.1 Streaming Writes

The STC receives write data from the PBM and fills the appropriate cache line in the
hopes of eventually accumulating an entire system block quantity of data. This block
can then be sent to memory without having to perform a read-merge-write operation.
When a write crosses a block boundary, after the data is inserted into the cache, the
completed (or partially completed) block will be copied into the 64-byte flush buffer,
from which it will be sent to the Safari interface as soon as allowed by the IFC block.
The streaming cache can continue the write in the other data block associated with the
streaming cache entry (unless the block is the last one in the page). If the flush buffer is
already full when a DMA write comes to a block boundary, the streaming cache will
end the write on the block boundary, and will wait until the flush buffer begins
emptying, then it will transfer the entry to the flush buffer. During this wait, no further
requests from the PBM will be acknowledged. This guarantees that all completed 64-
byte blocks will be flushed without software intervention.

4.4.3.2.2 Byte Holes and Zero Byte Writes

Byte holes within a single PCI write data stream (i.e. byte enable bit(s) is off, while byte
enable(s) to the left and right are on), and zero byte writes are defined to be an error
condition if the page is marked streamable. The PBM detects these conditions, sets a
Register Descriptions 79

4

status bit and signals an interrupt. The transaction continues, however, and the
streaming cache beahves as if the byte holes didn’t exist (i.e. it may overwrite data in
memory that it shouldn’t).

4.4.3.2.3 Streaming Reads

To improve streaming read performance, each streaming cache entry has storage for
two separate 64-byte blocks of data.

Streaming reads fall into one of three categories; either the requested data is already
located in the cache, the data must be fetched from memory, or the data is currently
being fetched from memory.

If the data is in the cache, but the next consecutive block of data is not in the cache, and
has not been prefetched already, a prefetch for that block is initiated if there is not
already an outstanding prefetch. Then, if the last byte of the current block will not be
read, the requested data is simply fed to the PCI device. If the last byte is expected to
be read, as signalled by the PBM when it services a PCI Memory Read Line or Memory
Read Line Multiple command, then a prefetch of the 2nd next sequential block of
memory will also be attempted (the next block has already been prefetched, so this is
the block after that), as long as there is not already an outstanding prefetch request. If
the master request port is not busy, the prefetch will be launched immediately,
otherwise the fetch will try to occur after the data is provided to the PCI device. When
any prefetch data arrives, it is put into the prefetch buffer (which can hold four
entries). As soon as the Data Block is not busy, any available prefetch data is copied to
it, provided that the last word of the line being overwritten was really read by the PCI
device. If the PCI device did not access the last word (even though it issued a Memory
Read Line or Memory Read Line Multiple command), the prefetch (and some Safari
bandwidth) will be wasted. A prefetch (again, of the 2nd next sequential block) can
also be issued if the PCI device reads the last word of a line. This covers the normal
PCI read case (i.e. the op is not a Memory Read Line or Memory Read Line Multiple).

If the data is not in the streaming cache (either the page or the line is not valid in the
cache), then the data must be fetched from memory. The entry will be allocated by the
fetch and marked as fetch outstanding. A demand fetch is then posted, after which a
prefetch for the next sequential block is also issued. In this scenario, the PCI controller
will be informed that the PCI device should be retried. This is done to free up the PCI
bus to perform other transactions during the memory read latency.

If the PCI device hits on an entry in the cache that is currently marked fetch
outstanding, the PBM will be informed that it should retry the PCI device, since the
data is not immediately available.

When the end of a 64-byte block (that is not the end of an 8K page) is reached, the
streaming cache can continue the read from the other data block in the entry, provided
that the necessary data is already there. Otherwise it ends the transaction with the
PBM.

4.4.3.2.4 Entry Flushing

There are several occasions when an entry containing dirty data needs to be flushed
toward coherent memory. These are listed below.
Register Descriptions 80

4

• End of line flush: When a DVMA write reaches end of a cache line, the hardware will
perform a line flush if the flush buffer is available, or wait until the flush buffer is
available and then perform the flush.

• Non-sequential write to the same line: Any non-sequential write to a cache line will
cause the existing line to be flushed before new data can be accepted.

• Line eviction on the same page: If a line is partially filled and is dirty and the device
starts writing to a new line on the same page, buffered data for the previous write
has to be flushed before new data can be accepted.

• Line eviction different page: This happens when all the cache lines are used up and
the incoming DVMA accesses a page with no line allocated to it. If the LRU line has
dirty data, it needs to be flushed before the line can be allocated to a new page.

• Read from page currently allocated for Writes: If a DVMA read occurs to a cache line
currently being used for writes, and a line is dirty, then the buffer must be flushed
before the read data is accepted.

• Software triggered flush: Software needs to flush the Streaming Buffer cache line on
any DVMA write transfers which end on sub-line boundries. Software triggered
flushes can be done either by virtual page number or by context number.

Of the above only the software triggered flush is visable to the software.

To make sure all previous flush operations are completed to the coherence domain,
Schizo provides a mechanism to synchronize the flush operation. The flush
synchronization involves a PIO write to the Streaming Buffer Flush Synchronization
Register with the physical address of the flush flag provided as PIO write data. Only
one write of the synchronization register is required as a barrier for all previous flush/
invalidate writes to that streaming cache.

In all of the mentioned cases, it is possible that the entry may not contain an entire
system block of data to be written to memory. In this situation, a partial block will be
delivered to the Safari interface, which will then have to do a read/modify/write
operation.

4.4.3.3 Streaming Cache Programming Model

4.4.3.3.1 Performance Issues

Extracting the most performance out of the streaming cache involves following several
guidelines concerning DMA accesses. Not conforming to these guidelines will result in
less than ideal observed performance. Some access patterns may, in fact, incur a
penalty which causes the streaming cache to yield poorer performance than equivalent
non-streamable accesses.

DMA writes to a block within a streamable virtual page should always access memory
in increasing total sequential order (i.e. no gaps). Failure to do so will cause
unnecessary flushing of the cache entry (and byte holes within a single DMA write will
cause errors). Better performance is exhibited when writing large sized bursts (64 bytes
or larger). While writes within a block should be increasing and sequential, no
hardware imposed performance impact is made in regard to accesses across blocks or
pages.
Register Descriptions 81

4

DMA reads from a block within a streamable virtual page should access memory in
increasing sequential order, and should use the appropriate PCI bus commands based
on amount of data to be read. Failure to do so will cause unnecessary prefetching .
Reads across blocks should also be in increasing and sequential order. Failure to do so
will waste the prefetching, reducing the maximum read bandwidth to no more than
non-streaming reads. Prefetches are not launched if they would cross a page boundary.
Larger burst sizes will again improve performance.

Since there is only one entry allotted per virtual page, multiple devices should not
interleave their accesses to the same virtual page. If it is desired to have multiple
devices accessing non-overlapping portions of the same page, aliasing should be used
to map different virtual pages to the same physical page.

4.4.3.3.2 Streaming Cache Livelock Issues

Schizo is designed to perform special performance optimizations for DMA pages that
are marked streaming. Performance on a streaming page works best when the actual
DMA access pattern is “streaming” - that is, when the DMA transactions to that page
access consecutively increasing addresses with no gaps, either within a transaction (via
deassertion of PCI byte enables), or between transactions (by starting a new transaction
somewhere other than where the previous one left off).

Normally, if the streaming guidelines are not followed, Schizo will still handle DMAs
as expected, but with significantly poorer performance.

There is a scenario, however, where two (or more) DMA transactions can be presented
to Schizo in a repeated fashion such that each transaction is always retried by Schizo,
and never makes progress by having a data transfer.

The scenario requires two DMA reads that target the same streaming page, but which
address different cachelines within that page. These two DMA read transactions could
be from different devices on the same PCI bus, or they could conceivably be issued by
the same device. Both transactions must be “active” on the PCI bus simultaneous - that
is, they must have been issued, and must continue to be reissued when Schizo
terminates them with a retry, and they must alternate on the PCI bus.

The first DMA read will cause Schizo to fetch data from memory to satisfy the DMA.
Prior to obtaining the data, Schizo will retry either of the DMA read transactions as
often as they are issued on the PCI bus. After Schizo has obtained the data, if the
second DMA transaction shows up on the PCI bus prior to the first one, Schizo will
throw away the data for the first DMA read and fetch data from memory to satisfy the
second DMA (streaming DMA transactions to the same page share a common data
buffer).

This process can now be repeated: when data for the second DMA arrives in Schizo, if
the first DMA is the next transaction seen by Schizo, the data will be thrown away and
a new data fetch started.

If the transaction continue to be alternated without significant variations in timing, this
process can be repeated indefinitely. Neither DMA transaction makes any progress,
and this situation can be called a livelock.

The only real workarounds for this problem are to avoid the situations that cause it. In
particular, if a single device needs to exhibit this type of behavior, it should do its
DMA in consistent mode (at least for affected pages). If that is not advisable for
Register Descriptions 82

4

performance reasons, the device will need to either keep retrying a single DMA read
until data is transferred before moving to another section of the same streaming page,
or it will need to manage the retries of the transactions in some other manner to avoid
a pattern that causes indefinite livelock.

For the case where two separate devices are issuing the DMA reads, the same end
result is required in order to work around the problem, but it is more difficult since the
two devices probably can’t coordinate activities with each other. In most cases this is
not a supported configuration (DMA addresses given to one device driver should not
be shared with a different driver), and the best solution is to map the page in
consistent mode.

Note – This exists in Schizo 2.2 and also will not be fixed in future revisions of Schizo.

4.4.3.3.3 Memory Coherency Maintenance

The streaming cache resides outside of the coherent memory domain, therefore it must
rely on software maintenance to guarantee correctness to the PCI devices. Two
mechanisms have been defined to provide software access to the operation of the
streaming cache.

The first means of software maintenance is either the “page invalidate/flush” or the
“context invalidate/flush” command (henceforth referred to simply as flush
commands). Software can issue a flush command to force the streaming cache to
remove any one entry that matches the indicated virtual page or context number. If the
page contains dirty data, a DMA write will be issued to flush the data to memory.
Regardless of the contents of the entry, both the virtual page entry and its
corresponding physical page translation will be invalidated from the cache. De-
mapping a streamable page must involve flush command(s) to the streaming cache to
ensure that virtual to physical page translations are deleted. When flushing by virtual
page number, one flush is needed per page that is de-mapped. When flushing by
context number, a separate flush is needed for each entry that matches the context,
since each flush only removes one entry. A register is provided so that software can
determine how many entries match a given context number.

Multiple flush commands are allowed to be outstanding at anytime. The PIO writes
will be serviced in the order received by the cache.

Note – The streaming cache considers all pages to be 8K in size, therefore, when
flushing by virtual page number, virtual pages to be flushed need to have bits 31
through 13 to be significant. When dealing with a 64K page size, eight separate virtual
page flush commands will have to be issued to ensure that the entire 64K page is
consistent between memory and the streaming cache.

The second mechanism provided for software to help maintain the cache is a means to
synchronize with the DMA flush stream. The positive acknowledge to the PIO write
command on a flush operation is not sufficient to indicate whether the data from the
appropriate virtual page has been flushed all the way into the coherent memory
domain. There is no ordering enforced between the PIO and DMA datapaths; the data
from the cache entry can reside in an intermediate write buffer for an unknown period
of time after the PIO acknowledge has been received by the processor. The “synch”
Register Descriptions 83

4

command has been created to properly inform software when the flush data has
actually reached the coherent domain. The command is launched by issuing a PIO
write to the streaming cache synch port with a (block aligned) physical address
pointer. The cache will subsequently launch a DMA block write (data = 0x00000000
00000001, 0x0) to the supplied physical address to indicate that the flush operation has
completed.

Since PIO accesses are serviced by the STC in the order received, and write requests
delivered to the PCI leaf are strongly ordered, only one synch operation is needed to
indicate that all previous flush commands for a particular streaming cache have
completed and their data has entered the coherent memory domain.

4.4.3.3.4 Error Recovery

Whenever any DVMA read results in a Safari error (including uncorrectable ECC
errors), the corresponding virtual page must be invalidated in the streaming cache. In
some cases, software will only be provided with the physical address of the erroneous
location. It is software’s responsibility to determine the virtual page(s) that correspond
to the error and subsequently invalidate them. Failure to conform to this procedure
will result in a PCI device to be continuously error acked due to the presence of the
error bit in the streaming cache entry. In the case of an uncorrectable ECC error, no
further interrupts will be launched by the ECC unit, and the (stale) entry will most
likely never be replaced in the cache (on it’s own, by a prefetch) since it will be
continually accessed and error ack’d.

Software will be notified via interuppt for DVMA write errors. These errors (which are
the result of PCI parity errors) cause will not cause bad ECC to be written back to
memory (normal data gets written).
Register Descriptions 84

4

4.4.4 Streaming Cache Registers

4.4.4.1 Streaming Cache Control Register

This register controls the various functions of the selected streaming cache.

4.4.4.1.1 Streaming cache entry locking

For diagnostics and debugging, each STC has the capability of restricting itself to use
just a single entry. This is controlled by the LRU_LE and LRU_LCKPTR fields of the
STC Control Register. To properly turn locking on the following sequence is required:

• Set SB_EN to 0

Table 4-57 Offset of Streaming Cache Registers

Register Address Access Size

Streaming Cache Control Reg. PCI_CSRBase+0x00.2800 8 bytes

Streaming Cache Page Flush/Invalidate Reg PCI_CSRBase+0x00.2808 8 bytes

Streaming Cache Flush Synchronization Reg PCI_CSRBase+0x00.2810 8 bytes

Streaming Cache Context Flush/Invalidate Reg PCI_CSRBase+0x00.2818 8 bytes

Streaming Cache Data RAM Diagnostic PCI_CSRBase+0x00.B000 -
PCI_CSRBase+0x00.B7FF

8 bytes

Streaming Cache Error Status Diagnostics PCI_CSRBase+0x00.B800 -
PCI_CSRBase+0x00.B8FF

8 bytes

Streaming Cache Page Tag Diagnostics PCI_CSRBase+0x00.BA00 -
PCI_CSRBase+0x00.BA7F

8 bytes

Streaming Cache Line Tag Diagnostics PCI_CSRBase+0x00.BB00 -
PCI_CSRBase+0x00.BB7F

8 bytes

Streaming Cache Context Match Reg PCI_CSRBase+0x01.0000 -
PCI_CSRBase+0x01.7FFF

8 bytes

Table 4-58 Streaming Cache General Control Register

Field Bits Reset Description Type

Reserved 63:08 0 Reserved, read as 0 R

LRU_LPTR 7:4 0x0 LRU Lock Pointer. Works in conjunction with
LRU_LE to restrict all streaming cache replace-
ment operations to use a single entry.

R/W

LRU_LE 3 0 LRU Lock Enable. When set, only the entry speci-
fied by LRU_LPTR will be victimized.

R/W

RR_DIS 2 0 Rerun Disable. When set, the streaming cache will
not rerun the PBM on check or put line misses.

R/W

DE 01 0 Diagnostic Mode enable, Set to 1 to enable diag-
nostic mode access.

R/W

SB_EN 0 0 Streaming cache enable/disable. Set to 1 to enable
Streaming cache.

R/W
Register Descriptions 85

4

• Set LRU_LE to 1 (must be a separate PIO write)
• Set LRU_LCKPTR to desired value (may be combined with previous PIO)
• Set DE to 1 (may be combined with previous PIO)
• Invalidate all STC entries
• Set SB_EN to 1 and DE to 0.

To unlock the STC:
• Set LRU_LE to 0

4.4.4.2 Streaming Cache Page Invalidate/Flush Register

This is a write-only register. It provides a means for software to cause an entry in the
streaming cache with a matching virtual page to become invalidated/flushed (there
should never be more than one entry matching a given virtual page). The data written
to this address contains the virtual page number to be used for match comparison. The
flush/invalidation is always based on 8K page size.

4.4.4.3 Streaming Cache Flush Synchronization Register

The Flush Synchronization Register provides a means for software to determine when
flush data has entered the coherent memory domain. Data written to this register
contains the physical address of a flush flag. Writing to this register triggers Schizo to
write a 64-byte block of data to FLAG_PA after all in progress flush operations (page
based or context based) for the streaming cache are complete. The first doubleword of
the block will be set to 0x1, and the remaining doublewords will be set to 0x0. The low
order 6 bits of the FLAG_PA Address will be ignored. Please read the Streaming Cache
chapter for more information of how the synchronization is done.

4.4.4.4 Streaming Cache Context Invalidate/Flush Register

This is a write-only register. It provides a means for software to cause entries in the
streaming cache with matching context numbers to become invalidated/flushed.
Writing this register will cause all entries with a matching context number that do not
have dirty data to be invalidated. In addition, one matching entry with dirty data will
be flushed and invalidated. The data written to this address contains the context

Table 4-59 Streaming Cache Page Invalidate/Flush Register

Field Bits Reset Description Type

FLUSH_A 31:13 n/a 8K virtual page to be invalidated/flushed W

Reserved 12:0 n/a These bits are ignored W

Table 4-60 Streaming Cache Flush Synchronization Register

Field Bits Reset Description Type

Reserved 63:43 n/a Reserved. Write as 0. W

FLAG_PA 42:6 n/a 64-byte aligned physical address for synch update. W

Reserved 5:0 n/a These bits are ignored. W
Register Descriptions 86

4

number to be used for match comparison. Software can use this register along with the
Streaming Cache Context Match Register to efficiently flush a context, and know when
flushing is complete.

4.4.4.5 Streaming Cache Context Match Register

The Streaming Cache Context Match Register is mapped at 4096 different locations.
The register returns a bit vector for the 16 entries in the streaming cache, indicating
which ones match a particular context number. It additionally returns a single bit
indicating if there is at least one match in the cache. The context number for the
comparison comes from bits <14:3> of the register address.

4.4.4.6 Streaming Cache Page Tag Diagnostic Access

The Page Tags are directly accessible through PIO access. There is one register for each
of the 16 entries in the streaming cache. This register can only be written when the DE
bit of the Streaming Cache Control Register is set to 1.

Caution – Valid bits on all entries should be reset to 0 after finishing diagnostics of the
Page Tags.

Warning – Accessing diagnostic registers in Schizo’s streaming cache block while
DMA is active can occasionally cause one of two problems. Diagnostic PIO reads can
cause Schizo to hang, leading to a system bus timeout, which will typically cause a

Table 4-61 Streaming Cache Context Invalidate/Flush Register

Field Bits Reset Description Type

Reserved 63:12 n/a Reserved, ignored on write. W

CONTEXT 11:0 n/a Context number to flush/invalidate W

Table 4-62 Streaming Cache Context Match Register

Field Bits Reset Description Type

HIT 63 0 Set to 1 if at least one entry matches context R

Reserved 62:16 0 Reserved, read as 0. R

MATCH 15:0 0x0000 1 bit for each entry, 1 = context match. R

Table 4-63 Streaming Cache Page Tag Format

Field Bits Reset Description Type

PTVD 63 0 Valid bit for page. R/W

PTRD 62 1 Read (/write_) bit for page. R/W

PTPA 61:32 X Physical page number (as an 8K page) R/W

PTVA 31:13 X Virtual page number (as an 8K page) R/W

Reserved 12 0 Reserved, read as 0. R

CONTEXT 11:0 X Context number R/W
Register Descriptions 87

4

machine panic. Other diagnostic PIO accesses (reads or writes) can cause corruption of
streaming DMA read data. Do not access Schizo’s streaming cache diagnostic registers
while a DMA is active.

4.4.4.7 Streaming Cache Line Tag Diagnostic Access

The Line Tags contains information related to the line in the streaming cache. There is
one register for each of the 16 entries in the streaming cache. This register can only be
written when the streaming cache is in diagnostic mode, (DE bit is set in the Streaming
Cache Control Register).

The LTEPW is only valid when the page is writable. This field should be set to one
greater than the end byte address of the dirty data chunk in the data ram (modulo
block size of 64 bytes).

Similarly, LTLAW is also only valid when the page is writable. All 7 bits must be
specified. If the page is readable, the 6 most significant bits of the line address must be
specified for each banks (LTLA0/LTLA1). The least significant bit is determined by the
bank number.

Caution – Valid bits on all entries should be reset to 0 after finishing diagnostics of the
Line Tag.

Table 4-64 Streaming Cache Line Tag Format

Field Bits Reset Description Type

Reserved 63:27 0 Reserved, read as 0. R

LRU 26:23 X LRU index. Provides index of the streaming cache
entry that would be allocated next at any given time.
This is either the lowest numbered invalid entry, or
the current LRU entry if all entries are valid.

R

LTVD1 22 0 Valid bit for block 1. R/W

LTVD0 21 0 Valid bit for block 0. R/W

LTFH1 20 0 Fetch Outstanding/Flush Necessary bit for block 1. R/W

LTFH0 19 0 Fetch Outstanding/Flush Necessary bit for block 0. R/W

LTSP 18:13 X Start pointer for dirty data portion of current block.
(only valid on page designated for writes
where only one bank is specified.)

R/W

LTLAW 12:06 X Line address for current block (Writes) R/W

LTEPW 05:00 X End pointer (+1) for dirty data portion of current
block (Writes)

R/W

LTLA1 12:07 X Line address1 for bank 1

1. LTLA1 contains the most significant 6 bits of line address for bank1(e.g. address = {LTLA1[5:0],1’b1})

R/W

LTLA0 05:00 X Line address2 for bank 0

2. LTLA0 contains the most significant 6 bits of line address for bank0 (e.g. address = {LTLA1[5:0],1’b0})

R/W
Register Descriptions 88

4

Warning – Accessing diagnostic registers in Schizo’s streaming cache block while
DMA is active can occasionally cause one of two problems. Diagnostic PIO reads can
cause Schizo to hang, leading to a system bus timeout, which will typically cause a
machine panic. Other diagnostic PIO accesses (reads or writes) can cause corruption of
streaming DMA read data. Do not access Schizo’s streaming cache diagnostic registers
while a DMA is active.

4.4.4.8 Streaming Cache Data RAM Diagnostic Access

There are sixteen entries in the streaming cache, each of which has two 64-byte blocks
of data. All of this data is accessible via the Streaming Cache Data RAM Diagnostic
registers. When accessing these registers, address bit <10:7> select the entry number,
bit <6> selects which block of the entry and bits <5:3> select which 8-byte quantity to
access in the block.

Warning – Accessing diagnostic registers in Schizo’s streaming cache block while
DMA is active can occasionally cause one of two problems. Diagnostic PIO reads can
cause Schizo to hang, leading to a system bus timeout, which will typically cause a
machine panic. Other diagnostic PIO accesses (reads or writes) can cause corruption of
streaming DMA read data. Do not access Schizo’s streaming cache diagnostic registers
while a DMA is active.

4.4.4.9 Streaming Cache Error Status Diagnostic Access

Each 64-byte block of data within the Streaming Cache has an error bit associated with
it for DMA read operations and another error bit associated with DMA write
operations. These bits are only visible to software during diagnostic mode. When
accessing the Streaming Cache Error Status Diagnostic registers, address bits <7:4>
select the entry number and bit <3> selects the block within the entry.

Table 4-65 Streaming Cache Data RAM Content Format

Field Bits Reset Description Type

DRDA 63:00 X Data R/W

Table 4-66 Streaming Cache Error Status Format

Field Bits Reset Description Type

Reserved 63:2 0 Reserved, read as 0. R

DWER 1 0 DMA write error (PCI parity error) bit. R/W

DRER 0 0 DMA read error (UPA read reply error) bit. R/W
Register Descriptions 89

4

Warning – Accessing diagnostic registers in Schizo’s streaming cache block while
DMA is active can occasionally cause one of two problems. Diagnostic PIO reads can
cause Schizo to hang, leading to a system bus timeout, which will typically cause a
machine panic. Other diagnostic PIO accesses (reads or writes) can cause corruption of
streaming DMA read data. Do not access Schizo’s streaming cache diagnostic registers
while a DMA is active.

4.4.5 Interrupt Registers

PCI related interrupts are delivered to the processor by Schizo by way of the Safari
Interrupt transaction type, and have the format shown in Table 4-67.

The IGN and INO field in the first doubleword of the interrupt data packet together
make up an 11-bit interrupt number (INR), which indicates the source of the interrupt.
Where possible, the interrupt is precise (i.e., it points to only one interrupt source).
This permits the dispatch of the proper interrupt service routine without any register
polling. Above the first doubleword the bits of the packet are guaranteed to be zero.
Software can use this knowledge to distinguish these interrupts from others such as
cross-calls.

In addition to PCI related interrupts, the PCI leaf within Schizo is responsible for
generating some interrupts on behalf of other portions of the chip, including some
internal sources (uncorrectable and correctable ECC errors) as well as external sources
(UPA64S port interrupts).

Each PCI leaf contains identical logic, and is capable of generating the same set of
interrupts. Before any particular interrupt becomes active, software must set a valid bit
in the mapping register for that interrupt in one of the PCI leaf blocks. In general, there

Table 4-67 Safari interrupt packet format

Interrupt packet
Address/Data

Bits Definition

Address 42:39 Reserved, issued as 0.

38:34 Schizo NodeID

33:29 Schizo AgentID

28:24 Reserved, issued as 0.

23:19 Target NodeID

18:14 Target AgentID

13:4 Reserved, issued as 0.

Data - DW0 63:16 Reserved, issued as 0.

15:11 Source NodeID

10:6 Interrupt Group Number (IGN)

5:0 Interrupt Number Offset (INO)

Data - DW1-DW7 63:0 Reserved, issued as 0.
Register Descriptions 90

4

is only one “correct” PCI leaf which should have the valid bit set for a given interrupt,
although which leaf is “correct” can vary from system to system. If an interrupt is
associated with a PCI device, then its valid bit should only be set in the PCI leaf that
controls the bus where the device is located. This will guarantee that Schizo correctly
synchronizes DMA write data with interrupt packets. If the wrong valid bit is set,
DMA write data may still be buffered in Schizo when an interrupt is delivered. If both
valid bits are set, two separate interrupt packets will be issued, one of which may pass
related DMA write data. For interrupts that are not directly associated with PCI
devices, software may choose which PCI leaf to use to deliver the interrupt packets.

There are 64 available INO values available to Schizo, which are broken down into
groups according to Table 4-67.

Each PCI leaf has a set of registers for all of the possible interrupt sources. These
registers are listed in Table 4-69

Table 4-68 Interrupt Number Offset Assignments

INO (binary) INO (hex) Interrupt Source

0sssnn 00-1f PCI Slot Interrupts, 4 separate interrupts per slot.
sss = PCI slot number, 0-7
nn = 00 for INTA#, 01 for INTB#,
nn = 10 for INTC#, 11 for INTD#

10nnnn 20-2f On-board I/O (OBIO) interrupts

10101n 2a, 2b UPA slot interrupts (included in OBIO category)
Pulse type interrupts

110nnn 30-37 Internal interrupts, where nnn is defined as:
000 = UE (Uncorrectable ECC error)
001 = CE (Correctable ECC error)
010 = AE (PCI Bus A Error)
011 = BE (PCI Bus B Error)
100 = SE (Safari Bus Error)
101 = Reserved (BCDMA sync - see note)
110 = Reserved (ACDMA sync - see note)
111 = Reserved (unusable)

111nnn 38-3f Reserved (unusable). Associated registers in Schizo do not
exist.

Table 4-69 Offset of Interrupt Registers

Register Offset Access Size

Interrupt Mapping Register
for interrupt INO

PCI_CSRBase+
0x00.1000+INO*8

8 bytes

UPA Port 0 Interrupt Mapping Register (register
is also mapped normally via INO)

PCI_CSRBase+
0x00.6000

8 bytes

UPA Port 1 Interrupt Mapping Register (register
is also mapped normally via INO)

PCI_CSRBase+
0x00.8000

8 bytes

Clear Interrupt Register
for interrupt INO

PCI_CSRBase+
0x00.1400+INO*8

8 bytes

PCI Int State Diag Register PCI_CSRBase+0x00.A800 8 bytes
Register Descriptions 91

4

4.4.5.1 Interrupt Mapping Registers

The format for each interrupt mapping registers is shown in Table 4-70

4.4.5.2 Interrupt Clear Registers

Each interrupt source also has a state register associated with it. This state register can
be either of type “level” or of type “pulse.”

In the level sensitive case, the state register has two bits, and there are three valid
states: IDLE, RECEIVED, and PENDING. IDLE represents the state where no
interrupts are reported. RECEIVED indicates that an interrupt has been detected and
should be delivered to the processor if/when the valid bit is set in its the mapping
register. PENDING is the state when the interrupt has been queued to be or has been
sent to the processor. Any subsequent detection of the same interrupt is ignored until
software resets the state machine back to IDLE.

The state register for each level sensitive interrupts can be set to any desired state by
software via the Clear Interrupt Registers.

OBIO and Internal Int State Diag Register PCI_CSRBase+0x00.A808 8 bytes

Interrupt Retry Register PCI_CSRBase+0x00.1A00 8 bytes

PCI Consistent DMA Flush/Sync Register PCI_CSRBase+0x00.1A08 8 bytes

Table 4-70 Format of Interrupt Mapping Registers

Field Bits Reset Description Type

Reserved 63:32 0 Reserved, read as 0 R

V 31 0 Valid bit
When set to 0, interrupt will not be dispatched to
CPU from this PCI leaf. Has no other impact on
interrupt state.

R/W

T_AgentID 30:26 X Target AgentID of the processor that this interrupt
will be sent to.

R/W

T_NodeID 25:21 X Target NodeID of the processor that this interrupt
will be sent to.

R/W

Reserved 20:11 0 Reserved, read as 0 R

IGN 10:6 - Interrupt Group Number. This field always reflects
the value of Schizo’s AgentID (AId field in the
Schizo Control/Status Register).

R

INO 5:0 - Interrupt Number Offset
The value of this field is hardwired for each map-
ping register, as shown in Table 4-69

R

Table 4-69 Offset of Interrupt Registers

Register Offset Access Size
Register Descriptions 92

4

Note – Software should ensure that the source of a level sensitive interrupt (i.e. the PCI
device, or Schizo internal register) is cleared before clearing the interrupt state register
via the Interrupt Clear Register, otherwise Schizo will continue to reissue the interrupt
each time the state register is set to IDLE.

In the pulse case, the state register allows only two states: IDLE and RECEIVED. These
states have the same meaning as for the level sensitive case. There is no PENDING
state, so the state machine transitions from RECEIVED back to IDLE when the
interrupt is dispatched to a processor. The only pulse type interrupts are the two UPA
port interrupts.

The format for the Interrupt Clear Registers is shown in Table 4-71 and Table 4-72.

Note – The Interrupt Clear Registers are write only. To determine the current interrupt
state, use the interrupt state diagnostic registers instead.

4.4.5.3 Interrupt State Diagnostic Registers

The state bits for every interrupt source are made available in one of the two Interrupt
State Diagnostic Registers. The state bits here have the same definitions as in
Table 4-71.

The locations of each set of state bits is derived from the associated INO:

Register: if (INO >= 0x20) then OBIO Int Diag Reg else PCI Int Diag Reg

Table 4-71 Clear Interrupt Register - Level Interrupts

Field Bits Reset Description Type

reserved 63:2 n/a Reserved. Write with 0. W

State 1:0 n/a State bits for the interrupt state machine associ-
ated with this interrupt. The following values may
be written:
00 - Set state machine to IDLE state
01 - Set state machine to RECEIVED state
10 - Reserved
11 - Set state machine to PENDING state

W

Table 4-72 Clear Interrupt Register - Pulse Interrupts

Field Bits Reset Description Type

reserved 63:2 n/a Reserved. Write with 0. W

State 1:0 n/a State bit for the interrupt state machine associated
with this interrupt. The following values may be
written:
00 - Set state machine to IDLE state
01 - Set state machine to RECEIVED state
10 - Reserved
11 - Reserved

W

Register Descriptions 93

4

Bits: Int Diag Reg [(2 * (INO & 0x1F)) + 1: (2 * (INO & 0x1F))]

4.4.5.4 Interrupt Retry Timer Register

If an interrupt packet sent by Schizo is NACK’d by the Safari target agent, Schizo will
wait for a programmed number of clocks and resend the interrupt. This register
controls the number of clocks the interrupt dispatch unit should wait before resending
the interrupt packet. The count specified by this register is not precise: there is a free
running down counter (operating at the PCI leaf main frequency, nominally 66.7 MHz)
which is loaded from this value and which must roll through 0 twice before the packet
is retried.

Note – The Retry timer provides maximum of 1M clocks of delay before re-issuing the
interrupt to Safari. The maximum delay is approximately 31.5 msec using the internal
Schizo clock for a reference source (15.7 msec per iteration through the counter with a
worst case of nearly two complete cycles counting to 0). The minimum delay is (count
+ 1) clock cycles.

4.4.5.5 PCI Consistent DMA Flush/Sync Register

The PCI 2.1 specification requires Schizo to flush any internal consistent DMA write
buffers before issuing any PIO read on the PCI bus. Unfortunately, there are cases
where this can cause a deadlock. For that reason, and for performance considerations,
Schizo does not do this type of flushing.

This is normally not an issue. but, when there is a PCI-PCI bridge below Schizo that is
not Sun4u compliant (most off the shelf PCI-PCI bridges will not be Sun4u compliant),
there is a potential for DMA write data to not be flushed from Schizo when needed.

Table 4-73 PCI Interrupt State Diagnostic Register

Field Bits Reset Description Type

PCI_INT_STATE 63:0 0xFFFFFFFF.FFFFFFFF State bits for PCI interrupts
(INO 0x00-0x1f)

R

Table 4-74 OBIO and Internal Interrupt State Diagnostic Register

Field Bits Reset Description Type

Reserved 63:48 0x0000 Reserved, read as 0. R

INT_INT_STATE 47:32 0xFFFF State bits for Internal interrupts (INO
0x30-0x37).

R

OBIO_INT_STATE 31:0 0xFF0FFFFF State bits for on-board I/O interrupts (INO
0x20-0x2f).

R

Table 4-75 Interrupt Retry Timer Register

Field Bits Reset Description Type

RESERVED 63:20 0 Reserved, read as 0 R

LIMIT 19:0 0xFFFFF Limit - the retry interval R/W
Register Descriptions 94

4

The PCI Consistent DMA Flush/Sync register allows software to do the necessary
flushing manually in this case. When this register is written with a physical address,
Schizo will first flush any consistent mode DMA write buffers that have data. Then
Schizo will issue another DMA write to the specified physical address. It will write 64
bytes of data (the sync flag) to this address. The first doubleword of the data will be
0x0000000000000001. The remaining doublewords will be all 0. When the sync flag is
seen in memory, all appropriate DMA write data is guaranteed to be in memory as
well.

Note – The PCI 2.1 Spec requires a PIO read of a device in order to guarantee that data
in intermediate PCI-PCI bridges is flushed. Schizo’s PCI Consistent DMA Flush/Sync
must be performed after this device PIO read, or DMA write data will not be properly
flushed.

4.4.6 PCI Performance Monitor Registers

In order to gather useful statistics on the PCI performance of Schizo, a pair of registers
provide counts of key events. There are only two counters present, and the control
register selects the input for each of the counters.

In addition, a diagnostic register that indicates whether various subsystems within the
PCI leaf are idle is available, (this register also has some PCI configuration bits in it, see
bit descriptions in Section 4.4.6.3, on page 97 for details).

Table 4-76 PCI Consistent DMA Flush/Sync Register

Field Bits Reset Description Type

Reserved 63:43 n/a Reserved, write as 0 W

FLAG_PA 42:6 n/a 64-byte aligned physical address to which the
sync flag value will be written

W

Reserved 5:0 n/a Reserved, write as 0 W

Table 4-77 Offset of PCI Performance Monitor Registers

Register Offset Access Size

PCI Performance Monitor Control Register PCI_CSRBase+0x00.0100 8 bytes

PCI Performance Counter Register PCI_CSRBase+0x00.0108 8 bytes

PCI Configuration/Idle Check Diagnostics Reg-
ister

PCI_CSRBase+0x00.0110 8 bytes
Register Descriptions 95

4

4.4.6.1 Performance Monitor Control Register

This register controls the events to be monitored by the Performance Counter Register.

The table below defines the encoding for selecting PCI events to monitor in Schizo.

Table 4-78 PCI Performance Monitor Control Register

Field Bits Reset Description Type

Reserved 63:16 0 Reserved, read as 0 R

SEL1 15:11 0 Select event source for counter 1. See Table 4-79
for encoding.

R/W

Reserved 10:9 0 Reserved, read as 0. R

SEL0 8:4 0 Select event source for counter 0. See Table 4-79
for encoding.

R/W

Reserved 3:0 0 Reserved, read as 0 R

Table 4-79 PCI Performance Counter Event Sources

SEL0, SEL1 Event Sources

0x00 Number of streaming DVMA read transfers

0x01 Number of streaming DVMA write transfers

0x02 Number of consistent DVMA read transfers

0x03 Number of consistent DVMA write transfers

0x04 Number of streaming buffer misses

0x05 Number of bus cycles PCI bus is busy with DMA.

0x06 Number of words transferred using DMA on PCI bus1

0x07 Number of bus cycles PCI is busy with PIO.

0x08-0x0f Reserved

0x10 Number of TLB misses

0x11 Number of interrupts issued

0x12 Number of interrupt NACKs received

0x13 Number of PCI bus PIO read transfers

0x14 Number of PCI bus PIO write transfers

0x15 Number of consistent DMA read buffer timeouts

0x16 Number of PCI DMA read requests retried due to STC

0x17 Number of PCI DMA write requests retried due to STC

0x18 Number of PCI DMA read requests retried, not due to STC

0x19 Number of PCI DMA write requests retried, not due to STC

0x1a Amount of time spent in E* slow mode (1 count for every 64 slow clock
cycles)

0x1b Number of times E* slow mode is entered (dynamically)

0x1a-0x1f Reserved. Counter value is undefined when these sources are chosen.
Register Descriptions 96

4

4.4.6.2 PCI Performance Counter Register

This register contains the counts of the two events selected by the PCI Performance
Monitor Control Register. The two counters operate independently, but must both be
written together. When either counter reaches its maximum count, it will silently wrap
around to 0x0 and continues counting. If necessary, software must detect and handle
this overflow condition.

4.4.6.3 PCI Configuration/Idle Check Diag Register

This register has two functions. It has some mode and enable bits. It also has an idle
check diagnostic function. Each bit gives an indication of whether the indicated block
is currently busy, or whether all of its resources and state machines are currently idle
(outside of those that may be needed to support a PIO access to the Idle Check Diag
Register). The exact definition of idle for each block will not be defined here, and is up
to the hardware specification for each individual block.

1. The word count will increment whenever any of the four associated byte enables
is active. If, during the recording interval, there are any DMAs that start or end
on unaligned addresses, it won’t be possible to determine the exact number of
bytes transferred.

Table 4-80 PCI Performance Counter Register

Field Bits Reset Description Type

CNT1<31:0> 63:32 0 Contains value for event counter 1. R/W

CNT0<31:0> 31:00 0 Contains value for event counter 0. R/W

Table 4-81 PCI Configuration/Idle Check Diag Register

Field Bits Reset Description Type

Reserved 63:16 0 Reserved, read as 0 R

PCI 2.0 Compatibility 15 0 When set, removes the PCI command
from delayed read completion. This
allows devices which change com-
mands when retried, i.e. not PCI 2.1
compliant, to not timeout.

R/W

DMAW parity err inter-
rupt enable

14 0 When set, DMA write parity errors
will generate an interrupt.
* bit 14 = 0 => 2.3 style behavior,
don’t interrupt on DMA writes with
parity errors.

* bit 14 = 1 => 2.4 style behavior,
interrupt on any DMA writes with
parity errors.

* Power on reset value is 0., defaults
to 2.3 style behavior, don’t interrupt
on DMA writes with parity errors.

R/W

Reserved 13:8 0 Reserved R/W
Register Descriptions 97

4

For each block, a value of 0 indicates the block is idle, and a value of 1 indicates that
the block considers itself busy.

Reserved 7:5 0 Reserved, read as 0 R

IFC_NOT_IDLE 4 0 IFC block is not idle R

MDU_NOT_IDLE 3 0 MDU block is not idle R

MMU_NOT_IDLE 2 0 MMU block is not idle R

PBM_NOT_IDLE 1 0 PBM block is not idle R

STC_NOT_IDLE 0 0 STC block is not idle R

Table 4-81 PCI Configuration/Idle Check Diag Register

Field Bits Reset Description Type
Register Descriptions 98

4

Register Descriptions 99

ErrorHandling 5
5.1 Overview
This chapter describes the error detection, correction, and error reporting mechanisms
supported by Schizo.

Detected errors are classified as either fatal errors or non-fatal errors. Fatal errors may
result in a system reset if enabled by software. Actions taken on non-fatal errors
include: generating interrupts, setting status register bits, or none at all.

5.2 Error Detection and Reporting

5.2.1 Error Detection

5.2.1.1 Detectable Safari Bus Errors

5.2.1.1.1 Safari Address Parity Error

This error is detected when the Safari AddrPty signal does not match the calculated
parity of the Transaction Request Group signals from the previous cycle. This error can
be detected on any Safari transaction that is not initiated by Schizo, regardless of
whether Schizo was the intended target. Schizo will execute the command and checks
and reports parity independently. The transaction is not explicitly ignored and may
propagate through Schizo with a corrupted command/address/mask or atransid
depending on which signal has the parity error. However if the S_ERROR_L reporting
signal is enabled, the system will result in a reset resulting from the detection of the
parity error.

5.2.1.1.2 Safari Unmapped Error

This error is detected when the MappedIn signal of the Safari State group is not
asserted for a transaction that Schizo has initiated. This can happen for any of the
following:

• Cacheable or non-cacheable DMA reads or writes

• Interrupt requests generated by Schizo
100

5

5.2.1.1.3 Safari Timeout Error

This error is detected if the DStat for an incoming data packet indicates a Timeout
Error. This can happen for the following transaction types:

• Non-cacheable DMA reads

5.2.1.1.4 Safari Bus Error

This error is detected if the DStat for an incoming data packet indicates a Bus Error.
This can happen for the following transaction types:

• Non-cacheable DMA reads

5.2.1.1.5 Safari DStat Error

This error is detected if the DStat for an incoming data packet is illegal. The following
combinations are illegal:

• PIO write to Schizo or devices controlled by Schizo (except for UPA64S devices),
with a Timeout Error or Bus Error indicated in the DStat field

• DMA read of cacheable memory, with DStat other than ECC valid

• Partial-line DMA write of cacheable memory, with DStat other than ECC valid

5.2.1.1.6 Safari Datapath ECC Error

This error is detected if the DStat for an incoming data packet indicates that ECC has
been generated, and the ECC indicates an error. There are two varieties of this error
that can be detected: correctable ECC errors, and uncorrectable ECC errors. These
errors can happen when data is received by Schizo for any of the following types of
transactions:

• PIO writes to Schizo and devices controlled by Schizo. (Note error logging is partial
for UPA64S devices.)

• Cacheable or non-cacheable DMA reads

• Partial-line DMA writes to cacheable memory

When Schizo “owns” data it received with bad ECC, it will “force” bad ECC on data it
returns. This occurs for partial-line DMA writes, which require writebacks and maybe
copybacks. The data driven by Schizo in this case will be all zeroes, with the two least
significant ECC check bits inverted.

5.2.1.1.7 Safari Command Timeout Error

Safari protocol requires outstanding commands be protected (against HW failures) by
timeout counters. When a command at the head of a queue doesn’t complete within
the timeout interval, a status bit will be set and S_ERROR_L will be asserted. The
system may then provide the missing data or assert reset to unhang Schizo.

5.2.1.1.8 Safari SSM Error

Received an SSM command while SSM_EN is not set.
Error Handling 101

5

5.2.1.2 Detectable PCI Bus Error

5.2.1.2.1 PCI Receive Data Parity Error

This error is detected when a parity error is detected on either of the two sets of parity
protected signals on the PCI bus (standard 32-bit data/control, and 64-bit data/control
extensions), only during a valid data phase of a transaction (IRDY# and TRDY#
asserted) involving Schizo. Note that parity errors will not be detected during wait
states (neither master nor target wait states). PCI receive data parity errors can be
detected during the following transactions:

• PIO reads from a PCI device

• DMA writes by a PCI device

5.2.1.2.2 PCI Send Data Parity Error

This error is detected when the PCI PERR# signal is asserted by the other device
during a PCI transaction involving Schizo. This can be detected during the following
transactions:

• PIO writes to a PCI device

• DMA reads by a PCI device

5.2.1.2.3 PCI Target-Abort

This error is detected when, during a PCI transaction for which Schizo is the master,
the target device asserts STOP# and deasserts DEVSEL#. Reasons that a target might
issue a target-abort include: unsupported byte enables, an unsupported addressing
mode, an address parity error, and device specific errors. A target-abort may be
detected during any PIO reads or writes to PCI devices.

5.2.1.2.4 PCI Master-Abort

This error is detected when Schizo begins a PCI transaction, and no device responds by
asserting DEVSEL# within X cycles. This is typically because no device is mapped at
the specified address. A Master-Abort error can be detected during any PIO read or
write attempt to a PCI device.

5.2.1.2.5 PCI Retry Limit Error

This error is detected when Schizo initiates a PCI transaction, and the PCI target device
terminates the transaction with a Retry (disconnects with no data transfer) for XXXX
successive attempts. This error can be detected during any PIO read or write to a PCI
device.
Error Handling 102

5

5.2.1.2.6 PCI Retry Timeout

When Schizo is the target of a PCI transaction that is determined to be a Consistent-
mode DMA read, and Schizo turns it into a Delayed Read Transaction (terminates on
the PCI with Retry, but reserves resources, and issues the request to Safari), and the
PCI master does not re-issue the same transaction within 2^15 clocks after the data has
been returned to the PCI leaf.

5.2.1.2.7 PCI Address Parity Error

This error is detected when a parity error is detected on either of the two sets of parity
protected signals on the PCI bus (standard 32-bit data/control, and 64-bit data/control
extensions). Schizo only detects address parity errors if the address seen by Schizo is a
DMA address (i.e. bit 31 is set for normal addressing, or bits 63:50 are set for a dual-
address cycle).

5.2.1.2.8 PCI System Error (SERR#)

This error is detected any time that the PCI SERR# signal is asserted by any PCI device.
Possible reasons for a device to assert SERR# include: detection of an address parity
errors, or device specific fatal errors.

5.2.1.3 Detectable UPA64S Errors

5.2.1.3.1 UPA64S Slot Vacant

When a UPA64S port which was detected to be unoccupied at the end of system reset,
the address comparator for that slot is disabled. A PIO read or write directed to the
empty slot will be ignored, causing the source to detect an unmapped error.

5.2.1.4 Other Detectable Errors

5.2.1.4.1 IOMMU Translation Error

This error can be detected during the address translation of any DMA read or write
transaction. It is detected if any of the following occur:

• The PCI virtual address is out of the programmed DMA address range

• The Valid bit is not set in the TTE for the given virtual page

• The DMA operation is a write, and the TTE is marked read-only

5.2.2 Error Reporting

5.2.2.1 Summary of Error Reporting

Table 5-1 summarizes the response of Schizo when an error is detected. All Schizo
operations involve the Safari bus and one other leaf bus or leaf block. Errors typically
occur and are detected on a single bus, but error responses may occur on neither, one,
Error Handling 103

5

or both of the involved buses. Only the immediate response of Schizo is shown below,
and not that of any other devices that may be involved. For example, when a Safari
Data ECC Error is detected during a DMA Read from a PCI device, the table shows
that Schizo issues a Target-abort, but does not indicate that the PCI device then
typically issues an interrupt as a result. In all cases where Schizo responds with an
interrupt, the interrupt is only issued if enabled.

The following register abbreviations are used in the table. See Chapter 4, “Register
Descriptions” for further details:

• SIB CSR - Safari Interface Block Error Control/Log Register

• CE/UE AFR - Correctable/Uncorrectable ECC Error Address Fault Register

• PCI Status - PCI defined Status Register in PCI Config Space

• PCI CSR - PCI Block Control/Status Register

• PCI AFR - PCI Asynchronous Fault Register

Table 5-1 Summary of Error Reporting

Src/Dst
Bus/Leaf

Transaction
Type Error Type

Safari
Response

Leaf Bus
Response

Error Status
Register(s)

Unknown Unknown Safari Address
Parity Error

Execute
transaction,
reports error via
S_ERROR_L if
enabled.

None SIB CSR

PCI DMA Read Safari Unmapped
Error

Transaction
aborted

Target-abort SIB CSR
PCI Status

PCI DMA Write Safari Unmapped
Error

Transaction
aborted

None SIB CSR

PCI leaf Interrupt Safari Unmapped
Error

Transaction
aborted

ACK interrupt SIB CSR

PCI DMA Read Safari Timeout Error None Target-abort SIB CSR
PCI Status

PCI DMA Read Safari Bus Error None Target-abort SIB CSR
PCI Status

PCI PIO Write Safari DStat Error None Not passed to leaf SIB CSR

PCI DMA Read Safari DStat Error None Target-abort SIB CSR
PCI Status

PCI DMA Write
(partial line)

Safari DStat Error bad ECC forced
on Writeback

None SIB CSR

PCI PIO Write Safari Data ECC
Correctable Error

CE Interrupt None CE AFR

PCI DMA Read Safari Data ECC
Correctable Error

CE Interrupt None CE AFR

PCI DMA Write
(partial line)

Safari Data ECC
Correctable Error

CE Interrupt None CE AFR
Error Handling 104

5

PCI PIO Write Safari Data ECC
Uncorrectable Error

UE Interrupt Not passed to leaf UE AFR

PCI DMA Read Safari Data ECC
Uncorrectable Error

UE Interrupt Target-abort1 UE AFR
PCI Status

PCI DMA Write
(partial line)

Safari Data ECC
Uncorrectable Error

bad ECC forced
on Writeback;
UE Interrupt

None UE AFR

PCI ??? Safari SSM Error None? ??? SIB CSR

PCI None PCI System Error PCI Interrupt None PCI Status
PCI CSR

PCI Unknown
(DMA)

PCI Address Parity
Error

PCI Interrupt Target-abort PCI Status

PCI PIO Read PCI Master-abort DStat=Timeout None PCI Status

PCI PIO Write PCI Master-abort PCI Interrupt None PCI Status
PCI AFR

PCI PIO Write
(PCI Special
Cycle)

PCI Master-abort
(This is the normal
termination for PCI
Special Cycles)

None None None

PCI PIO Read PCI Retry Limit
Error

DStat=Timeout Stop retrying PCI Status

PCI PIO Write PCI Retry Limit
Error

None Stop retrying PCI Status
PCI AFR

PCI PIO Read PCI Target-abort DStat=Bus Error None PCI Status

PCI PIO Write PCI Target-abort PCI Interrupt None PCI Status
PCI AFR

PCI DMA Read PCI Retry Timeout PCI Interrupt Free delayed
transaction
resources

PCI CSR
PCI AFR

PCI DMA Write,
Streaming

PCI Receive Data
Parity Error

Normal Data
transfer to
memory,
PCI Interrupt

Assert PERR# PCI Status

PCI DMA Write,
Consistent,
STOP_DATA=0

PCI Receive Data
Parity Error

Normal Data
transfer to
memory,
PCI Interrupt

Assert PERR# PCI Status

PCI DMA Write,
Consistent,
STOP_DATA=1

PCI Receive Data
Parity Error

Does not pass
data to memory,
PCI Interrupt

Assert PERR# PCI Status

PCI PIO Write PCI Send Data
Parity Error

PCI Interrupt None PCI Status
PCI AFR

Table 5-1 Summary of Error Reporting

Src/Dst
Bus/Leaf

Transaction
Type Error Type

Safari
Response

Leaf Bus
Response

Error Status
Register(s)
Error Handling 105

5

5.3 Undetected Errors
Certain error conditions are not detected or reported by Schizo. Examples of these
errors are listed below. Please note that this list may not enumerate all unreported
errors;

• A PIO write to a read-only register is ignored.

• A read from a write-only register returns unknown data.

• Certain PCI protocol violations (device responding with DEVSEL#, but never
responding with TRDY# or STOP#).

• Infinite NACKing of an interrupt

• Safari DStat Errors on PIO writes to UPA64S

PCI PIO Read PCI Receive Data
Parity Error

DStat=Bus Error Assert PERR# PCI CSR
PCI Status

PCI DMA Read PCI Send Data
Parity Error

None None PCI Status

PCI DMA Read IOMMU Translation
Error

PCI Interrupt Target-abort PCI Status
MMU CSR

PCI DMA Write IOMMU Translation
Error

PCI Interrupt Target-abort PCI Status
MMU CSR

UPA64S PIO Read UPA64S Slot Vacant
Error

(don’t assert
Mapped)

None

UPA64S PIO Write UPA64S Slot Vacant
Error

(don’t assert
Mapped)

None

1. The Target-abort is signalled on the PCI bus when the bad data is actually requested there. In the
case of a streaming cache prefetch, this may never occur. In addition, Schizo reserves the right to
consider an entire data packet bad even when only a portion of it has an uncorrectable ECC error.

Table 5-1 Summary of Error Reporting

Src/Dst
Bus/Leaf

Transaction
Type Error Type

Safari
Response

Leaf Bus
Response

Error Status
Register(s)
Error Handling 106

	Schizo Programmer’s Reference Manual
	1.1 Introduction
	1.2 Schizo Summary
	1.2.1 Technology
	1.2.2 Package
	1.2.3 Design Size
	1.2.4 Custom Cells
	1.2.5 Frequency of Operation
	1.2.6 Power Consumption

	1.3 Design and Performance goals
	1.4 Schizo External Interfaces
	1.5 Schizo Block Diagram
	1.6 Schizo Block Overviews
	1.6.1 Safari Interface Overview
	1.6.1.1 Introduction
	1.6.1.2 Block Diagram
	1.6.1.3 Sub-Block Descriptions

	1.6.2 PCI Leaf Overview
	1.6.2.1 Introduction
	1.6.2.2 Block Diagram
	1.6.2.3 Sub-Block Descriptions

	2.1 Safari => Leaf interfaces
	2.1.1 Safari Cacheable Space
	2.1.2 Safari Non-cacheable Space
	2.1.2.1 Accesses to UPA
	2.1.2.2 Accesses to PCI

	2.1.3 Safari Interrupt Space
	2.1.4 Safari Admin Space

	2.2 UPA => Safari
	2.3 PCI => Safari
	2.3.1 PCI Configuration Space
	2.3.2 PCI IO Space
	2.3.3 PCI Memory Space
	2.3.3.1 PCI Address Translation Modes
	2.3.3.2 Safari Transactions Generated

	2.3.4 Interrupts

	3.1 Overview
	3.2 Big- and Little-endian regions
	3.2.1 Address Space
	3.2.2 Internal blocks

	3.3 Byte Twisting
	3.4 Specific Cases
	3.4.1 PIOs
	3.4.2 DMA

	4.1 General Information
	4.1.1 Abbreviations Used
	4.1.2 Access Size
	4.1.3 Unimplemented Addresses
	4.1.4 Physical Addresses

	4.2 Safari Interface
	4.2.1 Safari Device ID Register
	4.2.2 Address Match and Mask Registers
	4.2.3 Schizo Control/Status Register
	4.2.4 Safari Error Control/Log Registers
	4.2.5 ECC Control Register
	4.2.6 Correctable and Uncorrectable Error Asynchronous Fault Status Registers
	4.2.7 Correctable and Uncorrectable Error Asynchronous Fault Address Register
	4.2.8 Safari Energy Star Control Register
	4.2.9 Safari Soft Pause Register
	4.2.10 Queue Control Register
	4.2.11 Safari DTag Diagnostic Registers
	4.2.12 Safari Debug Registers
	4.2.13 Safari Performance Control Register
	4.2.14 Safari Performance Counters Register

	4.3 UPA Leaf
	4.3.1 UPA64S Slot0 and Slot 1 Configuration Registers
	4.3.2 UPA64S Interface Configuration Register
	4.3.3 UPA Energy Star Control Register

	4.4 PCI Leaf
	4.4.1 PCI Bus Module
	4.4.1.1 PCI Control/Status Register
	4.4.1.2 PCI Asynchronous Fault Status/Address Registers
	4.4.1.3 PCI Diagnostic Register
	4.4.1.4 PCI Energy Star (E*) Register
	4.4.1.5 PBM Configuration Space

	4.4.2 IOMMU Registers
	4.4.2.1 Translation Storage Buffer Overview
	4.4.2.2 IOMMU Control Register
	4.4.2.3 TSB Base Address Register
	4.4.2.4 Flush Page Register
	4.4.2.5 Flush Context Register
	4.4.2.6 TLB TAG Diagnostics Access
	4.4.2.7 TLB Data RAM Diagnostic Access
	4.4.2.8 LRU Queue Diagnostic Access
	4.4.2.9 TLB Compare Setup Diagnostic Register
	4.4.2.10 TLB Compare Result Diagnostic Access

	4.4.3 Streaming Cache Operation
	4.4.3.1 Streaming Cache Overview
	4.4.3.2 Streaming Cache Functional Description
	4.4.3.3 Streaming Cache Programming Model

	4.4.4 Streaming Cache Registers
	4.4.4.1 Streaming Cache Control Register
	4.4.4.2 Streaming Cache Page Invalidate/Flush Register
	4.4.4.3 Streaming Cache Flush Synchronization Register
	4.4.4.4 Streaming Cache Context Invalidate/Flush Register
	4.4.4.5 Streaming Cache Context Match Register
	4.4.4.6 Streaming Cache Page Tag Diagnostic Access
	4.4.4.7 Streaming Cache Line Tag Diagnostic Access
	4.4.4.8 Streaming Cache Data RAM Diagnostic Access
	4.4.4.9 Streaming Cache Error Status Diagnostic Access

	4.4.5 Interrupt Registers
	4.4.5.1 Interrupt Mapping Registers
	4.4.5.2 Interrupt Clear Registers
	4.4.5.3 Interrupt State Diagnostic Registers
	4.4.5.4 Interrupt Retry Timer Register
	4.4.5.5 PCI Consistent DMA Flush/Sync Register

	4.4.6 PCI Performance Monitor Registers
	4.4.6.1 Performance Monitor Control Register
	4.4.6.2 PCI Performance Counter Register
	4.4.6.3 PCI Configuration/Idle Check Diag Register

	5.1 Overview
	5.2 Error Detection and Reporting
	5.2.1 Error Detection
	5.2.1.1 Detectable Safari Bus Errors
	5.2.1.2 Detectable PCI Bus Error
	5.2.1.3 Detectable UPA64S Errors
	5.2.1.4 Other Detectable Errors

	5.2.2 Error Reporting
	5.2.2.1 Summary of Error Reporting

	5.3 Undetected Errors

