
JBus Architecture Overview

This paper provides an overview of the JBus architecture. The Jbus interconnect features a
128-bit packet-switched, split-transaction request and data bus that delivers the high
bandwidth and low latency needed for network communications and high performance
applications. The bus features a flexible, extensible and easily implemented structure that
supports multiple processors and multiple I/O bus bridges.
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CHAPTER 1

Introduction

In a multiprocessor system, system interconnect is a key determiner of the cost, per-
formance, and reliability of shared-memory, cache-coherent multiprocessors. The
bandwidth of the interconnect is an important factor in determining the system per-
formance. The architecture and implementation of the interconnect is also critical to
the performance and scalability of multiprocessor systems.

Because system interconnect is so important, Sun has architected a new 128-bit wide,
high speed interconnect, called “JBus”, that provides packet-switched, split-transac-
tion features. JBus enables a board or multi-chip module to be configured as a 1-4
ways system.  It also enables shared memory with low latency and fast cache coher-
ency.

Sun has developed a powerful new low cost chip set that implementing JBus for 1 to
4 way multiprocessor systems. The high density chip set synthesizes a number of
design innovations which combine to deliver new levels of performance and reliabil-
ity for existing and newly ported software applications.

The system is completely compatible with the Sun’s robust Solaris operating system,
which supports multiple processors.

 The JBus takes additional advantage of the on-chip density to achieve high band-
width interconnect. Thus the JBus can optimize the performance of a small symmet-
ric multiprocessing system without hard latency or protocol throughput constraints.
The dual bus structure supports both the high speed inter-processor system bus, and
the lower speed peripheral interfaces.

Sun intends the JBus interface to accommodate a wide range of peripherals, so that
designers can quickly and easily configure a system.

This paper focuses on Sun’s latest bus-based interconnect architecture - JBus.
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CHAPTER 2

Shared Memory Multiprocessors

Small-to-medium-sized shared memory multiprocessors are the dominant form of
parallel architecture seen today. This architecture provides a global physical address
space and symmetric access to all of main memory from any processor, often called a
symmetric multiprocessor (SMP). Every processor has its own cache, and all the pro-
cessors and memory modules attach to the same interconnect, which is usually a
shared bus. SMPs dominate the server market and are becoming more common on
the desktop. They are also important building block for large-scale multiprocessor
systems.

In a computer system, the various subsystems interface to one another. The memory
and processor need to communicate, as do the processor and the I/O devices. This is
commonly done through either a bus or a general interconnection network which
serves as a shared communication link between the subsystems. The following sec-
tions examines the bus-based multiprocessor systems in detail.

2.1. Bus-based Multiprocessor Systems[1],[2],[3]
In the bus-based interconnect, the interconnect is a shared bus located between the
processors’ private caches and the shared memory subsystem. This bus-based shared
memory approach is used in most small scale (1-4 processors) parallel multiproces-
sor systems sold today.

A bus is a convenient device for ensuring cache coherence because it allows all pro-
cessors in the system to observe ongoing memory transactions. If a bus transaction
threatens the consistent state of a locally cached object, the cache controller can take
appropriate actions to invalidate  the local copy. Protocols using this mechanism to
ensure coherence are called snoopy protocols because each cache snoops on the
transactions of other caches. Cache coherence will be discussed in more detail in sec-
tion 2.2.
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2.2. Cache Coherency[1]

In a shared memory multiprocessor system with a separate cache memory for each
processor, it is possible to have many copies of shared data; one copy in the main
memory and others in local cache memories. With multiple copies of data in the sys-
tem, any local modification of the data can result in a globally inconsistent view of
the data. This is known as the cache coherence problem.

A cache coherence scheme is the discipline that ensures that changes in the values of
shared data are propagated throughout the system in a timely fashion. The choice of
a cache coherence scheme is the most important design decision for a coherent
shared-memory interconnect system.

The cache coherence scheme keeps each processor’s view of memory consistent.
Coherency is maintained on aligned blocks of memory, called cache lines, which are
typically between 32 and 128 bytes wide. Sun currently uses a 64-byte cache block.

2.2.1. Snoop-based Protocol[1]

The interconnect is a shared bus located between the processor’s private cache and
the shared main memory subsystem. The protocol relies on each processor monitor-
ing all requests to memory. This monitoring, or snooping, allows each cache to inde-
pendently determine whether accesses made by another processor require it to
update its caching state. There are several key properties of a bus which support
coherence.

First, all transactions that appear on the bus are visible to all cache controllers. Sec-
ond, they are visible to all controllers in the same order (the order in which they
appear on the bus).
A coherence protocol must guarantee that, for all transactions that appear on the
bus, the controllers take appropriate action.
4 −



CHAPTER 3

JBus Features

JBus is designed to be a powerful, and reliable interconnect to meet the needs of
many applications. The following presents the detail features of this interconnect.

3.1. JBus Interconnect Flexibility
JBus delivers the high bandwidth and low latency needed for networking, communi-
cations and other embedded applications. Built for the bandwidth hungry Internet
infrastructure, JBus targets multiprocessor 64-bit servers. It features a 128-bit packet-
switched split-transaction request and data bus  It is a flexible, extensible and easily
implemented bus structure. Processors can attach to a coherent shared bus without
any glue logic. JBus is capable of providing scalable (1-4 ways) Symmetric Multi-Pro-
cessor (SMP)[1] or Chip Multi- Processor (CMP) configurations with a selection of
data bus widths, power, space and cost options.

JBus may be used in a variety of platforms, though this paper uses UltraSPARC® IIIi
as an example.

3.2. JBus Coherency
JBus supports a snoop-based (broadcast) cache coherence protocol. In this protocol,
all addresses are sent to all system devices. Each device examines (snoops) the state
of the requested cache line in its local cache, and the system determines the global
snoop result a few cycles later. Coherency is maintained on aligned blocks of mem-
ory, called cache lines, which are typically between 32 and 128 bytes wide. Sun cur-
rently uses a 64-byte wide cache block.

3.3. Details of the Protocol
The protocol is a snoop-based, write-invalidate protocol. Like most protocols, cache
misses are satisfied from memory, unless a system device (processor or I/O control-
ler) has modified the cache line. To do a write, a processor has to become the owner
Chapter 3: JBus Features − 5



of the cache line. All other system devices invalidate any shared copies they have
cached, and the current owner supplies the data. Henceforth, when other processors
request to share an owned or modified copy of the data, the owning processor, not
memory, will supply the data. The following sections describe the cache state and
valid state transitions.

3.3.1. Cache States

The cache has five states:
• cI: Cache Invalid. Line is invalid in cache
• cS: Cache Shared. Line is valid, (potentially) shared, and clean in cache
• cE: Cache Exclusive. Line is valid, exclusive, and clean in cache.
• cO: Cache Owned. Line is valid, (potentially) dirty and (potentially) shared.
• cM: Cache Modified. Line is valid, exclusive and (potentially) dirty in cache

Valid means that the line contains useful data. Exclusive means that no other cache
has a copy. Dirty means that the data has been modified.

3.3.2. Coherency State Transaction
The state transition diagram in Figure 3-1 shows the legal transitions for the MOESI
cache state for a block. When the block is first read by a processor, if a valid copy
exists in another cache, then it enters the processor’s cache in the S state. If no other
cache has the copy at the time, it enters the cache in the E state. When a block is in
the E state and is written by the same processor, it can directly transition from the E
to M state without generating another bus transaction, since no other cache has a
copy.  If another cache had obtained a copy in the meantime, the state of the block
would have been demoted from E to S by the snooping protocol. A write to a block
in any state will promote the block to M state. A read request will demote the block
from M to S state and also cause the block to be written back to main memory. The
owned state indicates that even though other shared copies of the block may exist,
this cache (instead of main memory) is responsible for supplying the data when it
observes a relevant bus transaction.

3.4. JBus Characteristics [7],[8],[9]

• Simple SMP protocol implementation

The protocol is SPARC®-V9 compliant.  It provides high performance for 1-4 ways,
and supports high bandwidth UPA64S/PCI interfaces[13,14].

• 150-200 MHz JBus operation

Bus is designed for maximum clock frequency for up to 3 JBus loads. A load could
be a CPU, a JIO, or a bridge to anything else.
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Figure 3-1 Legal state transitions for JBus MOESI protocol

• Multiple JBus segment topologies

To reach the 200 MHz clock rate, JBus may be divided electrically into multiple 3-
load segments, with bus signals pipelined through a one clock delay bus repeater.

• 16-byte Shared address/data bus

The 128 bit multiplexed address/data bus has a peak off-chip bandwidth of 3.2 GB/
sec.

• UPA64S & PCI I/O interfaces available

JIO chip is a companion to JBus. It supports both Sun’s high-performance graphics
interface (UPA64S) and the PCI interface.  The JIO was designed to minimize  I/O
traffic on JBus, thus providing most of the JBus bandwidth for the shared processors.

E: Exclusive

M: Modified

S: Shared

I: Invalid

O: Owned

Instruction cache miss, or load
miss from another cache

Load miss from memory

Store miss on an
invalidate cache line

Stored to a shared line.
Broadcast invalidate to
all sharing processors

Store to an exclusive line in cacheRequest from another
processor for a modified line

Successive stores to a line
shared by another processor.
Broadcast invalidate to all
sharing processors
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• Bus arbitration latency minimized by “unfair” round robin
arbitration

A distributed arbitration protocol allows for the JBus to provide the lowest possible
latency for bus ownership. The round robin protocol is unfair by design, favoring
the last owner. The last owner can drive the bus without being dependent on possi-
ble simultaneous asserted requests, saving one cycle of arbitration latency.

• Globally synchronous clocking

The JBus is synchronous with a centrally distributed clock (system clock).

• Low pin count

The JBus pin count is 171 with 1.5V DTL (Dynamic Termination Logic).

• Simple 360-pin edge connector for module

 Besides signal pins, there are power pins and ground pins. The total pin count is
360.

• On-chip MOESI cache coherence protocol

JBus supports a simple, low latency on-chip MOESI cache coherence protocol. The
protocol provides high performance, high bandwidth for small (1-4 ways) multipro-
cessor systems.

• All coherency is based on physical addresses (SPARC® V9 memory
ordering model)

JBus supports write-invalidate MOESI cache coherence protocol which meets the
sun4u and SPARC V9 memory ordering model. For example, sun4u requires to
report read data and time-out errors with the read transaction to the requesting JBus
master port.

• Strong memory ordering (Sequential consistency)

The protocol supports a strong memory consistency model.  It is the most straight-
forward model to maintain memory consistency. The simplest way to implement the
strong order is to require a processor to delay the completion of any memory access
until the invalidations caused by that access are completed.

• Out-of-order data return for different cacheable addresses

This will happen due to randomness in arbitrating for data returns on JBus, and dif-
ferent latencies in ports when seeing snoop results and sending read data back. To
8 −



keep the design  simple, data return from a single non-cacheable port is in order.
Data return for the same cacheable address is in order. Order is determined by the
address bus order.

• All coherent events are queued when an address is issued on the bus

Processors queue coherent transactions which need snooping that show up on the
address bus, including their own. (Their own transactions do not require full snoop-
ing of the caches.)

• All later coherency events (outstanding JBus reads) to the same
address are blocked

There are two ways to handle the address conflicts. One is to retry the request, the
other is to block the request. Retry may cause a starvation problem if arbitration is
not fair. Blocking does not have the starvation problem but needs extra memory
space to keep track of requests.

• Address blocking is distributed -- each port tracks its own reads

The blocking is done in a distributed fashion, with each port tracking it’s own read.
The maximum number of outstanding reads is eight per port.

• Cache-to-cache transfers when data is owned (modified) in a cache

The protocol supports cache-to-cache transfer if the line is owned or modified in a
cache. The caching master is responsible for returning dirty data from its cache, and
can do this as soon as possible.

• Snooping is fully decoupled from memory access

This is to reduce the memory latency. Without this feature, the memory latency
would increase, because all the dynamic delays would be serialized instead of in par-
allel.

• Point-to-point snoop results and flow control

 JBus supports cache coherence by sending a snoop to all system devices. Each
device examines (snoops) the state of the requested cache line in its local cache, and
sends its acknowledgement back to the requester via a point-to-point network. The
point-to-point network facilitates an extremely fast snoop response. The design also
allows the latency to fluctuate, rather than requiring a fixed latency. This makes the
implementation easier.

• Variable snoop latencies (typically three cycles)

Snoops are initiated at the processors and I/O cache when the request address is pre-
sented on the shared bus. The snoop latency needs to be less than the memory
latency, since the data returned from memory will be cancelled if the snoop result
indicates a dirty line exists in the cache.

• Separate address and data flow control
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JBus maintains a simple Address/Data flow algorithm. The Address/Data state is
maintained by each requestor, to decide if there is a room for address and write data
at the targets of this transaction. The transaction is not driven on the bus if there is
no room at the destination. The read plus writeback is an atomic transaction, so both
the read and writeback request are held up by the initiator if there is not room avail-
able for the writeback data.

• Error protection

Errors on JBus are detected as a result of cacheable/non-cacheable read access to
JBus, and cacheable/non-cacheable write access to JBus.   Errors are flagged by set-
ting appropriate AFSR (Asynchronous Fault Status Register) and JBus parity bits.
Interrupts may be generated to signal different types of errors.
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CHAPTER 4

Summary

The JBus architecture is an ideal solution for today’s small-scale, high-density SMP.
It delivers up to 3.2 GB/s. bandwidth for high performance applications in many
areas, this bandwidth is exactly what the next generation of MP systems will
require. It also provides a scalable solution so that precise cost and space specifica-
tions can be matched to application requirements. It can be used for a wide range
of applications from a desktop system to small-scale (4-way) multiprocessor sys-
tems.

The combination of performance, flexibility, and low cost implementation makes
the JBus technology and its system an attractive real-world option for the devel-
oper of high performance embedded systems, including networking, communica-
tions, packet processing, and information appliances.
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