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Chapter 1

Introduction

This monogram is written with the graduate student in mind. I had in mind to write a
short, crisp book that would introduce my students to the basic ideas and concepts behind
many body physics. At the same time, I felt very strongly that I should like to share my
excitement with this field, for without feeling the thrill of entering uncharted territory, I
do not think one has the motivation to learn and to make the passage from learning to
research.

Traditionally, as physicists we ask “what are the microscopic laws of nature ?”, often
proceeding with the brash certainty that once revealed, these laws will have such profound
beauty and symmetry, that the properties of the universe at large will be self-evident. This
basic philosophy can be traced from the earliest atomistic philosophies of Democritus, to
the most modern quests to unify quantum mechanics and gravity.

The dreams and aspirations of many body physics interwine the atomistic approach with
a complimentary philosophy- that of emergent phenomena. From this view, fundamentally
new kinds of phenomena emerge within complex assemblies of particles which can not be
anticipated from an à priori knowledge of the microscopic laws of nature. Many body physics
aspires to synthesize from the microscopic laws, new principles that govern the macroscopic
realm, asking

What new principles and laws emerge as we make the journey from the microscopic to the
macroscopic?

This is a comparatively new scientific philosophy. Darwin was the perhaps the first to
seek an understanding of emergent laws of nature. Following in his footsteps, Boltzmann was
probably the first physicist to appreciate the need to understand how emergent principles
are linked to microscopic physics, From Boltzmann’s biography[1], we learn that he was
strongly influenced and inspired by Darwin. In more modern times, a strong advocate
of this philosophy has been Philip Anderson, who first introduced the phrase “emergent
phenomenon” into physics[2].

In an ideal world, I would hope that from this short course your knowledge of many
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body techniques will grow hand-in-hand with an appreciation of the motivating philsophy.
In many ways, this dual track is essential, for often, one needs both inspiration and overview
to steer one lightly through the formalism, without getting bogged down in mathematical
quagmires.

I have tried in the course of the book to mention aspects of the history of the field. We
often forget that act of discovering the laws of nature is a very human and very passionate
one. Indeed, the act of creativity in physics research is very similar to the artistic process.
Sometimes, scientific and artistic revolution even go hand in hand - for the desire for change
and revolution often crosses between art and sciences[3]. I think it is important for students
to gain a feeling of this passion behind the science, and for this reason I have often included a
few words about the people and the history behind the ideas that appear in this text. There
are unfortunately, very few texts that tell the history of many body physics. Pais’ book
“Inward Bound” has some important chapters on the early stages of many body physics.
A few additional references are included at the end of this chapter[4, 5, 6, 7]

There are several texts that can be used as reference books in parallel with this mono-
gram, of which a few deserve special mention. The student reading this book will need
to consult standard references on condensed matter and statistical mechanics. Amongst
the various references let me recommend “Statistical Physics Part II” by Landau and
Pitaevksii[8]. For a conceptual underpining of the concepts of condensed matter physics,
may I refer you to the Anderson’s classic “Basic Notions in Condensed Matter Physics”[9].
Amongst the classic references to many body physics let me mention “AGD”[10], Methods
of Quantum Field Theory by Abrikosov, Gorkhov and Dzyaloshinksi. This is the text that
drove the quantum many body revolution of the sixties and seventies, yet it is still very
relevant today, if rather terse. Other many body texts which introduce the reader to the
Green function approach to many body physics include “Many Particle Physics” by G.
Mahan[11], notable for the large number of problems he provides, “Green Functions for
“Green’s functions for Solid State Physics” by Doniach and Sondheimer[12] and the very
light introduction to the subject “Feynman diagrams in Solid State Physics” by Richard
Mattuck[13]. Amongst the more recent treatments, let me note Alexei Tsvelik’s “Quan-
tum Field Theory” in Condensed Matter Physics”[14], provides a wonderful introduction to
many of the more modern approaches to condensed matter physics, including an introduc-
tion to bosonization and conformal field theory. As a reference to the early developments of
many body physics, I recommend “The Many Body Problem”, by David Pines[15], which
contains a compilation of the classic early papers in the field. Lastly, let me recommend
the reader to numerous excellent online reference sources, in addition to the online physics
archive http://arXiv.org, let me mention writing include online lecture notes on many body
theory by Ben Simon and Alexander Atlund[16] and lecture notes on Solid State Physics
and Many Body Theory by Chetan Nayak[17].

Here is a brief summary of what we will cover:

1. Scales and complexity, where we discuss the gulf of time (T), length-scale (L), particle
number (N) and complexity that separates the microscopic from the macroscopic.
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2. Second Quantization. Where make the passage from the wavefunction, to the field
operator, and introduce the excitation concept.

3. Introducing the fundamental correlator of quantum fields: the Green’s functions. Here
we develop the tool of Feynman diagrams for visualizing and calculating many body
processes.

4. Finite temperature and imaginary time. By replacing it −→ τ, e−iHt −→ e−Tτ , we will
see how to extend quantum field theory to finite temperature, where we will find that
there is an intimate link between fluctuations and dissipation.

5. The disordered metal. Second quantized treatment of weakly disordered metals: the
Drude metal, and the derivation of “Ohm’s law” from first principles.

6. Opening the door to Path Integrals, linking the partition function and S-matrix
to an integral over all possible time-evolved paths of the many-body system. Z =∫
PATH e

−S/h̄.

7. The concept of broken symmetry and generalized rigidity, as illustrated by supercon-
ductivity and pairing.

8. A brief introduction to the physics of local moment systems

Finally, a brief note on the conventions used in this book. Following a convention
followed in the early Russian texts on physics and many body physics, and by Mahan’s
many body physics, I use the convention that the charge on the electron is

e = −1.602 . . .× 10−19C

In other words e = −|e| denotes the magnitude and the sign of the electron charge.
This convention minimizes the number of minus signs required. With this notation, the
Hamiltonian of an electron in a magnetic field is given by

H =
(~p− e ~A)2

2m
+ eV

where ~A is the vector potential and V the electric potential. The magnitude of the electron
charge is denoted by |e| in formulae, such as the electron cyclotron frequency ωc = |e|B

m .
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Chapter 2

Scales and Complexity

We do infact know the microscopic physics that governs all metals, chemistry, materials and
possibly life itself. In principle, all can be determined from the many-particle wavefunction

Ψ(~x1, ~x2 . . . ~xN , t), (2.1)

which in turn, is governed by the Schödinger equation[1, 2], written out for identical particles
as



−

h̄2

2m

N∑

j=1

∇2
j +

∑

i<j

V (~xi − ~xj) +
∑

j

U(~xj)



Ψ = ih̄

∂Ψ

∂t
(2.2)

[ Schrödinger, 1926]

There are of course many details that I have omitted- for instance, if we’re dealing with
electrons then V (x) is the Coulomb interaction potential,

V (~x) =
e2

4πǫo

1

|~x| , (2.3)

and e = −|e| is the charge on the electron. In an electromagnetic field we must “gauge”
the derivatives ∇ → ∇− i(e/h̄) ~A, U(x) → U(x) + eΦ(~x), where ~A is the vector potential
and Φ(~x) is the electric potential. Also, to be complete, we must discuss spin, and the
antisymmetry of Ψ under particle exchange. With these provisos, we have every reason to
believe that this is the equation that governs the microsopic behavior of materials.

Unfortunately this knowledge is only the beginning. Why? Because at the most prag-
matic level, we are defeated by the sheer complexity of the problem. Even the task of
solving the Schrödinger equation for modest multi-electron atoms proves insurmountable
without bold approximations. The problem facing the condensed matter physicist, with
systems involving 1023 atoms, is qualitatively more severe. The amount of storage required
for numerical solution of Schrodinger equation grows exponentially with the number of par-
ticles, so with a macroscopic number of interacting particles this becomes far more than a
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technical problem- it becomes one of principle. Indeed, we believe that the gulf between
the microscopic and the macroscopic is something qualitative and fundamental, so much
so that new types of property emerge in macroscopic systems that we can not anticipate a
priori by using brute-force analyses of the Schrödinger equation.

Let us dwell a little more on this gulf of complexity that separates the microscopic from
the macroscopic. We can try to describe this gulf using four main catagories of scale:

• T. Time 1015.

• L. Length 107.

• N. Number of particles. 1022

• C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum time scale by using the uncertainty
principle ∆τ∆E ∼ h̄, so that

∆τ ∼ h̄

[1eV ]
∼ h̄

10−19J
∼ 10−15s, (2.4)

Although we know the physics on this timescale, in our macroscopic world, the the charac-
teristic timescale ∼ 1s, so that

∆τMacro

∆τQuantum
∼ 1015. (2.5)

To link quantum, and macroscopic timescales, we must make a leap comparable with an ex-
trapolation from the the timescale of a heart-beat to the age of the universe. (10 billion yrs ∼
1017 s.)

2.2 L: Length scales

An approximate measure for the characteristic length scale in the quantum world is the de
Broglie wavelength of an electron in a hydrogen atom,

LQuantum ∼ 10−10m, (2.6)

so
LMacroscopic

LQuantum
∼ 108 (2.7)

14
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1 cm 3

de Broglie wave

1A

Figure 2.1: The typical size of a de Broglie wave is 10−10m, to be compared with a typical
scale 1cm of a macroscopic crystal.

2.3 N: particle number

To visualize the number of particles in a single mole of substance, it is worth reflecting that
a crystal containing a mole of atoms occupies a cube of roughly 1cm3. From the quantum
perspective, this is a cube with approximately 100million atoms along each edge. Avagadros
number

NMacroscopic = 6× 1023 ∼ (100 million)3 (2.8)

a number which is placed in perspective by reflecting that the number of atoms in a grain
of sand is roughly comparable with the number of sand-grains in a 1 mile beach. Notice
however that we are used to dealing with inert beaches, where there is no interference
between the constituent particles.

2.4 C: Complexity and diversity.

Real materials are like macroscopic atoms, where the quantum interference amongst the
constituent particles gives rise to a range of complexity and diversity that constitutes the
largest gulf of all. We can attempt to quantify the ”complexity” axis by considering the
number of atoms per unit cell of a crystal. Whereas there are roughly 100 stable elements,
there are roughly 1002 stable binary compounds. The number of stable tertiary compounds

15
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2     3
UPd  Al   

Heavy Fermion
Metal

Elemental
SC

High Temperature
SC

YBa  Cu  O   2 3 7

Atoms/unit cell
No. inequivalent

21 3 4 20
Binary Tertiary Quarternary

GaAs

Nb Simplest Biological
Moleculese.g.

Semiconductor.

Complexity

# different types
of compound. 102 10 10 104 6 8

Figure 2.2: Examples of crystals of increasing complexity. As the number of inequivalent
atoms per unit cell grows, the complexity of the material and the potential for new types
of behavior grows.

is conservatively estimated at more than 106, of which still only a tiny fraction have been
explored experimentally. At each step, the range of diversity increases, and there is reason
to believe that at each level of complexity, new types of phenomenon begin to emerge.

When experimentalists began to explore the properties of quaternary compounds ten
years ago, they came across the completely unexpected phenomenon of high temperature
superconductivity. At present we have only just begun to scratch the surface of quaternary
materials physics, and it seems not unreasonable to suppose that there are other similar
surprises awating us. But lest you think that this is where it ends, it is worth reflecting on
the fact that further out along the complexity axis we reach the most elementary molecules
of life: an emergent phenomenon that is still unfolding from its inorganic origins roughly
1010 years ago.
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Chapter 3

Quantum Fields: Overview

At the heart of quantum many body theory lies the concept of the quantum field. Like
other quantum variables, the quantum field is in general a strongly fluctuating degree of
freedom that only becomes sharp in certain special eigenstates; its function is to add or
subtract particles to the system.

Quantum fields are intimately related to the idea of second quantization. First quan-
tization permits us to make the jump from the classical world, to the simplest quantum
systems. The classical momentum and position variables are replaced by operators, such as

E → ih̄∂t,
p → p̂ = −ih̄∂x, (3.1)

whilst the Poisson bracket which relates canonical conjugate variables is now replaced by
the quantum commutator[1, 2]:

[x, p] = ih̄. (3.2)

The commutator is the key to first quantization, and it is the non-commuting property that
leads to quantum fluctuations and the Heisenberg uncertainty principle. (See examples).
Second quantization permits us to take the next step, extending quantum mechanics to

• Macroscopic numbers of particles.

• Develop an “excitation” or “quasiparticle” description of the low energy physics.

• Describe the dynamical response and internal correlations of large systems.

• To describe collective behavior and broken symmetry phase transitions.
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Classical string.

Quantum string.

φ(  )x

xπ(  )

x

xφ(  )

π(  )

Figure 3.1: Contrasting a classical, and a quantum string.

In its simplest form, second quantization elevates classical fields to the status of opera-
tors. The simplest example, is the quantization of a classical string as shown in Fig. 3.1.
Classically, the string is described by a smooth field φ(x) which measures the displacement
from equilibrium, plus the conjugate field π(x) which measures the transverse momentum
per unit length. The classical Hamiltonian is

H =

∫
dx

[
T

2
(∇xφ(x))2+

1

2ρ
π(x)2

]
(3.3)

where T is the tension in the string and ρ the mass per unit length. In this case, second-
quantization is accomplished by imposing the canonical commutation relations

[φ(x), π(y)] = ih̄δ(x− y), Canonical commutation relation (3.4)

In this respect, second-quantization is no different to conventional quantization, except
that the degrees of freedom are defined continuously throughout space. The basic method
I have just described works for describing collective fields, such as sound vibrations, or the
electromagnetic field, but we also need to know how to develop the field theory of identical
particles, such as an electron gas in a metal, or a fluid of identical Helium atoms.

For particle fields, the process of second-quantization is more subtle, for here we the
underlying fields have no strict classical counterpart.
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Carbon without
Exclusion principle

Carbon with
Exclusion principle

Figure 3.2: Without the exclusion principle, all electrons would occupy the same atomic
orbital. There would be no chemistry, no life.

Historically, the first steps to dealing with such many particle systems were made in
atomic physics. In 1925 Pauli proposed his famous “exclusion principle”[3] to account for
the diversity of chemistry, and the observation that atomic spectra could be understood only
if one assumed there was no more than one electron per quantum state. (Fig. 3.2.)Shortly
thereafter, Dirac and Fermi examined the consequences of this principle for a gas of particles,
which today we refer to as “fermions”. In 1926, Dirac realized that the two fundamental
varieties of particle- fermions and bosons could be related to the parity of the many-particle
wavefunction under particle exchange[4]

Ψ(particle at A, particle at B) = eiΘΨ(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phase is e2iΘ. If we are to avoid a many-valued
wavefunction, then we must have

e2iΘ = 1⇒ eiΘ = ±1

{
bosons

fermions
(3.6)

The choice of eiΘ = 1 leads to a wavefunction which is completely antisymmetric under
particle exchange, which immediately prevents more than one particle in a given quantum
state. 1

In 1927, Jordan and Klein realized that to cast physics of a many body system into
a more compact form, one needs to introduce an operator for the particle itself-the field

1In dimensions below three, it is possible to have wavefunctions with several Reimann sheets, which gives
rise to the concept of fractional statistics and “anyons”.
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operator. With their innovation, it proves possible to unshackle ourselves from the many
body wavefunction. The particle field

ψ̂(x) (3.7)

operator can be very loosely regarded as a quantization of the one-body Schrodinger wave-
function. Jordan and Klein[5] proposed that the particle field, and its complex conjugate
are conjugate variables. With this insight, the second-quantization of bosons is achieved by
introducing a non-zero commutator between the particle field, and its complex conjugate.
The new quantum fields that emerge play the role of creating, and destroying particles (see
below)

ψ(x), ψ∗(x)︸ ︷︷ ︸
1 ptcle wavefunction

[ψ(x), ψ†(y)] = δ(x− y)−→ ψ̂(x), ψ̂†(x)︸ ︷︷ ︸
destruction /creation operator

Bosons (3.8)

For fermions, the existence of an antisymmetric wavefunction, means that particle fields
must anticommute, i.e

ψ(x)ψ(y) = −ψ(y)ψ(x), (3.9)

a point first noted by Jordan, and then developed by Jordan and Wigner[6]. The simplest
example of anticommuting operators, is provided by the Pauli matrices: we are now going to
have to get used to a whole continuum of such operators! Jordan and Wigner realized that
the second-quantization of fermions requires that the the non-trivial commutator between
conjugate particle fields must be replaced by an anticommutator

ψ(x), ψ∗(x)︸ ︷︷ ︸
1 ptcle wavefunction

{ψ(x), ψ†(y)} = δ(x− y)−→ ψ̂(x), ψ̂†(x)︸ ︷︷ ︸
destruction /creation operator

Fermions. (3.10)

The operation {a, b} = ab+ ba denotes the anticommutator. Remarkably, just as bosonic
physics derives from commutators, fermionic physics derives from an algebra of anticom-
mutators.

How real is a quantum field and what is its physical significance? To begin to to get
a feeling of its meaning, let us look at some key properties. The transformation from
wavefunction, to operator also extends to more directly observable quantities. Let us begin
with Born’s famous expression for the probability density in first quantization, ρ(x) =
ψ∗(x)ψ(x). By elevating the wavefunction to the status of a field operator, we obtain

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (3.11)

which is now the operator that represents the fluctuating particle density in the many body
systems, so loosely speaking, the intensity of the quantum field represents the density of
particles

Another aspect of the quantum field we have to understand, is its relationship to the
many-body wavefunction. This link depends on a new concept, the “vacuum”. This unique
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ψ

|1  =     (1) ψ ψ ψ |0  |1,2,3  =     (3)     (2)    (1)

ψ ψ

|0  ψ
|0  

Vacuum

12

3

1

(1) (3)(2)
(i) (ii) (iii)

Figure 3.3: Action of creation operator on vacuum to create (i) a one particle and (ii) a
three particle state

state, denoted by |0〉 is devoid of particles, and for this reason it is the only state for which
there is no amplitude to destroy a particle so

ψ(x)|0〉 = 0. The vacuum (3.12)

We shall see that as a consequence of the canonical algebra, the creation operator ψ̂†(x)
increments the number of particles by one, creating a particle at x, so that

|x1〉 = ψ†(x1)|0〉 (3.13)

is a single particle at x1,

|x1, . . . xN 〉 = ψ†(xN ) . . . ψ†(x1)|0〉 (3.14)

is the N -particle state with particles located at x1 . . . xN and

〈x1, . . . xN | = 〈0|[ψ(xN ) . . . ψ(x1)]
† = 〈0|ψ(x1) . . . ψ(xN ) (3.15)

is its conjugate “bra” vector. The wavefunction of an N particle state, |N〉 is given by the
overlap of 〈x1, . . . xN | with |N〉:

ψ(x1, . . . xN ) = 〈x1, . . . xN |N〉 = 〈0|ψ(x1) . . . ψ(xN )|N〉 (3.16)

So many body wavefunctions correspond to matrix elements of the quantum fields. From
this link we can see that the exchange symmetry under particle exchange is directly linked
to the exchange algebra of the field operators. For Bosons and Fermions respectively, we
have

〈0| . . . ψ(xr)ψ(xr+1) . . . |N〉 = ±〈0| . . . ψ(xr+1)ψ(xr) . . . |N〉 (3.17)
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(where + refers to Bosons, −to fermions), so that

ψ(xr)ψ(xr+1) = ±ψ(xr+1)ψ(xr) (3.18)

From this we see that Bosonic operators commute, but fermionic operators must anticom-
mute. Thus ultimately, it is the exchange symmetry of the two types of particles which
dictates their commuting, or anticommuting algebra.

Unlike a classical field, quantum fields are in a state of constant fluctuation. This ap-
plies to both collective fields, as in the example of the string in Fig. 3.1, and to quantum
fluids. Just as the commutator between position and momentum gives rise to the uncer-
tainty principle: [x, p] = ih̄ −→ ∆x∆p >˜ h̄, the canonical commutation, or anticommutation

relations give rise to a similar relatio between the amplitude and phase of the quantum
field. Under certain conditions the fluctuations of a quantum field can be eliminated, and
in these extreme limits, the quantum field begins to take on a tangible classical existence.
In a bose superfluid for example, the quantum field becomes a sharp variable, and we can
really ascribe a meaning to the expectation of the quantum field

〈ψ(x)〉 =
√
ρse

iθ (3.19)

where ρs measures the density of particles in the superfluid condensate. We shall see that
there is a completely parallel uncertainty relation between the phase and density of quantum
fields,

∆N∆θ >
˜

1 (3.20)

where θ is the average phase of a condensate and N the number of particles it contains.
When N is truly macroscopic, the uncertainty in the phase may be made arbitrarily small,
so that in a Bose superfluid, the phase becomes sufficiently well defined that it becomes
possible to observe interference phenomenon! Similar situations arise inside a Laser, where
the phase of the electromagnetic field becomes well-defined, or a superconductor, where the
phase of the electrons in the condensate becomes well defined.

Perhaps the greatest distinction between quantum, and classical fields, is the appearance
of particles. The commutation, or anticommutation properties of quantum fields leads to
an intrinsic “graininess” that is absent in classical fields. Quantum fields, though nominally
continuous degrees of freedom, can always be decomposed in terms of a discrete particular
content. The action of a collective field involves the creation of a wavepacket centered at x
by both the creation, and destruction of quanta, schematically,

φ(x) =
∑

k

[
boson creation,

momentum -k
+

boson destruction
momentum k

]
e−ik·x, (3.21)

Examples of such quanta, include quanta of sound, or phonons, and quanta of radiation, or
photons. In a similar way, the action of a particle creation operator creates a wavepacket
of particles at x, schematically,

ψ†(x) =
∑

k

[
particle creation

momentum k

]
e−ik·x. (3.22)
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When the underlying particles develop coherence, the quantum field begins to behave clas-
sically. It is the ability of quantum fields to describe continuous classical behavior and
discrete particulate behavior in a unified way that makes them so very special.

In the next two chapters we shall go back and see how these features appear system-
atically in the context of “free field theory”. We shall begin with collective bosonic fields,
which behave as a dense ensemble of coupled Harmonic oscillators. In the next chapter, we
shall move to conserved particles, and see how the exchange symmetry of the wavefunction
leads to the commutation, and anticommutation algebra of bose and Fermi fields. We shall
see how this information enables us to completely solve the properties of a non-interacting
Bose, or Fermi fluid.

Example. By considering the positivity of the quantity 〈A(λ)†A(λ)〉, where Â = x̂+ iλp

and λ is a real number, prove the Heisenberg uncertainty relation ∆x∆p ≥ h̄
2 .

Example. How does the uncertainty principle prevent the collapse of the Hydrogen
atom. Is the uncertainty principle enough to explain the stability of matter?
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Chapter 4

Collective Quantum Fields

In this chapter, we will begin to familiarize ourselves with quantum fields by developing the
field theory of a free, bosonic field. It is important to realize that a bosonic quantum field
is fundamentally nothing more than a set of linearly coupled oscillators, and in particular,
so long as the system is linear, the modes of oscillation can always be decomposed into a
linear sum of independent normal modes. Each normal mode is nothing more than a simple
harmonic oscillator, which provides the basic building block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic fields, thus consists of two basic
parts. First, we must reduce the Hamiltonian to its normal modes. For translationally
invariant systems, this is just a matter of Fourier transforming the field, and its conjugate
momenta. Second, we then quantize the normal mode Hamiltonian as a sum of independent
Harmonic oscillators.

H(φ, π) [F.T.] −→ Normal Co-ords φq∼(aq+a†−q)−→ H =
∑

q

h̄ωq(nq + 1
2) (4.1)

The first part of this procedure is essentially identical for both quantum, and classical
oscillators. The second-stage is nothing more than the quantization of a single Harmonic
oscillator. Consider the family of lattices shown in Figure 4.1. We shall start with a
single oscillator at one site. We shall then graduate to one and higher dimensional chain of
oscillators, as shown in Fig 4.1.

4.1 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used in first quantization, it is the Heisen-
berg approach that opens the door to second-quantization. In the Schrödinger approach,
one solves the wave-equation

(
−h̄2∂2

x

2m
+

1

2
mω2x2

)
ψn = Enψn (4.2)
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Figure 4.1: Family of zero, one and three-dimensional Harmonic crystals.

from which one finds the energy levels are evenly spaced, according to

En = (n+
1

2
)h̄ω, (4.3)

where ω is the frequency of the oscillator.
The door to second-quantization is opened by re-interpreting these evenly spaced energy

levels in terms of “quanta”, each of energy h̄ω. The nth excited state corresponds to the
addition of n quanta to the ground-state. We shall now see how we can put mathematical
meat on these words by introducing an operator “a†” that creates these quanta, so that
the n-th excited state is obtained by acting n times on the ground-state with the creation
operator.

|n〉 = 1√
n!

(a†)n|0〉. (4.4)

Let us now see how this works. The Hamiltonian for this problem involves conjugate position
and momentum operators as follows

H = p2

2m + 1
2mω

2x2

[x, p] = ih̄,

]
. (4.5)
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In the ground-state, the particle in the Harmonic potential undergoes zero-point motion,
with an uncertainty in position and momentum ∆p and ∆x which satisfy ∆x∆p ∼ h̄. Since
the zero-point kinetic and potential energies are equal, ∆p2/2m = mω2∆x2/2, so

∆x =

√
h̄

mω
, ∆p =

√
mωh̄ (4.6)

define the scale of zero-point motion. It is useful to define dimensionless position and
momentum variables by factoring out the scale of zero-point motion

ξ =
x

∆x
, pξ =

p

∆p
. (4.7)

One quickly verifies that [ξ, pξ] = i are still canonically conjugate, and that now

H =
h̄ω

2

[
ξ2 + p2

ξ

]
. (4.8)

Next, introduce the “creation” and “annihilation” operators

a† =
1√
2
(ξ − ipξ), “creation operator”

a =
1√
2
(ξ + ipξ), “annihilation operator”. (4.9)

Since [a, a†] = −i
2 ([ξ, pξ]− [pξ, ξ]) = 1, these operators satisfy the algebra

[a, a] = [a†, a†] = 0

[a, a†] = 1.





canonical commutation rules (4.10)

It is this algebra which lies at the heart of bosonic physics, enabling us to interpret the cre-
ation and annihilation operators as the objects which add, and remove quanta of vibration
to and from the system.

To follow the trail further, we rewrite the Hamiltonian in terms of a and a†. Since
ξ = (a+ a†)/

√
2, pξ = (a− a†)/

√
2i, the core of the Hamiltonian can be rewritten as

ξ2 + p2
ξ = a†a+ aa† (4.11)

But aa† = a†a+ 1, from the commutation rules, so that

H = h̄ω[a†a+
1

2
]. (4.12)

This has a beautifully simple interpretation. The second term is just the zero-point energy
E0 = h̄ω/2 The first term contains the “number operator”

n̂ = a†a, ”number operator” (4.13)
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which counts the number of vibrational quanta added to the ground state. Each of these
quanta carries energy h̄ω.

To see this, we need to introduce the concept of the vacuum, defined as the unique state
such that

a|0〉 = 0. (4.14)

From (13.116), this state is clearly an eigenstate of H, with energy E = h̄ω/2. We now
assert that the state

|N〉 =
1

λN
(a†)N |0〉 (4.15)

where λN is a normalization constant, contains N quanta.
To verify that n̂ counts the number of bosons, we use the commutation algebra to show

that [n̂, a†] = a† and [n̂, a] = −a, or

n̂a† = a†(n̂+ 1)
n̂a = a(n̂− 1) (4.16)

which means that when a† or a act on a state, they respectively add, or remove one quantum
of energy. Suppose that

n̂|N〉 = N |N〉 (4.17)

for some N , then from (4.16),

n̂ a†|N〉 = a†(n̂+ 1)|N〉 = (N + 1) a†|N〉 (4.18)

so that a†|N〉 ≡ |N + 1〉 contains N + 1 quanta. Since (4.17) holds for N = 0, it holds for
all N . To complete the discussion, let us fix λN by noting that from the definition of |N〉,

〈N − 1|aa†|N − 1〉 =

(
λN
λN−1

)2

〈N |N〉 =

(
λN
λN−1

)2

, (4.19)

but since aa† = n̂ + 1, 〈N − 1|aa†|N − 1〉 = N〈N − 1|N − 1〉 = N. Comparing these two
expressions, it follows that λN/λN−1 =

√
N , and since λ0 = 1, λN =

√
N !.

Summarizing the discussion

H = h̄ω(n̂+ 1
2)

n̂ = a†a, “number operator”

|N〉 = 1√
N !

(a†)N |0〉 N-Boson state

(4.20)
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Figure 4.2: Illustrating the excitation picture for a single harmonic oscillator.

Using these results, we can quickly learn many things about the quantum fields a and a†.
Let us look at a few examples. First, we can transform all time dependence from the states
to the operators by moving to a Heisenberg representation, writing

a(t) = eiHt/h̄ae−iHt/h̄ Heisenberg representation (4.21)

This transformation preserves the canonical commutation algebra, and the form of H. The
equation of motion of a(t) is given by

da

dt
=
i

h̄
[H, a(t)] = −iωa(t) (4.22)

so that the Heisenberg operators are given by

a(t) = e−iωta,
a†(t) = eiωta† (4.23)

Using these results, we can decompose the original momentum and displacement operators
as follows

x̂(t) = ∆xξ(t) =
∆x√

2
(a(t) + a†(t)) =

√
h̄

2mω
(ae−iωt + a†eiωt)

p̂(t) = ∆ppξ(t) = −i
√
mh̄ω

2
(ae−iωt − a†eiωt) (4.24)

Notice how the displacement operator- a priori a continuous variable, has the action of
creating and destroying discrete quanta.

We can use this result to compute the correlation functions of the displacement.
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Example 1. Calculate the autocorrelation function S(t− t′) = 1
2 〈0|{x(t), x(t′)}|0〉 and

the “response” function R(t − t′) = (i/h̄)〈0|[x(t), x(t′)]|0〉 in the ground-state of the
quantum Harmonic oscillator.

Solution We may expand the correlation function and response function as follows

S(t1 − t2) =
1

2
〈0|x(t1)x(t2) + x(t2)x(t1)|0〉

R(t1 − t2) = (i/h̄)〈0|x(t1)x(t2)− x(t2)x(t1)|0〉 (4.25)

But we may expand x(t) as given in (4.24). The only term which survives in the
ground-state, is the term proportional to aa†, so that

〈0|x(t)x(t′)|0〉 =
h̄

2mω
〈0|aa†|0〉e−iω(t1−t2) (4.26)

Now using (4.25) we obtain

1

2
〈0|{x(t), x(t′)}|0〉 =

h̄

2mω
cos
[
ω(t− t′)

]
“Correlation function”

−i〈0|[x(t), x(t′)]|0〉 =
1

mω
sin
[
ω(t− t′)

]
”Response function”

• We shall later see that R(t−t′) gives the response of the ground-state to an applied
force F (t′), so that at a time t, the displacement is given by

〈x(t)〉 =

∫ t

−∞
R(t− t′)F (t′)dt′ (4.27)

Remarkably, the response function is identical with a classical Harmonic oscillator.

Example 2. Calculate the number of quanta present in a Harmonic oscillator with
characteristic frequency ω, at temperature T .

To calculate the expectation value of any operator at temperature T , we need to consider
an ensemble of systems in different quantum states |Ψ〉 =

∑
n cn|n〉. The expectation

value of operator Â in state |Ψ〉 is then

〈Â〉 = 〈Ψ|Ψ〉 =
∑

m,n

c∗mcn〈m|Â|n〉 (4.28)

In a position basis, this would be

〈Â〉 =
∑

m,n

c∗mcn

∫
dxψ∗

m(x)A(x)ψm(x) (4.29)

But now we have to average over the typical state |Ψ〉 in the ensemble, which gives

〈Â〉 =
∑

m,n

c∗mcn〈m|Â|n〉 =
∑

m,n

ρmn〈m|Â|n〉 (4.30)
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where ρmn = c∗mcn is the “density matrix”. If the ensemble is in equilibrium with an in-
coherent heat bath, at temperature T , quantum statistical mechanics asserts that there
are no residual phase correlations between the different energy levels, which acquires a
Boltzmann distribution

ρmn = c∗mcn = pnδn,m (4.31)

where pn = e−βEn/Z is the Boltzman distribution, with β = 1/kBT , and kB is Boltz-
mann’s constant. Let us now apply this to our problem, where

Â = n̂ = a†a (4.32)

is the number operator. In this case,

〈n̂〉 =
∑

n

(e−βEn/Z)〈n|n̂|n〉 =
1

Z

∑

n

ne−βEn (4.33)

To normalize the distribution, we must have
∑
n pn = 1, so that

Z =
∑

n

e−βEn (4.34)

Finally, since En = h̄ω(n+ 1
2 ),

〈n̂〉 =

∑
n e

−βh̄ω(n+ 1
2 )n

∑
n e

−βh̄ω(n+ 1
2 )

=

∑
n e

−λnn∑
n e

−λn , λ = βh̄ω. (4.35)

The sum in the denominator is a geometric series

∑

n

e−λn =
1

1− e−λ , (4.36)

and the numerator is given by

∑

n

e−λnn = − ∂

∂λ

∑

n

e−λn =
e−λ

(1− e−λ)2 (4.37)

so that

〈n̂〉 =
1

eλ − 1
=

1

eβh̄ω − 1
(4.38)

which is the famous Bose-Einstein distribution function.

Example 3. (Boguilubov transformation)Calculate the spectrum of the Harmonic
oscillator with a pairing term:

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + a a) (4.39)

Hint: show that the transformation b = ua+ va† preserves the canonical commutation
alegbra when u2 − v2 = 1. By assuming that H = ω̃(b†b+ 1

2 ), obtain an expression for
ω̃, u and v.
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4.2 Collective modes: phonons

We now extend the discussion of the last section from zero to higher dimensions. Let us
go back to the lattice shown in Fig 4.1 . To simplify our discussion, let imagine that at
each site there is a single elastic degree of freedom. For simplicity, let us imagine we are
discussing the longitundinal displacement of an atom along a one-dimensional chain that
runs in the x-direction. For the j-th atom,

xj = x0
j + φj . (4.40)

If πj is the conjugate momentum to xj , then the two variables must satisfy canonical
commutation relations

[φi, πj ] = ih̄δij . (4.41)

Notice how variables at different sites are fully independent. We’ll imagine that our one-
dimensional lattice has Ns sites, and we shall make life easier by working with periodic
boundary conditions, so that φj+Ns ≡ φj and πj ≡ πj+Ns . Suppose nearest neighbors are
connected by a “spring”, in which case, the total total energy is then a sum of kinetic and
potential energy

Ĥ =
∑

j=1,Ns

[
π2
j

2m
+
mω2

2
(φj − φj+1)

2

]
(4.42)

where m is the mass of an atom.
Now the great simplifying feature of this model, is that that it possesses translational

symmetry, so that under the translation

πj → πj+1, φj → φj+1 (4.43)

the Hamiltonian and commutation relations remain unchanged. If we shrink the size of
the lattice to zero, this symmetry will become a continuous translational symmetry. The
generator of these translations is the crystal momentum operator, which must therefore
commute with the Hamiltonian. Because of this symmetry, it makes sense to transform
to operators that are diagonal in momentum space, so we’ll Fourier transform all fields as
follows:

φj = 1√
Ns

∑
q e

iqRjφq,

πj = 1√
Ns

∑
q e

iqRjπq,

}
Rj = ja. (4.44)

The periodic boundary conditions, φj = φj+Ns , πj = πj+Ns mean that the values of q
entering in this sum must satisfy qL = 2πn, where L = Nsa is the length of the chain and
n is an integer, thus

q =
2π

L
n, (n ∈ [1, Ns]) (4.45)

Notice that q ∈ [0, 2π/a] defines the range of q. As in any periodic structure, the crystal
momentum is only defined modulo a reciprocal lattice vector, which in this case is 2π/a, so
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that q + 2π
a ≡ q, (you may verify that (q + 2π

a )Rj = qRj + 2πm, which is why we restrict
n ∈ [1, Ns]. The functions 1√

Ns
eiqRj ≡ 〈j|q〉 form a complete orthogonal basis, so that in

particular

∑

j

〈q′|j〉〈j|q′〉 ≡ 1

Ns

∑

j

ei(q−q
′)Rj = 〈q|q′〉 ≡ δq,q′ . orthogonality (4.46)

is only unity if q = q′. This relationship (which extends to any number of dimensions) is
immensely useful, and we shall use it time and time again. Using the orthogonality relation,
we can check that the inverse transformations are

φq = 1√
Ns

∑
j e
−iqRjφj

πq = 1√
Ns

∑
q e
−iqRjπj (4.47)

Notice that since φj and πj are Hermitian operators, it follows that φ†(q) = φ(−q) and
π†(q) = π(−q). Using the orthogonality, we can verify the transformed commutation rela-
tions are

[φ(−q), π(q′)] =
1

Ns

∑

i,j

ei(qRi−q
′Rj)

ih̄δij︷ ︸︸ ︷
[φi, πj ]

=
ih̄

Ns

∑

j

ei(q−q
′)Rj = ih̄δqq′ (4.48)

We shall now see that πq and φq are quantized version of “normal co-ordinates” which
bring the Hamiltonian back into the standard Harmonic oscillator form. To check that the
Hamiltonian is truly diagonal in these variables we

1. expand φj and πj in terms of their Fourier components,

2. regroup the sums so that the summation over momenta is on the outside,

3. Eliminate all but one summation over momentum by carrying out the internal sum
over site variables. This will involve terms like N−1

s

∑
j e

i(q+q′)Rj = δq+q′ , which
constrains q′ = −q and eliminates the sum over q′.

With a bit of practice, these steps can be carried out very quickly. In transforming the
potential energy, it is useful to rewrite it in the form

V =
mω2

2

∑

j

φj(2φj − φj+1 − φj−1). (4.49)

The term in brackets can be Fourier transformed as follows:

(2φj − φj+1 − φj−1) =
1√
Ns

∑

q

φqe
iqRj

4 sin2(qa/2)︷ ︸︸ ︷
[2− eiqa − e−iqa] (4.50)
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so that

V =
m

2

∑

q,q′

φ−qφq′ω
2
q

δq,q′︷ ︸︸ ︷
N−1
s

∑

j

ei(q
′−q)Rj

=
∑

q

mω2
q

2
φ−qφq (4.51)

where we have defined ω2
q = 4ω sin2(qa/2). Carrying out the same procedure on the kinetic

energy, we obtain

H =
∑

q

(
1

2m
πqπ−q +

mω2
q

2
φqφ−q

)
(4.52)

which expresses the Hamiltonian in terms of “normal co-ordinates”, φq and πq. So far, all of
the transformations we have preserved the ordering of the operators, so it is no surprise that
the quantum and classical expressions for the Hamiltonian in terms of normal co-ordinates
are formally identical. Notice that we have essentially reduced the problem to a single
harmonic oscillator- one set of oscillators for each momentum

The next step merely repeats the procedure carried out for the single harmonic oscillator.
We define a set of conjugate creation and annihilation operators

aq =
√

mωq
2h̄ (φq + i

mωq
πq)

a†q =
√

mωq
2h̄ (φ−q − i

mωq
π−q)



 [aq, a

†
q′ ] = −i

2h̄

[
[φq, π−q′ ]− [πq, φ−q′ ]

]
= δq,q′

(4.53)
Note that the second expression for a†q is obtained by taking the complex conjugate of aq,
and remembering that φ†q = φ−q and π†q = π−q, since the underlying fields are real.

The inversion of these expressions is

πq = −i
√

mωqh̄
2 (aq − a†−q)

φa =
√

h̄
2mωq

(aq + a†−q)



 (4.54)

Notice how the Fourier component of the field at wavevector q either destroys a phonon of
momentum q or creates a phonon of momentum −q. Both have reduce the total momentum
by q.

From these expressions, it follows that

πqπ−q =
mωqh̄

2
(a†−qa−q + aqa

†
q − a†−qa†q − aqa−q)

φqφ−q =
h̄

2mωq
(a†−qa−q + aqa

†
q + a†−qa

†
q + aqa−q) (4.55)

Adding the two terms inside the Hamiltonian then gives

H =
1

2

∑

q

h̄ωq(a
†
qaq + aqa

†
q), (4.56)
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Figure 4.3: Illustrating the excitation picture for a chain of coupled oscillators, length L=14.

or using the commutation relations,

H =
∑

q

h̄ωq(a
†
qaq +

1

2
) (4.57)

Since each set of aq and a†q obey canonical commutation relations, we can immediately iden-
tify nq = a†qaq as the number operator for quanta in the q-th momentum state. Remarkably,
the system of coupled oscillators can be reduced to a sum of independent Harmonic oscil-
lators, with characteristic frequency ωq, energy h̄ωq and momentum q. Each normal mode
of the original classical system corresponds to particular phonon excitation.

We can immediately generalize all of our results from a single Harmonic oscillator. For
example, the general state of the system will now be an eigenstate of the phonon occupancies,

|Ψ〉 = |nq1 , nq2 . . . nqN 〉 =
∏

⊗
|nqi〉 =

[
∏

i

(a†qi)
nqi

√
nqi !

]
|0〉 (4.58)

where the vacuum is the unique state that is annihilated by all of the aq. In this state, the
occupation numbers nq are diagonal, so this is an energy eigenstate with energy

E = Eo +
∑

q

nqh̄ωq (4.59)

where Eo = 1
2

∑
q h̄ωq is the zero-point energy.
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Remarks

• The quantized displacements of a crystal are called phonons. Quantized fluctuations
of magnetization in a magnet are “magnons”.

• We can easily transform to a Heisenberg representation, whereapon aq(t) = aqe
−iωqt.

• We can expand the local field entirely in terms of phonons. Using (4.54), we obtain

φj(t) =
1√
Ns

∑

q

φqe
iqRj

=
1√
Ns

∑

q

√
h̄

2mωq
(aq(t) + a†−q(t))e

iqRj . (4.60)

• The transverse displacements of the atoms can be readily included by simply upgrad-
ing the displacement and momentum φj and πj to vectors. For “springs”, the energy
associated with transverse and longitudinal displacements is not the same because the
stiffness associated with transverse displacements depends on the tension. Neverthe-
less, the Hamiltonian has an identical form for the one longitudinal and two transverse
modes, provided one inserts a different stiffness for the transverse modes. The initial
Hamiltonian is then simply a sum over three degenerate polarizations λ ∈ [1, 3]

Ĥ =
∑

λ=1,3

∑

j=1,Ns

[
π2
jλ

2m
+
mω2

λ

2
(φjλ − φj+1λ)

2

]
(4.61)

where ω2
1 = ω2 for the longitudinal mode, and ω2

2,3 = T/a, where T is the tension in
the spring, for the two transverse modes. By applying the same procedure to all three
modes, the final Hamiltonian then becomes

H =
∑

λ=1,3

∑

q

h̄ωqλ(a
†
qλaqλ +

1

2
).

where ωqλ = 2ωλsin(qa/2). Of course, in more realistic crystal structures, the energies
of the three modes will no longer be degenerate.

• We can generalize all of this discussion to a 2 or 3 dimensional square lattice, by
noting that the orthogonality relation becomes

N−1
s

∑

j

e−i(q−q′)·Rj = δq−q′ (4.62)

where now,

q =
2π

L
(ii, i2 . . . iD) (4.63)

and Rj is a site on the lattice. The general form for the potential energy is slightly
more complicated, but one can still cast the final Hamiltonian in terms of a sum over
longitudinal and transverse modes.
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• The zero-point energy Eo = 1
2

∑
q h̄ωq is very important in He−4 and He−3 crystals,

where the lightness of the atoms gives rise to such large phonon frequencies that the
crystalline phase is unstable, except at high pressures.

4.3 The Thermodynamic Limit

In the last section, we examined a system of coupled oscillators on a finite lattice. By
restricting a system to a finite lattice, we impose a restriction on the maximium wavelength,
and hence, the excitation spectrum. This is known as an “infra-red” cut-off. When we take
L→∞, the allowed momentum states become closer and closer together, and we now have
a continuum in momentum space.

What happens to the various momentum summations in the thermodynamic limit,
L → ∞? When the allowed momenta become arbitrarily close together, the discrete sum-
mations over momentum must be replaced by continuous integrals. For each dimension, the
increment in momentum appearing inside the discrete summations is

∆q =
2π

L
(4.64)

so that L∆q
2π = 1. Thus in one dimension, the summation over the discrete values of q can

be formally rewritten as
∑

qj

{. . .} = L
∑

qj

∆q

2π
{. . .} (4.65)

where qj = 2π j
L , and j ∈ [1, Ns]. When we take L → ∞, q becomes a continuous variable

q ∈ [0, 2π/a], where a = L/Ns is the lattice spacing, so that the summation can now be
replaced by a continuous integral:

∑

q

{. . .}−→L
∫ 2π/a

0

dq

2π
{. . .} (4.66)

Similarly, in in D-dimensions, we can regard the D-dimensional sum over momentum as a
sum over tiny hypercubes, each of volume

(∆q)D =
(2π)D

LD
(4.67)

so that LD (∆q)D

(2π)D
= 1 and

∑

q

{. . .} = LD
∑

q

(∆q)D

(2π)D
{. . .}−→LD

∫

0<qi<2π/a

dDq

(2π)D
{. . .} (4.68)

where the integral is over a hypercube in momentum space, with sides of length 2π/a.
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yq

/L2π

qx

qz

Figure 4.4: Illustrating the grid of allowed momenta for a three-dimensional crystal of
dimensions L3. In the limit L → ∞, the grid becomes a continuum, with (L/2π)3 points
per unit volume of momentum space.

Once the momentum sums become continuous, we need to change the normalization of
our states. By convention, we now normalize our plane wave basis per unit volume, writing

〈~x|~k〉 −→ ei~x·
~k (4.69)

In a finite volume, this means that the orthogonality condition on these plane waves is

〈~k′|~k〉 =

∫
dDxei(

~k−~k′)·~x = LDδ~k−~k′ , (4.70)

where δ~k−~k′ is the discrete delta function on the grid of allowed wavevectors. In the ther-
modynamic limit, this becomes

∫
dDxei(

~k−~k′)·~x = (2π)DδD(~k − ~k′) (4.71)

so that the continuum limit of the discrete delta-function is given by

LDδ~k~k′ −→ (2π)DδD(~k − ~k′) (4.72)

Example 4.Re-express the Hamiltonian Ĥ of a simplified three-dimensional Harmonic
crystal in terms of phonon number operators and calculate the zero-point energy, where

H =
∑

j

π2
j

2m
+

∑

j,~a=(x̂,ŷ,ẑ)

mω2
o

2
(Φj − Φj+~a)

2 (4.73)
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where φj ≡ φ(xj) and πj ≡ π(xj) denote canonically conjugate (scalar) displacement,
and momenta at site j, and â = (x̂, ŷ, ẑ) denotes the unit vector separating nearest
neigbor atoms.

Solution First we must Fourier transform the co-ordinates and the Harmonic potential.
The potential can be re-written as

V̂ =
1

2

∑

i,j

Vi−jφiφj (4.74)

where
VR = mω2

o

∑

~a=(x̂,ŷ,ẑ)

(2δR − δR−~a − δR+~a) (4.75)

The Fourier transform of this expression is

Vq =
∑

R

VRe
−iq·R

= mω2
o

∑

~a=(x̂,ŷ,ẑ)

(2− e−iq·a − eiq·a)

= mω2
o

∑

l=x,y,z

[2− cos(qla)] (4.76)

so that writing Vq = m(ωq)2, it follows that the normal mode frequency are given by

ωq = 2ωo[sin
2(qxa/2) + sin2(qya/2) + sin2(qza/2)]

1
2 (4.77)

Fourier transforming the fields

φj =
1√
Ns

∑

q

φqe
iq·x

πj =
1√
Ns

∑

q

πqe
iq·x (4.78)

where q = 2π
L (i, j, k) are the discrete momenta of a cubic crystal of volume L3, with

periodic boundary conditions, we find

H =
∑

q

[
πqπ−q

2m
+
mω2

q

2
φqφ−q

]
(4.79)

Defining the creation and annihilation operator

bq =

√
mωq

2h̄

(
φq +

i

mωq

πq

)
, b†q =

√
mωq

2h̄

(
φ−q −

i

mωq

π−q

)
, (4.80)

we reduce the Hamiltonian to its standard form

H =
∑

q

h̄ωq

(
n̂q +

1

2

)
(4.81)
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where n̂q = b†qbq is the phonon number operator.

In the ground-state, nq = 0, so that the zero-point energy is

Eo =
∑

q

h̄ωq

2
−→ V

∫
d3q

(2π)3
h̄ωq

2
(4.82)

where V = L3. Substituting for ωq, we obtain

Eo = V
∏

l=1,3

∫ 2π/a

0

dql
2π

h̄ωo

√∑

l=1,3

sin2(qla/2)

= Nsh̄ωoI3 (4.83)

where

I3 =

∫

0<u1,u2,u3<π

d3u

π3

√∑

l=1,3

sin2(ul) = 1.19 (4.84)

and Ns is the number of sites.

Remarks

• The zero point energy per unit cell of the crystal is h̄ωo(I3/π
3), a finite number.

• Were we to take the “continuum limit”, taking the lattice separation to zero, the
zero-point energy would diverge, due to the profusion of ultraviolet modes.

4.4 Continuum Limit

In contrast to the thermodynamic limit, when we take the continuum limit we remove the
discrete character of the problem, allowing fluctuations of arbitrarily small wavelength, and
hence arbitrarily large energy. For a discrete system with periodic boundary conditions, the
momentum in any one direction can not exceed 2π/a. By taking a to zero, we remove the
ultra-violet cut-off in momentum.

As a simple example, we shall consider a one-dimensional string. The important lesson
that we shall learn, is that both the discrete model, and the continuum model have the
same long-wavelength physics. Their behavior will only differ on very short distances,
at high frequencies and short times. This is a very simple example of the concept of
renormalization. Provided we are interested in low energy properties, the details of the
string at short-distances- whether it is discrete, or continuous don’t matter.

Of course, in many respects, the continuum model is more satisfying and elegant. We
shall see however, that we always have to be careful in going to the continuum limit, because
this introduces quantum fluctuations on arbitrarily short length scales. These fluctuations
don’t affect the low energy excitations, but they do mean that the zero-point fluctuations
of the field become arbitrarily large.

Let us start out with a discrete string, as shown in fig 4.5. For small displacements, the
Hamiltonian for this discrete string is identical to that of the last section, as we can see
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Continuum limit  a    0

x

jπ

T

φj

j

a

π(x)
(x)φ T

T

T

Figure 4.5: Illustrating a (a) discrete and a (b) continuous string. By taking the length
between units in the string to zero, maintaining the density per unit length and the tension,
we arrive at the continuum limit.

by the following argument. If a string is made up of point particles of mass m, separated
by a distance a, with a tensile force T acting between them, then for small transverse
displacements φj , the link between the j th and j + 1th particle is expanded by an amount
∆sj = (φj −φj+1)

2/2a, raising the potential energy by an amount T∆sj . The Hamiltonian
is then

Ĥ =
∑

j=1,Ns

[
π2
j

2m
+
T

2a
(φj − φj+1)

2

]
(4.85)

which reverts to (4.42) with the replacement T/a→ mω2.

To take the continuum limit, we let a → 0, preserving ρ = m/a. In this limit, we may
replace

a
∑

j

→
∫
dx,

(φj − φj+1)
2

a2
→ (∇xφ(x))2, (4.86)
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Making the replacement
πj/a→ π̃(x) (4.87)

we obtain

H =

∫
dx

[
T

2
(∇xφ)2+

1

2ρ
π̃(x)2

]
(4.88)

On the discrete lattice, the commutation relations

[φi, π̃j ] = ih̄δ̃(xi − xj), (4.89)

where δ̃(xi− xj) = a−1δij . In the limit a→ 0, δ̃(xi− xj) behaves as a Dirac delta function,
so that in this limit,

[φ(x), π̃(y)] = ih̄δ(x− y) (4.90)

We now make the jump to Fourier space, writing

φ(x) =

∫
dq

2π
φqe

iqxe−ǫ|q|/2 (4.91)

with a similar relation between π(x) and πq. In the continuum limit, q is no longer bounded
by the cut-off 2π/a. To control the wild fluctuations that arise at high momentum we still
need some kind of cut-off, and this is why we introduce the small exponential convergence
factor into the inverse Fourier transform. Now it is just a question of repeating the same
steps of the last section, but for the continuous fields φq and πq. We may confirm that in the
canonical commutation relation, we must now replace 〈q|q′〉 = δqq′ by 〈q|q′〉 = 2πδ(q − q′),
so that

[φq, π−q′ ] = ih̄2πδ(q − q′) (4.92)

When we transform the Hamiltonian, we obtain

H =

∫
dq

2π

[
πqπ−q

2ρ
+
ρω2

q

2
φqφ−q

]
e−ǫ|q| (4.93)

where now ωq = c|q|, and c =
√
T/ρ is the velocity of the phonons. Notice how this

has almost exactly the same form as the the discrete lattice. Defining the creation and
annihilation operator by the relations

φq =

√
h̄

2ρωq
[aq + a†−q]

πq = −i
√
h̄ρωq

2
[aq − a†−q] (4.94)

we find that the creation and annihilation operators satisfy

[aq, a
†
q′ ] = 2πδ(q − q′). (4.95)
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We may now rewrite the Hamiltonian as

H =

∫ ∞

−∞

dq

2π

h̄ωq

2
(a†qaq + a−qa

†
−q)e

−ǫ|q| (4.96)

If we re-order the Boson operators, we obtain

H =

∫ ∞

∞

dq

2π
h̄ωq(a†qaq +

“L′′︷ ︸︸ ︷
2πδ(0)

1

2
)e−|ǫq|/2 (4.97)

The first terms corresponds to the excitations of string, and we recognize the last term as
the zero-point energy of the string. Had we been less ambitious, and started out on a finite,
but lattice long , the term 2 πδ(0) would be replaced by L, which is merely the statement
that the zero-point energy scales with the length,

EZP = L

∫
dq

2π
h̄c|q||e−ǫ|q|ǫ = Lh̄(

c

ǫ
) (4.98)

is the total zero-point energy. Once we remove the momentum cut-off, the momentum sum
is unbounded and the zero-point energy per unit length becomes infinite in the continuum
limit. It often proves convenient to remove this nasty infinity by introducing the concept of
“normal ordering”. If we take any operator A, then we denote its normal ordered count-part
by the symbol : A :. The operator : A : is the same as A, excepting that all the creation
operators have been ordered to the left of all of the annihilation operators. All commutators
associated with the ordering are neglected, so that the normal ordered Hamiltonian is

: H := h̄c

∫ ∞

−∞
|q|n̂q (4.99)

measures the excitation energy above the ground-state.
Finally, let us look at the field correlations in the continuum string. The fields in co-

ordinate space are given by

φ(x, t) =

∫
dq

2π

√
h̄

2ρωq
[aq(t) + a−q(t)]e

iqxe−ǫ|q|/2 (4.100)

where, as in the case of the Harmonic oscillator

aq(t) = aqe
−iωqt, a†q(t) = aqe

iωqt, (4.101)

Example 5.Calculate the the equal-time ground-state correlation function

S(x) =
1

2
〈0|(φ(x)− φ(0))2|0〉. (4.102)

for a one-dimensional string.
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Solution: Let us begin by rewriting

S(x) = 〈0|(φ(x)φ(0)− φ(0)2)|0〉 (4.103)

where we have used translational invariance to replace the expectation value of φ(x)2 by
the expectation value of φ(0)2. When we expand φ(x) and φ(0) in terms of creation and
annihilation operators, only the terms of the form 〈0|aqa†−q′ |o〉 = 〈0|[aq, a†−q′ ]|o〉 =
(2π)δ(q − q′) will survive. Let us write this out explicitly:

S(x) =

∫
dqdq′

(2π)2
h̄

2ρc
√
|q||q′|

〈0|[aq + a†−q][a−q′ + a†q′ ]|0〉(eiqx − 1)e−|q|ǫ

=
h̄

2ρc

∫
dq

2π
e−|q|ǫ

(
eiqx − 1

|q|

)

=

(
h̄

ρc

)[
1

4π
ln
( ǫ2

ǫ2 + x2

)]
(4.104)

where to obtain the last step, we first calculate

dS

dx
= − h̄

ρc

∫ ∞

0

dq

2π
e−|q|ǫ sin(qx) = −

(
h̄

2πρc

)
x

x2 + ǫ2
(4.105)

and then integrate the answer on x, noting S(0) = 0.

Remarks

• Note that at small distances the fluctuations in the string displacement grow as
ln(|x|). This is because the number of short-wavelength fluctuations is unbounded.

• Note also that we could have obtained this result by working with a discrete string,
and taking a→ 0 at the end of the calculation. Had we done this, we would have
found that

S(x) =
ah̄

2ρ

∫
dq

2π

(
eiqx − 1

ωq

)
(4.106)

which has the same long-wavelength behavior.

• Had we repeated this calculation in D dimensions, the integral over q becomes a
d-dimensional integral. In this case,

S(x) ∼
∫
dDq

(
eiqx − 1

|q|

)
∼ 1

xD−1
(4.107)

In higher dimensions, the phase space for number of short-wavelength fluctuations
grows as qD, which leads to stronger fluctuations at short-distances.

4.5 Exercises for chapter 4

1. For the Harmonic oscillator H = h̄ω[a†a+ 1
2 ], we know that

〈n̂〉 = n(ω) =
1

eβh̄ω − 1
, (4.108)
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where β = 1/(kBT ) and n̂ = a†a is the number operator. In the ground-state, using the
equations of motion for the creation and annihilation operators, we showed that the zero-
point fluctuations in position were described by the correlation function

1

2
〈{x(t), x(0)}〉 =

h̄

2mω
cosωt. (4.109)

Generalize this result to finite temperatures. You should find that there are two terms in the
correlation function. Please give them a physical interpretation.

2. (a) Show that if a is a canonical bose operator, the canonical transformation

b = ua+ va†,
b† = ua† + va, (4.110)

(where u and v are real), preserves the canonical commutation relations, provided u2−v2 = 1.

(b) Using the results of (a), diagonalize the Hamiltonian

H = ω(a†a+
1

2
) +

1

2
∆(a†a† + aa), (4.111)

by transforming it into the form H = ω̃(b†b+ 1
2 ). Find ω̃, u and v in terms of ω and ∆. What

happens when ∆ = ω?

(c) The Hamiltonian in (b) has a boson pairing term. Show that the ground-state of H can
be written as coherent condensate of paired bosons, given by

|0̃〉 = e−α(a†a†)|0〉.

Calculate the value of α in terms of u and v. (Hint: |0̃〉 is the vacuum for b, i.e b|0̃〉 =

(ua+ va†)|0̃〉 = 0. Calculate the commutator of [a, e−αa
†a† ] by expanding the exponential as

a power series. Find a value of α that guarantees that b annihilates the vacuum |0̃〉. )

3. (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one
dimensional chain with Hamiltonian

H =
∑

j

[
p2
j

2mj
+
k

2
(φj − φj−1)

2

]
(4.112)

where at even sites m2j = m and at odd sites m2j+1 = M . Please sketch the dispersion
curves.

(ii) What is the gap in the excitation spectrum?

(iii)Write the diagonalized Hamiltonian in second quantized form and discuss how you might
arrive at your final answer. You will now need two types of creation operator.

4. (Harder) According to the “Lindeman” criterion, a crystal melts when the rms displacement of
its atoms exceeds a third of the average separation of the atoms. Consider a three dimensional
crystal with separation a, atoms of mass m and a nearest neigbor quadratic interaction V =
(mω2/2)(~ΦR − ~ΦR+a)

2.

49



Chapter 4. c©Piers Coleman 09

(i) Using strictly physical arguments, show that if

h̄

mωa2
> ζc (4.113)

the crystal will melt due to zero-point fluctuations. (Hint... what would the answer be for a
simple harmonic oscillator?)

(ii)Calculate ζc. If you like, to start out, imagine that the atoms only move in one direction,
so that Φ is a scalar displacement at the site with equilibrium position R. Calculate the rms
zero-point displacement of an atom

√
〈0|Φ(x)2|0〉. Now generalize your result to take account

of the fluctuations in three orthogonal directions.

(iii)Suppose h̄ω/kB = 300K, and the atom is a Helium atom. Estimate the maximum atomic
separation at which the solid will be stable against quantum fluctuations.

5. (Harder) Find the transformation that diagonalizes the Hamiltonian

H =
∑

j

{
J1(a

†
i+1ai +H.c) + J2(a

†
i+1a

†
i +H.c)

}
(4.114)

where the ith site is located at Rj = aj. You may find it helpful to (i) transform to momentum
space, writing aj = 1

N1/2

∑
q e

iqRjaq and (ii) carrying out a canonical transformation of the

form bq = uqaq + vqa
†−q, where u2 − v2 = 1. What happens when J1 = J2?

6. (Harder) This problem sketches the proof that the displacement of the quantum Harmonic
oscillator, originally in its ground-state (in the distant past), is given by

〈x(t)〉 =

∫ ∞

0

R(t− t′)f(t′)dt′, (4.115)

where

R(t− t′) =
i

h̄
〈0|[x(t), x(t′)]|0〉 (4.116)

is the “response function” and x(t) is the position operator in the Heisenberg representation
of H0. A more detailed discussion can be found in chapter 10.

An applied force f(t) introduces an additional forcing term to the harmonic oscillator Hamil-
tonian

Ĥ(t) = H0 + V (t) = Ĥ0 − f(t)x̂, (4.117)

where H0 = h̄ω(a†a + 1
2 ) is the unperturbed Hamiltonian. To compute the displacement of

the Harmonic oscillator, it is convenient to work in the “interaction representation”, which
is the Heisenberg representation for H0. In this representation, the time-evolution of the
wavefunction is due to the force term. The wavefunction of the harmonic oscillator in the
interation representation |ψI(t)〉 is related to the Schrodinger state |ψS(t)〉 by the relation
|ψI(t)〉 = eiH0t/h̄|ψS(t)〉.

(a) By using the equation of motion for the Schrodinger state ih̄∂t|ψS(t)〉 = (H0+V (t))|ψS(t)〉,
show that the time evolution of the wavefunction in the interaction representation is

ih̄∂t|ψI(t)〉 = VI(t)|ψI(t)〉 = −f(t)x̂(t)|ψI(t)〉, (4.118)

where VI(t) = eiH0t/h̄V̂ (t)e−iH0t/h̄ = −x(t)f(t) is the force term in the interaction
representation.
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(b) Show that if |ψ(t)〉 = |0〉 at t = −∞, then the leading order solution to the above
equation of motion is then

|ψI(t)〉 = |0〉+ i

h̄

∫ t

−∞
dt′f(t′)x̂(t′)|0〉+O(f2), (4.119)

so that

〈ψI(t)| = 〈0| −
i

h̄

∫ t

−∞
dt′f(t′)〈0|x̂(t′) +O(f2). (4.120)

(c) Using the results just derived expand the expectation value 〈ψI(t)|x(t)|ψI(t)〉 to linear
order in f , obtaining the above cited result.
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Chapter 5

Conserved Particles

The method we have just examined is fine for “collective excitations” of a medium, but
it does not make it self-evident how we should proceed for systems of conserved particles,
such as a gas of Helium-4 atoms, or an electron gas inside a metal. Now we shall return to
discuss conserved particles.

First quantized quantum mechanics can deal with many body physics, through the in-
troduction of a many particle wavefunction. This is the approach favored in fields such
as quantum chemistry, where the number of electrons is large, but not macroscopic. The
quantum chemistry approach revolves around the many-body wavefunction. For N parti-
cles, this a function of 3N variables and N spins. The Hamiltonian is then an operator
expressed in terms of these co-ordinates:

ψ −→ ψ(x1, x2 . . . xN , t)

H −→
∑

j

[
− h̄2

2m
∇2
j + U(xj)

]
+

1

2

∑

i<j

V (xi − xj) (5.1)

With a few famous exceptions this method is cumbersome, and ill-suited to macroscop-
ically large systems. The most notable exceptions occur in low dimensional problems,
where wavefunctions of macroscopically large ensembles of interacting particles have been
obtained. Examples include

• Bethe Ansatz solutions to interacting one, and zero-dimensional problems.

• Laughlin’s wavefunction for interacting electrons in high magnetic fields, at commen-
surate filling factors.

Second-quantization provides a general way of approaching many body systems in which
the wavefunction plays a minor role. As we mentioned in chapter 3, the essence of second-
quantization is a process of raising the Schrodinger wavefunction to the level of an operator
which satisfies certain “canonical commutation” or “canonical anticommutation” algebras”.
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In first quantized physics physical properties of a quantum particle, such as its density, Ki-
netic energy, potential energy can be expressed in terms of the one-particle wavefunction.
Second quantization elevates each of these quantities to the status of an operator by replac-
ing the one-particle wavefuncion by its corresponding field operator:

ψ(x, t) −→ ψ̂(x, t)
one particle wavefunction Field operator

O(ψ∗, ψ) −→ Ô(ψ̂†, ψ̂)





2nd Quantization (5.2)

For example, Born’s famous expression for the one-particle (probability) density becems an
operator as follows:

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (5.3)

so that the potential energy associated with an external potential is

V̂ =

∫
d3xU(x)ρ̂(x). (5.4)

Similarly, the Kinetic energy in first-quantization

T [ψ∗, ψ] =

∫
d3xψ∗(x)

[
− h̄2

2m
∇2

]
ψ(x) (5.5)

becomes the operator

T̂ =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2

]
ψ̂(x). (5.6)

Finally

H =

∫
d3xψ̂†(x)

[
− h̄2

2m
∇2 + U(x)

]
ψ(x) +

1

2

∫
d3xd3x′V (x− x′) : ρ̂(x)ρ̂(x′) : (5.7)

is the complete many-body Hamiltonian in second-quantized form. Here V (x − x′) is the
interaction potential between the particles, and the symbol “:” reflects the fact that order
of the operators counts. “: . . . :” is the normal ordering operator denotes that all cre-
ation operators between the two colons must be ordered to lie to the left of all destruction
operators.

5.1 Commutation and Anticommutation Algebras

In 1927, Jordan and Wigner[1] proposed that the microscopic field operators describing
identical particles divide up into two types. These are axioms of quantum field theory. For
identical bosons, field operators satisfy a commutation algebra, whereas for Fermions, the
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field operators satisfy an anticommutation algebra. Since we will be dealing with many of
their properties in parallel, it useful to introduce the notation

[a, b]± = ab± ba, fermions/bosons (5.8)

to denote commutators (−) for bosons or anticommutators (+) for fermions . The algebra
of field operators is then

[ψ(1), ψ(2)]± = [ψ†(2), ψ†(1)]± = 0

[ψ(1), ψ†(2)]± = δ(1− 2)





Fermions/ Bosons (5.9)

When spin is involved, 1 ≡ (x1, σ1) and δ(1 − 2) = δ(D)(x1 − x2)δσ1σ2 . We shall motivate
these axioms in two ways: (i) by showing, in the case of Bosons, that they are a natural
result of trying to quantize the one-particle wavefunction. ; (ii) by showing that they lead
to the first quantized formulation of many-body physics, naturally building the particle
exchange statistics into the mathematical framework.

5.1.1 Heuristic Derivation for Bosons

The name second-quantization derives from the notion that many body physics can be
obtained by quantizing the one-particle wavefunction. Philosophically, this is very tricky,
for surely, the wavefunction is already a quantum object? Let us imagine however, a thought
experiment, when we prepare a huge number of non-interacting particles, prepared in such
a way that they are all in precisely the same quantum state. The feasibility of this does
not worry us here, but note that it can actually be done for a large ensemble of bosons, by
condensing them into a single quantum state. In this circumstance, every single particle
lies in the same one-particle state. If we time evolve the system we can begin to think of
the single-particle wavefunction as if it is a classical variable.

Let us briefly recall one-particle quantum mechanics. If the particle is in a state |ψ〉,
then we can always expand the state in terms of a complete basis {|n〉}, as follows:

|ψ(t)〉 =
∑

n

|n〉
ψn(t)︷ ︸︸ ︷
〈n|ψ(t)〉 =

∑

n

|n〉ψn(t) (5.10)

so that |ψn(t)|2 = pn(t) gives the probability of being in state n. Now applying Schrodinger’s
equation, Ĥ|ψ〉 = ih̄∂t|ψ〉 gives

ih̄ψ̇n(t) =
∑

m

〈n|H|m〉ψm(t)

ih̄ψ̇∗n(t) = −
∑

m

〈m|H|n〉ψ∗m(t) (5.11)

Now if we write the ground-state energy as a functional of the bm(t), we get

H(ψ,ψ∗) = 〈H〉 =
∑

m,n

ψ∗mψn〈m|H|n〉 (5.12)
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we see that the equations of motion can be written in Hamiltonian form

ψ̇m =
∂H(ψ,ψ∗)
ih̄∂ψ∗m

, (c.f q̇ =
∂H

∂p
)

ih̄ψ̇∗m = −∂H(ψ,ψ∗)
∂ψm

, (c.f ṗ = −∂H
∂q

) (5.13)

so we can identify

{ψn, ih̄ψ∗n} ≡ {qn, pn} (5.14)

as the canonical position and momentum co-ordinates.

But suppose we don’t have a macroscopic number of particles in a single state. In this
case, the amplitudes ψn(t) are expected to undergo quantum fluctuations. Let us examine
what happens if we “second-quantize” these variables, making the replacement

[qn, pm] = ih̄δnm = ih̄[ψn, ψ
†
m] (5.15)

or

[ψn, ψm] = [ψ†n, ψ†m] = 0,

[ψn, ψ
†
m] = δnm

(5.16)

In terms of these operators, our second quantized Hamiltonian becomes

H =
∑

m,l

ψ̂†mψ̂l〈m|H|l〉 (5.17)

If we now use this to calculate the time-evolution of the quantum fields we obtain

−ih̄∂tψj = [Ĥ, ψj ] =
∑

m,l

〈m|H|l〉
−δmjψl︷ ︸︸ ︷

[ψ†mψl, ψj ] (5.18)

Eliminating the sum over m, we obtain

−ih̄∂tψj = −
∑

l

〈j|H|l〉ψl

−ih̄∂tψ†j = [Ĥ, ψ†j ] =
∑

l

ψ†l〈l|H|j〉, (5.19)

where the complex conjugated expression gives the time evolution of ψ†l. Remarkably, the
equations of motion of the operators match the time evolution of the one-particle ampli-
tudes. But now we have operators, we have all the new physics associated with quantum
fluctuations of the particle fields.
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5.2 What about Fermions?

Remarkably, as Jordan and Wigner first realized, we recover precisely the same time-
evolution if second-quantize the operators using anticommutators, rather than commutators,
and it this is what gives rise to fermions and the exclusion principle. But for fermions, we
can not offer a heurtistic argument, because they don’t condense: as far as we know, there
is no situation in which individual fermi field operators behave semi-classically. although of
course, in a superconductor, pairs of fermions that behave semi-classically.

In fact, all of the operations we carried out above work equally well with either canonical
commutation or canonical anticomutation relations:

[ψn, ψm] = [ψ†n, ψ†m]± = 0,

[ψn, ψ
†
m]± = δnm

(5.20)

where the ± refers to fermions/bosons respectively. To evaluate the equation of motion of
the field operators, we need to know the commutator [H,ψn]. Using the relation

[ab, c]± = a[b, c]± ∓ [a, c]± (5.21)

we may verify that

[ψ†mψl, ψj ] = ψ†m[

0︷ ︸︸ ︷
ψl, ψj ]±

−δmj︷ ︸︸ ︷
∓[ψ†m, ψj ]± ψl

= −δmjψl (5.22)

so that

−ih̄∂tψj = [Ĥ, ψj ] =
∑

m,l

〈m|H|l〉
−δmjψl︷ ︸︸ ︷

[ψ†mψl, ψj ]

= −
∑

l

〈j|H|l〉ψl (5.23)

independently of whether we use an anticommuting, or commuting algebra.

Let us now go on, and look at some general properties of second-quantized operators
that hold for both bosons and fermions.

5.3 Field operators in different bases

Let us first check that our results don’t depend on the one-particle basis we use. To do this,
we must confirm that the commutation or anticommutation algebra of bosons or fermions
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is basis independent. Suppose we have two bases of one-particle states: the {|r〉} basis, and
a new {|s̃〉} basis, where

|ψ〉 =
∑

r

|r〉ψr =
∑

s

|s̃〉as (5.24)

where 〈s̃|ψ〉 = as, 〈r|ψ〉 = ψr. Introducing the completeness relation 1 =
∑
r |r〉〈r| into

the first expression, we obtain
as︷ ︸︸ ︷
〈s̃|ψ〉 =

∑

r

〈s̃|r〉
ψs︷ ︸︸ ︷
〈r|ψ〉 (5.25)

If this is how the one-particle states transform between the two bases, then we must use
the same unitary transformation to relate the field operators that destroy particles in the
two bases

âs =
∑

r

〈s̃|r〉ψ̂r (5.26)

The commutation algebra of the new operators is now

[âs, â
†
p]± =

∑

l,m

〈s̃|l〉
δlm︷ ︸︸ ︷

[ψ̂l, ψ̂
†
m]±〈m|p̃〉 (5.27)

This is just the pre- and post-multiplication of a unit operator by the unitary matrix Usl〈s̃|l〉
and its conjugate U †mp = 〈m|p̃〉. The final result, is unity, as expected:

[âs, â
†
p]± =

∑

r

〈s̃|r〉〈r|p̃〉 = 〈s̃|p̃〉 = δsp (5.28)

In other words, the canonical commutation algebra is preserved by unitary transformations
of basis.

A basis of particular importance, is the position basis. The one-particle wavefunction
can always be decomposed in a discrete basis, as follows

ψ(x) = 〈x|ψ(t)〉 =
∑

n

〈x|n〉ψn (5.29)

where 〈x|n〉 = φn(x) is the wavefunction of the nth state. We now define the corresponding
destruction operator

ψ̂(x) =
∑

n

〈x|n〉ψ̂n (5.30)

which defines the field operator in real space. and we can also use the orthogonality relation

“
∑

x

”〈n|x〉〈x|m〉 = δnm, (“
∑

x

” =

∫
dDx) (5.31)

to invert these relations:

ψn =

∫
dDx〈n|x〉ψ, ψ†n =

∫
dDxψ†(x)〈x|n〉 (5.32)
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You can see by now, that so far as transformation laws are concerned, ψn and ψ(x) trans-
forms like “bra” vectors, whilst their conjugates transform like “kets”.

By moving to a real-space representation, we have traded in a discrete basis, for a
continuous basis. The corresponding “unit” operator appearing in the commutation algebra
now becomes a delta-function.

[ψ(x), ψ†(y)]± =
∑

n,m

〈x|n〉〈m|y〉
δnm︷ ︸︸ ︷

[ψn, ψ
†
m]±

=
∑

n

〈x|n〉〈n|y〉 = 〈x|y〉

= δ3(x− y) (5.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by the one-particle energy eigenstates.

In this basis 〈l|H|m〉 = Elδlm, so the Hamiltonian becomes diagonal

H =
∑

l

Elψ
†
lψl =

∑
Eln̂l (5.34)

The Hamiltonian of the non-interacting many-body system thus divides up into a set of
individual components, each one describing the energy associated with the occupancy of
a given one-particle eigenstate. The eigenstates of the many-body Hamiltonian are thus
labelled by the occupancy of the lth one-particle state. Of course, in a real-space basis
the Hamiltonian becomes more complicated. Formally, if we transform this back to the
real-space basis, we find that

H =

∫
dDxdDx′ψ†(x)〈x|H|x′〉ψ(x′) (5.35)

For free particles in space, the one-particle Hamiltonian is

〈x|H|x′〉 =

[
− h̄2

2m
∇2 + U(x)

]
δD(x− x′) (5.36)

so that the Hamiltonian becomes

H =

∫
dDxψ†(x)

[
− h̄2

2m
∇2 + U(x)

]
ψ(x) (5.37)

which despite its formidable appearance, is just a a transformed version of the diagonalized
Hamiltonian (5.34).

Example 5.1: By integrating by parts, taking care with the treatment of surface
terms, show that the second quantized expression Hamiltonian (5.37) can be re-written
in the form

H =

∫
dDx

(
h̄2

2m
|∇ψ(x)|2 + U(x)|ψ(x)|2

)
, (5.38)
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where we have taken a notational liberty common in field theory, denoting |∇ψ(x)|2 ≡
~∇ψ†(x) · ~∇ψ(x) and |ψ(x)|2 ≡ ψ†(x)ψ(x).

Solution: Let us concentrate on the kinetic energy term in the Hamiltonian, writing
H = T + U , where

T =

∫
dDxψ†(x)

(
− h̄2

2m
∇2

)
ψ(x). (5.39)

Integrating this term by parts we can split it into a “bulk” and a “surface” term, as
follows:

T = − h̄2

2m

∫
dDx~∇ψ†(x) · ~∇ψ(x) +

h̄2

2m

TS︷ ︸︸ ︷∫
dDx~∇ ·

(
ψ†(x)~∇ψ(x)

)
. (5.40)

Using the divergence theorem, we can rewrite the total derivative as a surface integral

TS = − h̄2

2m

∫
d~S ·

(
ψ†(x)~∇ψ(x)

)
(5.41)

Now it is tempting to just drop this term as a surface term that “vanishes at infinity”.
However, here we are dealing with operators, so this brash step requires a little contem-
plation before we take it for granted. One way to deal with this term is to use periodic
boundary conditions. In this case there really are no boundaries, or more strictly speak-
ing, opposite boundaries cancel (

∫
R
dS +

∫
L
dS = 0), so the surface term is zero. But

suppose we had used hard wall boundary conditions, what then?

Well, in this case, we can decompose the field operators in terms of the one-particle
eigenstates of the cavity. Remembering that under change of bases, ψ(x) ∼ 〈x| and
ψ†(x) ∼ |x〉 behave as bras and kets respectively, we write

ψ(x) =
∑

n

φn(x)︷ ︸︸ ︷
〈x|n〉ψn, ψ†(x) =

∑

n

ψ†
n

φ∗
n(x)︷ ︸︸ ︷
〈n|x〉 .

Substituting these expressions into TS (5.41), the surface term becomes

TS =
∑

n,m

t(S)
nmψ

†
nψm

tSnm = − h̄2

2m

∫
d~S · φ∗n(x)~∇φm(x) (5.42)

Provided φn(x) = 0 on the surface, it follows that the matrix elements tSnm = 0 so that
T̂S = 0.

Thus whether we use hard-wall or periodic boundary conditions, we can drop the surface
contribution to the Kinetic energy in (5.40), enabling us to write

T =
h̄2

2m

∫
dDx|~∇ψ(x)|2

and when we add in the potential term, we obtain (5.38).
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5.4 Fields as particle creation and annihilation operators.

By analogy with collective fields, we now interpret the quantity n̂l = ψ†lψl as the number
number operator, counting the number of particles in the one-particle state l. The total
particle number operator is then

N =
∑

l

ψ†lψl (5.43)

Using relation (5.21), it is easy to verify that for both fermions and bosons,

[N̂ , ψl] = [n̂l, ψl] = −ψl, [N̂ , ψ†l] = [n̂l, ψ
†
l] = ψ†l. (5.44)

In other words, N̂ψ†l = ψ†l(N̂ + 1) so that ψ†l adds a particle to state l. Similarly, since
N̂ψl = ψl(N̂ − 1), ψl destroys a particle from state l.

There is however a vital and essential difference between bosons and fermions. For
bosons, the number of particles nl in the lth state is unbounded, but for fermions, since

ψ†
2
l =

1

2
{ψ†l, ψ†l} = 0 (5.45)

the amplitude to add more than one particle to a given state is always zero. We can
never add more than one particle to a given state: in otherwords, the exclusion principle
follows from the algebra! The occupation number bases for bosons and fermions are given by

|n1, n2 . . . nl . . .〉 =
∏
l

(ψ†l)
nl√

nl!
|0〉, (nr = 0, 1, 2 . . .) bosons

|n1, n2 . . . nr〉 = (ψ†r)nr . . . (ψ†1)n1 |0〉, (nr = 0, 1) fermions

(5.46)

A specific example for fermions, is

| 1

1
2

0
3

1
4

1
5

0
6

1〉 = ψ†6ψ
†
4ψ
†
3ψ
†
1|0〉 (5.47)

which contains particles in the 1st, 3rd, 4th and 6th one-particle states. Notice how the
order in which we add the particles affects the sign of the wavefunction, so exchanging
particles 4 and 6 gives

ψ†4ψ
†
6ψ
†
3ψ
†
1|0〉 = −ψ†6ψ†4ψ†3ψ†1|0〉 = −| 1

1
2

0
3

1
4

1
5

0
6

1〉 (5.48)

By contrast, a bosonic state is symmetric, for example

| 1

8
2

0
3

5
4

2
5

4
6

1〉 =
1√

4!2!5!8!
ψ†6(ψ

†
5)

4(ψ†4)
2(ψ†3)

5(ψ†1)
8|0〉 (5.49)
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To get further insight, let us transform the number operator to a real-space basis by
writing

N̂ =

∫
dDxdDy

∑

l

ψ†(x)

δD(x−y)︷ ︸︸ ︷
〈x|l〉〈l|y〉ψ(y) (5.50)

so that

N̂ =

∫
dDxψ†(x)ψ(x) (5.51)

From this expression, we are immediately led to identify

ρ(x) = ψ†(x)ψ(x) (5.52)

as the density operator. Furthermore, since

[ρ(y), ψ(x)] = ∓[ψ†(y), ψ(x)]± ψ(y) = −δ3(x− y)ψ(y). (5.53)

we can we can identify ψ(x) as the operator which annihilates a particle at x.

Example 5.2: Using the result (5.53) that if

N̂R =

∫

y∈R
d3yρ(~y)

(5.54)

measures the number of particles in some region R, that

[N̂R, ψ(x)] =

{
−ψ(x), (x ∈ R)

0 (x 6∈ R)
(5.55)

By localizing region R around x0, use this to prove that ψ(x0) annihilates a particle at
position x0.

Solution: By directly commuting N̂R with ψ(x), we obtain

[N̂R, ψ(x)] =

∫

y∈R
[ρ(y), ψ(x)] = −

∫

y∈R
δ3(x− y)ψ(y) =

{
−ψ(x), (x ∈ R)

0 (x 6∈ R)

Suppose |nR〉 is a state with a definite number nR of particles inside R. If the region
R is centered around x0, then it follows that

N̂Rψ(x0)|nR〉 = ψ(x0)(N̂R − 1)|nR〉 = (nR − 1)ψ(x0)|nR〉

contains one less particle. In this way, we see that ψ(x) annihilates a particle from
inside region R, no matter how small that region is made, proving that ψ(x) annihilates
a particle at position x0.
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Example 5.3: Suppose b~q destroys a boson in a cubic box of side length L,where
~q = 2π

L (i, j, k) is the momentum of the boson. Express the field operators in real space,
and show they satisfy canonical commutation relations. Write down the Hamiltonian
in both bases.

Solution The field operators in momentum space satisfy [b~q, b
†
~q′ ] = δ~q~q′ . We may

expand the field operator in real space as follows

ψ(x) =
∑

q

〈~x|~q〉b~q (5.56)

Now

〈~x|~q〉 =
1

L3/2
ei~q·~x (5.57)

is the one-particle wavefunction of a boson with momentum ~q. Calculating the commu-
tator between the fields in real space, we obtain

[ψ(~x), ψ†(~y)] =
∑

~q,~q′

〈~x|~q〉〈~q′|~y〉

δ~q~q′︷ ︸︸ ︷
[b~q, b

†
~q′ ] =

∑

~q

〈~x|~q〉〈~q|~y〉

=
1

L3

∑

q

ei~q·(~x−~y) = δ(3)(~x− ~y). (5.58)

The last two steps could have been carried out by noting that
∑
q |q〉〈q| = 1, so that

[ψ(~x), ψ†(~y)] = 〈x|y〉 = δ3(x− y).
The Hamiltonian for the bosons in a box is

H = − h̄2

2m

∫
d3xψ†(x)∇2ψ(x) (5.59)

We now Fourier transform this, writing

ψ†(x) =
1

L3/2

∑

q

e−i~q·~xb†q

∇2ψ(x) = − 1

L3/2

∑

q

q2ei~q·~xbq (5.60)

Substituting into the Hamiltonian, we obtain

H =
1

L3

∑

q, q′

ǫqb
†
q′bq

∫
d3x

L3δq−q′︷ ︸︸ ︷
eiq−q′·x =

∑

q

ǫqb
†
qbq, (5.61)

where

ǫq =

(
h̄2q2

2m

)
. (5.62)

is the one-particle energy.
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5.5 The vacuum and the many body wavefunction

We are now in a position to build up the many-body wavefunction. Once again, of fun-
damental importance here, is the notion of the vacuum, the unique state |0〉 which is
annihilated by all field operators. If we work in the position basis, we can add a particle at
site x to make the one-particle state

|x〉 = ψ†(x)|0〉, (5.63)

Notice that the overlap between two one-particle states is

〈x|x′〉 = 〈0|ψ(x)ψ†(x′)|0〉. (5.64)

By using the (anti) commutation algebra to move the creation operator in the above ex-
pression to the right-hand side, where it annihilates the vacuum, we obtain

〈0|ψ(x)ψ†(x′)|0〉 = 〈0|
δ(3)(x−x′)︷ ︸︸ ︷

[ψ(x), ψ†(x′)]±|0〉 = δ(3)(x− x′). (5.65)

We can equally well add many particles, forming the N -particle state:

|x1, x2 . . . xN 〉 = ψ†(xN ) . . . ψ†(x2)ψ
†(x1)|0〉 (5.66)

Now the corresponding “bra” state is given by

〈x1, x2 . . . xN | = 〈0|ψ(x1)ψ(x2) . . . ψ(xN ) (5.67)

The wavefunction of the N-particle state Ψ is the overlap with this state

Ψ(x1, x2, . . . xN ) = 〈x1, x2 . . . xN |Ψ〉 = 〈0|ψ(x1)ψ(x2) . . . ψ(xN )|Ψ〉 (5.68)

The commutation/anticommutation algebra guarantees that the symmetry of this wave-
function under particle exchange is positive for bosons, and negative for fermions, so that
if we permute the particles, (12 . . . N)→ (P1P2 . . . PN )

〈0|ψ(xP1)ψ(xP2) . . . ψ(xPN )|Ψ〉 = (∓1)P 〈0|ψ†(x1)ψ(x2) . . . ψ(xN )|Ψ〉 (5.69)

where P is the number of pairwise permutations involved in making the permutation. Notice
that for fermions, this hard-wires the Pauli Exclusion principle into the formalism, and
guarantees a node in the wavefunction when any two particle co-ordinates are the same.

Example Two spinless fermions are added to a cubic box with sides of length L, in
momentum states k1 and k2, forming the state

|Ψ〉 = |k1,k2〉 = c†k2
c†k1
|0〉 (5.70)
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Calculate the two-particle wavefunction

Ψ(x1, x2) = 〈x1, x2|Ψ〉 (5.71)

Solution Written out explicitly, the wavefunction is

Ψ(x1, x2) = 〈0|ψ(x1)ψ(x2)c
†
k2
c†k1
|0〉 (5.72)

To evaluate this quantity, we commute the two destruction operators to the right, un-
til they annihilate the vacuum. Each time a destruction operator passes a creation
operator, we generate a “contraction” term

{ψ(x), c†k} =

∫
d3y

δ3(x−y)︷ ︸︸ ︷
{ψ(x), ψ†(y)}〈y|k〉 = 〈x|k〉 = L−3/2eik·x (5.73)

Carrying out this procedure, we generate a sum of pairwise contractions, as follows:

〈0|ψ(x1)ψ(x2)c
†
k2
c†k1
|0〉 = 〈x1|k1〉〈x2|k2〉 − 〈x1|k2〉〈x2|k1〉

=
1

L3

[
ei(k1·x1+k2·x2) − ei(k1·x2+k2·x1)

]

5.6 Interactions

Second-quantization is easily extended to incorporate interactions. Classically, the interac-
tion potential energy between particles is given by

V =
1

2

∫
d3xd3x′V (x− x′)ρ(x)ρ(x′) (5.74)

so we might expect that the corresponding second-quantized expression is

1

2

∫
d3xd3x′V (x− x′)ρ̂(x)ρ̂(x′) (5.75)

This is wrong, because we have not been careful about the ordering of operators. Were
we to use (5.75), then a one-particle state would interact with itself! We require that the
action of the potential on the vacuum, or a one-particle state, gives zero

V̂ |0〉 = V̂ |x〉 = 0 (5.76)

To guarantee this, we need to be careful that we “normal-order” the field operators, by
permuting them so that all destruction operators are on the right-hand-side. All additional
terms that are generated by permuting the operators are dropperd, but the signs associated
with the permutation process are preserved. We denote the normal ordering process by two
semi-colons. Thus

: ρ(x)ρ(y) : = : ψ†(x)ψ(x)ψ†(y)ψ(y) :
= ∓ : ψ†(x)ψ†(y)ψ†(x)ψ(y) :=: ψ†(y)ψ†(x)ψ(x)ψ(y) : (5.77)
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and the correct expression for the interaction potential is then

V =
1

2

∫
d3xd3x′V (x− x′) : ρ̂(x)ρ̂(x′) :

=
∑

σ,σ′

1

2

∫
d3xd3x′V (x− x′)ψσ†(y)ψσ′†(x)ψσ(x)ψσ(y) (5.78)

where we have written a more general expression for fields with spin.

Example. Show that the action of the operator V on the many body state |x1, . . . xN 〉
is given by

V̂ |x1, x2, . . . xN 〉 =
∑

i<j

V (xi − xj)|x1, x2, . . . xN 〉 (5.79)

Solution: To prove this, we need the intermediate result

[V, ψ†(x)] =

∫
d3yV (x− y)ψ†(x)ρ(y). (5.80)

We now calulate

V |x1, . . . xN 〉 = V ψ†(xN ) . . . ψ†(x1)|0〉 (5.81)

by commuting V successively to the right until it annihilates with the vacuum. At each
stage, we generate a “remainder term”. When we commute it between the “jth” and
the “j-1st” creation operator, we obtain

ψ†(xN ) . . . V ψ†(xj) . . . ψ
†(x1)|0〉 = ψ†(xN ) . . . ψ†(xj)V . . . ψ

†(x1)|0〉+Rj

where the remainder is

Rj =

∫
d3yV (y − xj)ψ†(xN ) . . . ψ†(xj)ρ(y) . . . ψ

†(x1)|0〉 (5.82)

By commuting the density operator to the right until it annihilates the vacuum, the
remainder term can be written

Rj =
∑

i<j

V (xi − xj)ψ†(xN ) . . . ψ†(x1)|0〉. (no sum on j) (5.83)

When we commute V all the way from the right until it annihilates the vacuum, our
final answer is the sum of all these remainder terms,

V ψ†(xN ) . . . ψ†(x1)|0〉 =
∑

j=2,N

Rj

=
∑

i<j

V (xi − xj)|x1, x2 . . . xN 〉. (5.84)

In otherwords, the state |x1 . . . xN 〉 is an eigenstate of the interaction operator, with
eigenvalue given by the classical interaction potential energy.
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To get another insight into the interaction, we shall now rewrite it in the momentum
basis. This is very useful in translationally invariant systems, where momentum is conserved
in collisions. Let us imagine we are treating fermions, with spin. The transformation to a
momentum basis is then Writing

ψσ(x) = “
∑

k

”〈x|k〉ckσ =

∫

k
ckσe

i(k·x)

ψσ(x) = “
∑

k

”c†kσ〈k|x〉 =
∫

k
c†kσe

−i(k·x) (5.85)

where {ckσ, c†k′σ′} = (2π)3δ3(k−k′)δσσ′ are canonical fermion operators and we have used
the short-hand notation ∫

k
=

∫
d3k

(2π)3
. (5.86)

We shall also Fourier transform the interaction

V (x− x′) =

∫

q
V (q)eiq·(x−x′). (5.87)

When we substitute these expressions into the interaction, we need to regroup the Fourier
terms so that the momentum integrals are on the outside, and the spatial integrals are on
the inside. Doing this, we obtain

V̂ =
1

2

∑

σσ′

∫

k1,2,3,4

V (q)× c†k4σc
†
k3σ′ck2σ′ck1σ × spatial integrals (5.88)

where the spatial integrals take the form

∫
d3xd3x′ei(k1−k4+q)·xei(k2−k3−q)·x′ = (2π)6δ(3)(k4 − k1 − q)δ(3)(k3 − k2 + q) (5.89)

which impose momentum conservation at each scattering event. Using the spatial integrals
to eliminate the integrals over k3 and k4, the final result is

V̂ =
1

2

∑

σσ′

∫

k1,2,q

d3q

(2π)3
V (q)c†k1+qσc

†
k2−qσ′ck2σ′ck1σ (5.90)

In other words, when the particles scatter at positions x and x′, momentum is conserved.
Particle 1 comes in with momentum k1, and transfers momentum q to particle 2. Particle
2 comes in with momentum k2, and thereby gains momentum q:

particle 1 k1 −→ k1 + q
particle 2 k2 −→ k2 − q

(5.91)

as illustrated in Fig. 5.1. The matrix element associated with this scattering process is
merely the Fourier transform of the potential V (q).
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Figure 5.1: Scattering of two particles, showing transfer of momentum. q.

Example 5.4: Particles interact via a delta-function interaction V (x) = Ua3δ(3)(x).
Write down the second-quantized interaction in a momentum space representation.

Solution: The Fourier transform of the interaction is

V (q) =

∫
d3xUa3δ(x)e−iq·x = Ua3 (5.92)

so the interaction in momentum space is

V̂ =
∑

σσ′

Ua3

2

∫

k1,2,q

d3q

(2π)3
c†k1−qσc

†
k2+qσ′ck2σ′ck1σ (5.93)

Example 5.5: A set of fermions interact via a screened Coulomb (Yukawa) potential

V (r) =
Ae−λr

r
(5.94)

Write down the interaction in momentum space.

Solution: The interaction in momentum space is given by

V̂ =
1

2

∑

σσ′

∫

k1,2,q

d3q

(2π)3
V (q)c†k1+qσc

†
k2−qσ′ck2σ′ck1σ (5.95)

where

V (q) =

∫
d3x

Ae−λr

r
e−iq·x (5.96)

To carry out this integral, we use Polar co-ordinates with the z-axis aligned along the
direction q̂. Writing q · x = qr cos θ, then d3x = r2dφd cos θ → 2πr2d cos θ, so that

V (q) =

∫
4πr2drV (r)

1

2

∫ 1

−1

d cos θ

︸ ︷︷ ︸
〈e−iq·x〉= sin qr

qr

e−iqr cos θ (5.97)
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so that for an arbitrary spherically symmetric potential

V (q) =

∫ ∞

0

4πr2drV (r)

(
sin qr

qr

)
(5.98)

In this case,

V (q) =
4πA

q

∫ ∞

0

dre−λr sin(qr) =
4πA

q2 + λ2
, (5.99)

Notice that the Coulomb interaction,

V (r) =
e2

4πǫ0r
, (5.100)

is the infinite range limit of the Yukawa potential, with λ = 0, A = e2/4πǫo, so that for
the Coulomb interaction,

V (q) =
e2

q2ǫo
. (5.101)

Example 5.6: If one transforms to a new one particle basis, writing ψ(x) =
∑
s Φs(x)cs,

show that the interaction becomes

V̂ =
1

2

∑

lmnp

c†lc
†
mcncp〈lm|V |pn〉 (5.102)

where

〈lm|V |pn〉 =

∫

x,x′

Φ∗
l (x)Φp(x)Φ

∗
m(x′)Φ∗

n(x
′)V (x− x′) (5.103)

is the matrix element of the interaction between the two particle states |lm〉 and |pn〉.

Table 5.1 summarizes the main points of second-quantization.

5.7 Identical Conserved Particles in Thermal Equilibrium

5.7.1 Generalities

By quantizing the particle field, we have been led to a version of quantum mechanics with
a vastly expanded Hilbert space which includes the vacuum and all possible states with
an arbitrary number of particles. An exactly parallel development occurs in statistical
thermodynamics, in making the passage from a canonical, to a grand canonical ensemble,
where systems are considered to be in equilibrium with a heat and particle bath. Not
surprisingly then, second quantization provides a beautiful way of treating a grand canonical
ensemble of identical particles.

When we come to treat conserved particles in thermal equilibrium, we have to take into
the account the conservation of two independent quantities
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Table. 5.1. First and Second Quantization .

First Quantization Second Quantization

Wavefn −→ Field
Operator

ψ(x) = 〈x|ψ〉 ψ̂(x)

Commutator [x, p] = ih̄ [ψ(x), ψ(x′)]∓ = δD(x− x′)

Density ρ(x) = |ψ(x)|2 ρ̂(x) = ψ̂†(x)ψ̂(x)

Arbitrary Basis ψλ = 〈λ|ψ〉 ψ̂λ

Change of Basis 〈s̃|ψ〉 =
∑
λ〈s̃|λ〉〈λ|ψ〉 âs =

∑
λ〈s̃|λ〉ψ̂λ

Orthogonality 〈λ|λ′〉 = δλλ′ [ψλ, ψ
†
λ′ ]∓ = δλλ′

One ptcle Energy p2

2m + U ψ†
(
− h̄2

2m + U(x)

)
ψ

Interaction
∑
i<j V (xi − xj) V̂ = 1

2

∫
x,x′ V (x− x′) : ρ̂(x)ρ̂(x′) :

= 1
2

∑
V (q)c†k+qc

†
k′−qck′ck

Many Body
Wavefunction

Ψ(x1, x2 . . . xN ) 〈0|ψ̂(x1) . . . ψ̂(xN )|0〉

Schrodinger Eqn
(∑Hi +

∑
i<j Vij

)
Ψ = ih̄Ψ̇ [H(0) +

∫
x′ ρ(x

′)V (x′ − x)]ψ(x) = ih̄ψ̇(x)

• Energy. E

• Particle number. N

When we consider an ensemble of small systems, in equilibrium with a heat bath, we must
now consider the possibility of an exchange of both energy, and particles with the heat bath,
as shown in Fig. 5.2. Suppose our system of interest is in equilibrium with a huge heat and
particle bath. In the huge heat and particle bath, the energy levels are so close together,
that they behave almost as a continuum. The density of states per unit energy and particle
number is taken to be g(E,N), where E is the energy and N the number of particles in
the bath. Suppose that the total number of particles and energy are E and N respectively.
When the system is in a quantum state |λ〉 with energy Eλ, particle number Nλ, the large
system has energy E − Eλ, particle number N −Nλ.

The probability that the small system is in state |λ〉 is then given by

p(Eλ, Nλ) ∝ g(E − Eλ, N −Nλ) = elng(E−Eλ,N−Nλ) (5.104)
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E

E+dE

Heat Exchange
Particle &

Heat + Particle Bath

Small system

g(E − Eλ, N −Nλ)dEdN

N −Nλ

E − Eλ

Ebath

Eλ

Eλ

Nλ

Figure 5.2: Illustrating equilibrium between a small system and a large heat bath. Inset
illustrates how the number of states with energy Eλ, particle number Nλ is proportional to
the density of states in the big system.

In the heat bath, we assum that the logarithm of the density of states is a smoothly varying
function of energy and particle number, so that we may expand it around E and N , writing

lng(E − Eλ, N −Nλ) = lng(E,N)− Eλ
∂lng

∂E
−Nλ

∂lng

∂N
+ . . . (5.105)

We define the two quantities

∂lng

∂E
= β =

1

kBT
,

∂lng

∂N
= − µ

kBT
. (5.106)

These are the two Lagrange multipliers associated with the conservation of energy and
particle number. It is only later, after calculating some physical quantities, that one can
physically identify T as the temperature, and µ as the chemical potential. Once we have
made this expansion, it follows that the probability to be in state |λ〉 is

pλ =
1

Z
e−β(Eλ−µNλ) (5.107)
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where now the normalizing partition function can be written

Z =
∑

λ

e−β(Eλ−µNλ)

=
∑

λ

〈λ|e−β(Ĥ−µN̂)|λ〉 = Tr[e−β(Ĥ−µN̂)] (5.108)

Finally, we can go to a position independent basis by noting that if A is a quantity that is
diagonal in the state |λ〉, then the expectation value of A in the ensemble is

〈A〉 =
∑

λ

pλ〈λ|Â|λ〉 = Tr[ρ̂Â] (5.109)

where we have elevated the probability distribution pλ to an operator- the density matrix:

ρ̂ =
∑

λ

|λ〉pλ〈λ| = Z−1e−β(Ĥ−µN̂) (5.110)

A central assumption of quantum statistical mechanics , is that (5.109) holds for all observ-
able quantities represented by an operator Â, whether or not the quantity is diagonal in
the basis of energy and particle number eigenstates.

5.7.2 Identification of the Free energy: Key Thermodynamic Properties

There are a number of key thermodynamic quantities of great interest: the energy E, the
particle number N , the entropy S and the Free energy F = E − ST − µN . One of the key
relations from elementary thermodynamics is that

dE = TdS − µdN − PdV (5.111)

By putting F = E − TS − µN , dF = dE − dTS − SdT − µdN −Ndµ, one can also derive

dF = −SdT −Ndµ− PdV (5.112)

a relationship of great importance.
The energy and particle number can be easily written in the language of second-

quantization as

E = Tr[Ĥρ̂],
N = Tr[N̂ ρ̂], (5.113)

but what about the entropy? From statistical mechanics, we know that the general expres-
sion for the entropy is given by

S = −kB
∑

λ

pλlnpλ (5.114)
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Now since the diagonal elements of the density matrix are pλ, we can rewrite this expression
as

S = −kBTr[ρ̂lnρ̂] (5.115)

If we substitute lnρ̂ = −β(Ĥ − µN̂)− lnZ into this expression, we obtain

S =
1

T
Trρ̂(H − µN)− kBT lnZ

=
1

T
(E − µN) + kBlnZ (5.116)

i.e −kBT lnZ = E − ST − µN , from which we identify

F = −kBT lnZ (5.117)

as the Free energy. Summarizing these key relationships all together, we have

Thermodynamic Relations

F = −kBT lnZ, Free energy

Z = Tr[e−β(Ĥ−µN̂)], Partition function

ρ̂ =
e−β(Ĥ−µN̂)

Z
, Density Matrix

N = Tr[N̂ ρ̂] = −∂F
∂µ Particle number

S = −kBTr[ρ̂lnρ̂] = −∂F
∂T Entropy

P = −∂F
∂V , Pressure

E − µN = Tr[(Ĥ − µN̂)ρ̂],= −∂Z
∂β Energy

(5.118)

Notice how, in this way, all the key thermodynamic properties can be written as appropriate
derivatives of Free energy.

Example (i) Enumerate the energy eigenstates of a single fermion Hamiltonian.

H = ǫc†c (5.119)

where {c, c†} = 1, {c, c} = {c†, c†} = 0. (ii) Calculate the number of fermions at
temperature T .

Solution (i) The states of this problem are the vacuum state and the one-particle state

|0〉 E = 0,
|1〉 = c†|0〉, E = ǫ.

(5.120)
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(ii) The number of fermions at temperature T is given by

〈n̂〉 = Tr[ρ̂n̂] (5.121)

where n̂ = c†c,

ρ = e−β(Ĥ−µN̂)/Z (5.122)

is the density matrix, and where

Z = Tr[e−β(H−µN)] (5.123)

is the “partition function”. For this problem, we can write out the matrices explicitly.

e−βH =

[
1 0
0 e−β(ǫ−µ)

]
, n̂ =

[
0 0
0 1

]
(5.124)

so that

Z = 1 + e−β(ǫ−µ) (5.125)

and

Tr[n̂e−βH ] = e−β(ǫ−µ) (5.126)

The final result is thus

〈n̂〉 =
e−β(ǫ−µ)

1 + e−β(ǫ−µ)
=

1

eβ(ǫ−µ) + 1
(5.127)

which is the famous Fermi-Dirac function for the number of fermions in a state of energy
ǫ, chemical potential µ.

Example 5.7: (i) Show that for a general system of conserved particles at chemical
potential, the total particle number in thermal equilibrium can be written as

N = −∂F/∂µ (5.128)

where

F = −kBT lnZ

Z = Tr[e−β(Ĥ−µN)]. (5.129)

(ii) Apply this to a single bosonic energy level, where

H − µN = (ǫ− µ)a†a (5.130)

and â† creates either a Fermion, or a boson, to show that

〈n̂〉 = 1

eβ(ǫ−µ) − 1
(5.131)

Why does µ have to be negative positive for bosons?
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5.7.3 Independent Particles

In a system of independent particles with many energy levels, ǫλ each energy level can be
regarded as an independent member of a microcanonical ensemble. Formally, this is because
the Hamiltonian is a sum of independent Hamiltonians

H − µN =
∑

λ

(ǫλ − µ)n̂λ (5.132)

so that the partition function is then a product of the individual partition functions:

Z = Tr[
∏

λ ⊗
e−β(ǫλ−µ)n̂λ ] (5.133)

and since the trace of an (exterior) product of matrices, is equal to the product of their
individual traces, (Tr

∏
λ⊗ =

∏
λ Tr),

Z =
∏

λ

Tr[e−β(ǫλ−µ)n̂λ ] =
∏

λ

Zλ (5.134)

Since

Zλ =

{
1 + e−β(ǫλ−µ) Fermions

1 + e−β(ǫλ−µ) + e−2β(ǫλ−µ) + . . . = (1− e−β(ǫλ−µ))−1 Bosons
(5.135)

The corresponding Free energy is given by

F = ∓kBT
∑

λ

ln[1± e−β(ǫλ−µ)],

{
fermions
bosons

(5.136)

The occupancy of the l th level is independent of all the other levels, and given by

〈n̂l〉 = Tr[ρ̂n̂l] = Tr[(
∏

⊗
ρ̂λ)n̂l]

=
∏

λ6=l

=1︷ ︸︸ ︷
Tr[ρλ]×Tr[ρln̂l] =

1

eβ(ǫl−µ) ± 1
(5.137)

where (+) refers to Fermions and (−) to bosons.
In the next chapter, we shall examine the consequences of these relationships.

5.8 Exercises for chapter 5

1. In this question ci
† and ci are fermion creation and annihilation operators and the states are

fermion states. Use the convention
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|11111000 . . .〉 = c5
†c4†c3†c2†c1†|vacuum〉.

(i) Evaluate c3
†c6c4c6†c3|111111000 . . .〉.

(ii) Write |1101100100 . . .〉 in terms of excitations about the “filled Fermi sea” |1111100000 . . .〉
. Interpret your answer in terms of electron and hole excitations.

(iii) Find 〈ψ|N̂ |ψ〉 where |ψ〉 = A|100〉+B|111000〉, N̂ =
∑
i ci

†ci.

2. (a) Consider two fermions, a1 and a2. Show that the Boguilubov transformation

c1 = ua1 + va†2
c†2 = −va1 + ua†2 (5.138)

where u and v are real, preserves the canonical anti-commutation relations if u2 + v2 = 1.

(b) Use this result to show that the Hamiltonian

H = ǫ(a†1a1 − a2a2
†) + ∆(a†1a

†
2 + H.c.) (5.139)

can be diagonalized in the form

H =
√
ǫ2 + ∆2(c†1c1 + c†2c2 − 1) (5.140)

(c) What is the ground-state energy of this Hamiltonian?

3. Show that for a general system of conserved particles at chemical potential, the total particle
number in thermal equilibrium can be written as

N = −∂F/∂µ (5.141)

where

F = −kBT lnZ

Z = Tr[e−β(Ĥ−µN)]. (5.142)

(ii) Apply this to a single bosonic energy level, where

H − µN = (ǫ− µ)a†a (5.143)

and â† creates either a Fermion, or a boson, to show that

F = ±kBT ln[1∓ e−β(ǫ−µ)]

〈n̂〉 =
1

eβ(ǫ−µ) ∓ 1
(5.144)

where the upper sign refers to bosons, the lower, to fermions. Sketch the occupancy as a
function of ǫ for the case of fermions and bosons. Why does µ have to be negative for bosons?

4. Consider a system of fermions or bosons, created by the field ψ†(~r) interacting under the
potential

V (r) =

{
U, (r < R),
0, (r > R),

(5.145)

(i) Write the interaction in second quantized form.

(ii) Switch to the momentum basis, where ψ(~r) =
∫

d3k
(2π)3 c~ke

i~k·~r. Verify that [c~k, c
†
~k′ ]± =

(2π)3δ(3)(~k − ~k′), and write the interaction in this new basis. Please sketch the form of the
interaction in momentum space.
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Chapter 6

Simple Examples of
Second-quantization

In this section, we give three examples of the application of second quantization, mainly to
non-interacting systems.

6.1 Jordan Wigner Transformation

A “non-interacting” gas of Fermions is still highly correlated: the exclusion principle intro-
duces a “hard-core” interaction between fermions in the same quantum state. This feature
is exploited in the Jordan -Wigner representation of spins. A classical spin is represented
by a vector pointing in a specific direction. Such a representation is fine for quantum spins
with extremely large spin S, but once the spin S becomes small, spins behave as very new
kinds of object. Now their spin becomes a quantum variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becomes discrete or grainy.

Quantum spins are notoriously difficult objects to deal with in many-body physics,
because they do not behave as canonical fermions or bosons. In one dimension however,
it turns out that spins with S = 1/2 actually behave like fermions. We shall show this by
writing the quantum spin-1/2 Heisenberg chain as an interacting one dimensional gas of
fermions, and we shall actually solve the limiting case of the one-dimensional spin-1/2 x-y
model.

Jordan and Wigner noticed that the down and up state of a single spin can be thought
of as an empty or singly occupied fermion state, (Fig. 6.1.) enabling them to make the
mapping

| ↑〉 ≡ f †|0〉, | ↓〉 ≡ |0〉. (6.1)

.
An explicit representation of the spin raising and lowering operators is then

S+ = f † =

[
0 1
0 0

]

81



Chapter 6. c©Piers Coleman 09

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

µBB����������
����������
����������
����������

������������������
�
�
�

�
�
�

��������
��������
��������
��������

��������
��������
��������
��������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

S=1/2

n  = 0
f

n  = 1f

���
���
���

���
���
���

Figure 6.1: Showing how the “up” and “down” states of a spin-1/2 can be treated as a one
particle state which is either full, or empty.

S− = f ≡
[
0 0
1 0

]
(6.2)

The z component of the spin operator can be written

Sz =
1

2

[
| ↑〉〈↑ | − | ↓〉〈↓ |

]
≡ f †f − 1

2
(6.3)

We can also reconstruct the transverse spin operators,

Sx =
1

2
(S+ + S−) =

1

2
(f † + f),

Sy =
1

2i
(S+ − S−) =

1

2i
(f † − f), (6.4)

The explicit matrix representation of these operators makes it clear that they satisfy the
same algebra

[Sa, Sb] = iǫabcSc. (6.5)

Curiously, due to a hidden supersymmetry, they also satisfy an anti-commuting algebra

{Sa, Sb} =
1

4
{σa, σb} =

1

2
δab, (6.6)

and in this way, the Pauli spin operators provided Jordan and Wigner with an elementary
model of a fermion.

Unfortunately the represeentation needs to be modified if there is more than one spin,
for independent spin operators commute, but independent fermions anticommute! Jordan
and Wigner discovered a way to fix up this difficulty in one dimension by attaching a phase
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factor called a “string” to the fermions. For a chain of spins in one dimension, the Jordan
Wigner representation of the spin operator at site j is defined as

S+
j = fj

†eiφj (6.7)

where the phase operator φj contains the sum over all fermion occupancies at sites to the
left of j,

φj = π
∑

l<j

nj (6.8)

The complete transformation is then

Szj = f †jfj − 1
2 ,

S+
j = f †je

iπ
∑

l<j
nl ,

S−j = fje
−iπ

∑
l<j

nl





Jordan Wigner transformation (6.9)

(Notice that the overall sign of the phase factors can be reversed without changing the spin
operator.) The important point in this representation, is that the operator eiπnj anticom-
mutes with the fermion operators at the same site:

{eiπnj , f (†)
j } = eiπnjf

(†)
j + f

(†)
j eiπnj = eiπnj [f

(†)
j − f

(†)
j ] = 0 (6.10)

so that by multiplying a fermion by the string operator, one changes it from a fermion,
into a boson. We can verify that the transverse spin operators now satisfy the correct
commutation algebra. Suppose j < k, then eiφj commutes with both fj and fk. eiφk

commutes with fk, but it contains eiπnj , which does not commute with fj or f †j . Thus we
may write

[S
(±)
j , S

(±)
k ] = [f

(†)
j eiφj , f

(†)
k eiφk ]

= [f
(†)
j , f

(†)
k eiπnj ]

= {f (†)
j , f

(†)
k }eiπnj − f

(†)
k {f

(†)
j , eiπnj} = 0. (6.11)

To see how this works, we shall now discuss the one-dimensional Heisenberg model

H = −J
∑

[Sxj S
x
j+1 + Syj S

y
j+1]− Jz

∑

j

SzjS
z
j+1 (6.12)

In real magnetic systems, local moments can interact via ferromagnetic, or antiferromagnetic
interactions. Ferromagnetic interactions generally arise as a result of “direct exchange”,
whereby the Coulomb repulsion energy is lowered when electrons are in a triplet state, be-
cause the wavefunction is then spatially antisymmetric. Antiferromagnetic interactions are
generally produced by the mechanism of “double exchange”, whereby electrons in antipar-
allel spin states can lower their energy by undergoing virtual fluctuations into high energy
states where two electrons occupy the same orbital. Here we have written the model as if
the interactions are ferromagnetic.
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For convenience, the model can be rewritten as

H = −J
2

∑
[S+
j+1S

−
j + H.c]− Jz

∑

j

SzjS
z
j+1 (6.13)

To fermionize the first term, we note that all terms in the strings cancel, except for a eiπnj

which has no effect,

J

2

∑

j

S+
j+1S

−
j =

J

2

∑

j

fj+1
†eiπnjfj =

J

2

∑

j

fj+1
†fj (6.14)

so that the transverse component of the interaction induces a “hopping” term in the fermion-
ized Hamiltonian. Notice that the string terms would enter if the spin interaction involved
next-nearest neighbors. The z-component of the Hamiltonian becomes

−Jz
∑

j

Szj+1S
z
j = −Jz

∑

j

(nj+1 −
1

2
)(nj −

1

2
) (6.15)

Notice how the Ferromagnetic interaction means that spin-fermions attract one-another.
The transformed Hamiltonian is then

H = −J
2

∑

j

(f †j+1fj + f †jfj+1) + Jz
∑

j

nj − Jz
∑

j

njnj+1. (6.16)

Interestingly enough, the pure x-y model has no interaction term in it, so we can solve this
case as a non-interacting fermion problem.

To write out the fermionized Hamiltonian in its most compact form, let us transform to
momentum space, writing

fj =
1√
N

∑

k

ske
ikRj (6.17)

where s†k creates a spin excitation in momentum space, with momentum k. In this case,
the one-particle terms become

Jz
∑

j

nj = Jz
∑

k

s†ksk.

−J
2

∑

j

(f †j+1fj + H.c) = − J

2N

∑

k

(e−ika + eika)s†ksk′

Nδkk′︷ ︸︸ ︷∑

j

e−i(k−k
′)Rj

= −J
∑

k

cos(ka)s†ksk. (6.18)

The Heisenberg Hamiltonian can thus be written

H =
∑

k

ωks
†
ksk − Jz

∑

j

njnj+1 (6.19)
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where

ωk = (Jz − J cos ka) (6.20)

defines a magnon excitation energy, and the second interaction term is still written in the
position basis. We can easily cast the second-term in momentum space, by noticing that the
interaction is a function of i−j which is −Jz/2 for i−j = ±1 but zero otherwise.The Fourier
transform of this short-range interaction is V (q) = −Jz cos qa, so that Fourier transforming
the interaction term gives

H =
∑

k

ωks
†
ksk −

Jz
Ns

∑

k,k′,q

cos(qa) s†k−qs
†
k′+qsk′sk. (6.21)

This transformation holds for both the ferromagnet and antiferromagnet. In the former
case, the fermionic spin excitations correspond to the magnons of the ferromagnet. In the
latter case, the fermionic spin excitations are often called “spinons”.

To see what this Hamiltonian means, let us first neglect the interactions. This is a
reasonable thing to do in the limiting cases of (i) the Heisenberg Ferromagnet, Jz = J and
(ii) the x-y model Jz = 0 .

Heisenberg Ferromagnet

0

2J

/a

ωq

/a−π πq

Goldstone mode.

Figure 6.2: Excitation spectrum of the one dimensional Heisenberg Ferromagnet.

• Heisenberg Ferromagnet. Jz = J

In this case, the spectrum

ωk = 2J sin2(ka/2) (6.22)
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is always positive, so that there are no magnons present in the ground-state. The
ground-state thus contains no magnons, and can be written

|0〉 = | ↓↓↓ . . .〉 (6.23)

corresponding to a state with a spontaneous magnetization M = −Ns/2.

Curiously, since ωk=0 = 0, it costs no energy to add a magnon of arbitrarily long
wavelength. This is an example of a Goldstone mode, and the reason it arises, is
because the spontaneous magnetization could actually point in any direction. Suppose
we want to rotate the magnetization through an infinitesimal angle δθ about the x
axis, then the new state is given by

|ψ〉′ = eiδθSx | ↓↓ . . .〉
= | ↓↓ . . .〉+ i

δθ

2

∑

j

S+
j | ↓↓ . . .〉+O(δθ2) (6.24)

The change in the wavefunction is proportional to the state

S+
TOT | ↓↓ . . .〉 ≡

∑

j

fj
†eiφj |0〉

=
∑

j

fj
†|0〉 =

√
Nss

†
k=0|0〉 (6.25)

In otherwords, the action of adding a single magnon at q = 0, rotates the magnetiza-
tion infinitesimally upwards. Rotating the magnetization should cost no energy, and
this is the reason why the k = 0 magnon is a zero energy excitation.

• x-y Ferromagnet. As Jz is reduced from J , the spectrum develops a negative part,
and magnon states with negative energy will become occupied. For the pure x − y
model, where Jz = 0, the interaction identically vanishes, and the excitation spectrum
of the magnons is given by ωk = −J cos ka as sketched in Fig. 6.3. All the negative
energy fermion states with |k| < π/2a are occupied, so the ground-state is given by

|Ψg〉 =
∏

|k|<π/2a
s†k|0〉 (6.26)

The band of magnon states is thus precisely half-filled, so that

〈Sz〉 = 〈nf −
1

2
〉 = 0 (6.27)

so that remarkably, there is no ground-state magnetization. We may interpret this
loss of ground-state magnetization as a consequence of the growth of quantum spin
fluctuations in going from the Heisenberg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by adding a magnon at wavevec-
tors |k| > π/2a, or by annihilating a magnon at wavevectors |k| < π/2a, to form a
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Figure 6.3: Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the
negative energy states are filled, the negative energy dispersion curve is “folded over” to
describe the positive hole excitation energy.

“hole”. The energy to form a hole is −ωk. To represent the hole excitations, we make
a “particle-hole” transformation for the occupied states, writing

s̃k =

{
sk, (|k| > π/2a),

s†−k, (|k| < π/2a)
(6.28)

These are the “physical” excitation operators. Since s†ksk = 1− sks†k, the Hamilto-
nian of the pure x-y ferromagnet can be written

Hxy =
∑

k

J | cos ka|(s̃†ks̃k −
1

2
) (6.29)

Notice that unlike the pure Ferromagnet, the magnon excitation spectrum is now
linear. The ground-state energy is evidently

Eg = −1

2

∑

k

J | cos ka|

= −a
2

∫ π/2a

−π/2a

dk

2π
J cos(ka) = −J

π
. (6.30)

But if there is no magnetization, why are there zero-energy magnon modes at q =
±π/a? Although there is no true long-range order, it turns out that the spin-
correlations in the x-y model display power-law correlations with an infinite spin
correlation length, generated by the gapless magnons in the vicinity of q = ±π/a.
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6.2 The Hubbard Model

In real electronic systems, such as a metallic crystal at first sight it might appear to be a
task of hopeless complexity to model the behavior of the electron fluid. Fortunately, even in
complex systems, at low energies only a certain subset of the electronic degrees of freedom
are excited. This philosophy is closely tied up with the idea of renormalization- the idea that
the high energy degrees of freedom in a system can be successively eliminated or “integrated
out” to reveal an effective Hamiltonian that describes the important low energy physics.
One such model, which has enjoyed great success, is the Hubbard model, first introduced
in the early sixties.

Suppose we have a lattice of atoms where electrons are almost localized in atomic orbitals
at each site. In this case, we can use a basis of atomic orbitals. The operator which creates
a particle at site j is

c†jσ =

∫
d3xΦ(x−Rj)ψ

†(x)σ (6.31)

where Φ(x) is the wavefunction of a particle in the localized atomic orbital. In this basis, the
Hamiltonian governing the motion, and interactions between the particles can be written
quite generally as

H =
∑

i,j

〈i|Ho|j〉c†iσcjσ +
1

2

∑

lmnp

〈lm|V |pn〉c†lσc†mσ′cnσ′cpσ (6.32)

where 〈i|Ho|j〉 is the one-particle matrix element between states i and j, and 〈lm|V |pn〉 is
the interaction matrix element between two-particle states |lm〉 and |pn〉.

Let us suppose that the energy of an electron in this state is ǫ. If this orbital is highly
localized, then the amplitude for it to tunnel or “hop” between sites will decay exponentially
with distance between sites, and to a good approximation, we can eliminate all but the
nearest neighbor hopping. In this case, the one-particle matrix elements which govern the
motion of electrons between sites are then

〈j|H(o)|i〉 =





ǫ j = i
−t i, j nearest neighbors
0 otherwise

(6.33)

The hopping matrix element between neigboring states will generally be given by an overlap
integral of the wavefunctions with the negative crystalline potential, and for this reason, it
is taken to be be negative. Now the matrix element of the interaction between electrons at
different sites will be given by

〈lm|V |pn〉 =
∫

x,x′
Φ∗l (x)Φp(x)Φ

∗
m(x′)Φ∗n(x

′)V (x− x′), (6.34)

but in practice, if the states are well localized, this will be dominated by the onsite inter-
action between two electrons in a single orbital, so that we may approximate

〈lm|V |pn〉 =

{
U l = p = m = n
0 otherwise

(6.35)

88



c©2009 Piers Coleman Chapter 6.

E

U

U

U
2E + Uψ(  )

t

r
V(r)

E

r

Figure 6.4: Illustrating the Hubbard Model. When two electrons of opposite spin occupy a
single atom, this gives rise to a Coulomb repulsion energy U . The amplitude to hop from
site to site in the crystal is t.

In this situation, the interaction term in (6.32) simplifies to

U

2

∑

j,σσ′

c†jσc
†
jσ′cjσ′cjσ = U

∑

j

nj↑nj↓, (6.36)

where the exclusion principle (c2jσ = 0) means that the interaction term vanishes unless σ
σ′ are opposite spins. The Hubbard model can be thus be written

H = −t
∑

j,â,σ

[c†j+âσcjσ + H.c] + ǫ
∑

jσ

c†jσcjσ + U
∑

j

nj↑nj↓, (6.37)

where njσ = c†jσcjσ represents the number of electrons of spin σ at site j. For completeness,
let us rewrite this in momentum space, putting

cjσ =
1√
Ns

∑

k

ckσe
ik·Rj (6.38)

whereupon

H =
∑

kσ

ǫkc
†
kσckσ +

U

Ns

∑

q,k,k′

c†k−q↑c
†
k′+q↓ck′↓ck↑ (6.39)

Hubbard model
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where

ǫk =
∑

i

〈j + Ri|Ho|j〉eik·Ri

= −2t(cos kx + cos ky + cos kz) + ǫ (6.40)

is recognized as the kinetic energy of the electron excitations which results from their
coherent hopping motion from site to site. We see that the Hubbard model describes a
band of electrons with kinetic energy ǫk, and a momentum independent “point” interaction
of strength U between particles of opposite spin.

Remark

• This model has played a central part in the theory of magnetism, metal-insulator tran-
sitions, and most recently, in the description of electron motion in high temperature
superconductors. With the exception of one dimensional physics, we do not, as yet
have a complete understanding of the physics that this model can give rise to. One
prediction of the Hubbard model which is established, is that under certain circum-
stance, if interactions become too large the electrons become localized to form what
is called “Mott insulator”. This typically occurs when the interactions are large and
the number of electrons per site is close to one. What is very unclear at the present
time, is what happens to the Mott insulator when it is doped, and there are many
who believe that a complete understanding of the doped Mott insulator will enable
us to understand high temperature superconductivity.

6.3 Gas of charged particles

6.3.1 Link with first quantization

As a final example, we should like to briefly consider an interacting gas of charged particles.
The second-quantized Hamiltonian for this case is

H =

Ho︷ ︸︸ ︷
∑

σ

∫

x
ψσ
†
[
− h̄

2∇2

2m
+ U(x)− µ

]
ψσ(x) +

V̂︷ ︸︸ ︷
1

2

∑

σσ′

∫

x,x′
V (x− x′) : ρ̂(x)ρ̂(x′) : . (6.41)

where
∫
x ≡

∫
d3x, and by convention, we work in the Grand Canonical ensemble, subtracting

the term µN from the Schrödinger Hamiltonian HS , H = HS − µN to take account of the
Grand Canoncial ensemble. For a Coulomb interaction

V (x− x′) =
e2

4πǫo|x− x′|
(6.42)
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but the interaction might have a more general form, as in the case of a fluid of He − 3
fermions or He − 4 bosons. One can not underestimate the hidden subtleties behind this
Hamiltonian! As far as we know for example, it provides an essentially complete many body
description of the electronic motions of electrons in any electronic medium, even your mind!

Let us now develop the equations of motion for this Hamiltonian, and confirm that using
it, we can fully recover the first quantized approach to many body physics. The equation
of motion for the Fermi field is given by

ih̄
∂ψσ
∂t

= −[H,ψσ] (6.43)

Now we can divide the Hamiltonian up into a one-particle part and an interaction. Using
the general relations

[ψσ′
†(x′)Ox′ψσ′(x

′), ψσ(x)] = −δσσ′δ3(x− x′)Oxψσ(x),
: [ρ(x1)ρ(x2), ψσ(x)] : = : [ρ(x1), ψσ(x)]ρ(x2) : + : ρ(x1)[ρ(x2), ψσ(x)] :

= −δ3(x1 − x)ρ(x2)ψσ(x)− δ3(x2 − x)ρ(x1)ψσ(x)

we can see that the comutators of the one- and two-particle parts of the Hamiltonian with
the field operators are

−[Ho, ψσ(x)] =

[
− h̄

2∇2

2m
+ U(x)− µ

]
ψσ(x)

−[V, ψσ(x)] =

∫
d3x′V (x′ − x)ρ(x′)ψσ(x) (6.44)

The final equation of motion of the field operator thus resembles a one-particle Schrodinger
equation.

ih̄
∂ψσ
∂t

=

[
− h̄

2∇2

2m
+ U(x)− µ

]
ψσ(x) +

∫
d3x′V (x′ − x)ρ(x′)ψσ(x) (6.45)

If we now apply this to the many body wavefunction, we obtain

ih̄
∂Ψ(1, 2, . . . N)

∂t
= ih̄

∑

r=1,2S

〈0|ψ(1) . . . ∂tψ(r) . . . ψ(N)|Ψ〉

=
∑

j

[
−
h̄2∇2

j

2m
+ U(xj)− µ

]
Ψ

+
∑

j

∫
d3x′V (x′ − xj)〈0|ψ(1) . . . ρ(x′)ψσ(xj) . . . ψ(N)|Ψ〉

By commuting the density operator to the left, until it annihilates with the vacuum, we
find that

〈0|ψ(1) . . . ρ(x′)ψσ(xj) . . . ψ(N)|Ψ〉 =
∑

l<j

δ3(x′ − xl)〈0|ψ(1) . . . ψ(N)|Ψ〉 (6.46)
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so that the final expression for the time evolution of the many body wavefunction is precisely
the same as we obtain in a first quantized approach.

ih̄
∂Ψ

∂t
=


∑

j

H(o)
j +

∑

l<j

Vjl


Ψ (6.47)

Our second-quantized approach has many advantages- it builds in the exchange statistics,
and it does not need to make an explicit reference to the cumbersome many body wave-
function.

6.4 Non-interacting particles in thermal equilibrium

k

n

k

kn k

z

xk

yk

kz

k

k

k

FERMIONS

Fermi Surface

y

k F

x

ykF

Condensate

BOSONS

Figure 6.5: Contrasting the ground-states of non-interacting Fermions and non-interacting
Bosons. Fermions form a degenerate Fermi gas, with all one-particle states below the Fermi
energy individually occupied. Bosons form a Bose Einstein condensate, with a macroscopic
number of bosons in the zero momentum state.

Before we start to consider the physics of the interacting problem, let us go back and
look at the ground-state properties of free particles. What is not commonly recognized, is
that the ground-state of non-interacting, but identical particles is in fact, a highly correlated
many body state. For this reason, the non-interacting ground-state has a robustness that
does not exist in its classical counterpart. In the next chapter, we shall embody some of
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these thoughts in by considering the action of turning on the interactions adiabatically. For
the moment however, we shall content ourselves with looking at a few of the ground-state
properties of non-interacting gases of identical particles.

In practice, quantum effects will influence a fluid of identical particles at the point
where their characteristic wavelength is comparable with the separation between particles.
At a temperature T the rms momentum of particles is given by p2

RMS = 3mkBT , so that
characteristic de Broglie wavelength is given by

λT =
h√
p2
RMS

=
h√

3mkBT
(6.48)

so that when λT ∼ ρ−1/3, the characteristic temperature is of order

kBT
∗ ∼ h̄2ρ2/3

2m
(6.49)

Below this temperature, identical particles start to interfere with one-another, and a quantum-
mechanical treatment of the fluid becomes necessary. In a Fermi fluid, exclusion statistics
tends to keep particles apart, enhancing the pressure, whereas for a Bose fluid, the corre-
lated motion of particles in the condensate tends to lower the pressure, ultimately causing it
to vanish at the Bose Einstein condensation temperature. In electron fluids inside materials,
this characteristic temperature is two orders of magnitude larger than room temperature,
which makes the electricity one of the most dramatic examples of quantum physics in ev-
eryday phenomena!

6.4.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the concept of a “degenerate Fermi
liquid”, and it is important in a wide range of physical situations, such as

• The ground-state and excitations of metals.

• The low energy physics of liquid Helium 3.

• The degenerate Fermi gas of neutrons, electrons and protons that lies within a neutron
star.

The basic physics of each of these cases, can to a first approximation be described by a fluid
of non-interacting Fermions, with Hamiltonian

H = HS − µN =
∑

σ

(Ek − µ)c†kσckσ (6.50)

Following the general discussion of the last section, the Free energy of such a fluid of fermions
is is described by a single Free energy functional

F = −kBT
∑

kσ

ln[1 + e−β(Ek−µ)]
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= −2kBTV

∫

k
ln[1 + e−β(Ek−µ)] (6.51)

where we have taken the thermodnamic limit, replacing
∑

kσ → 2V
∫
k. By differentiating

F with respect to volume, temperature and chemical potential, we can immediately derive
the pressure, entropy and particle density of this fluid. Let us however, begin with a more
physical discussion.

In thermal equilibrium the number of fermions in a state with momentum p = h̄k is

nk = f(Ek − µ) (6.52)

where

f(x) =
1

eβx + 1
(6.53)

is the Fermi-Dirac function. At low temperatures, this function resembles a step, with a
jump in occupancy spread over an energy range of order kBT around the chemical potential.
At absolute zero f(x)→ θ(−x), so that the occupancy of each state is given by

nk = θ(µ− Ek) (6.54)

is a step function with an abrupt change in occupation when ǫ = µ, corresponding to the fact
that states with Ek < µ, are completely occupied, and states above this energy are empty.
The zero-temperature value of the chemical potential is often called the “Fermi energy”. In
momentum space, the occupied states form a sphere, whose radius in momentum space, kF
is often refered to as the Fermi momentum.

The ground-state corresponds to a state where all fermion states with momentum k < kF
are occupied:

|ψg〉 =
∏

kσ

c†kσ|0〉 (6.55)

Excitations above this ground-state are produced by the addition of particles at energies
above the Fermi wavevector, or the creation of holes beneath the Fermi wavevector. To
describe these excitations, we make the following particle-hole transformation

a†kσ =

{
c†kσ (k > kF ) particle

σc−k−σ (k > kF ) hole
(6.56)

Beneath the Fermi surface, we must replace c†kσckσ → 1 − a†kσakσ, so that in terms of
particle and hole excitations, the Hamiltonian can be re-written

H − µN =
∑

kσ

|(Ek − µ)|a†kσakσ + Fg (6.57)

where respectively,

Fg =
∑

|k|<kF ,σ
(Ek − µ) = 2V

∫

|k|<kF
(Ek − µ), (6.58)
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is the ground-state Free energy, and Eg and N are the ground-state energy and particle
number Notice that

• To create a hole with momentum k and spin σ, we must destroy a fermion with
momentum −k and spin −σ. (The additional multiplying factor of σ in the hole
definition is a technical feature, required so that the particle and holes have the same
spin operators.)

• The excitation energy of a particle or hole is given by ǫ∗k = |Ek−µ|, corresponding to
“reflecting” the excitation spectrum of the negative energy fermions about the Fermi
energy.

The ground-state density of a Fermi gas is given by the volume of the Fermi surface, as
follows

〈ρ̂〉 =
1

V

∑

kσ

〈c†kσckσ〉 = 2

∫

k<kF

d3k

2π
=

2

(2π)3
VFS (6.59)

where

VFS =
4π

3
k3
F =

(
4π

3

)(
2mǫF

h̄2

)3/2

(6.60)

is the volume of the Fermi surface. The relationship between the density of particles, the
Fermi wavevector and the Fermi energy is thus

〈N̂
V
〉 =

1

3π2
k3
F =

1

3π2

(
2mǫF

h̄2

)3/2

(6.61)

In an electron gas, where the characteristic density is N/V ∼ 1029m−3 the characteristic
Fermi energy is of order 1eV ∼ 10, 000K. In other words, the characteristic energy of an
electron is two orders of magnitude larger than would be expected classically. This is a
stark and dramatic consequence of the exchange interference between identical particles,
and it is one of the great early triumphs of quantum mechanics to have understood this
basic piece of physics.

Let us briefly look at finite temperatures. Here, by differentiating the Free energy with
respect to volume and chemical potential, we obtain

P = −∂F
∂V

=
−F
V

= 2

∫

k
ln[1 + e−β(Ek−µ)]

N = −∂F
∂µ

= 2

∫

k
f(Ek − µ) (6.62)

The second equation defines the chemical potential in terms of the particle density at a
given temperature. The first equation shows that, since the Free energy is an extensive
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function of volume, the pressure is simply the −1× the Free energy density per unit volume.
These two equations can be solved parametrically as a function of chemical potential. At
high temperatures the pressure reverts to the ideal gas law PV = NkBT , but at low
temperatures, the pressure is given by −1× the ground-state Free energy per unit volume

P = 2

∫

|k<KF

(µ− Ek)| = 2N

5V
ǫF (6.63)

The final result is obtained by noting that the first term in this expression is µ(N/V ). The
first term contains an integral over d3k ∼ k2 → k3

F /3, whereas the second term contains
an integral over Ekd

3k ∼ k4 → k5
F /5, so the second term is 3/5 of the first term. Not

surprisingly, this quantity is basically the density of fermions times the Fermi energy- a
pressure that is hundreds of times larger than the classical pressure in a room temperature
electron gas.

Remarks

• At first sight, it might seem very doubtful as to whether the remarkable features of
the degenerate Fermi gas would survive once interactions are present. In particular,
one would be tempted to wonder whether the Fermi surface would be blurred out
by particle-particle interactions. Remarkably, for modest repulsive interactions, the
Fermi surface is believed to be stable in dimensions bigger than one. This is because
electrons at the Fermi surface have no phase space for scattering. This is the basis of
Landau’s Fermi liquid Theory of interacting Fermions.

• In a remarkable result, due to Luttinger and Ward, the jump in the occupancy at
the Fermi wavevector ZkF

remains finite, although reduced from unity (ZkF
¡1) , in

interacting Fermi liquids.

6.4.2 Fluid of Bosons: Bose Einstein Condensation

Bose Einstein condensation was predicted in 1924- the outcome of Einstein extending Bose’s
new calculations on the statistics of a gas of identical bosons. However, it was not until
seventy years later- in 1995, that the groups of Cornell and Wieman and independently that
of Ketterle, succeeded in cooling a low density gas of atoms - initially rubidium and sodium
atoms - through the Bose Einstein transition temperature. The closely related phenomenon
of superfluidity was first observed in the late 30’s by Kapitza. Superfluidity results from a
kind of Bose-Einstein condensation, in a dense quantum fluid, where interactions between
the particles become important. In the modern context, ultra cold, ultra-dilute gases of
alkali atoms are produced using lasers to contain a small quantity of atoms inside a magnetic
trap. The most energetic atoms are allowed to evaporate out of the well and as the height
of the well is reduced, the temperature of the gas reduces. Temperatures in the nano-Kelvin
range are required to produce Bose-Einstein condensation in these materials.

To understand the phenomenon of BEC, conside the density of gas of bosons, which at
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(b)(a) (c)

Figure 6.6: Illustrating evaporative cooling in an atom trap. (a) Atoms are held within a
magnetic potential. (b) As the height of the potential well is dropped, the most energetic
atoms “evaporate” from the well, progressively reducing the temperature. (c) A Bose
Einstein condensate, with a finite fraction of the gas in a single momentum state, forms
when the temperature drops blow the condensation temperature.

a finite temperature takes almost precisely the same form as for fermions

ρ =

∫

k

1

eβ(Ek−µ) − 1
(6.64)

where we have written the expression for spinless bosons, as would be the case for a gas
of liquid Helium-4, or ultra-dilute Potassium atoms, for instance. But there is a whole
world of physics in the innocent minus sign in the denominator! Whereas for fermions, the
chemical potential is positive, the chemical potential for bosons is negative. For a gas at
fixed volume , the above expression (6.64) thus defines the chemical potential µ(T ). By
changing variables, writing

x = βEk = β
h̄2k2

2m
,

(
m

βh̄2

)
dx = kdk

d3k

(2π)3
→ 4πk2dk

(2π)3
=

1√
2π2

(
m

βh̄2

)3/2√
xdx (6.65)

we can rewrite the Boson density in the form

ρ =
2√
πλ̃3

T

∫ ∞

0
dx
√
x

1

ex−βµ − 1
(6.66)

where

λ̃T =

(
2πh̄2

mkBT

)1/2

(6.67)
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is a convenient definition of the thermal de Broglie wavelength In order to maintain a fixed
density, as one lowers the temperature, the chemical potential µ(T ) must rise. At a certain
temperature, the chemical potential becomes zero, ρ(T, µ = 0) = N/V At this temperature,

(
λ̃T
a

)3

=
2√
π

∫ ∞

0
dx
√
x

1

ex − 1
= ζ(

3

2
) = 2.61 (6.68)

where a = ρ−1/3 is the interparticle spacing. The corresponding temperature

kBTo = 3.31

(
h̄2

ma2

)
(6.69)

is the Bose-Einstein condensation temperature.
Below this temperature, the number of Bosons in the k = 0 state becomes macroscopic,

i.e.

nǫ=0 =
1

e−βµ − 1
= No(T ) (6.70)

becomes a finite fraction of the total particle number. Since No(T ) is macroscopic, it follows
that

µ

kBT
= − 1

No(T )
(6.71)

is infinitesimally close to zero. For this reason, we must be careful to split off the k = 0
contribution to the particle density, writing

N = No(T ) +
∑

k 6=0

nk (6.72)

and then taking the thermodynamic limit of the second term. For the density, this gives

ρ =
N

V
= ρ0(T ) +

∫

k

1

eβ(Ek) − 1
(6.73)

The the second term is proportional to λ̃T−3 ∝ T 3/2. Since the first term vanishes at
T = To, it follows that below the Bose Einstein condensation temperature, the density of
bosons in the condensate is thus given by

ρo(T ) = ρ

[
1−

(
T

To

)3/2
]

(6.74)

Remarks

• The Bose Einstein Condensation is an elementary example of a second-order phase
transition.
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• Bose Einstein condensation is an example of a broken symmetry phase transition. It
turns out that the same phenomenon survives in a more robust form, if repulsive inter-
actions between the Bosons are present. In the interacting Bose Einstein Condensate,
the field operator ψ(x) for the bosons actually acquires a macroscopic expectation
value

〈ψ(x)〉 =
√
ρoe

iφ(x) (6.75)

In a non-interacting Bose condensate, the phase φ(x) lacks rigidity, and does not have
a well-defined meaning. In an interacting condensate, the phase φ(x) is uniform, and
gradients of the phase result in a superflow of particles- a flow of atoms which is
completely free from viscosity.

Example 6.8: In a laser-cooled atom trap, atoms are localized in a region of space
through the Zeeman energy of interaction between the atomic spin and the external
field. As the field changes direction, the “up” and “down” spin atoms adiabatically
evolve their orientations to remain parallel with the magnetic field, and the trapping
potential of the “up” spin atoms is determined by the magnitude of the Zeeman energy
V (x) = gµBJB(x), which has a parabolic form

V (x) =
m

2

[
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]

Show that the fraction of bosons condensed in the atom trap is now given by

N0(T )

N
= 1−

(
T

TBE

)3

.

Solution: In the atom trap, one particle states of the atoms are Harmonic oscillator
states with energy Elmn = h̄(lωx +mωy +nωz) (where the constant has been omitted).
In this case, the number of particles in the trap is given by

N =
∑

l,m,n

1

eβElmn − 1

The summation over the single-particle quantum numbers can be converted to an inte-
gral over energy, provided the condensate fraction is split off the sum, so that

∑

lmn

1

eβElmn − 1
= N0(T ) +

∫
dEρ(E)

1

eβE − 1
,

where N0 is the number of atoms in the condensate and

ρ(E) =
∑

lmn, (Elmn 6=0)

δ(E − Elmn)

is the density of states. By converting this sum to an integral we obtain

ρ(E) =

∫
dldmdnδ(E − Elmn)
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=

∫
dExdEydEz
h̄ωxh̄ωyh̄ωz

δ(Ex + Ey + Ez − E)

=
1

(h̄ω̃)3

∫ E

0

dEx

∫ Ex

0

dEy =
E2

2(h̄ω̃)3
. (ω̃ = (ωxωyωz)

1/3)

The quadratic dependence of this function on energy replaces the square-root depen-
dence of the corresponding quantity for free Bosons. The number of particles outside
the condensate is proportional to T 3,

∫
dEρ(E)

1

eβE − 1
=

T 3

2(h̄ω̃)3

2ζ3︷ ︸︸ ︷∫
dx

x2

ex − 1
= N

(
T

TBE

)3

where kBTBE = h̄ω̃(N/ζ3)
1/3, so that the condensate fraction is now given by

N0(T )

N
= 1−

(
T

TBE

)3

.

0

0

5 10 15
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TBE

FERMIO
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EAL GAS

2

P/ nk  T  B

T /  T

Figure 6.7: Pressure dependence in a Fermi or Bose gas, where temperature is measured in
units of kBT0 = h̄2/ma2 Showing P/nkB

Example 6.9: Using the results of the previous section, show that the ideal gas law
is modified by the interference between identical particles, so that

P = nkBTF±(µ/kBT ) (6.76)
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where n is the number density of particles, F±(z) = g±(z)/h±(z) and

g±(z) = ±
∫ ∞

0

dx
√
xln[1± e−(x−z)]

h±(z) =

∫ ∞

0

dx
√
x

1

e(x−z) ± 1
(6.77)

where the upper sign refers to fermions, the bottom to bosons. Sketch the dependence
of pressure on temperature for a gas of identical bosons and a gas of identical fermions
with the same density.

Solution: Let us begin by deriving an explicit expression for the Free energy of a free
gas of fermions, or bosons. We start with

F = ∓(2S + 1)kBTV

∫

k

ln[1± e−β(Ek−µ)] (6.78)

where S is the spin of the particle. Making the change of variables,

x = βEk = β
h̄2k2

2m
,

d3k

(2π)3
→ 2

λ̃3
T

√
π

√
xdx (6.79)

where λ̃T =
√

2πh̄2/(mkBT ) is the rescaled Thermal de Broglie wavelength, we obtain

F = ∓(2S + 1)kBT
V

λ̃3
T

2√
π

∫
dx
√
xln[1± e−(x+µβ)] (6.80)

Taking the derivative with respect to volume, and chemical potential, we obtain the
following results for the Pressure and the particle density.

P = −∂F
∂V

= ±(2S + 1)
kBT

λ̃3
T

2√
π

∫
dx
√
xln[1± e−(x−µβ)]

n = − ∂F

V ∂µ
=

(2S + 1)

λ̃3
T

2√
π

∫
dx
√
x

1

e(x−µβ) ± 1
(6.81)

Dividing the pressure by the density, we obtain the quoted result for the ideal gas.

To plot these results, it is convenient to rewrite the temperature and pressure in the
form

T = To[h
±(µβ)]−2/3

P

nkBT0
=

g±(µβ)

[h±(µβ)]5/3
, (6.82)

where kBTo = h̄2

ma2 , permitting both the pressure and the temperature to be plotted
parametrically as a function of µβ. Fig 6.7 shows the results of such a plot.
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6.5 Exercises for chapter 6

1. (i)Use the Jordan Wigner transformation to show that the one dimensional anisotropic XY
model

H = −
∑

j

[J1Sx(j)Sx(j + 1) + J2Sy(j)Sy(j + 1)] (6.83)

can be written as

H = −
∑

j

[t(d†j+1dj + H.c) + ∆(d†j+1d
†
j + H.c)] (6.84)

where t = 1
4 (J1 + J2) and ∆ = 1

4 (J2 − J1).

(ii)Calculate the excitation spectrum for this model and sketch your results. Comment specif-
ically on the two cases J1 = J2 and J2 = 0.

2. (a) Consider the non-interacting Hubbard model for next nearest neighbor hopping on a two
dimensional lattice

H − µN = −t
∑

j,â=x̂,ŷ,σ

[c†j+âσcjσ + H.c]− µ
∑

jσ

c†jσcjσ

where njσ = c†jσcjσ represents the number of electrons of spin component σ = ±1/2 at
site j. Show that the dispersion of the electrons in the absence of interactions is given
by

ǫ(~k) = −2t(cos kxa+ cos kya)− µ

where a is the distance between sites, and ~k = (kx, ky) is the wavevector.

(b) Derive the relation between the number of electrons per site ne and the area of the Fermi
surface.

(c) Sketch the Fermi surface when

i. ne < 1.

ii. “half filling” where ne = 1

(d) The corresponding interacting Hubbard model, with an interaction term Un↑n↓ at each
site describes a class of material called “Mott insulators”, which includes the mother
compounds for high temperature superconductors. What feature of the Fermi surface at
half-filling makes the non-interacting ground-state unstable to spin density wave forma-
tion and the development of a gap around the Fermi surface ?

(e) Derive the dispersion for the case when, in the one-particle Hamiltonian there is an
additional next-nearest neighbor hopping matrix element of strength across the diagonal,

−t′. (Hint: use the Fourier transform of t(R), given by t(~k) =
∑

~R t(
~R)e−i

~k·~R). How
does this affect the dispersion at half filling?

3. Consider an atom trap where the confining potential is given by a harmonic potential

V (x, y, z) =
1

2
mω2(x2 + y2 + z2)

102



c©2009 Piers Coleman Chapter 6.

so that the quantized kinetic energy of an atom in the trap is

Elmn = h̄ω(l +
3

2
)

l = n1 + n2 + n3 (6.85)

where n1,2,3 ≥ 0 are non-negative integers.

(a) Show that in thermal equilibtrium, the total number of particles in the trap is given by

N =
z

1− z +
∑

l 6=0

1

z−1eβh̄ωl − 1

where z = eβµ
∗

, µ∗ = µ − 3
2 h̄ω and the sum over l, denotes a sum over all values of

n1,2,3. What is the interpretation of the first term? Why must µ∗ be negative? What
happens to z when condensation develops?

(b) Show that below the Bose Einstein condensation temperature,

N = N0(T ) +
∞∑

k=1

[(
1

1− e−xk
)3

− 1

]
, (x = βh̄ω)

where N0(T ) is the number of atoms condensed in the lowest energy state. (Hint, Taylor
expand the second term in (a) and then invert the order of summation. )

(c) Show that when x is small,

N = No(T ) +
T 3

(h̄ω)3
ζ(3) +

T 2

(h̄ω)2
ζ(2) +O(T )

where ζ(n) =
∑∞
k=1

1
kn . Notice that if the first term is of order N , the second term is of

order N2/3 << N , if N is large.

(d) Calculate an expression for the Bose Einstein condensation temperature TBE of the trap,
and show that to a good approximation,

No(T )

N
= 1−

(
T

TBE

)3

.

(e) Qualitatively: what do you expect to happen to the density profile across the trap, once
the atoms start to condense?
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Chapter 7

Green’s Functions

Ultimately, we are interested in more than just free systems. We should like to understand
what happens to our system as we dial up the interaction strength from zero, to its full
value. We also want to know response of our complex system to external perturbations,
such as an electromagnetic field. We have to recognize that we can not, in general expect to
diagonalize the problem of interest. We do not even need interactions to make the problem
complex: a case in interest is a disordered metal, where we our interest in averaging over
typically disordered configurations introduces effects reminiscent of interactions, and can
even lead to new kinds of physics, such as electron localization. We need some general way
of examinining the change of the system in response to these effects even though we can’t
diagonalize the Hamiltonian.

In general then, we will be considering problems where we introduce new terms to a
non-interaction Hamiltonian, represented by V . The additional term might be due to

• External electromagnetic fields, which modify the Kinetic energy in the Hamiltonian
as follows

− h̄2

2m
∇2 → − h̄2

2m

(
∇− i e

h̄
A

)2

(7.1)

• Interactions between particles.

V̂ =
1

2

∫
d1d2ψ†(1)ψ†(2)ψ(2)ψ(1) (7.2)

• A random potential

V̂ =

∫
d1V (1)ρ(1) (7.3)

where V (x) is a random function of position.
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H = H  +    V
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Figure 7.1: “Dialing up the interaction”. Motivating the need to be able to treat perturba-
tions to a non-interacting Hamiltonian by dialing up the strength of the perturbation.

One of the things we would like to do, is to examine what happens when the change in the
Hamiltonian to small enough to be considered a perturbation. Even if the term of interest
is not small, we can still try to make it small by writing

H = Ho + λV̂ (7.4)

This is a useful excercise, for it enables us to consider the effect of adiabatically dialing
up the strength of the additional term in the Hamiltonian from zero, to its full value, as
illustrated in fig7.1. This is a dangerous procedure, but sometimes it really works. Life
is interesting, because in macroscopic systems the perturbation of interest often leads to
an instability. This can sometimes occur for arbitrarily small λ. Othertimes, when the
instability occurs when the strength of the new term reaches some critical value λc. When
this happens, the ground-state can change. If the change is a continuous one, then the
point where the instability develops is a Quantum Critical Point, a point of great interest.
Beyond this point, for λ > λc, if we are lucky, we can find some new starting H ′o = Ho+∆H,
V̂ ′ = V̂ − ∆H. If H ′o is a good description of the ground-state, then we can once again
apply this adiabatic procedure, writing,

H = H ′o + λ′V̂ ′ (7.5)
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If a phase transition occurs, then H ′o will in all probability have display a spontaneous
broken symmetry. The region of Hamiltonian space where H ∼ H ′o describes a new phase
of the system, and H ′o is closely associated with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a general perturbative approach to many
body systems, and this rapidly leads us into the realm of Green’s functions and Feynman
diagrams. A Green’s function describes the elementary correlations and responses of a
system. Feynman diagrams are a way of graphically displaying the scattering processes
that result from a perturbation.

7.1 Interaction representation

Up until the present, we have known two representations of quantum theory- the Schrödinger
representation, where it is the wavefunction that evolves, and the Heisenberg, were the op-
erators evolve and the states are stationary. We are interested in observable quantities more
than wavefunctions, and so we aspire to the Heisenberg representation. In practice however,
we always want to know what happens if we change the Hamiltonian a little. If we change
Ho to Ho +V , but we stick to the Heisenberg representation for Ho, then we are now using
the “interaction” representation.

Table. 5.1. Representations .

Representation States Operators

Schrödinger Change rapidly Os- operators constant

i ∂∂t |ψS(t)〉 = H|ψS(t)〉

Heisenberg Constant Evolve

−i∂OH(t)
∂t = [H,OH(t)]

Interaction States change slowly Evolve according to Ho

H = Ho + V i ∂∂t |ψI(t)〉 = VI(t)|ψI(t)〉 −i∂OI(t)∂t = [Ho, OI(t)]

Let us now examine the interaction representation in greater detail. We begin by writing
the Hamiltonian as two parts H = Ho + V . States and operators in this representation are
defined as

|ψI(t)〉 = eiHot|ψS(t)〉,

OI(t) = eiHotOSe
−iHot





Removes rapid state evolution due to Ho (7.6)
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The evolution of the wavefunction is thus

|ψI(t)〉 = U(t)|ψI(0)〉,

U(t) = eiHote−iHt


 (7.7)

or more generally,

|ψI(t)〉 = S(t, t′)|ψI(t′)〉,

S(t) = U(t)U †(t′) (7.8)

The time evolution of U(t) can be derived as follows

i
∂U

∂t
= i

(
∂eiHot

∂t

)
e−iHt + ieiHot

(
∂e−iHt

∂t

)

= eiHot(−Ho +H)e−iHt

= [eiHotV e−iHot]U(t)

= VI(t)U(t) (7.9)

so that

i
∂S(t2, t1)

∂t1
= V (t2)S(t2, t1) (7.10)

where from now on, all operators are implicitly assumed to be in the interaction represen-
tation.

Now we should like to exponentiate this time-evolution equation, but unfortunately, the
operator V (t) is not constant, and furthermore, V (t) at one time, does not commute with
V (t′) at another time. To overcome this difficulty, Schwinger invented a device called the
“time-ordering operator”.

Time ordering operator Suppose {O1(t1), O2(t2) . . . ON (tN )} is a set of operators
at different times {t1, t2 . . . tN}. If P is the permutation that orders the times, so that
tP1

> tP2
. . . tPN

, then if the operators are entirely bosonic, containing an even number
of fermionic operators,the time ordering operator is defined as

T
[
O1(t1)O2(t2) . . . ON (tN )

]
= OP1

(tP1
)OP2

(tP2
) . . . OPN

(tPN
) (7.11)

For later use, we note that if the operator set contains fermionic operators, composed
of an odd number of fermionic operators, then

T
[
F1(t1)F2(t2) . . . FN (tN )

]
= (−1)PFP1

(tP1
)FP2

(tP2
) . . . FPN

(tPN
) (7.12)

where P is the number of pairwise permutations of fermions involved in the time ordering
process.
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Figure 7.2: Each contribution to the time-ordered exponential corresponds to the amplitude
to follow a particular path in state space. The S-matrix is given by the limit of the process
where the number of time segments is sent to infinity.

Suppose we divide the time interval [t1, t2], where t2 > t1 into N identical segments of period
∆t = (t2− t1)/N , where the time at the midpoint of the nth segment is τn = t1 +(n− 1

2)∆t.
The S-matrix can be written as a product of S-matrices over each intermediate time segment,
as follows:

S(t2, t1) = S(t2, τN − ∆t
2 )S(τN−1 + ∆t

2 , τN−1 − ∆t
2 ) . . . S(τ1 + ∆t

2 , t1) (7.13)

Provided N is large, then over the short time interval ∆t, we can approximate

S(τ + ∆t
2 , τ − ∆t

2 ) = e−iV (τ)∆t +O(1/N2) (7.14)

so that we can write

S(t2, t1) = e−iV (τN )∆te−iV (τN−1)∆t . . . e−iV (τ1)∆t +O(1/N) (7.15)

Using the time-ordering operator, this can be written

S(t2, t1) = T [
N∏

j=1

e−iV (τj)∆t] +O(1/N) (7.16)
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The beauty of the time-ordering operator, is that even though A(t1) and A(t′) don’t com-
mute, we can treat them as commuting operators so long as we always time-order them.
This means that we can write

T [eA(t1)eA(t2)] = T [eA(t1)+A(t2)] (7.17)

because in each time-ordered term in the Taylor expansion, we never have to commute
operators, so the algebra is the same as for regular complex numbers. With this trick, we
can write,

S(t2, t1) = LimN→∞T [e
−i
∑

j
V (τj)∆t] (7.18)

The limiting value of this time-ordered exponential is written as

S(t2, t1) = T

[
exp

{
−i
∫ t2

t1
V (t)dt

}]
, Time-ordered exponential (7.19)

This is the famous time-ordered exponential of the interaction representation.

Remarks

• The time-ordered exponential is intimately related to Feynman’s notion of the path
integral. The time-evolution operator S(τj + ∆τ/2, τj −∆τ/2) = Sfr(τj) across each
segment of time is a matrix that takes one from state r to state f . The total time
evolution operator is just a matrix product over each intermediate time segment. Thus
the amplitude to go from state i at time t1 to state f at time t2 is given by

Sfi(t2, t2) =
∑

path={p1,...pN1
}
Sf,pN−1

(τN ) . . . Sp2p1(τ2)Sp1i(τ1) (7.20)

Each term in this sum is the amplitude to go along the path of states

path i → f : i→ p1 → p2 → . . . pN−1 → f. (7.21)

The limit where the number of segments goes to infinity is a path integral.

• One can formally expand the time-ordered exponential as a power series, writing,

S(t2, t1) =
∑

n=0,∞

(−i)n
n!

∫ t2

t1
dτ1 . . . dτnT [V (τ1) . . . V (τn)] (7.22)

The nth term in this expansion can be simply interpreted as the amplitude to go
from the initial, to the final state, scattering n times off the perturbation V . This
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form of the S-matrix is very useful in making a perturbation expansion. By explicitly
time-ordering the n− th term, one obtains n! identical terms, so that

S(t2, t1) =
∑

n=0,∞
(−i)n

∫ t2

t1, {τn>τn−1...>τ1}
dτ1 . . . dτnV (τn) . . . V (τ1) (7.23)

This form for the S-matrix is obtained by iterating the equation of motion,

S(t2, t1) = 1− i
∫ t2

t1
dτV (τ)S(τ, t1) (7.24)

which provides an alternative derivation of the time-ordered exponential.

7.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponential, we shall show how it is possible
to evaluate the S-matrix for a driven harmonic oscillator, where H = Ho + V (t),

Ho = ω(b†b+
1

2
)

V (t) = z̄(t)b+ b†z(t)



 (7.25)

Here the forcing terms are written in their most general form. z(t) and z̄(t) are forces
which “create” and “annihilate” quanta respectively. A conventional force in the Hamilto-
nian, H = Ho − f(t)x̂ gives rise to a particular case, where z̄(t) = z(t) = (h̄/2mω)

1
2 f(t).

We shall show that if the forcing terms are zero in the distant past and distant future and
the system is initially in the ground-state, the amplitude to stay in this state is

〈0|Te−i
∫∞
−∞

dt[z̄(t)b(t)+b†(t)z(t)]|0〉 = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
. (7.26)

where G(t − t′) = −iθ(t− t′)e−iω(t−t′) is our first example of a one particle “Green’s func-
tion”. The importance of this result, is that we have a precise algebraic result for the
response of the ground-state to an arbitrary force term. Once we know the response to an
arbitrary force, we can, as we shall see, deduce the n-th ordered moments, or correlation
functions of the Bose fields.

Remarks:

• The time-ordered exponential is an example of a “functional”: a quantity which is a
function of a function (in this case, z(t) and z̄(t)). With this result we can examine
how the ground-state responds to an arbitrary external force. The quantity G(t− t′)
which determines the response of the ground-state to the forces, z(t) and z̄(t), is called
the “one particle Green’s function”, defined by the relation

G(t− t′) = −i〈0|Tb(t)b†(t′)|0〉. (7.27)
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We may confirm this relation by expanding both sides of (7.26) to first order in z̄ and
z. The left hand side gives

1 + (−i)2
∫
dtdt′z̄(t)〈0|Tb(t)b†(t′)|0〉.z(t′) +O(z̄2, z2) (7.28)

whereas the right-hand side gives

1− i
∫
dtdt′z̄(t)G(t− t′)z(t′) +O(z̄2, z2) (7.29)

By comparing the coefficients, we are able to confirm the above relation.

• By expanding the time-ordered exponential as a power-series in z and z̄, we find that
the n-th order term is

(−i)n
n!

∫ ∞

−∞

∏

r=1,n

dtrdt
′
rz̄(tr)z(t

′
r)× coeff (7.30)

where

coeff = G(1, . . . n; 1′ . . . n′) = (−i)n〈0|Tb(1) . . . b(n)b†(n′) . . . b†(1′)|0〉 (7.31)

is called the n-particle Green’s function. Here we have used the conventient notation
r ≡ tr, r

′ ≡ t′r. By expanding the right-hand-side, we find that the corresponding
coefficient of z and z̄ is given by the sum over all possible ways of connecting initial
times {r′} with final times {r} by a single-particle Green’s function,

G(1, . . . n; 1′ . . . n′) =
∑

P

∏

r

G(r − P ′r), (7.32)

a result known as Wick’s theorem. It is a remarkable property of non-interacting
systems, that the n-particle Green’s functions are determined entirely in terms of the
one-particle Green functions. In (7.32) each destruction event at time tr ≡ r is paired
up with a corresponding creation event at time t′Pr ≡ P ′r. The connection between
these two events is often called a “contraction”, denoted as follows(�i)nh�jT : : : b(r) : : : by(P 0r) : : : j�i = G(r − P ′r)× (−i)n−1〈0|T . . . |0〉 (7.33)

Notice that since particles are conserved, we can only contract a creation operator
with a destruction operator. According to Wick’s theorem, the expansion of the n-
particle Green function in (7.31) is carried out as a sum over all possible contractions,
denoted as follows

G(1 . . . n′) =
∑

P

G(1− P ′1)G(2− P ′2) . . . G(r − P ′r) . . .
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=
∑

P
(�i)nh�jTb(1)b(2) : : : b(r) : : : by(P 0r) : : : by(P 01) : : : by(P 02) : : : j�i... ... ...

(7.34)

Physically, this result follows from the identical nature of the bosonic quanta or par-
ticles. When we take the n particles out at times t1 . . . tn, there is no way to know
in which order we are taking them out. The net amplitude is the sum of all possible
ways of taking out the particles- This is the meaning of the sum over permutations
P .

• This result can be generalized to an arbitrary number of oscillators by replacing
(z, z̄)→ (zr, z̄r), whereupon

〈 0|T exp

[
−i
∫ ∞

−∞
dt[z̄r(t)br(t) + br

†(t)zr(t)]
]
|0〉

= exp

[
−i
∫ ∞

−∞
dtdt′z̄r(t)Grs(t− t′)zs(t′)

]
(7.35)

where now, Grs(t − t′) = −i〈0|Tbr(t)b†s(t′)|0〉 = −iδrsθ(t − t′)e−iωr(t−t′), and sum-
mation over repeated indices is implied. This provides the general basis for Wick’s
theorem.

• The concept of a generating functional can also be generalized to Fermions, with the
proviso that now we must use replace (z, z̄) by anticommuting numbers (η, η̄).

Proof: To demonstrate this result, we need to evaluate the time ordered exponential

〈 0 |T exp

[
−i
∫ t2

−t1
dt[z̄(t)b(t) + b†(t)z(t)]

]
|0〉 (7.36)

where b(t) = beiωt and b†(t) = b†eiωt. To evaluate this integral, we divide up the interval
t ∈ (t1, t2) into N segments, t ∈ (τj −∆τ/2, τj + ∆τj) of width ∆τ = (t2− t1)/N and write
down the discretized time-ordered exponential as

SN = eAN−A
†
N × . . . eAr−A†r × . . . eA1−A†1 (7.37)

where we have used the short-hand notation,

Ar = −iz̄(τr)b(τr)∆τ,
A†r = ib†(τr)z(τr)∆τ (7.38)

To evaluate the ground-state expectation of this exponential, we need to “normal” order
the exponential, bringing the terms involving annihilation operators eAr to the right-hand
side of the expression. To do this , we use the result

eα+β = eβeαe[α,β]/2 (7.39)
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and the related result ,

eαeβ = eβeαe[α,β] (7.40)

which hold if [α, β] commutes with α and β. We observe that in our case, the Ar commute
with each other, as do the the A†r. Fortunately, the commutator

[Ar, A
†
s] = ∆τ2z̄(τr)z(τs)e

−iω(τr−τs) (7.41)

is a c-number, so we can use the above theorem. We first normal order each term in the
product, writing eAr−A

†
r = e−A

†
reAre−[Ar,A†r]/2 so that

SN = e−A
†
N eAN . . . e−A

†
1eA1e−

∑
r
[Ar,A†r]/2 (7.42)

Now we move the general term eAr to the right-hand side, picking up the residual commu-
tators along the way to obtain

SN =

:SN :︷ ︸︸ ︷
e−
∑

r
A†re

∑
r
Ar exp[−

∑

r≥s
[Ar, A

†
s](1−

1

2
δrs)] (7.43)

The vacuum expectation value of the first term is unity, so that

S(t2, t1) = lim
∆τ→0

exp

[
−
∑

s≤r
∆τ2z̄(τr)z(τs)e

−iω(τr−τs)(1− 1

2
δrs)

]

= exp

[
−
∫ t2

t1
dτdτ ′z̄(τ)θ(τ − τ ′)e−iω(τ−τ ′)z(τ ′)

]
(7.44)

So placing G(t− t′) = −iθ(τ − τ ′)e−iω(τ−τ ′),

S(t2, t1) = exp

[
−i
∫ t2

t1
dτdτ ′z̄(τ)G(t− t′)z(τ ′)

]
(7.45)

Finally, taking the limits of the integral to infinity, we obtain the quoted result.

Example 7.10: Show that the probability that a charged particle of charge q in a
harmonic potential with mass m and characteristic frequency ω when exposed to an
electric field E , remains in the ground-state after time T is given by

p = exp
[
−4g2 sin2(ωT/2)] (7.46)

where ω is the frequency of the oscillator

g2 =
Vspring
h̄ω

(7.47)

is the ratio between the classical energy Vspring = q2E2/(2mω2) stored in a classical
“spring” stretched by a force qE to the quantum of energy h̄ω.
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Solution:

We need to write the probability p to remain in the ground-state, interms of the modulus
squared of the amplitude to remain in the ground-state,

p = |S(T, 0)|2 (7.48)

Where

S(T, 0) = 〈φ|Te−
i
h̄

∫ T

0
V (t)dt|φ〉 (7.49)

is the amplitude to remain in the ground-state and

V (t) = −qE(t)x(t). (7.50)

is the perturbation, where E(t) is the electric field. Writing x =
√

h̄
2mω (b + b†), we

can recast V in terms of boson creation and annihilation operators as V (t) = z̄(t)b(t) +
b†(t)z(t), where,

z(t) = z̄(t) = −q
√

h̄

2mω
E(t) =

{
−
√

V
h̄ω (T > t > 0)

0 (otherwise)
(7.51)

where V = q2E2

2mω2 is the classical energy stored in a stretched spring. Using the relation-
ship derived in (7.45), we deduce that

S(T, 0) = e−iA

where

A =

∫ T

0

dt1dt2z̄(t1)G(t1 − t2)z(t2)

and G(t) = −ie−iωtθ(t) is the Green function. Carrying out the integral, we obtain

A = −iV ω
h̄

∫ T

0

dt

∫ t′

0

dt′e−iω(t−t′) = −V T
h̄

+
2V

h̄ω
e−iωT/2 sin

ωT

2

= −V T
h̄

[
1− sin(ωT )

ωT

]
− i2V

h̄ω
sin2

(
ωT

2

)
. (7.52)

The real part contains a transient, plus the phase shift −V T/h̄ resulting from the shift
in energy ∆E = −V associated with the electric field. The imaginary part determines
the probability to remain in the ground-state. Taking the modulus square of e−iA, we
obtain

p = |e−iA|2 = exp

(
−4V

h̄ω
sin2 ωT

2

)
.

demonstrating the oscillatory amplitude to remain in the ground-state.

7.2 Green’s Functions

Green’s functions are the elementary response functions of a many body system. The one
particle Green’s function is defined as

Gλλ′(t− t′) = −i〈φ|Tψλ(t)ψ†λ′(t′)|φ〉 (7.53)
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where |φ〉 is the many body ground-state, ψλ(t) is the field in the Heisenberg representation
and

Tψλ(t)ψ
†
λ′(t
′) =





ψλ(t)ψ
†
λ′(t
′) (t > t′)

±ψ†λ′(t′)ψλ(t) (t < t′) ±
{

Bosons
Fermions

(7.54)

defines the time-ordering for fermions and bosons. Diagramatically, this quantity is repre-
sented as follows

Gλλ′(t− t′) =
λ,t ’λ, t’

(7.55)

Quite often, we shall be dealing with translationally invariant systems, where λ denotes
the momentum and spin of the particle λ ≡ pσ. If spin is a good quantum number, (no
magnetic field, no spin-orbit interactions), then

Gkσ,k′σ′(t− t′) = δσσ′δkk′G(k, t− t′) (7.56)

is diagonal, ( where in the continuum limit, δkk′ → (2π)Dδ(D)(k − k′)). In this case, we
denote

G(k, t− t′) = −i〈φ|Tψkσ(t)ψ
†
kσ(t

′)|φ〉 = t’ t
k

(7.57)

We can also define Green’s function in co-ordinate space,

G(x− x′, t) = −i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 (7.58)

which we denote diagramatically, by

G(x− x′, t) = (x,t) (x’,t’) (7.59)

By writing ψσ(x, t) =
∫
k ψkσe

i(k·x), we see that the co-ordinate-space Green’s function is
just the Fourier transform of the momentum-space Green’s function:

G(x− x′, t) =

∫

k,k′
ei(k·x−k′·x′)

δkk′G(k,t−t′)
︷ ︸︸ ︷
−i〈φ|Tψkσ(t)ψ

†
k′σ(0)|φ〉

=

∫
d3k

(2π)3
G(k, t)eik·(x−x′) (7.60)

It is also often convenient to Fourier transform in time, so that

G(k, t) =

∫ ∞

−∞

dω

2π
G(k, ω)e−iωt (7.61)

The quantity

G(k, ω) =

∫ ∞

−∞
dtG(k, t)eiωt
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=
k,ω

(7.62)

is known as the propagator. We can then relate the Green’s function in co-ordinate space
to its propagator, as follows

−i〈φ|Tψσ(x, t)ψσ(x′, t′)|φ〉 =

∫
d3kdω

(2π)4
G(k, ω)ei[(k·(x−x′)−ω(t−t′)] (7.63)

7.2.1 Green’s function for free Fermions

As a first example, let us calculate the Green’s function of a degenerate Fermi liquid of non-
interacting Fermions in its ground-state. We shall take the heat-bath into account, using
a Heisenberg representation where the heat-bath contribution to the energy is subtracted
away, so that

H = Ĥo − µN =
∑

σ

ǫkc
†
kσckσ. (7.64)

is the Hamiltonian used in the Heisenberg representation and ǫk = h̄2k2

2m − µ. The ground-
state for a fluid of fermions is given by

|φ〉 =
∏

σ|k|<kf
c†kσ|0〉 (7.65)

In the Heisenberg representation, c†kσ(t) = eiǫktc†kσ, ckσ(t) = e−iǫktckσ. For forward time
propagation, it is only possible to add a fermion above the Fermi energy, and

〈φ|ckσ(t)c†k′σ′(t′)|φ〉 = δσσ′δkk′e
−iǫk(t−t′)〈φ|ckσc†kσ|φ〉

= δσσ′δkk′(1− nk)e−iǫk(t−t′) (7.66)

where nk = θ(|kF | − |k|). For backward time propagators, it is only possible to destroy a
fermion, creating a hole, below the Fermi energy

〈φ|c†k′σ′(t′)ckσ(t)|φ〉 = δσσ′δkk′nke
−iǫk(t−t′) (7.67)

so that

G(k, t) = −i[(1− nk)θ(t)− nkθ(−t)]e−iǫkt (7.68)

can be expanded as

G(k, t) =





−iθ|k|−|kF |e−iǫkt (t > 0) “electrons”

iθ|kF |−|k|e
−iǫkt (t < 0) “holes” : electrons moving backwards in time

(7.69)
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This unification of hole and electron excitations in a single function is one of the great
utilities of the time-ordered Green’s function. 1

Next, let us calculate the Fourier transform of the Green’s function. This is given by

G(k, ω) = −i
∫ ∞

−∞
dtei(ω−ǫk)t

cnvgnce factor︷ ︸︸ ︷
e−|t|δ

[
θk−kF θ(t)− θkF−kθ(−t)

]

= −i
[

θk−kF
δ − i(ω − ǫk)

− θkF−k
δ + i(ω − ǫk)

]
=

1

ω − ǫk + iδk
(7.70)

where δk = sign(k− kF). The free fermion propagator is then

G(k, ω) =
1

ω − ǫk + iδk
=

k,ω
(7.71)

The Green’s function contains both static, and dynamic information about the motion of
particles in the many-body system. For example, we can use it to calculate the density of
particles in a Fermi gas

〈ρ̂(x)〉 =
∑

σ

〈ψ†σψσ〉 = −
∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(x, 0)|φ〉

= −i(2S + 1)G(x, 0−)|x=0 (7.72)

where S is the spin of the fermion. We can also use it to calculate the Kinetic energy
density, which is given as follows

〈T̂ (x)〉 = − h̄2

2m

∑

σ

〈ψ†σ(x)∇2
xψσ(x)〉 =

h̄2∇2
x

2m

∑

σ

〈φ|Tψσ(x, 0−)ψ†σ(~x
′, 0)|φ〉

∣∣∣∣∣
x−x′=0

= i(2S + 1)
h̄2∇2

2m
G(x, 0−)

∣∣∣∣∣
x=0

(7.73)

Example 7.11: By relating the particle density and kinetic energy density to one-
particle Green’s function to the particle density, calculate the particle and kinetic energy
density of particles in a degenerate Fermi liquid.

1According to aprocyphyll story, the relativistic counterpart of this notion, that positrons are the electrons
travelling backwards in time, was invented by Richard Feynman as a graduate student of John Wheeler.
Wheeler was very strict, allowing Feynman precisely half an hour of discussion, and using a chess clock as
a timer. When the time was up, Wheeler stopped the clock and announced that the session was over. At
the second meeting, when Feynman and Wheeler were discussing the physics of positrons, Feynman arrived
with his own clock, and at the end of the half hour, Feynman stopped his own clock, as if to say that his
advisor’s time was up. At the third meeting, having come up with the idea that a positron was an electron
travelling backwards in time, Feynman arrived at the meeting with a clock started at 30 minutes and ran
backwards to zero!
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Solution: We begin by writing 〈ρ̂(x)〉 = −i(2S+1)G(~0, 0−). Writing this out explicitly
we obtain

〈ρ(x)〉 = (2S + 1)

∫
d3k

(2π)3

[∫
dω

2πi
eiωδ

1

ω − ǫk + iδk

]
(7.74)

where the convergence factor appears because we are evaluating the Green’s function at a
small negative time −δ. We have explicitly separated out the frequency and momentum
integrals. The poles of the propagator are at ω = ǫk− iδ if k > kF , but at ω = ǫk + iδ if
k < kF , as illustrated in Fig. 7.3. The convergence factor means that we can calculate

F
(k< k   )

F
(k> k   )

k

εkz =     - i δ

z=      i ε  +  δ

Figure 7.3: Showing how the path of integration in (7.75) picks up the pole contributions
from the occupied states beneath the Fermi surface.

the complex integral using Cauchy’s theorem by completing the contour in the upper half
complex plane, where the integrand dies away exponentially. The pole in the integral
will only pick up those poles associated with states below the Fermi energy, so that

∫
dω

2πi
eiωδ

1

ω − ǫk + iδk
= θkF −|k| (7.75)

and hence

ρ = (2S + 1)

∫

k<kF

d3k

(2π)3
= (2S + 1)

VF
(2π)3

(7.76)

In a similar way, the kinetic energy density is written

〈T (x)〉 = (2S + 1)

∫
d3k

(2π)3
h̄2k2

2m

[∫
dω

2πi
eiωδ

1

ω − ǫk + iδk

]
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= (2S + 1)

∫

k<kF

d3k

(2π)3
h̄2k2

2m
=

3

5
ǫF ρ (7.77)

7.2.2 Green’s function for free Bosons

As a second example, let us examine the Green’s function of a gas of non-interacting bosons,
described by

H =
∑

q

ωq[b†qbq +
1

2
] (7.78)

where physical field operator is related to a sum of creation and annihilation operators:

φ(x) =

∫

q
φqe

iq·x

φq =

√
h̄

2mωq

[bq + b†−q] (7.79)

Since there are no bosons present in the ground-state, boson destruction operators annihilate
the ground-state |φ〉. The only terms contributing to the Green function are then

−i〈φ|Tbq(t)b†q(0)|φ〉 = −iθ(t)e−iωqt,
−i〈φ|Tb†−q(t)b−q(0)|φ〉 = −iθ(−t)eiωqt, (7.80)

so that

D(q, t) = −i〈φ|φ(q, t)φ(−q, t)|φ〉 = −i h̄

2mωq

[θ(t)e−iωqt + θ(−t)eiωqt] (7.81)

If we Fourier transform this quantity, we obtain the boson propgator,

D(q, ν) =

∫ ∞

−∞
dte−δ|t|+iνtD(q, t)

= −i h̄

2mωq

[
1

δ − i(ν − ωq)
+

1

δ + i(ν − ωq)

]
(7.82)

or

D(q, ν) =
h̄

2mωq

[
2ωq

ν2 − (ωq − iδ)2

]
, Bose propagator (7.83)

Remarks:

• Note that the bose propagator has two poles at ν = ±(ω − iδ). You can think of
the bose propagator as a sum of two terms, one involving a boson emission, that
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propagates forwards in time from the emitter, a second involving boson absorption
that propagates backwards in time from the absorber,

D(q, ν) =
h̄

2mωq




emission︷ ︸︸ ︷
1

ν − (ωq − iδ)
+

absorption︷ ︸︸ ︷
1

−ν − (ωq − iδ)




(7.84)

• We shall shortly see that amplitude to absorb and emit bosons by propagating fermions
is directly related to the Boson propagator. For example, when there is an interaction
of the form

Hint = g

∫
d3xφ(x)ρ(x) (7.85)

The exchange of virtual bosons between particles gives rise to retarded interactions,

V (q, t− t′) =
g2

h̄
D(q, t− t′), (7.86)

whereby a passing fermion produces a the potential change in the environment which
lasts a characteristic time ∆τ ∼ 1/ωo where ωo is the characteristic value of ωq.
From the Fourier transform of this expression, you can see that the time average of
this interaction, proportional to D(q, ν = 0) = − h̄

mω2
q

is negative: i.e. the virtual

exchange of a spinless boson mediates an attractive interaction.

7.3 Adiabatic concept

The adiabatic concept is one of the most valuable concepts in many body theory. What does
it mean to understand a many body problem when we can never, except in the most special
cases, expect to solve the problem exactly? The adiabatic concept provides an answer to
this question.

Suppose we are interested in a many body problem with Hamiltonian H, with ground-
state |Ψg〉 which we can not solve exactly. Instead we can often solve a simplified version
of the many body Hamiltonian Ho where the ground-state |Ψ̃g〉 has the same symmetry as
|Ψg〉. Suppose we start in the ground-state |Ψ̃g〉, and now slowly evolve the Hamiltonian
from Ho to H, i.e, if V̂ = H −Ho, we imagine that the state time-evolves according to the
Hamiltonian

H(t) = Ho + λ(t)V
λ(t) = e−|t|δ (7.87)

where δ is arbitrarily small.
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Figure 7.4: Illustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically
evolved. In the first case, the ground-state can be adiabatically evolved all the way to λ = 1.
In the second case, a phase transition occurs at λ = λc, where a previously excited state,
with a different symmetry to the ground-state crosses below the ground-state.

As we adiabatically evolve the system, the ground-state, and excited states will evolve,
as shown in Fig. 7.4. In such an evolution process, the energy levels will typically show
“energy level repulsion”. If any two levels get too close together, matrix elements between
the two states will cause them to repel one-another. However, it is possible for states of
different symmetry to cross, because selection rules prevent them from mixing. Sometimes,
such an adiabatic evolution will lead to “level crossing”, whereby at λ = λc when some
excited state ψr with different symmetry to the ground-state, crosses to a lower energy
than the ground-state. Such a situation leads to “spontaneous symmetry breaking”. A
simple example is when a Ferromagnetic ground-state becomes stabilized by interactions.

In general however, if there is no symmetry changing phase transition as the interaction
V is turned on, the procedure of adiabatic evolution, can be used to turn on “interactions”,
and to evolve the ground-state from Ψ̃g to Ψg.

These ideas play a central role in the development of perturbation theory and Feynman
diagrams. They are however also of immense qualitative importance, for the physics of
adiabatically related ground-states is equivalent. Adiabatic evolution defines an equivalence
class of ground-states with the same qualitative physics. The adiabatic principle was first
employed with great success in the fifties. Gell Mann and Low used it to prove their famous
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relation linking non-interacting, and interacting Green’s functions[1]. Later in the fifties,
Landau[2, 3, 4] used the adiabatic idea in a brilliantly qualitative fashion, to formulate his
theory of interacting Fermi liquids, which we examine in detail in the next chapter.

7.3.1 Gell-Man Low Theorem

Suppose we gradually turn on, and later, gradually turn- off an interaction V so that

V (t) = e−ǫ|t|V (0) (7.88)

acquires its full magnetitude at t=0 and vanishes in the distant past and in the far-future.
The quantity τA = ǫ−1 sets the characteristic “switch-on time” for the process. Adiabaticity
requires that we ultimately let ǫ→ 0, sending the switch-on time to infinity τA →∞. When
we start out at t = −∞, the ground-state is | − ∞〉, and the interaction and Heisenberg
representations coincide. If we now evolve to the present in the Heisenberg representation,
the states do not evolve, so the ground-state is unchanged

|φ〉H ≡ | −∞〉, (7.89)

and all the interesting physics of the interaction V is encoded in the the operators. We
would like to calculate the correlation or Green’s functions of a set of observables in the
fully interacting system. The Gell-Mann Low theorem enables us to relate the Green’s
function of the interacting system to the Green’s functions of the non-interacting system at
t = −∞. The key result is

〈φ|TA(t1)B(t2) . . . R(tr)|φ〉H = 〈+∞|TS[∞,−∞]A(t1)B(t2) . . . R(tr)| −∞〉I
S[∞,−∞] = T exp

[
−i
∫ ∞

−∞
V (t′)dt′

]
(7.90)

where the subscript H and I indicate that the operators, and states are to be evalu-
ated in the Heisenberg and interaction representations, respectively. The state | +∞〉 =
S(∞,−∞)| − ∞〉 corresponds to the ground-state, in the interaction representation in the
distant future. If adiabaticity holds, then the process of slowly turning on, and then turn-
ing off the interaction, will return the system to its original state, up to a phase, so that
|+∞〉 = e2iδ| −∞〉. We can then write e2iδ = 〈−∞|∞〉, so that so that

〈+∞| = e−2iδ〈−∞| = 〈−∞|
〈−∞|+∞〉 (7.91)

and the Gell-Mann Low formula becomes

〈φ|TA(t1)B(t2) . . . R(tr)|φ〉H =
〈−∞|TS[∞,−∞]A(t1)B(t2) . . . R(tr)| −∞〉I

〈−∞|S[∞,−∞]| −∞〉 (7.92)
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Remarks:

• With the Gell-Mann Low relation, we relate the Green’s function of a set of complex
operators in an interacting system, to a Green’s function of a set of simple operators
multiplied by the S-matrix.

• The Gell-Mann Low relation is the starting point for the Feynman diagram expansion
of Green’s functions. When we expand the S-matrix as a power-series in V , each
term in the expansion can be written as an integral over Green’s functions of the
non-interacting problem. Each of these terms corresponds to a particular Feynman
diagram.

• When we expand the vacuum expectation value of the S-matrix, we will see that this
leads to “Linked Cluster” diagrams.

Proof: To prove this result, let U(t) = S(t,−∞) be the time-evolution operator for the
interaction representation. Since the interaction, and Heisenberg states coincide at t = −∞,
and |ψH〉 does not evolve with time,

|ψI(t)〉 = U(t)|ψH〉 (7.93)

Since U(t)AH(t)|ψH〉 = AI(t)|ψI(t)〉 = AI(t)U(t)|ψH〉, the relation between operators in
the two representations must be

AH(t) = U †(t)AI(t)U(t) (7.94)

Suppose t1 > t2 > t3 . . . tr, then using this relation we may write

〈φ|A(t1) . . . R(tr)|φ〉H = 〈−∞|U †(t1)AI(t1)
S(t1,t2)︷ ︸︸ ︷

U(t1)U
†(t2) . . .

S(tr−1,tr)︷ ︸︸ ︷
U(tr−1)U

†(tr)RI(tr)U(tr)| −∞〉

where we have identified |φ〉H ≡ | −∞〉. Now S(t1, t2) = U(t1)U
†(t2) is the operator that

time evolves the states of the interaction representation, so we may rewrite the above result
as

〈0|A(t1) . . . R(tr)|0〉H = 〈−∞|
S†(t1,−∞)︷ ︸︸ ︷
U †(t1) AI(t1)S(t1, t2) . . . S(tr−1, tr)RI(tr)

S(tr,−∞)︷ ︸︸ ︷
U(tr) | −∞〉

where we have replaced U(t) → S(t,−∞). Now S(∞, t1)S(t1,−∞)| − ∞〉 = |∞〉 and
since S is a unitary matrix, S†(∞, t1)S(∞, t1) = 1, so multiplying both sides by S†(∞, t1),
S(t1,−∞)| −∞〉 = S†(∞, t1)|∞〉 and by taking its complex conjugate,

〈−∞|S†(t1,−∞) = 〈∞|S(∞, t1) (7.95)
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Inserting this into the above expression gives,

〈0|A(t1) . . . R(tr)|0〉H = 〈+∞|S(∞, t1)AI(t1)S(t1, t2) . . . S(tr−1, tr)RI(tr)S(tr,−∞)| −∞〉

Finally, since we assumed t1 > t2 > . . . tr, we can write,

〈φ|T [A(t1) . . . R(tr)]|φ〉H = 〈+∞|T [S(∞,−∞)AI(t1)BI(t2) . . . RI(tr)]| −∞〉 (7.96)

Although we proved this expression for a particular time-ordering, it is clear that if we
permute the operators the time-ordering will always act to time-order both sides, and thus
this expression holds for an arbitary time-ordering of operators.

7.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscillator can be generalized to free
fermions by the use of “anticommuting” or Grassman numbers η and η. The simplest
model is

H = ǫc†c
V (t) = η̄(t)c(t) + c†(t)η(t)

}
(7.97)

The corresponding Generating functional is given by

S[η̄, η] = 〈φ|T exp

(
−i
∫
dt
[
η̄(t)c(t) + c†(t)η(t)

])
|φ〉 = exp

[
−i
∫
d1d2η̄(1)G(1− 2)η(2)

]

G(1− 2) = −i〈φ|Tc(1)c†(2)|φ〉 (7.98)

where |φ〉 is the ground-state for the non-interacting Hamiltonian. To prove this result,
we use the same method as used for the harmonic oscillator. As before we split up the S
matrix into N discrete time-slices, writing

SN = eAN−A
†
N × . . . eAr−A†r × . . . eA1−A†1 (7.99)

where

Ar = η̄(tr)(−ice−iǫtr)∆t,
A†r = η(tr)(ic

†eiǫtr)∆t. (7.100)

The next step requires a little care, for when ǫ < 0, |φ〉 = c†|0〉 is the vacuum for holes
h = c†, rather than particles, so that in this case we need to “anti-normal order” the S
matrix. Carrying out the ordering process, we obtain

SN =





e−
∑

r
A†re

∑
r
Ar exp

[
−∑r≥s[Ar, A

†
s](1− 1

2δrs)

]
(ǫ > 0)

e
∑

r
Are−

∑
r
A†r exp

[∑
r≤s[Ar, A

†
s](1− 1

2δrs)

]
(ǫ < 0)

(7.101)
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When we take the expectation value 〈φ|SN |φ〉, the first term in these expressions gives
unity. Calculating the commutators, in the exponent, we obtain

[Ar, A
†
s] = ∆t2[η̄(tr)c, c

†η(ts)]e
−iǫ(tr−ts)

= ∆t2η̄(tr){c, c†}η(ts)e−iǫ(tr−ts)
= ∆t2η̄(tr)η(ts)]e

−iǫ(tr−ts). (7.102)

( Notice how the anticommuting property of the Grassman variables η̄(tr)η(ts) = −η(ts)η̄(tr)
means that we can convert a commutator of [Ar, As] into an anticommutator {c, c†}.) Next,
that taking the limit N →∞, we obtain

S[η̄, η] =





exp

[
−
∫ ∞

−∞
dtdt′η̄(t)θ(t− t′)η(t′)e−iǫ(t−t′)

]
(ǫ > 0)

exp

[∫ ∞

−∞
dτdτ ′η̄(τ)θ(t′ − t)η(τ ′)e−iǫ(t−t′)

]
(ǫ < 0)

(7.103)

By introducing the Green function,

G(t) = −i [(1− f(ǫ))θ(t)− f(ǫ))θ(−t)] e−iǫt

we can compactly combine these two results into the final form

S(t2, t1) = exp

[
−i
∫ ∞

−∞
dtdt′η̄(t)G(t− t′)η(t′)

]
. (7.104)

A more heuristic derivation however, is to recognize that derivatives of the generating
functional bring down Fermi operators inside the time-ordered exponential,

i
δ

δη(t)
〈φ|T Ŝ . . . |φ〉 = 〈φ|T Ŝc†(t) . . . |φ〉

i
δ

δη̄(t)
〈φ|T Ŝ . . . |φ〉 = 〈φ|T Ŝc(t) . . . |φ〉 (7.105)

where Ŝ = T exp
[
−i ∫ dt′

(
η̄(t′)c(t′) + c†(t′)η(t′)

)]
so that inside the expectation value,

i
δ

δη(t)
≡ c†(t)

i
δ

δη̄(t)
≡ c(t), (7.106)

and

i
δ lnS

δη(1)
=
〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉

≡ 〈c†(1)〉, (7.107)

where Ŝ = T exp [−i ∫ V (t′)dt′]. Here, we have used the Gell-Mann Low theorem to identify
the quotient above as the expectation value for c†(1) in the presence of the source terms.
Differentiating one more time,

(i)2
δ2 lnS[η̄, η]

δη̄(2)δη(1)
=
〈φ|Tc(2)c†(1)Ŝ|φ〉

〈φ|Ŝ|φ〉
− 〈φ|Tc(2)Ŝ|φ〉

〈φ|Ŝ|φ〉
〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉
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= 〈Tc(2)c†(1)〉 − 〈c(2)〉〈c†(1)〉
= 〈Tδc(2)δc†(1)〉. (7.108)

This quantity describes the variance in the fluctuations δc(†)(2) ≡ c(†)(2) − 〈c(†)(2)〉 of the
fermion field about their average value. When the source terms η and η̄ are introduced, they
will change the average values of the fields 〈c(1)〉 and 〈c†(1)〉 but the absence of interactions
between the modes mean they won’t change the amplitude of fluctuations about the mean,
so that

(i)2
δ2 lnS[η̄, η]

δη̄(2)δη(1)
= 〈Tc(1)c†(2)〉

∣∣∣
η, η̄=0

= iG(1− 2),

and we can then deduce that

lnS[η̄, η] = −i
∫
d1d2η̄(2)G(2− 1)η(1). (7.109)

There is no constant term, because S = 1 when the source terms are removed, and we arrive
back at (7.98).

The generalization of the generating functional to a gas of Fermions with many one-
particle states is just a question of including an appropriate sum over one-particle states,
i.e

H =
∑
λ ǫλc

†
λcλ

V (t) =
∑
λ η̄λ(t)cλ(t) + cλ

†(t)ηλ(t)

}
(7.110)

The corresponding Generating functional is given by

S[η̄, η] = 〈φ|T exp

[
−i
∫
dtV (t)

]
|φ〉 = exp

[
−i
∑

λ

∫
d1d2η̄λ(1)Gλ(1− 2)ηλ(2)

]

Gλ(1− 2) = −i〈φ|Tcλ(1)c†λ(2)|φ〉 (7.111)

Example 7.12: Show using the generating function, that in the presence of a source
term,

〈cλ(t′)〉 =

∫
dt′Gλ(t− t′)η(t′).

7.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propagator contained a single pole, at
ω = ǫk. What happens to the propagator when we turn on the interactions? Remarkably it
retains its same general analytic structure, excepting that now, the single pole divides into
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a plethora of poles, each one corresponding to an excitation energy for adding, or removing
a particle from the ground-state. The general result, is that

G(k, ω) =
∑

λ

|Mλ(k)|2
ω − ǫλ + iδλ

(7.112)

where δλ = δsign(ǫλ) and the total pole strength

∑

λ

|Mλ(k)|2 = 1 (7.113)

is unchanged. Notice how the positive energy poles of the Green function are below the real
axis at ǫλ − iδ, while the negative energy poles are below the real axis, preserving the pole
structure of the non-interacting Green’s function.

If the ground-state is an N particle state, then the state |λ〉 is either an N + 1, or
N − 1 particle state. The poles of the Green function are given by related to the excitation
energies Eλ − Eg > 0 according to

ǫλ =

{
Eλ − Eg > 0 (|λ〉 ∈ |N + 1〉)
−1× (Eλ − Eg) < 0 (|λ〉 ∈ |N − 1〉) , (7.114)

and the corresponding matrix elements are

Mλ(k) =





〈λ|c†kσ|φ〉, (|λ〉 ∈ |N + 1〉),

〈λ|ckσ|φ〉, (|λ〉 ∈ |N − 1〉).
(7.115)

Notice that the excitation energies Eλ−Eg > 0 are always positive, so ǫλ > 0 measures the
energy to add and electron, while ǫλ < 0 measures −1× the energy to create a hole state.

In practice, the poles in the interacting Green function blur into a continuum of ex-
citation energies, with an infinitesimal separation. To deal with this situation, we define
a quantity known as the spectral function, given by the imaginary part of the Green’s
function,

A(k, ω) =
1

π
ImG(k, ω − iδ), Spectral Function (7.116)

By shifting the frequency ω by a small imaginary part which is taken to zero at the end of
the calculation, overriding the δλ in (7.112), all the poles of G(k, ω − iδ) are moved above
the real axis. Using Cauchy’s principle part equation, 1/(x− iδ) = P (1/x) + iπδ(x), where
P denotes the principal part, we can use the spectral representation (7.112) to write

A(k, ω) =
∑

λ

|Mλ(k)|2δ(ω − ǫλ)

=
∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ω) + 〈λ|ckσ|φ〉|2θ(−ω)

]
δ(|ω| − (Eλ − Eg)) (7.117)
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where now, the normalization of the pole-strengths means that

∫ ∞

−∞
A(k, ω)dω =

∑

λ

|Mλ(k)|2 = 1 (7.118)

Since the excitation energies are positive, Eλ − Eg > 0 from (7.114) it follows that ǫλ is
positive for electron states and negative for hole states, so

A(k, ω) = θ(ω)ρe(k, ω) + θ(−ω)ρh(k,−ω) (7.119)

where

ρe(ω) =
∑

λ

|〈λ|c†kσ|φ〉|2δ(ω − (Eλ − Eg)) (ω > 0) (7.120)

and

ρh(ω) =
∑

λ

|〈λ|ckσ|φ〉|2δ(ω − (Eg − Eλ)) (ω > 0) (7.121)

are the spectral functions for adding or holes of energy ω to the system respectively. To a
good approximation, in high energy spectroscopy, ρe,h(k, ω) is directly proportional to the
cross-section for adding, or removing an electron of energy |ω| to the material. Photoemis-
sion and inverse photoemission experiments can, in this way, be used to directly measure
the spectral function of electronic systems.

To derive this spectral decomposition, we suppose that we know the complete Hilbert
space of energy eigenstates {|λ〉}. By injecting the completeness relation

∑ |λ〉〈λ| = 1
between the creation and annihilation operators in the Green’s function, we can expand it
as follows

G(k, t) = −i
[
〈φ|ckσ(t)c†kσ(0)|φ〉θ(t)− 〈φ|c†kσ(0)ckσ(t)|φ〉θ(−t)

]

= −i
∑

λ

[
〈φ|ckσ(t)

=1︷ ︸︸ ︷
|λ〉〈λ| c†kσ(0)|φ〉θ(t)− 〈φ|c†kσ(0)

=1︷ ︸︸ ︷
|λ〉〈λ| ckσ(t)|φ〉θ(−t)

]

By using energy eigenstates, we are able to write

〈φ|ckσ(t)|λ〉 = 〈φ|eiHtckσe−iHt|λ〉 = 〈φ|ckσ|λ〉ei(Eg−Eλ)t

〈λ|ckσ(t)|φ〉 = 〈λ|eiHtckσe−iHt|φ〉 = 〈λ|ckσ|φ〉ei(Eλ−Eg)t (7.122)

Notice that the first term involves adding a particle of momentum k, spin σ, so that the
state |λ〉 = |N + 1;kσ〉 is an energy eigenstate with N + 1 particles, momentum k and spin
σ. Similarly, in the second matrix element, a particle of momentum k, spin σ has been
subtracted, so that |λ〉 = |N − 1;−k − σ〉. We can thus write the Green’s function in the
form:

G(k, t) = −i
∑

λ

[
|〈λ|c†kσ|φ〉|2e−i(Eλ−Eg)tθ(t)− |〈λ|ckσ|φ〉|2e−i(Eg−Eλ)tθ(−t)

]
,
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where we have simplified the expression by writing 〈φ|ckσ|λ〉 = 〈λ|c†kσ|φ〉∗ and 〈λ|ckσ|φ〉 =
〈φ|c†kσ|λ〉∗. This has precisely the same structure as a non-interacting Green’s function,
except that ǫk → Eλ −Eg in the first term, and ǫk → Eg −Eλ in the second term. We can
use this observation to carry out the Fourier transform, whereapon

G(k, ω) =
∑

λ

[
|〈λ|c†kσ|φ〉|2

ω − (Eλ − Eg) + iδ
+

|〈λ|ckσ|φ〉|2
ω − (Eg − Eλ)− iδ

]
(7.123)

which is the formal expansion of (7.112).
To show that the total pole-strength is unchanged by interactions, we expand the sum

over pole strengths, and then use completeness again, as follows
∑

λ

|Mλ(k)|2 =
∑

λ

|〈λ|c†kσ|φ〉|2 + |〈λ|ckσ|φ〉|2

=
∑

λ

〈φ|ckσ
=1︷ ︸︸ ︷
|λ〉〈λ| c†kσ|φ〉+ 〈φ|c†kσ

=1︷ ︸︸ ︷
|λ〉〈λ| ckσ|φ〉

= 〈φ|
=1︷ ︸︸ ︷

{ckσ, c†kσ} |φ〉 = 1 (7.124)

Example 7.13: Using the spectral decomposition, show that the momentum distri-
bution function in the ground-state of a translationally invariant system of fermions is
given the integral over the “filled” states

∑

σ

〈c†kσckσ〉 = (2S + 1)

∫ 0

−∞
dωA(k, ω)

Solution: Let us first write the occupancy in terms of the one-particle Green’s function
evaluated at time t = 0−

〈nkσ〉 = 〈φ|nkσ|φ〉 = −i×−i〈φ|Tckσ(0−)c†kσ(0)|φ〉 = −iG(k, 0−),

Now using the spectral representation, (7.123),

〈nkσ〉 = −iG(k, 0−) =
∑

λ

|〈λ|ckσ|φ〉|2 =
∑

λ

|Mλ(k)|2θ(−ǫλ)

since |Mλ(k)|2 = |〈λ|ckσ|φ〉|2 for ǫλ < 0. This is just the sum over the negative energy
part of the spectral function. Now since A(k, ω) =

∑
λ |Mλ(k)|2δ(ω − ǫλ), it follows

that at absolute zero,

∫ 0

−∞
dω(k, ω) =

∑

λ

|Mλ(k)|2

θ(−ǫλ)︷ ︸︸ ︷∫ 0

−∞
dωδ(ω − ǫλ) =

∑

λ

|Mλ(k)|2θ(−ǫλ).

so that ∑

σ

〈nkσ〉 = (2S + 1)

∫ 0

−∞

dω

π
A(k, ω).
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Example 7.14: Show that the zero temperature Green’s function can be written in
terms of the Spectral function as follows:

G(k, ω) =

∫
dǫ

1

ω − ǫ(1− iδ)A(k, ǫ).

Solution: Introduce the relationship 1 =
∫
dǫδ(ǫ−(Eλ−Eg)) and 1 =

∫
dǫδ(ǫ+(Eλ−Eg))

into (7.123) to obtain

G(k, ω) =

∫
dǫ

1

ω − ǫ+ iδ

∑

λ

|〈λ|c†kσ|φ〉|2δ(ǫ− (Eλ − Eg))

+

∫
dǫ

1

ω − ǫ− iδ
∑

λ

|〈λ|ckσ|φ〉|2δ(ǫ+ (Eλ − Eg)). (7.125)

Now in the first term, ǫ > 0, while in the second term, ǫ < 0nn, enabling us to rewrite
this expression as

G(k, ω) =

∫
dǫ

1

ω − ǫ(1− iδ)

A(k,ǫ)︷ ︸︸ ︷∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ǫ) + |〈λ|ckσ|φ〉|2θ(−ǫ)

]
δ(|ǫ| − (Eλ − Eg)) .

giving the quoted result.

7.4 Many particle Green’s functions

The n-particle Green’s function determines the amplitude for n-particles to go from one
starting configuration to another:

initial particle positions︷ ︸︸ ︷
{1′, 2′ . . . n′} G−→

final particle positions︷ ︸︸ ︷
{1, 2 . . . n} (7.126)

where 1′ ≡ (x′, t′), etc. and 1 ≡ (x, t), etc.. The n-particle Green’s function is defined as

G(1, 2, . . . n; 1′, 2′, . . . n′) = (−i)n〈φ|Tψ(1)ψ(2) . . . ψ(n)ψ†(n′) . . . ψ†(1′)|φ〉

and represented diagramatically as

G(1, 2, . . . n; 1′, 2′, . . . n′) = 2

1 1’

n n’

2’
G

(7.127)
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In systems without interactions, the n-body Green’s function can always be decomposed
in terms of the one-body Green’s function, a result known as “Wick’s theorem”. This is
because particles propagate without scattering off one-another. Suppose a particle which
ends up at r comes from location P ′r, where Pr is the r-th element of a permutation P of
(1, 2, . . . n). The amplitude for this process is

G(r− P ′r) (7.128)

and the overall amplitude for all n-particles to go from locations P ′r to positions r is then

ζpG(1− P ′1)G(2− P ′2) . . . G(n− P ′n) (7.129)

where ζ = ± for bosons (+) and fermions (-) and p is the number of pairwise permutations
required to make the permutation P . This prefactor arises because for fermions, every
time we exchange two of them, we pick up a minus sign in the amplitude. Wick’s theorem
states the physically reasonable result that the n-body Green’s function of a non-interacting
system is given by the sum of all such amplitudes:

G(1,2, . . .n;1′,2′, . . .n′) =
∑

ζP
∏

r=1,n

G(r− P ′r) (7.130)

For example, the two-body Green’s function is given by

G(1,21′,2′) = G(1,1′)G(2,2′)±G(1,2′)G(2,1′)

1

2

1’

2’

G =

2 2’

1’1
±

1 1’

2 2’

The process of identifying pairs of initial, and final states in the n-particle Green’s function
is often referred to as a “contraction”. When we contraction two field operators inside a
Green’s function, we associate an amplitude with the contraction as follows

〈0|T [. . . ψ(1) . . . ψ†(2) . . .]|0〉 −→ 〈0|T [ψ(1)ψ†(2)]|0〉 = iG(1− 2)

〈0|T [. . . ψ†(2) . . . ψ(1) . . .]|0〉 −→ 〈0|T [ψ†(2)ψ(1)]|0〉 = ±iG(1− 2)
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Each product of Green’s functions in the Wick-expansion of the propagator is a particular
“contraction” of the n-body Green’s function, thus(�i)nh0jT [ (1) (2) : : :  (n) : : :  y(P02) : : :  y(P01) : : :  y(P0n)℄j0i

= ζPG(1− P ′1)G(2− P ′2) . . . G(n− P ′n) (7.131)

where now P is just the number of times the contraction lines cross-one another. Wick’s
theorem then states that the n-body Green’s function is given by the sum over all possible
contractions

(−i)n〈φ| T ψ(1)ψ(2) . . . ψ†(n′)|φ〉 =

∑

All contractions

(�i)nh0jT [ (1) (2) : : :  (n) : : :  y(P02) : : :  y(P01) : : :  y(P0n)℄j0i
Example 7.15: Show how the expansion of the generating functional in the absence
of interactions can be used to derive Wick’s theorem.

7.5 Exercises for chapter 7

1. A particle with S = 1/2 is placed in a large magnetic field ~B = (B1 cos(ωt), B1 sin(ωt), Bo),
where Bo >> B1.

(a) Treating the oscillating part of the Hamiltonian as the interaction, write down the Schrödinger
equation in the interaction representation.

(b) Find U(t) = T exp

[
−iHint(t

′)dt′
]

by whatever method proves most convenient.

(c) If the particle starts out at time t = 0 in the state Sz = − 1
2 , what is the probability it is

in this state at time t ?

2. (Optional derivation of bosonic generating functional.) Consider the forced Harmonic oscilla-
tor

H(t) = ωb†b+ z̄(t)b+ b†z(t) (7.132)

where z(t) and z̄(t) are arbitrary, independent functions of time. Consider the S-matrix

S[z, z̄] = 〈0|TŜ(∞,−∞)|0〉 = 〈0|Texp

(
−i
∫ ∞

−∞
dt[z̄(t)b(t) + b̄(t)†z(t)]

)
|0〉, (7.133)
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where b̂(t) denotes b̂ in the interaction representation. Consider changing the function z̄(t) by
an infinitesimal amount

z̄(t)→ z̄(t) + ∆z̄(to)δ(t− to), (7.134)

The quantity

lim
∆z̄(to)→0

∆S[z, z̄]

∆z̄(to)
=
δS[z, z̄]

δz̄(to)

is called the “functional derivative” of S with respect to z̄. Using the Gell-Man Lowe formula

〈ψ(t)|b|ψ(t)〉 = 〈0|TŜ(∞,−∞)b(t)|0〉
〈0|TŜ(∞,−∞)|0〉 prove the following identity

iδlnS[z, z̄]/δz̄(t) ≡ b̃(t) = 〈b̂(t)〉 = 〈ψ(t)|b̂|ψ(t)〉. (7.135)

(ii) Use the equation of motion to show that

∂

∂t
b̃(t) = i〈[H(t), b̂(t)]〉 = −i[ǫb̃(t) + z(t)].

(iii) Solve the above differential equation to show that

b̃(t) =

∫ ∞

−∞
G(t− t′)z(t′) (7.136)

where G(t− t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free Green’s function for the harmonic oscillator.

(iv) Use (iii) and (i) together to obtain the fundamental result

S[z, z̄] = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
(7.137)

3. (Harder problem for extra credit).

Consider a harmonic oscillator with charge e, so that an applied field changes the Hamiltonian
H → Ho− eE(t)x̂, where x is the displacement and E(t) the field. Let the system initially be
in its ground-state, and suppose a constant electric field E is applied for a time T .

(i) Rewrite the Hamiltonian in the form of a forced Harmonic oscillator

H(t) = ωb†b+ z̄(t)b+ b†z(t) (7.138)

and show that

z(t) = z̄(t) =

{
ωα (T > t > 0)

0 (otherwise)
, (7.139)

deriving an explicit expression for α in terms of the field E, mass m, and frequency ω of the
oscillator.

(ii) Use the explicit form of S(z̄, z)

S[z, z̄] = exp

[
−i
∫ ∞

−∞
dtdt′z̄(t)G(t− t′)z(t′)

]
(7.140)

where G(t − t′) = −i〈0|T [b(t)b†(t′)]|0〉 is the free bosonic Green-function, to calculate the
probability p(T ) that the system is still in the ground-state after time T . Please express your
result in terms of α, ω and T . Sketch the form of p(T ) and comment on your result.
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Chapter 8

Landau Fermi Liquid Theory

8.1 Introduction

One of the remarkable features of a Fermi fluid, is its robustness against perturbation. In
a typical electron fluid inside metals, the Coulomb energy is comparable with the electron
kinetic energy, constituting a major perturbation to the electron motions. Yet remarkably,
the non-interacting model of the Fermi gas reproduces many qualitative features of metal-
lic behavior, such as a well-defined Fermi surface, a linear specific heat capacity, and a
temperature-independent paramagnetic susceptibility. Such “Landau Fermi liquid behav-
ior” appears in many contexts - in metals at low temperatures, in the core of neutron stars,
in liquid Helium-3 and most recently, it has become possible to create Fermi liquids with
tunable interactions in atom traps. As we shall see, our understanding of Landau Fermi
liquids is intimately linked with the idea of adiabaticity introduced in the last chapter.

In the 1950’s, physicists on both sides of the Iron curtain pondered the curious robust-
ness of Fermi liquid physics against interactions. In Princeton New Jersey, David Bohm
and David Pines, carried out the first quantization of the interacting electron fluid, propos-
ing that the effects of long-range interactions are absorbed by a canonical transformation
that separates the excitations into a high frequency plasmon and a low frequency fluid of
renormalized electrons[?]. On the other side of the world, Lev Landau at the Kapitza Low
Temperature Institute in Moscow, came to the conclusion that the robustness of the Fermi
liquid is linked with the idea of adiabaticity and the Fermi exclusion principle[?].

At first sight, the possibility that an almost free Fermi fluid might survive the effect
of interactions seems hopeless. With interactions, a moving fermion decays by emitting
arbitrary numbers of low-energy particle-hole pairs, so how can it ever form a stable particle-
like excitation? Landau realized that a fermion outside the Fermi surface can not scatter
into an occupied momentum state below the Fermi surface, so the closer it is to the Fermi
surface, the smaller the phase space available for decay. We will see that as a consequence,
the inelastic scattering rate grows quadratically with excitation energy ǫ and temperature

τ−1(ǫ) ∝ (ǫ2 + π2T 2).
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In this way, particles at the Fermi energy develop an infinite lifetime. Landau named these
long-lived excitations “quasi-particles”. “Landau Fermi liquid theory”[?, ?, ?, ?] describes
the collective physics of a fluid of these quasiparticles.

It was a set of experiments on liquid Helium-3 (3He), half a world away from Moscow,
that helped to crystallize Landau’s ideas. In the aftermath of the Second World War,
the availability of isotopically pure 3He as a byproduct of the Manhattan project, made
it possible, for the first time, to experimentally study this model Fermi liquid. The first
measurements were carried at Duke University in North Carolina, by Fairbank, Ard and
Walters. [?]. While Helium-4 atoms are bosons, atoms of the much rarer isotope, He − 3
are spin-1/2 fermions. These atoms contain a neutron and two protons in the nucleus,
neutralized by two orbital electrons in a singlet state, forming a composite, neutral fermion.
3He is a much much simpler quantum fluid than the electron fluid of metals:

• without a crystal lattice, liquid 3He is isotropic and enjoys the full translational and
Gallilean symmetries of the vacuum.

• 3He atoms are neutral, interacting via short-range interactions, avoiding the compli-
cations of a long-range Coulomb interaction in metals.

Prior to Landau’s theory, the only available theory of a degenerate Fermi liquid was
Sommerfeld’s model for non-interacting Fermions. A key property of the non-interacting
Fermi-liquid, is the presence of a large, finite density of single-particle excitations at the
Fermi energy, given by 1

N(0) = 2
(4π)p2

(2πh̄)3
dp

dǫp

∣∣∣∣∣
p=pF

=
mpF

π2h̄3 . (8.1)

The argument of N(ǫ) is the energy ǫ = E − µ measured relative to the chemical potential,
µ. The density of states per unit volume, per spin is N(0)/2. A magnetic field splits the
“up” and “down” Fermi surfaces, shifting their energy by an amount −σµFB, where σ = ±1
and µF = g

2
eh̄
2m is half the product of the Bohr magneton for the fermion and the g-factor

associated with its spin. The number of “up” and “down fermions is thereby changed by
an amount δN↑ = −δN↓ = 1

2N(0)(µFB), inducing a net magnetization M = χB where,

χ = µF(N↑ −N↓)/B = µ2
FN(0) (8.2)

is the “Pauli paramagnetic susceptibility”. For electrons, g ≈ 2 and µF ≡ µB = eh̄
2m is the

Bohr magneton, so the Pauli susceptibility of a free electron gas is µ2
BN(0).

In a degenerate Fermi liquid, the energy is given by

E(T ) = E(T )− µN =
∑

kσ=±1/2

ǫk
1

eβǫk + 1
(8.3)

1Note: In the discussion that follows, we shall normalize all extensive properties per unit volume, thus
the density of states, N(ǫ) the specific heat CV , or the magnetization M , will all refer to those quantities,
per unit volume.
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Here, we use the notation E = E − µN to denote the energy measured in the grand-
canonical ensemble. The variation of this quantity at low temperatures (where to order T 2,
the chemical potential is constant ) depends only on the free-particle density of states at
the Fermi energy, N(0). The low temperature specific heat

CV =
dE
dT

= N(0)

∫ ∞

−∞
dǫǫ

d

dT

(
1

eβǫ + 1

)

= N(0)k2
BT

π2/3︷ ︸︸ ︷∫ ∞

−∞
dx

x2

(ex + 1)(e−x + 1)
=

=γ︷ ︸︸ ︷
π2

3
N(0)k2

B T (8.4)

is linear in temperature. Since both the specific heat, and the magnetic susceptibility are
proportional to the density of states, the ratio of these two quantities W = χ/γ, often called
the Wilson ratio or “Stoner enhancement factor”, is set purely by the size of the magnetic
moment:

W =
χ

γ
= 3

(
gµF

2πkB

)2

(8.5)

Fairbank, Ard and Walters’ experiment confirmed the Pauli paramagnetism of liquid
in Helium-3, but the measured Wilson ratio is about ten times larger than predicted by
Sommerfeld theory. Landau’s explanation of these results is based on the idea that one can
track the evolution of the properties of the Fermi liquid by adiabatically switching on the
interactions. He considered a hypothetical gas of non-interacting Helium atoms with no
forces of repulsion between for which Sommerfeld’s model would certainly hold. Suppose
the interactions are now turned on slowly. Landau argued that since the fermions near the
Fermi surface had nowhere to scatter to, the low-lying excitations of the Fermi liquid would
evolve adiabatically, in the sense discussed in the last chapter, so that that each quantum
state of the fully-interacting liquid Helium-3, would be in precise one-to-one correspondence
with the states of the idealized “non-interacting” Fermi-liquid.[?]

8.2 The Quasiparticle Concept

The “quasiparticle” concept is a triumph of Landau’s Fermi liquid theory, for it enables
us to continue using the idea of an independent particle, even in the presence of strong
interactions; it also provides a framework for understanding the robustness of the Fermi
surface while accounting for the effects of interactions.

A quasiparticle is the adiabatic evolution of the non-interacting fermion into an inter-
acting environment. The conserved quantum numbers of this excitation: its spin and its
“charge” and its momentum are unchanged but Landau reasoned that that its dynamical
properties, the effective magnetic moment and mass of the quasiparticle would be “ renor-
malized” to new values g∗ and m∗ respectively. Subsequent measurements on 3He[?, ?]
revealed that the quasiparticle mass and enhanced magnetic moment g∗ are approximately

m∗ = (2.8)m(He3),
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(g∗)2 = 3.3(g2)(He3). (8.6)

These “renormalizations” of the quasiparticle mass and magnetic moment are elegantly
accounted for in Landau Fermi liquid theory in terms of a small set of “Landau parameters”
which characterize the interaction, as we now shall see.

Figure 8.1: In the non-interacting Fermi liquid (a), a stable particle can be created any-
where outside the Fermi surface, a stable hole excitation anywhere inside the Fermi surface.
(b) When the interactions are turned on adiabatically, particle excitations near the Fermi
surface adiabatically evolve into “quasiparticles”, with the same charge, spin and momen-
tum. Quasiparticles and quasi-holes are only well defined near the Fermi surface of the
Landau Fermi Liquid.

Let us label the momentum of each particle in the original non-interacting Fermi liquid
by ~p and spin component σ = ±1/2. The number of fermions momentum ~p, spin component
σ, npσ, is either one, or zero. The complete quantum state of the non-interacting system is
labeled by these occupancies. We write

Ψ = |np1σ1 , np2σ2 , . . .〉 (8.7)

In the ground-state, Ψo all states with momentum p less than the Fermi momentum are
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occupied, all states above the Fermi surface are empty

Ground− state Ψo : npσ =

{
1 (p < pF)
0 (otherwise p > pF)

(8.8)

Landau argued, that if one turned on the interactions infinitely slowly, then this state
would evolve smoothly into the ground-state of the interacting Fermi liquid. This is an
example of the adiabatic evolution encountered in the previous chapter. For the adiabatic
evolution to work, the Fermi liquid ground-state has to remain stable. This is a condition
that certainly fails when the system undergoes a phase transition into another ground-state,
a situation that may occur at a certain critical interaction strength. However, up to this
critical value, the adiabatic evolution of the ground-state can take place. The energy of the
final ground-state is unknown, but we can call it E0.

Suppose we now add a fermion above the Fermi surface of the original state. We can
repeat the the adiabatic switch-on of the interactions, but it is a delicate procedure for an
excited state, because away from the Fermi surface, an electron can decay by emitting low-
energy particle-hole pairs which disipates its energy in an irreversible fashion. To avoid this
irreversibility, the lifetime of the particle τe must be longer than the adiabatic “switch-on”
time τA = ǫ−1 encountered in (7.88), and since this time becomes infinite, strict adiabaticity
is only possible for excitations that lie on the Fermi surface, where τe is infinite. A practical
Landau Fermi liquid theory requires that we consider excitations that are a finite distance
away from the Fermi surface, and when we do this, we tacitly ignore the finite lifetime of
the quasiparticles. By doing so, we introduce an error of order τ−1

e /ǫp. This error can
be made arbitrarily small, provided we restrict our attention to small perturbations to the
ground-state.

Adiabatic evolution conserves the momentum of the quasiparticle state, which will then
evolve smoothly into a final state that we can label as:

Quasi− particle : Ψpoσo npσ =

{
1 (p < pF and p = po, σ = σo)
0 (otherwise)

(8.9)

This state has total momentum po where |po| > pF and an energy E(po) > Eo larger than
the ground-state. It is called a “quasiparticle-state” because it behaves in almost every
respect like a single particle. Notice in particular, that the the Fermi surface momentum pF
is preserved by the adiabatic introduction of interactions. Unlike free particles however, the
Landau quasiparticle is only a well-defined concept close to the Fermi surface. Far from the
Fermi surface, quasiparticles develop a lifetime, and once the lifetime is comparable with
the quasiparticle excitation energy, the quasiparticle concept loses its meaning.

The energy required to create a single quasiparticle, is

E(0)
po

= E(po)− Eo (8.10)

where the superscript (0) denotes a single excitation in the absence of any other quasiparti-
cles. We shall mainly work in the Grand canonical ensemble, using E = E −µN in place of
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the absolute energy, where µ is the chemical potential, enabling us to explore the variation
of the energy at constant particle number N . The corresponding quasiparticle excitation
energy is then

ǫ(0)po
= E(0)

po
− µ = E(po)− Eo. (8.11)

Notice, that since |p0| > pF , this energy is positive.

In a similar way, we can also define a “quasi-hole” state, in which a quasiparticle is
removed the Fermi sea,

Quasi− hole : Ψpoσo npσ =

{
1 (p < pF except when p = po, σ = σo)
0 (otherwise)

,(8.12)

where the bar is used to denote the hole and now, |po| < pF is beneath the Fermi surface.
The energy of this state is E(po) = Eo − Ep0 , since we have removed a particle. Now the
change in particle number is ∆N = −1, so the the excitation energy of a single quasi-hole,
measured in the Grand Canonical ensemble, is then

ǫ(0)po = −E(0)
po
− µ∆N = −E(0)

po
+ µ = −ǫ(0)po

, (8.13)

i.e the energy to create a quasihole is the negative of the corresponding quasiparticle energy
ǫpo . Of course, when |po| < pF , ǫpo < 0 so that the quasihole excitation energy ǫ(0)po is
always positive, as required for a stable ground-state. In this way, the energy to create a
quasihole, or quasiparticle is always given by |ǫpo |, independently of whether po is above,
or below the Fermi surface.

The quasiparticle concept would be of limited value if it was limited to individual exci-
tations. At a finite temperature, a dilute gas of these particles is excited around the Fermi
surface and these particles interact. How can the particle concept survive once one has a
finite density of excitations? Landau’s appreciation of a very subtle point enabled him to
answer this question. He realized that the amount of momentum that two particles can
exchange in a collision while satisfying the exclusion principle goes to zero for particles that
are on the Fermi surface:

(p1,p2)→ (p1 − q,p2 + q) (q = 0 on Fermi surface.) (8.14)

On the Fermi surface, particles only scatter in the forward direction, so in the low-energy
limit, the number of particles at a given momentum is becomes a constant of the motion.

8.3 The Neutral Fermi liquid

These physical considerations led Landau to conclude that the energy of a gas of quasipar-
ticles could be expressed as a functional of the quasiparticles occupancies npσ. Following
Landau, we shall develop the Fermi liquid concept using an idealized “neutral” Landau
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Fermi liquid, like He−3, in which the quasiparticles move in free space, interacting isotrop-
ically via a short range interaction, forming a neutral fluid.

If the density of quasiparticles is low, it is sufficient to expand the energy in the small

deviations in particle number δnpσ = npσ−n(o)
pσ from equilibrium. This leads to the Landau

energy functional E({npσ}) = E({npσ})− µN , where

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1

2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′ + . . . . (8.15)

The first order coefficient

ǫ(0)pσ ≡ E(0)
pσ − µ =

δE
δnpσ

(8.16)

describes the excitation energy of an isolated quasiparticle. Provided we can ignore spin-
orbit interactions, then the total magnetic moment is a conserved quantity, so the magnetic

moments of the quasiparticles are preserved by interactions. In this case, ǫ
(0)
pσ = ǫ

(0)
p −σµFB,

where µF is the un-renormalized magnetic moment of an isolated fermion.
The quasiparticle energy can be expanded linearly in momentum near the Fermi surface

E(0)
p = vF (p− pF ) + µ(0), (8.17)

where vF is the Fermi velocity at the Fermi energy µ(0), where µ0 is the chemical potential
in the ground-state. The quasiparticle effective mass m∗ is then defined in terms of vF as

vF =
dǫ

(0)
p

dp

∣∣∣∣∣
p=pF

=
pF
m∗

. (8.18)

We can use this mass to define a quasiparticle density of states

N∗(ǫ) = 2
∑

p

δ(ǫ− ǫ(0)p ) = 2

∫
4πp2dp

(2πh̄)3
δ(ǫ− ǫ(0)p ) =

p2

π2h̄3

dp

dǫ0p
. (8.19)

Using (8.18), it follows that

N∗(0) =
m∗pF
π2h̄3 . (8.20)

In this way, the effective mass m∗ determines the density of states at the Fermi energy:
large effective masses lead to large densities of states.

The second-order coefficients

fpσ,p′σ′ =
δ2E

δnpσδnp′σ′

∣∣∣∣∣
δnp′′σ′′ = 0

(8.21)

describe the interactions between quasiparticles at the Fermi surface. These partial deriva-
tives are evaluated in the presence of an otherwise “frozen” Fermi sea, where all other
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quasiparticle occupancies are fixed. Landau was able to show that in an isotropic Fermi
liquid, the quasiparticle mass m∗ is related to the dipolar component of these interactions,
as we shall shortly demonstrate. The Landau interaction can be regarded as an interaction
operator that acts on a the thin shell of quasiparticle states near the Fermi surface. If
n̂pσ = ψ†pσψpσ is the quasiparticle occupancy, where ψ†pσ is the quasiparticle creation
operator, then one is tempted to write

HI ∼
1

2

∑

pσp′σ′

fpσ,p′σ′ n̂pσn̂p′σ′ .

Written this way, we see that the Landau interaction term is a “forward scattering ampli-
tude” between quasiparticles whose initial and final momenta are unchanged. In practice,
one has to allow for slowly varying quasiparticle densities, npσ(x), writing

HI ∼
1

2

∫
d3x

∑

pσp′σ′

fpσ,p′σ′ n̂pσ(x)n̂p′σ′(x).

where npσ(x) is the local quasiparticle density. Using the Fourier transformed density
operator n̂pσ(q) = ψ†p−q/2σψp+q/2σ =

∫
x e
−iq·xnpσ(x), a more correct formulation of the

Landau interaction is

HI =
1

2

∑

pσp′σ′,|q|<Λ

fpσ,p′σ′(q)n̂pσ(q)n̂p′σ′(−q). (8.22)

where Λ is a cutoff that restricts the momentum transfer to values smaller than the thickness
of the shell of quasiparticles. The Landau coefficients for the neutral Fermi liquid are then
the zero momentum limit fpσ,p′σ′ = fpσ,p′σ′(q = 0). The existence of such a limit requires
that the interaction has a finite range, so that the its Fourier transform at q = 0 is well-
defined. This requirement is met in neutral Fermi liquids, however the Coulomb interaction
does not meet this requirement. The extension of Landau’s Fermi liquid concept to charged
Fermi liquids requires that we separate out the long-range part of the Coulomb interaction
- a point that will be returned to later.

Interactions mean that quasiparticle energies are sensitive to changes in the quasiparticle
occupancies. Suppose the quasiparticle occupancies deviate from the ground-state as follows
npσ → npσ + δnpσ. The corresponding change in the total energy is then

δE
δnpσ

= ǫpσ ≡ Epσ − µ = ǫ(0)pσ +
∑

p′σ′

fpσ,p′,σ′δnp′σ′ . (8.23)

The second-term is change in the quasiparticle energy induced by the polarization of the
Fermi sea.

To determine thermodynamic properties of the Landau Fermi liquid we also need to
know the entropy of the fluid. Fortunately, when we turn on interactions adiabatically, the
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entropy is invariant, so that it must maintain the dependence on particle occupancies that
it has in the non-interacting system, i.e.

S = −kB
∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)] (8.24)

The full thermodynamics are determined by the the Free energy F = E−TS = E−µN−TS,
which is the sum of (8.15) and (8.24).

F ({npσ}) = E0(µ) +
∑

pσ

ǫ(0)pσδnpσ +
1

2

∑

p,p′,σ,σ′

fpσ,p′σ′δnpσδnp′σ′

+ kBT
∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)] (8.25)

Free energy of Landau Fermi Liquid.

Example 8.16: Use first order perturbation theory to calculate the Landau interaction
parameters for a fluid of fermions with a weak interaction described by

H =
∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′,q

V (q)c†p−qσc
†
p′+qσ′cp′σ′cpσ

where Ep is the energy of the non-interacting Fermi gas, V (q) =
∫

d3q
(2π)3 e

−iq·rV (r) is

the Fourier transform of the interaction potential V (r) and λ << 1 is a very small
coupling constant. Hint: use first order perturbation theory in λ to compute the energy
of a state

Ψ = |np1σ1
, np2σ2

, . . .〉
to leading order in the interaction strength λ, and then read off the terms quadratic in
npσ.

Solution:

To leading order in λ, the total energy is given by E = 〈Ψ|H|Ψ〉, or

E =
∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′,q

V (q)〈Ψ|c†p−qσc
†
p′+qσ′cp′σ′cpσ|Ψ〉. (8.26)

The matrix element 〈Ψ|c†p−qσc
†
p′+qσ′cp′σ′cpσ|Ψ〉 in the interaction term vanishes un-

less the two quasiparticle state annihilated by the two destruction operators has an
overlap with the two particle state created by the two creation operators, i.e.

〈Ψ|c†p−qσc
†
p′+qσ′cp′σ′cpσ|Ψ〉 = 〈p− q, σ;p′ + q, σ′|p, σ;p′σ′〉npσnpσ′

=

(
δq=0 − δp−q,p′δσ,σ′

)
npσnpσ′ (8.27)
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−V (p− p′)δσσ′

pσ

q = 0

pσ

+

V (q = 0)

p′σ′ pσ

q = p− p′

p′σ′ pσ

p′σ′

p′σ′

fpσ,p′σ′ = V (q = 0)− V (p− p′)δσσ′

Figure 8.2: Feynman diagrams for leading order contributions to the Landau parameter
for an interaction V (q). Wavy line represents the interaction between quasiparticles.

where the second term occurs when the outgoing state is the “exchange” of the incoming
two-quasiparticle state.

Inserting (8.27) into (8.26), we obtain

∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′

[V (0)− V (p− p′)δσσ′ ]np′σ′npσ

enabling us to read off the Landau interaction as

fpσ,p′σ′ = λ
[
V (q = 0)− V (p− p′)δσσ′

]
+O(λ2).

It follows that the symmetric and antisymmetric parts of the interaction parameters are

fsp,p′ = λ
[
V (q = 0)− 1

2
V (p− p′)

]
+O(λ2)

fap,p′ = −λ
2
V (p− p′) +O(λ2). (8.28)

Note that

• The Landau interaction is only well-defined if V (q = 0) is finite, which implies
that the interaction is short-ranged.

• The second term in the interaction corresponds to the “exchange” of identical
particles. For a repulsive interaction, this gives rise to an attractive fa. We can
represent the interaction term by the Feynman diagrams shown in (***).
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Table. 8.1 Key Properties of the Fermi Liquid .

PROPERTY NON-INTERACTING LANDAU FERMI LIQUID

Fermi momentum pF unchanged

Density of particles 2 vFS
(2π)3

unchanged

Density of states N(0) = mpF
π2h̄3 N∗(0) = m∗pF

π2h̄3

Effective mass m m∗ = m(1 + F s1 )

Specific heat Coefficient

CV = γT γ = π2

3 k
2
BN(0) γ = π2

3 k
2
BN

∗(0)

Spin susceptibility χs = µ2
FN(0) χs = µ2

F
N∗(0)
1+Fa0

Charge Susceptibility χC = N(0) χC = N∗(0)
1+F s0

Sound (ωτ << 1)
Collective modes - Zero sound (ωτ >> 1)

Table 8.1 summarizes the key properties of the Landau Fermi liquid.

8.3.1 Landau Parameters

The power of the Landau Fermi liquid theory lies in its ability to parameterize the inter-
actions in terms of a small number of multipole parameters called “Landau Parameters”.
These parameters describe how the original non-interacting Fermi liquid theory is renor-
malized by the feedback effect of interactions on quasiparticle energies.

In a Landau Fermi liquid in which spin is conserved, the interaction is invariant under
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spin rotations and can in general be written in the form 2

fpσ,p′σ′ = fsp,p′ + fap,p′σσ
′. (8.29)

The spin-dependent part of the interaction is the magnetic component of the quasiparticle
interaction.

In practice, we are only interested in quasiparticles with a small excitation energy, so we
only need to know the values of fs,ap,p′ near the Fermi surface, permitting us to set p = pF p̂,
p′ = pF p̂′, where p̂ and p̂′ are the unit vectors on the Fermi surface. In an isotropic Landau
Fermi liquid, the physics is invariant under spatial rotations, so that interactions on the
Fermi surface only depend on the relative angle θ between p̂ and p̂′. We write

fs,ap,p′ = fs,a(cos θ), (cos θ = p̂ · p̂′). (8.30)

We convert the interaction to a dimensionless function by multiplying it with the quasipar-
ticle density of states N∗(0):

F s,a(cos θ) = N∗(0)fs,a(cos θ) (8.31)

These functions can now be expanded as a multipole expansion in terms of Legendre poly-
nomials

F s,a(cos θ) =
∞∑

l=0

(2l + 1)F s,al Pl(cos θ). (8.32)

The coefficients F sl and F al are the Landau parameters. The spin-symmetric components
F sl parameterize the non-magnetic part of the interaction while the spin-antisymmetric
F al define the magnetic component of the interaction. These parameters determine how
distortions of the the Fermi surface are fed-back to modify quasiparticle energies.

We can invert (8.32 ) using the orthogonality relation 1
2

∫ 1
−1 dc Pl(c)Pl′(c) = (2l + 1)−1δl,l′ ,

F s,al = 1
2

∫ 1

−1
dc F s,a(c)Pl(c) ≡ 〈F s,a(Ω̂)Pl(Ω̂)〉Ω̂, (8.33)

where 〈. . .〉Ω̂ denotes an average over solid angle. It is useful to rewrite this angular average
as an average over the Fermi surface. To do this we note that since 2

∑
k δ(ǫk) = N∗(0), the

function 2
N∗(0)δ(ǫk) behaves as a normalized “projector” onto the Fermi surface, so that

F s,al = 〈F s,a(Ω̂)Pl(Ω̂)〉FS =
2

N∗(0)

∑

p′

F s,ap,p′Pl(cos θp,p′)δ(ǫp′), (8.34)

2To see that this result follows from spin rotation invariance, we need to recognize that the quasiparticle
occupancies npσ we have considered are actually the diagonal elements of a quasiparticle density matrix
npαβ . With this modification, the interaction becomes a matrix fpαβ;p′γη whose most general rotationally
invariant form is

fpαβ;p′γη = fs(p,p′)δαβδγη + fa(p,p′)~σαβ · ~σγη.

The diagonal components of this interaction recover the results of (8.29)
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and since F s,ap,p′ = N∗(0)fs,ap,p′ ,

F s,al = 2
∑

p′

fs,ap,p′Pl(cos θp,p′)δ(ǫp′). (8.35)

This form is very convenient for later calculations.

8.3.2 Equilibrium distribution of quasiparticles

Remarkably, despite interactions, the Landau Fermi liquid preserves the equilibrium Fermi-
Dirac momentum distribution. The key idea here is that in thermal equilibrium, the free
energy (8.25) is stationary with respect to small changes δnpσ in quasiparticle occupancies,
so that

δF =
∑

pσ

δnpσ

[
ǫpσ + kBT ln

(
npσ

1− npσ

)]
+O(δnpσ

2) = 0. (8.36)

Stationarity of the Free energy, δF = 0 enforces the thermodynamic identity δF = δE −
TδS = 0, or dE = TdS. This requires that the linear coefficient of δnpσ in (8.36) is zero,
which implies that the quasiparticle occupancy

npσ =
1

eβǫpσ + 1
= f(ǫpσ) (8.37)

is determined by Fermi-Dirac distribution function of its energy. There is a subtlety here
however, for the quantity ǫpσ contains the feedback effect of interactions, as given in (8.23)

ǫpσ = ǫ(0)pσ +
∑

p′σ′

fpσ,p′,σ′δnp′σ′ . (8.38)

Let us first consider the low temperature behavior in the absence of a field. In this
case, as the temperature is lowered, the density of thermally excited quasiparticles will go
to zero, and in this limit, the quasiparticle distribution function is asymptotically given by

npσ = f(ǫ(0)p ).

In the ground-state this becomes a step function npσ|T=0 = θ(−ǫ(0)p ) = θ(µ − E
(0)
p ), as

expected.

To obtain the specific heat, we must calculate CV dT = dE =
∑

p ǫ
(0)
pσδnpσ. At low

temperatures, δnpσ =
∂f(ǫ

(0)
pσ )

∂T dT , so that

CV =
∑

pσ

ǫ(0)pσ

(
∂f(ǫ

(0)
pσ)

∂T

)
→ N∗(0)

∫ ∞

−∞
dǫ ǫ

(
∂f(ǫ)

∂T

)
,

where, as in (8.4) the summation is replaced by an integral over the density of states near
the Fermi surface. Apart from the renormalization of the energies, this is precisely the same
result obtained in (8.4), leading to

CV = γT, γ =
π2k2

B

3
N∗(0) (8.39)
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8.4 Feedback effects of interactions

One can visualize the Landau Fermi liquid as a deformable sphere, like a large water droplet
in zero gravity. The Fermi sphere changes shape when the density or magnetization of the
fluid is modified, or if a current flows. These deformations act back on the quasiparticles via
the Landau interactions, to change the quasiparticle energies. These feedback effects are a
generalization of the idea of a Weiss field in magnetism. When the feedback is positive, it
can lead to instabilities, such as the development of magnetism. A Fermi surface can also
oscillate collectively about its equilibrium shape. In a conventional gas, density oscillations
can not take place without collisions. In a Landau Fermi liquid, we will will see that the
interactions play a non-trivial role that gives rise to “collisionless” collective oscillations of
the Fermi surface called “zero sound” (literally zero-collision sound), that are absent in the
free Fermi gas[?].

To examine the feedback effects of interactions, let us suppose an external potential
or field is applied to induce a polarization of the Fermi surface, as illustrated in Fig. 8.3.
There are various kinds of external field we can consider - a simple change in the chemical
potential

δǫ0pσ = −δµ, (8.40)

which will induce a dipolar enlargement of the Fermi surface, the application of a magnetic
field,

δǫ0pσ = −σµFB. (8.41)

which induces a spin polarization. We can also consider the application of a vector potential
which couples to the quasiparticle current

δǫ0pσ = −A · ep
m
, (8.42)

in a translationally invariant system. Notice how, in each of these cases, the applied field
couples to a conserved quantity (the particle number, the spin and the current), which
is unchanged by turning on the interactions, thereby guaranteeing that the coupling is
identical to that of non-interacting particles. This is the reason for the appearance of the
unrenormalized mass in (8.42). For each of these cases, there will be a feedback effect of
interactions that we now calculate.

From (8.23) the change in the quasiparticle energy will now contain two terms - one
due to direct coupling to the external field, the other derived from the induced polarization
δnpσ of the Fermi surface

δǫpσ = δǫ(0)pσ +
∑

p′σ′

fpσp′σ′δnp′σ′ . (8.43)

In this case, the equilibrium quasiparticle occupancies become

npσ = f(ǫ(0)p + δǫpσ) = f(ǫ(0)p ) + f ′(ǫ(0)p )δǫpσ. (8.44)
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As the temperature is lowered to zero, the derivative of the Fermi function evolves into a
delta function −f ′(ǫ) ∼ δ(ǫ), so that the quasiparticle occupancy is given by

npσ =

n
(0)
pσ︷ ︸︸ ︷

θ(−ǫ(0)p )+

δnpσ︷ ︸︸ ︷
[−δ(ǫ(0)p )δǫpσ] . (8.45)

δnpσ = −δ(ǫ(0)p )δǫpσ represents the polarization of the Fermi surface, which will feed back
into the interaction (8.43) as follows

δnpσ = −δ(ǫ(0)p )δǫpσ

δǫpσ = δǫ(0)pσ +
∑

p′σ′

fpσp′σ′δnp′σ′ .

The resulting shift in the quasiparticle energies must then satisfy the self-consistency rela-
tion:

δǫpσ = δǫ(0)pσ −
∑

p′σ′

fpσp′σ′δ(ǫ
(0)
p′ )δǫp′σ. (8.46)

This feedback process preserves the symmetry of the external perturbation, but its strength
in a given symmetry channel depends on the corresponding Landau paramater. Thus,
isotropic charge and spin polarizations of the Fermi surface shown in Fig 8.3(a) and Fig
8.3(b) are fed back via the isotropic charge and magnetic Landau parameters F s0 and F a0 .
When the quasiparticle fluid is set into motion at velocity ~u, this induces a dipolar polariza-
tion of the Fermi surface, shown in (Fig 8.3 (c)), which is fed-back via the dipolar Landau
parameter F s1 . This process is responsible for the renormalization of the effective mass.

Consider a change in the quasiparticle potential that has a particular multipole symme-
try, so that the “bare” change in quasiparticle energy is

δǫ(0)pσ = vlYlm(p̂) (8.47)

where Ylm is a spherical harmonic. The renormalized response of the quasiparticle energy
given by (8.46) must have the same symmetry, but will have a different magnitude tl:

δǫpσ = tlYlm(p̂). (8.48)

When this is fed back through the interaction, according to (8.46 ), it produces an addi-
tional shift in the quasiparticle energy of given by

∑
p′σ′ fpσ,p′σ′δnp′σ′ = −F sl tlYlm(p̂) (see

exercise below), so that the total change in the energy is given by δǫpσ = (vl−F sl tl)Ylm(p̂).
Comparing this result with (8.48), we see that

tl = (vl − F sl tl). (8.49)
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Figure 8.3: Illustrating the polarization of the Fermi surface by (a) a change in chemical potential

to produce a isotropic charge polarization (b) application of a magnetic field to produce a spin

polarization and (c) the dipolar polarization of the Fermi surface that accompanies a current of

quasiparticles. The Landau parameter governing each polarization is indicated on the right hand

side.

This is the symmetry resolved version of (8.46). Consequently3,

tl =
vl

1 + F sl
. (8.50)

We may interpret tl as the scattering t-matrix associated with the potential vl. If F sl > 0
is repulsive, negative feedback occurs which causes the response to be suppressed. This is
normally the case in the isotropic channel, where repulsive interactions tend to suppress the
polarizability of the Fermi surface. By contrast, if F sl < 0, corresponding to an attractive
interaction, positive feedback enhances the response. Indeed, if F sl drops down to the critical

3Note: in Landau’s original formulation[?], the Landau parameters were defined without the normalizing
factor (2l+ 1) in (8.57). With such a normalization the Fl are a factor of 2l+ 1 larger and one must replace
F sl → 1

2l+1
F sl in (8.50)
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value F sl = −1, an instability will occur and the Landau Fermi surface becomes unstable
to a deformation - a process called a “Pomeranchuk” instbality.

A similar calculation can be carried out for a spin-polarization of the Fermi surface,
where the shift in the quasiparticle energies are

δǫ(0)pσ = σV a
l Ylm(p̂), δǫpσ = σtal Ylm(p̂)

Now, the spin-dependent polarization of the Fermi surface feeds back via the spin-dependent
Landau parameters so that

tal =
V a
l

1 + F al
. (8.51)

The isotropic response (l = 0) corresponds to a simple spin polarization of the Fermi surface.
If spin interactions grow to the point where F a0 = −1, the Fermi surface becomes unstable
to the formation of a spontaneous spin polarization: this is called a “Stoner” instability,
and results in ferromagnetism.

Example 8.17: Calculate the response of the quasiparticle energy to a charge, or spin
polarization with a specific multipole symmetry.

1. Consider a spin-independent polarization of the Fermi surface of the form

δnpσ = Ylm(p̂)× δ(ǫ(0)p )

where Ylm(p̂) is a spherical harmonic. Show that the resulting shift in quasiparticle
energies is given by

δǫpσ = F sl Ylm(p̂).

2. Determine the corresponding result for a magnetic polarization of the Fermi surface
of the form

δnpσ = σYlm(p̂)× δ(ǫ(0)p )

Solution:

According to (8.23), the change in quasiparticle energy due to the polarization of the
Fermi surface is given by

δǫpσ =
∑

p′σ′

fpσ,p′,σ′δnp′σ′ . (8.52)

Substituting δnpσ = Ylm(p̂)× δ(ǫ(0)p ), then

δǫpσ =
∑

p′σ′

fpσ,p′,σ′Ylm(p̂′)× δ(ǫ(0)p′ ). (8.53)

Decomposing the interaction into its magnetic and non-magnetic components fpσ,p′σ′ =
fs(p̂ · p̂′) + σσ′fa(p̂ · p̂′), only the non-magnetic survives the spin summation, so that

δǫpσ = 2
∑

p′

fs(p̂ · p̂′)Ylm(p̂′)× δ(ǫ(0)p′ ). (8.54)
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Replacing the summation over momentum by an angular average over the Fermi surface

2
∑

p′

δ(ǫ
(0)
p′ )→ N∗(0)

∫
dΩp̂′

4π
, (8.55)

we obtain

δǫpσ = N∗(0)

∫
dΩp̂′

4π
fs(p̂ · p̂′)Ylm(p̂′)

=

∫
dΩp̂′

4π
F s(p̂ · p̂′)Ylm(p̂′) (8.56)

Now we can expand the interaction in terms of Legendre polynomials, which can, in
turn be decomposed into spherical harmonics

F s(cos θ) =
∑

l

(2l + 1)F sl Pl(p̂ · p̂′) = 4π
∑

l,m

F sl Ylm(p̂)Y ∗
lm(p̂′) (8.57)

When we substitute this into (8.55) we may use the orthogonality of the spherical
harmonics to obtain

δǫpσ =
∑

l′m′

F sl′Yl′m′(p)

δl′lδm′m︷ ︸︸ ︷∫
dΩp′Y ∗

l′m′(p̂′)Ylm(p′)

= F sl Ylm(p̂). (8.58)

For a spin-dependent polarization, δnpσ = σYlm(p̂)δ(ǫ
(0)
p ) it is the magnetic part of the

interaction that contributes. We can generalize the above result to obtain

δǫpσ = σ × F al Ylm(p̂).

8.4.1 Renormalization of Paramagnetism and Compressibility by inter-
actions

The simplest polarization response functions of a Landau Fermi liquid are its “charge” and
spin susceptibility.

χc =
1

V

∂N

∂µ
, χs =

1

V

∂M

∂B
,

where V is the volume. Here, we use the term “charge” density to refer to the density
response function of the neutral Fermi liquid. These responses involve an isotropic polar-
ization of the Fermi surface. In a neutral fluid, the bulk modulus κ = −V dP

dV is directly

related to the charge susceptibility per unit volume, κ = n2

χc
, where n = N/V is the particle

density. Thus a smaller “charge” susceptibility implies a stiffer fluid. 4

4In a fluid, where −∂F/∂V = P , the extensive nature of the Free energy guarantees that F = −PV ,
so that the Gibbs free energy G = F + PV = 0 vanishes. But dG = −SdT − Ndµ + V dP = 0, so in the
ground-state Ndµ = V dP and hence κ = −V dP

dV

∣∣
N

= −N dµ
dV

∣∣
N

, but µ = µ(N/V ) is a function of particle

density alone, so that −N dµ
dV

∣∣
N

= N2

V
dµ
dN

∣∣
V

= n2

χc
where n = N/V . It follows that κ = n2

χc
.
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When we change the apply a chemical potential or a magnetic field, the “bare” quasi-
particle energies respond isotropically.

δǫ(0)pσ = δE(0)
pσ − δµ = −σµFB − δµ. (8.59)

Feedback via the interactions renormalizes the response of the full quasiparticle energy

δǫpσ = −σλsµFB − λcδµ. (8.60)

Since these are isotropic responses, the feedback is transmitted through the l = 0 Landau
parameters

λs =
1

1 + F a0

λc =
1

1 + F s0
. (8.61)

When we apply a pure chemical potential shift, the resulting change in quasiparticle
number is δN = λcN

∗(0)δµ, so the “charge” susceptibility is given by

χc = λcN
∗(0) =

N∗(0)

1 + F s0
. (8.62)

Typically, repulsive interactions cause F s0 > 0, reducing the charge susceptibility, making
the fluid “stiffer”. In 3He, F s0 = 10.8 at low pressures, which is roughly ten times stiffer
than expected, based on its density of states.

A reverse phenomenon occurs to the spin response of Landau Fermi liquids. In a mag-
netic field, the change in the number of up and down quasiparticles is δn↑ = −δn↓ =
λ
2N
∗(0)µFB. The resulting change in magnetization is δM = µF (δn↑−δn↓) = λsµ

2
FN

∗(0)B,
so the spin susceptibility is

χs = λsµ
2
FN

∗(0) =
µ2

FN
∗(0)

1 + F a0
. (8.63)

There are a number of interesting points to be made here:

• The “Wilson” ratio, defined as the ratio between χs/γ in the interacting and non-
interacting system, is given by

W =

(
χ
γ

)

(
χ
γ

)
0

=
1

1 + F a0
.

In the context of ferromagnetism, this quantity is often referred to as the “Stoner
enhancement factor” In Landau Fermi liquids with strong ferromagnetic exchange
interactions between fermions, F a0 is negative, enhancing the Pauli susceptibility. This
is the origin of the enhancement of the Pauli susceptibility in liquid He − 3, where
W ∼ 4. In palladium metal Pd, W = 10 is even more substantially enhanced[?].
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• When a Landau Fermi liquid is tuned to the point where F a0 → −1, χ → ∞ leading
to a ferromagnetic instability. This instability is called a “Stoner instability”: it is an
example of a ferromagnetic quantum critical point - a point where quantum zero-point
fluctuations of the magnetization develop an infinite range correlations in space and
time. At such a point, the Wilson ratio will diverge.

8.4.2 Mass renormalization

Using this formulation of the interacting Fermi gas, Landau was able to link the renormal-
ization of quasiparticle mass to the dipole component of the interactions F s1 . As the fermion
moves through the medium, the backflow of the surrounding fluid enhances its effective mass
according to the relation

m∗ = m (1 + F s1 ) . (8.64)

Another way to understand quasiparticle mass renormalization, is to consider the current
carried by a quasiparticle. Whether we are dealing with neutral, or physically charged
quasiparticles, the total number of particles is conserved and we can ascribe a particle
current current vF = pF /m

∗ to each quasiparticle. We can rewrite this current in the form

vF =
pF
m∗

=
pF
m︸︷︷︸

bare current

−

backflow︷ ︸︸ ︷
pF
m

(
F s1

1 + F s1

)
. (8.65)

The first term is the bare current associated with the original particle, whereas the second
term is backflow of the surrounding Fermi sea (Fig. 8.4 ).

Backflow

p
m

−p
m


 F s

1
1+F s

1




Figure 8.4: Backflow in the Landau Fermi liquid. The particle current in the absence of

backflow is p
m . Backflow of the Fermi liquid introduces a reverse current −

(
F s1

1+F s1

)
p
m .

“Mass renormalization” increases the density of states from N(0) = mpF
π2 → N∗(0) =

m∗pF
π2 , i.e it has the effect of compressing the the spacing between the fermion energy levels,
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which increases the number of quasi-particles that are excited at a given temperature by a
factor m∗/m: this enhances the linear specific heat.

C∗V =
m∗

m
CV (8.66)

where CV is the Sommerfeld value for the specific heat capacity. Experimentally, the specific
heat of Helium-3 is enhanced by a factor of 2.8, from which we know that m∗ ≈ 3m.

Landau’s original derivation depends on the use of Gallilean invariance. Here we use an
equivalent derivation, based on the observation that backflow is a feedback response to the
dipolar distortion of the Fermi surface which develops in the presence of a current. This
enables us to calculate the mass renormalization in an analogous fashion to the renormal-
ization of the spin susceptibility and compressibility, carried out in (8.4) and (8.4.1), except
that now we must introduce the conjugate field to current - that is, a vector potential.

To this end, we imagine that each quasiparticle carries a conserved charge q = 1, and
that the flow of quasiparticles is coupled to a “fictitious” vector potential qA ≡ AN . The
microscopic Hamiltonian in the presence of the vector potential is then given by

H[AN ] =
∑

σ

∫
d3x

1

2m
ψσ
†(x)

[
(−ih̄∇−AN )2

]
ψσ(x) + V̂ (8.67)

where V̂ contains the translationally invariant interactions. Notice that effect of AN is to
change the momentum of each particle by −AN , so that H[AN ] is in fact, the Hamiltonian
transformed into Gallilean reference frame moving at speed u = AN/m. Landau’s original
derivation did infact use the Gallilean equivalence of the Fermi liquid to compute the mass
renormalization.

Since the vector potential AN is coupled to a conserved quantity - the momentum, we
can treat it in the same way as a chemical potential or magnetic field. The linear term

in AN in the total energy is δĤ = −AN · P̂
m where P̂ is the conserved total momentum

operator. For a non-interaction system the change in the total energy for a small vector
potential at fixed particle occupancies npσ is

δE = 〈δH〉 = −〈P〉
m
·AN = −

∑

pσ

(
p

m
·AN )npσ. (8.68)

Provided the momentum is conserved, this is also the change in the energy of the interacting
Fermi liquid, at fixed quasiparticle occupancy, i.e. without backflow. In this way, we see
that turning on the vector potential changes

ǫ(0)pσ → ǫ(0)pσ + δǫ(0)pσ (8.69)

where

δǫ(0)pσ = − p

m
·AN = −AN

pF
m

cos θ. (8.70)
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Here, θ is the angle between the vector potential and the quasiparticle momentum. Thus
the vector potential introduces a dipolar potential around the Fermi surface. Notice how

the conservation of momentum guarantees it is the bare mass m∗ that enters into δǫ
(0)
pσ .

Now when we take account of the feedback effect caused by the redistribution of quasi-

particles in response to this potential, the quasiparticle energy becomes Ep−qA = (p−AN )2

2m∗ .
Here, the replacement of p→ p− qAN = p−AN is guaranteed because the quasiparticle
carries the same conserved charge q = 1 as the original particles. In this way, we see that
in the presence of backflow, the change in quasiparticle energy

δǫpσ = − p

m∗
·AN = −AN

pF
m∗

cos θ. (8.71)

involves the renormalized mass m∗.
Since the vector potential induces a dipolar perturbation to the Fermi surface, using

the results from section (8.4), we conclude that backflow feedback effects involve the spin
symmetric l = 1 Landau Parameter, F s1 (8.50),

δǫpσ =

(
1

1 + F s1

)
δǫ(0)pσ (8.72)

Inserting (8.70) and (8.71) into this relation, we obtain

m

m∗
=

1

1 + F s1
(8.73)

or m∗ = m(1 + F s1 ).
Note that:

• The Landau mass renormalization formula relies on the conservation of particle cur-
rent when the interactions are adiabatically turned on. In a crystal lattice, although
crystal momentum is still conserved, particle current is not conserved and at present,

there is no known way of writing down an expression for δǫ
(0)
pσ and δǫpσ in terms of

crystal momentum, that would permit derivation of a mass renormalization formula
for electrons in a crystal.

• Since F s1 = N∗(0)fs1 involves the renormalized density of states N∗(0) = m∗pF
π2 , the

renormalized mass m∗ actually appears on both sides of (8.64). If we use (8.33 ) to
rewrite F s1 = m∗

m N(0)fs1 , where N(0) = mpF
π2 is the unrenormalized density of states,

then we can solve for m∗ in terms of m to obtain:

m∗ =
m

1−N(0)fs1
. (8.74)

This expression predicts that m∗ → ∞ at N(0)fs1 = 1, i.e that the quasiparticle
density of states and hence the specific heat coefficient will diverge if the interactions
become too strong. This possibility was first anticipated by Neville Mott, who pre-
dicted that in presence of large interactions, fermions will localize, a phenomonon now
called a “Mott transition”.
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There are numerous examples of “heavy electron” systems which lie close to such a lo-
calization transition, in which m∗e/me >> 1. Quasiparticle masses in excess of 1000me have
been observed via specific heat measurements. In practice, the transition where the mass
diverges is usually associated with the development of some other sort of order, such as anti-
ferromagnetism, or solidification. Since the phase transition occurs at zero temperature, in
the absence of thermal fluctuations, it is an example of a “quantum phase transition”. Such
mass divergences have been observed in a variety of different contexts in charged electron
systems, but they have also been observed as a second-order quantum phase transition, in
the solidification of two-dimensional liquid Helium-3 Mott transition.

8.4.3 Quasiparticle scattering amplitudes

In 8.3 we introduced the quasiparticle interactions fpσ,p′σ′ as the variation of the quasipar-
ticle energy ǫpσ with respect to changes in the quasiparticle occupancy δnp′σ′ , under the
condition that the rest of the Fermi sea stays in its ground-state

fpσ,p′σ′ =
δǫpσ
δnp′σ′

∣∣∣∣∣
np′′σ′′

=
1

N∗(0)

[
F s(p̂ · p̂′) + σσ′F a(p̂ · p̂′)

]
(8.75)

The quantity fpσ,p′σ′ can be regarded as a bare forward scattering amplitude between the
quasiparticles. It proves very useful to define the corresponding quantities when Fermi sea
is allowed to respond to the original change in quasiparticle occupancies, as follows:

apσ,p′σ′ =
δǫpσ
δnp′σ′

=
1

N∗(0)

[
As(p̂ · p̂′) + σσ′Aa(p̂ · p̂′)

]
(8.76)

Microscopically, the quantities apσp′σ′ correspond to the t-matrix for forward-scattering of
the quasiparticles. These amplitudes can decoupled in precisely the same way as the Landau
interaction (8.57),

Aα(cos θ) =
∑

l

(2l + 1)Aαl Pl(cos θ)

= 4π
∑

l,m

Aαl Ylm(p̂)Y ∗lm(p̂′), (α = (s, a)) (8.77)

These two sets of parameters are also governed by the feedback effects of interactions:

Aαl =
Fαl

1 + Fαl
(α = s, a) (8.78)

The derivation of this relation follows closely the derivation of relations (8.50) and (8.51);
we now repeat the derivation by solving the “Bethe Salpeter” integral equation that links
the scattering amplitudes. The change in the quasiparticle energy is

δǫpσ = fpσ,p′σ′δnp′σ′ +
∑

p′′σ′′ 6=(p′,σ′)

fpσ,p′′σ′′δnp′′σ′′ , (8.79)
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where the second term is the induced polarization of the Fermi surface (8.45 ), δnp′′σ′ =

−δ(ǫ(0)p′′ )δǫp′′σ′ , so that

δǫpσ = fpσ,p′σ′δnp′σ′ −
∑

p′′σ′′

fpσ,p′′σ′′δ(ǫ
(0)
p′′ )δǫp′′σ′ . (8.80)

Substituting δǫpσ = apσp′σ′δnp′σ′ then dividing through by δnp′σ′ , we obtain

apσpσ′ = fpσ,p′σ′ −
∑

p′′σ′′

fpσ,p′′σ′′δ(ǫ
(0)
p′′ )ap′′σ′p′σ′ . (8.81)

This integral equation for the scattering amplitudes is a form of Bethe-Saltpeter equation
relating the bare scattering amplitude f to the t-matrix described by a.

42

1

3

a

P

Figure 8.5: Showing the geometry associated with quasiparticle scattering 1 + 2 → 3 + 4.
The momentum transfered in this process is q = |p4 − p1| = 2pF sin θ/2 cosφ/2. P = p1 +
p2 is the total incoming momentum. Landau parameters determine “forward scattering”
processes in which φ = 0.

Now near the Fermi surface, we can decompose the scattering amplitudes using (8.75)
and (8.76), while replacing the momentum summation by an angular integral

∑
p′′ →

1
2N
∗(0)

∫
dǫ′′

∫ dΩp̂′′

4π so that this equation becomes

Aα(p̂ · p̂′) = Fα(p̂ · p̂′)−
∫
dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) (8.82)
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If we decompose F and T in terms of spherical harmonics using (8.57) and (8.77) in the
second term, we obtain

∫
dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) =

= (4π)2
∑

lm,l′m′

Fαl A
α
l′Ylm(p̂)

δll′δmm′/(4π)
︷ ︸︸ ︷∫
dΩp̂′′

4π
Y ∗lm(p̂′′)Yl′m′(p̂

′′)Y ∗l′m′(p̂
′)

= (4π)
∑

lm

Fαl A
α
l Ylm(p̂)Y ∗lm(p̂′) =

∑

l

(2l + 1)Fαl A
α
l Pl(p̂ · p̂′)(8.83)

Extracting coefficients of the Legendre Polynomials in (8.82), then gives Aαl = Fαl − Fαl Aαl
from which the result

Aαl =
Fαl

1 + Fαl
(α = s, a) (8.84)

follows. The quasiparticle processes described by these scattering amplitudes involve no mo-
mentum transfer between the quasiparticles. Geometrically, scattering processes in which
q = 0 correspond to a situation where the momenta of incoming and outgoing quasipar-
ticles lie in the same plane. Scattering processes which involve situations where the plane
defined by the outgoing momenta is tipped through an angle φ with respect to the incoming
momenta, as shown in Fig. 8.5 involve a finite momentum transfer q = 2pF | sin θ/2 sinφ/2|.
Provided this momentum transfer is very small compared with the Fermi momentum, i.e
φ << 1 then one can extend the t-matrix equation as follows

Aαl (q) =
Fαl (q)

1 + Fαl (q)
(q << pF ). (8.85)

It is important to realize however, that Landau Fermi liquid theory is however, only really
reliable for those processes where φ ∼ 0 is small.

8.5 Collective modes

The most common collective mode of a fluid or a gas is “sound”. Conventional sound
results from collisions amongst particles which redistribute momentum within the fluid - as
such, sound is a “low-frequency” phenomenon that operates at frequencies much smaller
than the typical quasiparticule scattering rate τ−1, i.e ω << τ−1 or ωτ << 1. One of the
startling predictions of Landau Fermi liquid theory, is the existence of a collionless collective
mode that operates at high frequencies ωτ >> 1, “zero sound”. Zero sound is associated
with collective oscillations of the Fermi surface and it does not involve collisions. Whereas
conventional sound travels at a speed below the Fermi velocity, zero-sound is “supersonic”
traveling at speeds in excess of the Fermi velocity. Historically, the observation of zero-
sound in liquid He-3 clinched Landau Fermi liquid, firmly establishing it as a foundation of
fermionic many-body physics.
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Let us now contrast “zero ” and “first” sound. Conventional sound is associated with
oscillations in the density of a fluid, and hydrodynamics tells us that

u2
1 =

κ

ρ
=

κ

mn

where ρ = mn is the density of the fluid and κ = −V ∂P
∂V is the bulk modulus. From our

previous discussion, κ = n2

χc
and χc = N∗(0)/(1 + F s0 ), so the velocity of first sound in a

Fermi liquid is given by

u2
1 =

n

mχc
=

n

mN∗(0)
(1 + F s0 )

Replacing n =
p2F
3π2 , N∗(0) = m∗pF

π2 , and m = m∗/(1 + F s1 ) we obtain

u2
1 =

v2
F

3
(1 + F s0 )(1 + F s1 ) (8.86)

In the non-interacting limit, u1 = vF /
√

3 is smaller than the Fermi velocity.

To understand of zero-sound we need to consider variations in the quasiparticle distri-
bution function np(x, t). Provided that the characteristic frequency ω and wavevector q of
these fluctuations are much respectively smaller than the Fermi energy ω << ǫF and the
Fermi wave-vector q << kF respectively, then fluctuations in the quasiparticle occupancy
can be treated semi-classically, and this leads to a Boltzmann equation

Dnpσ

Dt
= I[{npσ}]

where

Dnpσ

Dt
=

∂npσ

∂t
+ ẋ · ∇xnpσ + ṗ · ∇pnpσ (8.87)

is the total rate of change of the quasiparticle occupancy npσ(x, t), taking into account the
movement of quasiparticles through phase space. I is the collision rate. In a semi-classical
treatment, the rate of change of momentum and position are determined from Hamilton’s
equations ṗ = −∇xǫp and ẋ = ∇pǫp, so that

Dnpσ

Dt
=
∂npσ

∂t
+∇pǫp · ∇xnpσ −∇xǫpσ · ∇pnpσ (8.88)

We now consider small fluctuations of the Fermi surface defined by

np(x, t) = f(ǫ(0)p ) + eiq·x−iωtαpσ (8.89)

where αpσ is the amplitude of the fluctuations. Now the terms contributing to the total
rate of change Dnpσ/Dt are of order O(ωδn), whereas the collision term I[n] ∼ O(τ−1δn)
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is of order the collision rate τ−1. In the high frequency limit, ωτ >> 1 the collision terms
can then be neglected, leading to the collisionless Boltzmann equation:

∂npσ

∂t
+∇pǫp · ∇xnpσ −∇xǫpσ · ∇pnpσ = 0. (8.90)

For small periodic oscillations in the Fermi surface, the first two terms in (8.90) can be
written

∂npσ

∂t
+∇pǫp · ∇xnpσ = −i(ω − vF · q)αpσe

iq·x−iωt

In the last term of (8.90), the position dependence of the quasiparticle energies derives from
interactions

∇xǫpσ =
∑

σ′

∫

p′
fpσ,p′σ′∇xnp′,σ′

= iqeiq·x−iωt
∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ (8.91)

Replacing ∇pnpσ = ∂f
∂ǫvF , the collisionless Boltzmann equation becomes:

(ω − vF · q)αpσ + vF · q
(
−df
dǫ

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (8.92)

For a mode propagating at speed u, ω = uq. If we express vF .q = vF q cos θp, and write the
mode velocity as a factor s times the Fermi velocity, u = svF , then this becomes

(s− cos θp)αpσ + cos θp

(
−df
dǫ

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (8.93)

We see that the fluctuations in occupancy associated with a zero-sound mode, αpσ =

ησ(p̂)
(
−df
dǫ

)
are proportional to the energy derivative of the Fermi function, and thus

confined to within an energy scale T of the Fermi surface. The function ησ(p̂) describes the
distribution around the Fermi surface, and this function satisfies the self-consistent relation

ησ(p) =
cos θp

2(s− cos θp)

∑

σ′

∫
dΩp′

4π
Fpσ,p′σ′ησ(p̂

′) (8.94)

For spin-independent zero-sound waves, the right-hand side only involves F s and can be
written

η(p) =
cos θp

(s− cos θp)

∫
dΩp′

4π
F sp,p′η(p̂

′) (8.95)

To illustrate the solution of this equation, consider the case where the interaction is
entirely isotropic and spin-independent, so that the only non-vanishing Landau parameter
is F s0 . In this case, the angular function is spin-independent and given by

η(θ) = A
cos(θ)

s− cos(θ)
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where A is a constant. Substituting this form into the integral equation, we obtain the
following formula for s = u/vF ,

A =

∫ 1

−1

dcosθ

2

cosθ

s− cosθAF
s
0 = AF s0

[
−1 +

s

2
ln

(
s+ 1

s− 1

)]

so that
s

2
ln

(
s+ 1

s− 1

)
− 1 =

1

F s0
. (8.96)

For large s, the function on the l.h.s. behaves vanishes asymptotically as 1/(3s2), and since
the r.h.s. vanishes at large interaction, F s0 , it follows that for large interaction strength the
zero-sound velocity is much greater than vF ,

u = svF = vF

√
F s0
3
, (F s0 >> 1). (8.97)

For small interaction strength, s → 1, and the zero-sound velocity approaches the Fermi
velocity.

Experimentally, zero sound has been observed through a variety of methods. Low fre-
quency zero sound couples directly to vibrations at the wall of the fluid, and can be detected
directly as a propagating density mode. Zero sound can also be probed at higher frequen-
cies using neutron and X-ray scattering. Neutron scattering experiments find that at high
frequencies, the zero sound mode enters back into the particle-hole continuum, where, as a
damped excitation, it acquires a “roton” minimum similar to collective modes in bosonic
4-He.

8.6 Charged Fermi Liquids: Landau-Silin theory

One of the most useful extensions of the Landau Fermi liquid theory is to charged Fermi
liquids, which underpins our understanding of electrons in metals. Charged Fermi liquids
present an additional challenge, because of the long-range Coulomb interaction. The ex-
tension of Landau Fermi liquid theory to incorporate the long-range part of the Coulomb
interaction was originally made by Silin[?, ?]. In neutral Fermi liquids, the existence of
well-defined Landau interaction parameters depends on a short-range interaction V (q) with
a well-defined zero momentum limit q → 0 (see also example 8.2). Yet the long-range

Coulomb interaction V (q) = e2

ǫ0q2
is singular as q → 0. Charged quasiparticles act as

sources for an electric potential which satisfy Gauss’ law

∇2φP =
e

ǫ0

∑

p

δnpσ(x) Polarization field (8.98)

The field EP = −∇φP that this produces polarizes the surrounding quasiparticle fluid to
form a “polarization cloud” around the quasiparticle which screens its charge, so that the
net interaction between screened quasiparticles has a finite range. Nevertheless, this poses
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a subtle technical problem for screening requires a collective quasiparticle response, yet the
Fermi liquid interactions are determined by variation of the quasiparticle energy in response
to a change in quasiparticle occupancy against an otherwise frozen (and hence unpolarized)
Fermi sea:

fpσ,p′σ′(x,x
′) =

δǫpσ(x)

δnp′σ′(x′)

∣∣∣∣∣
δnp′′σ′′=0

In a frozen Fermi sea, the quasiparticle interaction must then be unscreened at large dis-
tances, forcing it to be singular as q→ 0.

The solution to this problem was proposed by Silin in 1957. Silin proposed splitting
the electric potential φ produced by charged particles into two parts: a long range classical
polarization field φP considered above, and a short-range, fluctuating quantum component

φ(x) = φP (x) + δφQ(x) (8.99)

The quantum component is driven by the virtual creation of electron hole pairs around a
charged particle. These processes involve momentum transfer of order the Fermi momentum
pF , are hence localized to within a short distance of order the quasiparticle de Broglie wave-
length λ ∼ h/pF around the quasiparticle. Silin proposed that these virtual fluctuations
in the electric potential introduce a second, short-range component to the quasiparticle
interactions. Silin’s theory isolates the polarization field as a separate term, so that the
quasiparticle energy is written

ǫpσ(x) = ǫ(0)p + eφP (x) +
∑

p′σ′

f̃pσ,p′σ′δnp′σ′(x) (8.100)

In momentum space, the change in the quasiparticle energy is given by

δǫpσ(q) = eφP (q) +
∑

p′σ′

f̃pσ,p′σ′δnp′σ′(q)

However, Gauss’ law implies that eφ(q) = e2

ǫ0q2
∑

p′σ′ δnp′σ′(q). Combining these results
together, we see that

δǫpσ(q) =
∑

p′σ′

(
e2

ǫ0q2
+ f̃pσ,p′σ′

)
δnp′σ′(q)

In other words, the effective interaction takes the form (see Fig. 8.6)

fpσ,p′σ′(q) =

Long range interaction
from polarization field︷ ︸︸ ︷

e2

ǫ0q2
+ f̃pσ,p′σ′

︸ ︷︷ ︸
Short-range residual
interaction

(8.101)

There are a number of points to emphasize about Silin’s theory:
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x

fpσp′σ′δ
3(x− x′) e2

4πǫ0|x−x′′|

x′

x′′
p′

h/pF

p′

p

p

p′

p

Figure 8.6: Interactions of a charged Fermi liquid. The short-range part of the interaction
results from quantum fluctuations of the polarization field (see exercise 8.??). The long
range component of the interaction derives from the induced polarization field around the
quasiparticle.

• When the interaction is decomposed in terms of (q-dependent) Landau parameters,
the singular interaction only enters into the l = 0, spin symmetric component; all the
other components are determined by f̃pσp′σ′ , so that

F sl (q) =
e2N∗(0)

ǫ0q2
δl0 + F̃ sl (8.102)

and F al = F̃ al .

• The Landau-Silin theory can be derived in a Feynman diagram formalism. In such an
approach, the short-range part of the interaction is associated with multiple scattering
off the Coulomb interaction.

• The short-range interaction f̃pp′ is a quantum phenomenon, distinct from classical
“Thomas-Fermi” screening of the quasiparticle charge, which result from the polariz-
ing effects of the long-range, 1/q2 component of the interaction.

To illustrate this last point, let us calculate the linear response of the quasiparticle
density δρ(q) = χc(q)δµ(q) to a slowly varying chemical potential δµ(x) = δµ(q)eiq·x,
where χc(q) is the charge susceptibility. In a neutral Fermi liquid, for q << pF , the long-
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wavelength density response is determined by χc(q) ≈ χn, where

χn =
N∗(0)

1 + F s0

as found in eq. (8.62). In the charged Fermi liquid, we replace F s0 → F s0 (q) = e2N∗(0)
ǫ0q2

+ F̃ s0 ,
which gives

χc(q) =
N∗(0)

1 + ( e
2N∗(0)
ǫ0q2

+ F̃ s0 )
=

χn

1 + κ2

q2

=
χn

1 + e2

ǫ0q2
χn

where κ2 = e2

ǫ0
χn defines a “Thomas Fermi” screening length lTF = κ−1. At large momenta

q >> κ (distances x << lTF ), the response is exactly that of the neutral fluid, but at small
momenta q << κ, (distances x >> lTF ), the charge density response is heavily suppressed.

Historically, the Landau Silin approach changed the way of thinking about metal physics.
In early many body theory of the electron gas, the singular nature of the Coulomb interac-
tion was a primary focus, and many body physics in the 1950s was in essence the study of
quantum plasmas. With Landau Silin theory, the long-range Coulomb interaction becomes
a secondary interest, because this component of the interaction is unrenormalized and can
be added in later as an afterthought. This is a major change in philosophy which shifts
our interest to the short-range components of the quasiparticle interactions. In essence, the
Landau Silin observation liberates us from the singular aspects of the Coulomb interaction,
and enables us to treat the physics of strongly correlated electrons as a close companion to
other neutral Fermi systems.

Example 8.18: Calculate the scattering t-matrix in Landau-Silin theory to display
the screening effect of the long range interaction.

Solution:

If we introduce a small modulation in the quaisparticle occupancy at momentum p′,
while “freezing” the rest of the Fermi sea, then the change in the quasiparticle energies
will pick up a modulation given by

δǫ(0)p (q) = fsp,p′(q)δnp′(q) (8.103)

where fsp,p′ =
(

e2

ǫ0q2
+ f̃sp,p′

)
is the spin symmetric part of the interaction. (For con-

venience we temporarily drop the spin indices from the subscripts). If we now allow
the quasiparticle sea to polarize in response to the this change in energy, the change in
quasiparticle energies will take the form

δǫp(q) = asp,p′(q)δnp′(q) (8.104)

where as is the screened quasiparticle interaction to be calculated. At low momenta
q in an isotropic system, both f and a can be expanded in spherical harmonics, as in
(8.57), by writing

fsp,p′(q) =
4π

N∗(0)

∑

l

F sl (q)Ylm(p̂)Y ∗
lm(p̂′),
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asp,p′(q) =
4π

N∗(0)

∑

l

Asl (q)Ylm(p̂)Y ∗
lm(p̂′), (8.105)

For very small q, we can solve for the relationship between T sl and F sl using the methods
of section (8.4.3), which gives

Asl (q) =
F sl (q)

1 + Fl(q)

But from (8.102), the q dependence only enters into the l = 0 component of the spin-

symmetric scattering, where F0(q) = e2N∗(0)
ǫ0q2

+ F̃0 so that

As0(q) =

e2N∗(0)
ǫ0q2

+ F̃0

1 + e2N∗(0)
ǫ0q2

+ F̃0

=
κ2/(1 + F̃ s0 )

(κ2 + q2)
+A

s(neutral)
0

where Aneutral0 =
F̃ s

0

1+F̃ s
0

is the l = 0 scattering t-matrix of the equivalent neutral Fermi

liquid. Since all other components are unchanged by the long-range Coulomb interac-
tion, it follows that the interaction t-matrix of the charged Fermi liquid is a sum of the
original neutral interaction, plus a screened Coulomb correction:

apσ,p′σ(q) =
1

(1 + F̃ s0 )2
e2

ǫ0(q2 + κ2)
+ a

(neutral)
pσ,p′σ′ . (8.106)

Note how the residual “Coulomb” part of the t-matrix is heavily suppressed when F̃ s0
becomes large.

8.7 Inelastic Quasiparticle Scattering

8.7.1 Heuristic derivation.

In this section we show how the Pauli exclusion principle limits the phase for scattering of
quasiparticles in a Landau Fermi liquid, giving rise to a scattering rate with a quadratic
dependence on excitation energy and temperature

1

τ
∝ [ǫ2 + π2T 2].

The dominant decay mode of a quasiparticle is into three quasiparticles. There are also
higher order processes that involve a quasiparticle decaying into a quasiparticle, and n
particle-hole pairs:
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2n+2

1

2
3

5

4

2n2n+1

a

We’ll see that the phase space for these higher order decay processes vanishes with a high
power of the energy (∝ ǫ2n+1), allowing us to neglect them relative to the leading process at
low temperature and energy. For our discussion, we will denote a hole in the quasiparticle
state j as j̄, denoting the quasihole energy by ǫ̃j = −ǫj > 0. By the Golden Rule, the rate
of decay into n particle-hole pairs is

Γ2n+1(ǫ1) ∼
2π

h̄

∑

2,3...2n+2
ǫ̃2,ǫ3...>0

|a(1; 2̄, 3, . . . , 2n+ 2)|2δ[ǫ1 − (ǫ̃2 + ǫ3 + ǫ̃4 . . .+ ǫ2n+2)] (8.107)

where a(1; 2̄, 3, . . . 2n+1) is the amplitude for the scattering process, ǭ2, ǭ4, . . . ǭ2n . . . denote
the energies of the outgoing quasiholes and ǫ3, ǫ5 . . . ǫ2n+1, ǫ2n+2 denote the energies of the
outgoing quasiparticles. The energies of the final state quasi- particles and holes must all
be positive, while also summing up to give the initial energy. When the incoming particle
is close to the Fermi energy, ǫ and the all final state energies ǫ1 > ǫi > 0 must also lie close
to the Fermi energy, so so we can replace |a|2 by an appropriate Fermi surface average

〈|a2n+1|2〉 =
∑

2,3,...2n+2

|a(1; 2̄, 3, . . . 2n+ 2)|2δ(ǫ̃2) . . . δ(ǫ2n+1).

to obtain 5

Γ2n+1(ǫ) ∼
2π

h̄
〈|a2n+1|2〉

∫ ∞

0
dǫ̃2 . . . dǫ2n+1δ[ǫ− (ǫ̃2 + . . . ǫ2n+1)] ∝

ǫ2n

(2n)!
. (8.108)

5Formally this is done by inserting 1 =
∏2n+1

i=1

∫∞
−∞

dǫiδ(ǫi) into (8.107),
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In this way6, the phase space for decay into 2n + 1 quasiparticles vanishes as ǫ2n1 . This
means that near the Fermi surface, quasiparticle decay is dominated by the decay into two
quasi-particles and a quasihole, denoted by 1 −→ 2̄ + 3 + 4 as illustrated in Fig. (8.7).

(a) (b)

ε2

ε3

ε4

ε1

2

3

1

4

a

Figure 8.7: Decay of a quasiparticle into two quasiparticles and a quasihole. (a) Scattering
process. (b) Energies of final states.

The decay rate for this process is given by

Γ(ǫ) =
2π

h̄
〈|a3|2〉

ǫ2

2

On dimensional grounds, we expect the averaged squared matrix element to scale as 〈|a3|2〉 ∼
w2

ǫF
, where w is a dimensionless measure of the strength of the scattering, so that Γ ∼ 2π

h̄
ǫ2

ǫF
.

8.7.2 Detailed calculation of three body decay process

We now present a more detailed calculation of quasiparticle decay, deriving a result that
was first obtained by Abrikosov and Khalatnikov in 1957[?]. The amplitude to produce an
outgoing hole in state 2̄ is equal to the amplitude to absorb an incoming particle in state
2, so we denote

a(1 −→ 2̄ + 3 + 4) = a(1 + 2 −→ 3 + 4) ≡ a(1,2;3,4)

Using Fermi’s golden rule, the net scattering rate into state 1 is given by

I[np] =
2π

h̄

∑

2,3,4

|a(1,2;3,4)|2
[ 2̄ + 3 + 4→ 1︷ ︸︸ ︷
(1− n2)n3n4(1− n1)−

1→ 2̄ + 3 + 4︷ ︸︸ ︷
n1n2(1− n3)(1− n4)

]

6This last integral can be done by regarding the ǫr as the differences ǫj = sj − sj−1 between an ordered
set of co-ordinates s2n+1 > s2n . . . > s1 where s0 = 0, so that

∫ ∞

0

dǫ1 . . . dǫ2n+1︸ ︷︷ ︸
=ds1...ds2n+1

δ[ǫ−

s2n+1︷ ︸︸ ︷
(ǫ1 + ǫ2 + . . . ǫ2n+1)] =

∫ ∞

0

ds2n+1δ(ǫ− s2n+1)

∫ s2n+1

0

ds2n . . .

∫ s2

0

ds1 =
ǫ2n

(2n)!
.
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× (2πh̄)3δ(3)(p1 + p2 − p3 − p4) δ(ǫ1 + ǫ2 − ǫ3 − ǫ4) (8.109)

where
∑

2

≡ ∫ d3p
(2πh̄)3

denotes a sum over final state momenta, and the delta functions

impose the conservation of momentum and energy, respectively. The terms inside the square
brackets determine the à priori probabilities for the scattering process. For scattering into
state 1, the initial states must be occupied and the final state must be empty, so the à priori
probability is (1− n2)n3n4 × (1− n1), where (1− n2) is the probability that the quasihole
state 2̄ is occupied and n3n4 is the probability that 3 and 4 are occupied, while (1 − n1)
is the probability that the final quasiparticle state 1 is empty. The second term in the
brackets describes the scattering out of state 1, and can be understood in a similar way.

In thermal equilibrium, the scattering rate vanishes I[n
(0)
p ] = 0 and for small deviations

from equilibrium, we may expand the collision integral to linear order in δnp = np − n(0)
p ,

identifying the coefficient as the quasiparticle decay rate as follows, I[np] = −Γδn1+O(δn2
p),

where Γ = − δI
δn1

, or

Γ =
2π

h̄

∑

2,3,4

|a(1, 2; 3, 4)|2
[
n2(1− n3)(1− n4) + (1− n2)n3n4

]

× (2πh̄)3δ(ǫ1 + ǫ2 − ǫ3 − ǫ4)δ(3)(p1 + p2 − p3 − p4). (8.110)

The occupation factors in the square brackets impose the Fermi statistics. These terms are
easiest to understand at absolute zero, where np = θ(−ǫp) restricts ǫp < 0 and 1−np = θ(ǫp)
restricts ǫp > 0. The first term n2(1−n3)(1−n4) enforces the constraint that the excitation
energies −ǫ2, ǫ3, ǫ4 > 0 are all positive. (Recall that the ǫj refer to quasiparticle energies,
so −ǫ2 = ǭ2 is the excitation energy of the outgoing hole in state 2̄.) At absolute zero, the
second term (1 − n2)n3n4 is zero unless the excitation energies are negative, and vanishes
when ǫ1 > 0. Now the delta function δ(ǫ1 + ǫ2 − ǫ3 − ǫ4) enforces energy conservation,
ǭ2 + ǫ3 + ǫ4 = ǫ1. Together with the requirement that the scattered quasiparticle energies
are positive, this term forces all three excitation |ǫ2,3,4| energies to be smaller than ǫ. In
this way, we see that for small ǫ, the final quasiparticle states must lie very close to the
Fermi momentum.

With this understanding, at low tempertures, we can replace the integrals over three
dimensional momentum by the product of an energy and an angular integral over the
direction of the momenta on the Fermi surface:

∑

p′

→ N∗(0)

2

∫
dΩp̂′

4π
×
∫
dǫ′,

This factorization between the energy and momentum degrees of freedom is a hallmark of
the Landau Fermi liquid. Using it, we can factorize (8.110) into two parts

Γ =
2π

h̄

angular average︷ ︸︸ ︷〈
|a3|2

〉
×

energy phase space integral︷ ︸︸ ︷〈
n2(1− n3)(1− n4) + (1− n2)n3n4

〉

ǫ2,ǫ3,ǫ4

, (8.111)
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where

〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫ dΩ2dΩ3dΩ4

(4π)3
|a(1, 2; 3, 4)|2(2πh̄)3δ(3)[pF (n̂1 + n̂2 − n̂3 − n̂4)]

is the angular average and

〈. . .〉ǫ2,ǫ3,ǫ4 =

∫
dǫ2dǫ3dǫ4δ(ǫ1 + ǫ2 − ǫ3 − ǫ4)[. . .]

is the energy phase space integral. At absolute zero, the argument of the phase space

integral restricts the final states to have positive excitation energies, giving
ǫ21
2 , as obtained

from (8.108) for n = 1. At finite temperature (see example), thermal broadening leads to
an additional quadratic temperature dependence to the phase space integral7

〈
n2(1− n3)(1− n4) + (1− n2)n3n4

〉

ǫ2,3,4

=
1

2

(
ǫ21 + (πkBT )2

)

To calculate the average squared matrix element, it is convenient to first ignore the spin
of the quasiparticle. To evaluate the angular integral, we need to consider the geometry
of the scattering process near the Fermi surface, which is illustrated in Fig. (8.5). At low
temperatures, all initial and final momenta lie on the Fermi surface, |pj | = pF . The total
momentum in the particle-particle channel is P = p1 + p2. Suppose the angle between p1

and p2 is θ, so that each of these momenta subtends an angle θ/2 with P as shown in Fig.
8.5, then |P| = 2pF sin θ/2. Now since the total momentum is conserved, p3 + p4 = P
also, so that |p3 + p4| = 2pF sin θ/2, which means that p3 and p4 also subtend an angle
θ/2 with P. However, in general, the planes defined by p1,2 and p3,4 are not the same, and
we denote the angle between them by φ. In general, the scattering amplitude a(θ, φ) will
be a function of the two angles, θ and φ. In this way, we can parameterize the scattering
amplitude by a(θ, φ).

A detailed evaluation of the angular integral 〈|a3|2〉 (see example 8.4), leads to the result

〈|a3|2〉 =
1

2
× π2

(
N∗(0)h̄

2pF

)3
〈
|a(θ, φ)|2
2 cos θ/2

〉

Ω

(8.112)

where 〈
|a(θ, φ)|2
2 cos θ/2

〉

Ω

≡
∫
d cos θdφ

4π

(
|a(θ, φ)|2
2 cos θ/2

)

denotes a weighted, normalized angular average of the scattering rate over the Fermi surface.
For identical spinless particles, the final states with scattering angle φ and φ + π are are

7The first term in the phase space integral corresponds to the decay 1 → 2̄ + 3 + 4 of a quasiparticle,
while the second term describes the regeneration of quasiparticles via the reverse process 2̄ + 3 + 4 → 1.
The classic treatment of the quasiparticle decay given by Abrikosov and Khaltnikov[?, ?], reproduced in
Pines and Noziéres and in Mahan, only includes the first process, which introduces an additional factor
1/(1 + e−βǫ1) into this expression.
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indistinguishable, and the pre-factor of one half is introduced into (8.112) to take into
account the overcounting that occurs when we integrate from φ = 0 to φ = 2π.

The complete scattering rate for a spinless quasiparticle is then given by

Γ =
2π

h̄
×
〈

1
2 |a(θ, φ)|2
2 cos θ/2

〉

Ω

π2
(
N∗(0)h̄

2pF

)3

×
(
ǫ2 + (πkBT )2

2

)
(8.113)

Let us now consider how this answer changes when we reinstate the spin of the quasiparticles.
In this case, we must sum over the two spin orientations of quasiparticle 2, corresponding
the case where the spin of 1 and 2 are either parallel (A↑↑) or antiparallel (A↑↓). When the
spins of the two quasiparticles are parallel they are indistinguishable and we must keep the
factor of 1

2 , but when the spins are antiparallel, the particles are distinguishable and this
factor is omitted. So to take account of spin, we must replace

1

2
|a(θ, φ)|2 → 1

2
|a↑↑(θ, φ)|2 + |a↑↓(θ, φ)|2

in (8.113). Following the original convention of Abrikosov and Khalatnikov [?], we denote

2π

h̄

(
|a↑↓(θ, φ)|2 +

1

2
|a↑↑(θ, φ)|2

)
= 2W (θ, φ).

Applying these substutions to (8.113), and writing N∗(0) = m∗pF /(π2h̄3), we obtain

Γ =
(m∗)3

8π4h̄6

〈
W (θ, φ)

2 cos θ/2

〉

Ω

× (ǫ2 + (πkBT )2) (8.114)

This result was originally obtained by Abrikosov and Khalatnikov in 1957[?]. An al-
ternative way to rewrite this expression is identify the normalized scattering amplitudes
N∗(0)aαβ(θ, φ) = Aαβ(θ, φ) ≡ Aαβ(q) with the dimensionless t-matrix introduced in sec-
tion (8.4.3). From this we see that the average matrix elements can be written in terms of
a dimensionless parameter w2

w2 =

〈
|A↑↓(θ, φ)|2 + 1

2 |A↑↑(θ, φ)|2
2 cos θ/2

〉

Ω

.

In many strongly interacting systems, w is close to unity. Using this notation, the scattering
rate (8.114) can be written in the form

Γ =
2π

h̄

〈|a3|2〉︷ ︸︸ ︷(
w2

16ǫF

)[
ǫ2 + (πkBT )2

2

]
(8.115)

Apart from the factor of 16 in the denominator, this is what we guessed on dimensional
grounds.

There are two important regimes of behaviour to note:
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• |ǫp| << πkBT : Γ ∝ T 2. Near the Fermi surface, quasiparticles are thermally excited,
with a T 2 scattering rate that is independent of energy.

• |ǫp| >> πkBT : Γ ∝ ǫ2p. For higher energy quasiparticles, the scattering rate is
quadratically dependent on energy.

1

n3

2n

n4

n

Figure 8.8: Co-ordinate system used to calculate the angular average of the scattering
amplitude.

Example 8.19: Calculate the angular average of the scattering amplitude

〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫
dΩ2dΩ3dΩ4

(4π)3
|a(1, 2; 3, 4)|2(2πh̄)3δ(3)[pF (n̂1 + n̂2 − n̂3 − n̂4)]

in the dominant quasiparticle decay processes.

Solution: We first replace δ(3)[pF (n̂1 + n̂2 − n̂3 − n̂4)]→ 1
p3

F

δ(3)[n̂1 + n̂2 − n̂3 − n̂4], so

that

〈
|a3|2

〉
=

(
N∗(0)h̄

4pF

)3 ∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(1, 2; 3, 4)|2 (8.116)

To carry out the angular integral, we use polar co-ordinates for n̂2 ≡ (θ, φ2), n̂3 ≡
(θ3, φ3) and n̂4 = (θ4, φ4), (as illustrated in Fig. 8.8), where θ and φ2 are the polar
angles of n2 relative to n1, θ3,4 are the angles between n̂3,4 and the direction of the

176



c©2009 Piers Coleman Chapter 8.

total momentum P̂, while φ3 is the azimuthal angle of n3 measured relative to the
plane defined by n̂1 and n̂2 and φ4 is azimuthal angle of n4 measured relative to the
common plane of n̂3 and P̂. The delta function in the integral will force n̂3 and n̂4 to
lie in a place, so that ultimately, we only need to know the dependence of the amplitude
a(θ, φ3) on θ and φ3.

Taking the z-axis to lie along P̂ and choosing the y axis to lie along P̂ × n̂3, then in
this co-ordinate system, n̂1 + n̂2 = (0, 0, 2 cos θ/2), n̂3 = (sin θ3, 0, cos θ3) and n̂4 =
(sin θ4 cosφ4, sin θ4 sinφ4, cos θ4), so that

n̂3 + n̂4 − n̂1 − n̂2

= (sin θ3 + sin θ4 cosφ4, sin θ4 sinφ4, cos θ3 + cos θ4 − 2 cos(θ/2))

Factorizing the three dimensional delta function into its x, y and z components gives

δ(3)[(n̂1 + n̂2 − n̂3 − n̂4)]
= δ[sin θ3 + sin θ4 cosφ4]δ[sin θ4 sinφ4]δ[cos θ3 + cos θ4 − 2 cos(θ/2)]

Integrating over dΩ4 = sinθ4dθ4dφ4 forces φ4 = π and θ4 = θ3 (note that φ4 = 0
satisfies the second delta function, but this then requires that sin θ3 = − sin θ4 which is
not possible when θ3,4 ∈ [0, π]). Resolving the delta functions around these points, we
may write

δ[sin θ3 + sin θ4 cosφ4]δ[sin θ4 sinφ4] =
δ(θ3 − θ4)

cos θ4

δ(φ4 − π)

sin θ4
.

When we carry out the integral over dΩ4 = sin θ4dθ4dφ4, we then obtain

∫
dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =
1

cos θ3
δ[2 cos θ3 − 2 cos(θ/2)]|a(θ, φ3)|2

Integrating over dΩ3 = dφ3d cos θ3 imposes θ3 = θ/2, so that

∫
dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =

∫
dφ3

2 cos θ/2
|a(θ, φ3)|2

The azimuthal angle φ2 of n̂2 about n1 does not enter into the integral, so we may
integrate over this angle, and write the measure dΩ2 ≡ 2πd cos θ. The complete angular
integral is then

∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 = 2π

∫
dφ3d cos θ

2 cos θ/2
|a(θ, φ3)|2.

Substituting this result into (8.116 ), the complete angular average is then

〈
|a3|2

〉
= π2

(
N∗(0)h̄

2pF

)3 ∫
d cos θdφ

4π

|a(θ, φ)|2
2 cos θ/2

where we have relabelled φ3 as φ. Notice (i) that the weighted angular average is

normalized, so that if |a(θ, φ)|2 = |a|2 is constant, 〈|a3|2〉 = π2
(
N∗(0)h̄

2pF

)3

|a|2, and

that (ii) since the denominator in the average vanishes for θ = π, the angular average
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contributing to the quasiparticle decay is weighted towards large angle scattering events
in which the outgoing quasiparticles have opposite momenta p3 = −p4. This feature is
closely connected with the Cooper pair instability discussed in Chapter 14.

Example 8.20: Compute the energy phase space integral

I(ǫ, T ) =

∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ+ ǫ2 − ǫ3 − ǫ4)

[
n2(1− n3)(1− n4) + (1− n2)n3n4

]
,

where ni ≡ f(ǫi) = 1/(eβǫ + 1) denotes the Fermi function evaluated at energy ǫi

Solution: As a first step, we make a change of variable ǫ2 → −ǫ2, so that the integral
becomes

I(ǫ, T ) =

∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ− (ǫ2 + ǫ3 + ǫ4))

[
(1− n2)(1− n3)(1− n4) + n2n3n4

]

=

∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ− (ǫ2 + ǫ3 + ǫ4))

[
n2n3n4 + {ǫ↔ −ǫ}

]

.

Next, we rewrite the delta function as a Fourier transform, δ(x) =
∫
dα
2π e

iαx, so that
I(ǫ, T ) = I1(ǫ, T ) + I1(−ǫ, T ), where

I1(ǫ, T ) =
1

2π

∫
dαdǫ2dǫ3dǫ4e

iα[ǫ−(ǫ2+ǫ3+ǫ4)]
[
n2n3n4

]
.

By carrying out a contour integral around the poles of the Fermi function f(z) at
z = iπT (2n+ 1) in the lower half plane, we may deduce

∫ ∞

−∞
dǫe−i(α+iδ)ǫf(ǫ) = 2πiT

∞∑

n=0

e−(α+iδ)πT (2n+1) =
πiT

sinh(α+ iδ)πT
,

where a small imaginary part has been added to α to guarantee convergence. This
enables us to carry out the energy integrals in I1(ǫ, T ), obtaining

I1(ǫ, T ) =

∫
dα

2π
eiαǫ

(
πiT

sinh(α+ iδ)πT

)3

Now to carry out this integral, we need to distort the contour into the upper half
complex plane. The function 1/ sinh(α + iδ)πT has poles at α = in/T − iδ, so the
distorted contour wraps around the poles with n ≥ 0. The cube of this function, has
both triple and simple poles at these locations. To evaluate the residues of these poles,
we expand sinhαπT to third order in δα = (α− in

T ) about the poles, to obtain

sinhαπT = (−1)nπTδα

(
1 +

(πT )2

3!
δα2

)
+ . . .

So that near the poles,

(
iπT

sinhαπT

)3

= −i (−1)n

δα3

(
1− (πT )2

2
δα2

)
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= −i(−1)n
(

1

δα3
− (πT )2

2δα

)

The complete contour integral becomes

I1(ǫ, T ) =
∞∑

n=1

(−1)n
∮

dα

2πi

[
1

(α− in
T )3
− 1

2

(πT )2

(α− in
T )

]
eiαǫ

= −
∞∑

n=1

(−1)n
∮

dα

2πi

1

(α− in
T )

[
ǫ2

2
+

(πT )2

2

]
eiαǫ

= −
[
ǫ2

2
+

(πT )2

2

] ∞∑

n=1

(−1)ne−nǫ/T =
1

1 + eǫ/T

[
ǫ2

2
+

(πT )2

2

]

Finally, adding I1(ǫ, T ) + I1(−ǫ, T ) finally gives

I(ǫ, T ) =
1

2

[
ǫ2 + (πT )2

]

8.7.3 Kadowaki Woods Ratio and “Local Fermi Liquids”

Heuristic Discussion

One of the direct symptoms of Landau Fermi liquid behavior in a metal is a T 2 temperature
dependence of resistivity at low temperatures:

ρ(T ) = ρ0 +AT 2.

Here ρ0 is the “residual resistivity” due to the scattering of electrons off impurities. The
quadratic temperature dependence in the resistivity is a direct reflection of the quadratic
scattering rate Γ ∝ T 2 expected in Landau Fermi liquids. Evidence that this term is directly
related to electron-electron scattering is provided by a remarkable scaling relation between
the A coefficient of the resistivity and the square of the zero temperature linear coefficient
of the specific heat γ = CV /T |T→0.

A

γ2
= α ≈ 1× 10−5µΩcm(K mol/mJ)2

The ratio A/γ2 is called the “Kadowaki Woods” ratio, and the quoted value corresponds
to resistivity measured in units µΩcm and the specific heat coefficient per mole of ma-
terial is measured in units mJ/mol/K2. In a large large class of intermetallic metals
called “heavy electron metals”, in which the quasiparticle mass renormalization is par-
ticularly large, the Kadowaki Woods ratio is found to be approximately constant α =
1× 10−5µΩcm(K mol/mJ)2 (Fig. 8.9).

To understand Kadowaki Woods scaling, we need to keep track of how A and γ depend
on the Fermi energy. In the last section, we found that the electron-electron scattering
rate is set by the Fermi energy, τ−1 ∼ T 2/ǫF . If we insert this into the Drude scattering
formula, for the resistivity ρ = m∗/(ne2τ), since m∗ ∝ 1/ǫF , we deduce that ρ ∼ (T 2/ǫ2F ),
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Figure 8.9: Showing the Kadowaki Woods ratio for a wide range of intermetallic “heavy
electron” materials after Tsujii et al (*****).

i.e A ∝ 1/ǫ2F . By contrast, the specific heat coefficient γ ∝ m∗ ∝ 1/ǫF , is inversely
proportional to the Fermi energy, so that

A ∝
(

1

ǫF

)2

, γ ∝ 1

ǫF
⇒ A

γ2
∼ constant.

In strongly correlated metals, the Fermi energy varies from eV to meV scales, so the A
coefficient can vary over eight orders of magnitude. This strong dependence of A on the
Fermi energy of the Landau Fermi liquid is cancelled by γ2.

Estimate of the Kadowaki Woods Ratio

To obtain an estimate of the coefficient A, it is useful to regard a metal as a stack of
2D layers of separation a, so that ρ = aρ2D = a/σ2D, where σ2D is the dimensionless
conductivity per layer. If we use the Drude formula for the conductivity in two dimensions
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σ2D = ne2τ/m, putting n = 2× πk2
F /(2π)2, h̄/τ = Γ, we obtain

ρ = a

ρ2=12.9kΩ︷ ︸︸ ︷(
h

2e2

) (
Γ

2ǫF

)
.

In the last section, we found that Γ = 2π(w/4)2(πkBT )2/ǫF . Putting this together then
gives

ρ = (aρ2)π

(
w

4

)2 (πkBT
ǫF

)2

(The prefactor aρ2 is sometimes called the “unitary resistance”, and corresponds to the
resistivity of a metal in which the scattering rate is of order the Fermi energy. If we put

a ∼ 1− 4
◦

A, ρ2 ∼ 13kΩ, we obtain aρ2 ∼ 100− 500µΩcm.) It follows that

A ≈ (aρ2)π3
(
w

4

)2

×
(

1

TF

)2

.

where TF = ǫF /kB is the Fermi temperature.

Now using (8.39) the specific heat coefficient per unit volume is γ = 1
3π

2k2
BN

∗(0) =
π2k2

B
2ǫF

n, where n is the number of electrons per unit volume, thus the specific heat coefficient

per electron is simply γe =
π2k2

B
2ǫF

and the specific heat per mole of electrons is γM = 1
2π

2R 1
TF

,
where R = kBNAV is the Gas constant, NAV is Avagadro’s number. So if there are ne
electrons per unit cell,

γ2
M ∼

π4R2

4

(ne)
2

T 2
F

(8.117)

giving

α =
A

γ2
∼
(
w2

4π

)(
ρ2

R2

)
× a

(ne)2
. (8.118)

If we take ρ2 = 13× 109µΩ, R = 8.3× 103mJ/mol/K and w2/(4π) ∼ 1, to obtain

α ∼ 2× 10−5 ×
(
a[nm]

(ne)2

)
µΩcm(K mol/mJ)2

giving a number of the right order of magnitude. Kadowaki and Woods found that α ≈
10−5µΩ cm(K mol/mJ)2 in a wide range of intermetallic heavy fermion compounds. In
transition metal compounds α ≈ 0.4 × 10−5µΩcm(K mol/J)2 has a smaller value, related
to the higher carrier density.
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Local Fermi Liquids

A fascinating aspect of this estimate, is that we needed to put w2/(4π) ∼ 1 to get an answer
comparable with measurements. The tendency of w ∼ 1 is a feature of a broad class of
“strong correlated” metals. Although Landau Theory does not give us information on the
detailed angular dependence of the scattering amplitude A(θ, φ), we can make a great deal
of progress by assuming that the scattering t-matrix is local. This is infact, a reasonable
assumption in systems where the important Coulomb interactions lie within core states of
an atom, as in transition metal and rare earth atoms. In this case,

aσσ′(θ, φ) = as + aaσσ′. (8.119)

is approximately independent of the quasiparticle momenta and momentum transfer. This
is the “local” approximation to the Landau Fermi liquid. When “up” quasiparticles scat-
ter, the antisymmetry of scattering amplitudes under particle exchange guarantees that
a↑↑(θ, φ) = −a↑↑(θ, φ+ π). But if a is independent of scattering amplitude, then it follows
that a↑↑ = as + aa = 0, so that

aσσ′(θ, φ) = as(1− σσ′). (8.120)

in a “Local” Landau Fermi liquid.

Now we can relate the aσσ′ = Aσσ′/N
∗(0) to the dimensionless scattering amplitudes

introduced in section (8.4.3)). By (8.62), the charge susceptibility is given by

χc = N∗(0)×
(

1

1 + F s0

)
= N∗(0)×

(
1− F s0

1 + F s0

)
= N∗(0)× (1−As0)

In strongly interacting electron systems the density of states is highly renormalized, so that
N∗(0) >> N(0), but the charge susceptibility is basically unaffected by interactions, given
by χc = N(0) << N∗(0). This implies that As0 ≈ 1. so that as = 1/N∗(0), which in turn
implies that the dimensionless ratio w introduced last section is close to w = 1.

8.8 Microscopic basis of Fermi liquid Theory

Although Landau’s Fermi liquid theory is a phenomenological theory, based on physical
arguments, it translates naturally into the language of diagramatic many body theory. The
Landau school played a major role in the adaptation of Feynman diagramatic approaches to
many body physics. However, Feynman diagrams do not appear until the third of Landau’s
three papers on Fermi liquid theory[?]. The classic microscopic treatments of Fermi liquid
theory are based on the analysis of many body perturbation theory to infinite order carried
out in the late 1950’s and early 1960’s.

Galitski[?], in the Soviet Union, gave the first first formulation of Landau’s theory in
terms of diagramatic many body theory. Shortly thereafter Luttinger, Ward and Nozieres
developed the detailed diagramatic many body framework for Landau Fermi liquid theory
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by analysing the analytic properties of inifinite order perturbation theory[?, ?]. Here we
end with a brief discussion of some of the key results of these analyses.

From the outset, it was understood that the Landau Fermi liquid is always potentially
unstable to superconductivity. By the late 1960’s it also became that that Landau Fermi
liquid theory does not apply in one-dimensional conductors, where the phase space scatter-
ing arguments used to support the idea of the Landau quasiparticle no longer apply. In one
dimension, the Landau quasiparticle becomes unstable, breaking up into collective modes
that independently carry spin and charge degrees of freedom. We call such a fluid a “Lut-
tinger liquid”. However, with this exception, few questioned the robustness of Landau Fermi
liquid theory until the 1980s. In 1986, the discovery of high temperature superconductors,
led to a resurgence of interest in this topic, for in the normal state, these materials can not
be easily understood in terms of Landau Fermi liquid theory. For example, these materials
display a linear resistivity up to high temperatures that at this time remains an unsolved
mystery. This has led to the speculatation that in two or three dimensions, Landau Fermi
liquid theory might break down into a higher dimensional analog of the one-dimensional
Luttinger liquid. two or even three dimensional metals. In the wake of this interest, the
Landau Fermi liquid theory was re-examined from the perspective of the “renormalization
group” [?, ?] (see chapter ****). The conclusion of these analyses is that unlike one di-
mension, Fermi liquids are not generically unstable in two and higher dimensions. While
this does not rule the possibility of new kinds of metallic behavior, the Landau Fermi liquid
theory continues to provide the bedrock for our understanding of basic metals in two or
three dimensions.

As we discussed in the last chapter, the process of adiabatically “switching on” inter-
actions can be understood as a unitary transformation of the original states of the non-
interacting Fermi sea. Thus the ground state and the one-quasiparticle state are given
by

|φ〉 = U |Ψ0〉,

|k̃σ〉 = U |kσ〉 (8.121)

where |Ψ0〉 is the filled Fermi sea of the non-interacting system, and k is a momentum
very close to the Fermi surface. In fact, using the results of (7.1), we can write U as a
time-ordered exponential

U = T

[
exp

{
−i
∫ 0

−∞
V (t)dt

}]
,

where V̂ is the interaction, written in the interaction representation. Now since |kσ〉 =
c†kσ|Ψ〉, where c†kσ is the particle creation operator for the non-interacting Hamiltonian,
it follows that

|k̃σ〉 =

c̃†kσ︷ ︸︸ ︷
Uc†kσU

† |φ〉 (8.122)

so that the “quasiparticle creation operator” is given by

c̃†kσ = Uc†kσU
†.

183



Chapter 8. c©Piers Coleman 09

From this line of reasoning, we can see that the operator that creates the one-quasiparticle
state is nothing more than the original creation bare creation operator, unitarily time-
evolved from the distant past to the present in the interaction representation.

While this formal procedure can always be carried out, the existence of the Landau
Fermi liquid requires that in the thermodynamic limit, the resulting state preserves a finite
overlap with the state formed by additing a bare particle to the ground-state, i.e.

Zk = |〈k̃σ0|c†kσ|φ〉|2 > 0 wavefunction renormalization

This overlap is called the “wavefunction renormalization constant”, and so long as this
quantity is finite on the Fermi surface, the Landau Fermi liquid is alive and well.

In general, the full quasiparticle creation operator will have an expansion as a sum of
states containing one, three, five and any odd-number of particle and hole states, each with
the same total spin, charge and momentum of the initial bare particle.

c̃†kσ =
√
Zkc

†
kσ +

∑

k4+k3=k2+k

A(k4σ4,k3σ3;k2σ2,kσ)c†k4σ4c
†
k3σ3ck2σ2 + . . .

There are three important consequences that follow from this result:

• Sharp Quasiparticle peak in the spectral function.

When a particle is added to the ground-state, it excites a continuum of states |λ〉,
with energy distribution described by the spectral function (7.112),

A(k, ω) =
1

π
ImG(k, ω − iδ) =

∑

λ

|Mλ|2δ(ω − ǫλ). (8.123)

where the where the matrix elements Mλ = 〈λ|c†kσ|φ〉 or Mλ = 〈φ|ckσ|λ〉 above and
below the Fermi energy, respectively. In a Landau Fermi liquid, the spectral function
retains a sharp “quasiparticle pole” at the Fermi energy. If we split off the λ ≡ kσ
contribution to the summation in (8.123) we then get

A(k, ω) =
1

π
ImG(k, ω − iδ) =

qp peak︷ ︸︸ ︷
Zkσδ(ω − ǫk)+

continuum︷ ︸︸ ︷∑

λ6=kσ

|Mλ|2δ(ω − ǫλ) . (8.124)

• Sudden jump in the momentum distribution.

In a non-interacting Fermi liquid, the particle momentum distribution function ex-
hibits a sharp Fermi distribution function which is preserved by the quasiparticles in
a Landau Fermi liquid theory

〈φ|(n̂kσ)qp|φ〉 = θ(µ− Ek)
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Figure 8.10: (a) In a non-interacting Fermi system, the spectral function is a sharp delta
function at ω = ǫk. (b) In an interacting Fermi liquid for k 6= kF , the quasiparticle forms
a broadened peak of width Γk at ωk. If k = kF , this peak becomes infinitely sharp, corre-
sponding to a long-lived quasiparticle on the Fermi surface. The weight in the quasiparticle
peak is Zk ∼ m/m∗, where m∗ is the effective mass.

where here (n̂kσ)qp = c̃†kσ c̃kσ is the quasiparticle occupancy. Remarkably, part of this
jump survives interactions. To see this effect, we write the momentum distribution
function of the particles as

〈n̂kσ〉 = 〈φ|c†kσckσ|φ〉 =

∫ 0

−∞
dωA(k, ω)

where we have used the results of (7.3.3) to relate the particle number to the integral
over the spectral function below the Fermi energy. When we insert (8.124) into this
expression, the contribution from the quasiparticle peak vanishes if ǫk > 0, but gives
a contribution Zk if ǫk < 0, so that

〈n̂kσ〉 = Zkθ(−ǫk) + smooth background.

This is a wonderful illustration of the organizing power of the Pauli exclusion principle.
One might have expected interactions to have the same effect as temperature which
smears the Fermi distribution by an amount of order kBT . Although interactions do
smear the momentum distribution, the jump continues to survive in reduced form so
long as the Landau Fermi liquid is intact.

• Luttinger sum rule.
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Figure 8.11: (a) In a non-interacting Fermi liquid, a temperature T that is smaller than
the Fermi energy, slightly “blurs” the Fermi surface; (b) In a Landau Fermi liquid, the
exclusion principle stabilizes the jump in occupancy at the Fermi surface, even though the
bare interaction energy is far greater than than the Fermi energy,

In the Landau Fermi liquid, the Fermi surface volume measures the particle density
nF . Since the Fermi surface of the quasiparticles and the unrenormalized particles
coincides, it follows that the Fermi surface volume must be an adiabatic invariant
when the interactions are turned on.

nF = (2S + 1)
vFS

(2π)3
, (Luttinger sum rule)

The demonstration of this conservation law within infinite order perturbation theory
was first derived by Luttinger in 1962, and is known as the Luttinger sum rule. In
interacting fermion systems the conservation of particle number leads to a set of
identities between different many body Greens functions called “Ward Identities”.
Luttinger showed how these identities can be used to relate the Fermi surface volume
to the particle density.

Today, more than a half century after Landau’s original idea, the Landau Fermi liquid
theory continues to be a main-stay of our understanding of interacting metals. However,
increasingly, physicists are questioning when and how, does the Landau Fermi liquid break-
down, and what new types of fermion fluid may form instead? We know that Landau
Fermi liquid does not survive in one-dimensional conductors, where quasiparticles break up
into collective spin and charge excitations. or in high magnetic fields where the formation
of widely spaced Landau levels effectively quenches the kinetic energy of the particles,
enhancing the relative importance of interactions. In both these examples, new kinds of
quasiparticle description are required to describe the physics. Today, experiments strongly
suggest indication that the Landau Fermi liquid breaks up into new kinds of “Non-Fermi
liquid” fluid at a zero temperature phase transition, or quantum critical point, giving rise
to new kinds of metallic behavior in electron systems. The quest to understand these new
metals and to characterize their excitation spectrum is one of the great open problems of
modern condensed matter theory.
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Chapter 9

Feynman Diagrams: T=0

Chapter 7. discussed adiabaticity, and we learned how Green’s functions of an interacting
system, can be written in terms Green’s functions of the non-interacting system, weighted
by the S-matrix, e.g.

〈φ|Tψ(1)ψ†(2)|φ〉 =
〈φo|T Ŝψ(1)ψ†(2)|φo〉

〈φo|Ŝ|φo〉

Ŝ = T exp

[
−i
∫ ∞

−∞
V (t′)dt′

]
(9.1)

where |φo〉 is the ground-state of Ho. In this chapter we will learn how to expand this
quantity, order by order in the strength of the interaction. The Feynman diagram ap-
proach provides a succinct visual rendition of this expansion, a kind of “mathematical
impressionism” which is physically intuitive, without losing mathematical detail.

From the Feynman rules, we learn how to evaluate

• The ground-state S− matrix

S = 〈φo|Ŝ|φo〉 =
∑
{Unlinked Feynman Diagrams} . (9.2)

• The logarithm of the S− matrix, which is directly related to the shift in the ground-
state energy due to interactions.

E − Eo = lim
τ→∞

∂

∂τ
ln〈φo|S[τ/2,−τ/2]|φo〉 = i

∑
{Linked Feynman Diagrams} (9.3)

where each Linked Feynman diagrams describes a different virtual excitation.

• Green’s functions.

G(1− 2) =
∑
{Two-legged Feynman Diagrams} (9.4)

• Response functions. These are a different type of Green’s function, of the form

R(1− 2) = −i〈φ|[A(1), B(2)]|φ〉θ(t1 − t2) (9.5)
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9.1 Heuristic Derivation

Feynman initially derived his diagramatic expansion as a mnemonic device for calculating
scattering amplitudes. His approach was heuristic: each diagram has a physical meaning in
terms of a specific scattering process. Feynman derived a set of rules that explained how to
convert the diagrams into concrete scattering amplitudes. These rules were fine tuned and
tested in the simple cases where they could be checked by other means; later, he applied his
method to cases where the direct algebraic approach was impossibly cumbersome. Later,
Dyson gave his diagramatic expansion a systematic mathematical framework.

Learning Feynman diagrams is a little like learning a language. You can learn the
rules, and work by the book, but to really understand it, you have to work with it, gaining
experience in practical situations, learning it not just as a theoretical construct, but as a
living tool to communicate ideas. One can be a beginner or an expert, but to make it work
for you, like a language or a culture, you will have to fall in love with it!

Formally, a perturbation theory for the fully interacting S-matrix is obtained by ex-
panding the S-matrix as a power-series, then using Wick’s theorem to write the resulting
correlation functions as a sum of contractions.

〈φo|Ŝ|φo〉 =
∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1 . . . dtn

∑

Contractions

〈φo|T V (t1)V (t2) : : : V (tn) |φo〉(9.6)

The Feynman rules tell us how to expand these contractions as a sum of diagrams, where
each diagram provides a precise, graphical representation of a scattering amplitude that
contributes to the complete S-matrix.

Let us see examine how we might develop, heuristically, a Feynman diagram exapnsion
for simple potential scattering, for which

V (1) ≡
∫
d3x1U(~x1)ψ

†(~x1, t1)ψ(~x1, t1). (9.7)

where we’ve suppressed spin indices into the background. When we start to make contrac-
tions we will break up each product V (1)V (2) . . . V (r) into pairs of creation and annihilation
operators, replacing each pair as follows (2) : : :  y(1) −→ (

√
i)2 ×G(2− 1). (9.8)

where we have divided up the the prefactor of i two factors of
√
i, which we will transfer onto

the scattering amplitudes where the particles are created and annihilated. This contraction
is denoted by

G(2− 1) = 2 1
(9.9)
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representing the propagation of a particle from “1” to “2”. Pure potential scattering gives
us one incoming, and one outgoing propagator, so we denote a single potential scattering
event by the diagram pipi �iU(x) = (

√
i)2 ×−iU(x) ≡ U(x)

(9.10)

Here, the “−i” has been combined with the two factors of
√
i taken from the incoming, and

outgoing propagators to produce a purel real scattering amplitude (
√
i)2×−iU(x) = U(x).

The Feynman rules for pure potential scattering tell us that the S-matrix for potential
scattering is the exponential of a sum of connected “vacuum” diagrams

S = exp [ + + + . . .] .
(9.11)

The “vacuum diagrams” appearing in the exponential do not have any incoming or outgoing
propagators- they represent the amplitudes for the various possible processes by which
electron-hole pairs can bubble out of the vacuum. Let us examine the first, and second
order contractions for potential scattering. To first order

−i〈φ0|V (t1) |φ0〉 = −i
∑

σ

∫
d3xU(x)〈φ0|T  y�(x; t+1 ) �(x; t�1 ) |φ0〉 (9.12)

This contraction describes a single scattering event at (~x, t1). Note that the creation op-
erator occurs to the left of the annihilation operator, and to preserve this ordering inside
the time-ordered exponential, we say that the particle propagates “backwards in time”
from t = t+1 to t = t−1 . When we replace this term by a propagator the backward time
propagation introduces a factor of ζ = −1 for fermions, so that

〈φ0|T  y�(x; t+1 ) �(x; t�1 ) |φ0〉 = iζG(~x− ~x, t−1 − t+1 ) = iζG(~0, 0−) (9.13)

We carry along the factor U(~x) as the amplitude for this scattering event. The result of
this contraction procedure is then

−i
∫ ∞

−∞
dt1〈φ0|V (t1) |φ0〉 = −i(2S + 1)

∫
dt1 ×

∫
d3xU(x)× iζG(~0, 0−)

= , (9.14)

where we have translated the scattering amplitude into a a single diagram. You can think
of it as the spontaneous creation, and re-annhilation of a single particle. Here we may
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tentatively infer a number of important “Feynman rules” - listed in Table 8.1: that we
must associate each scattering event with an amplitude U(x), connected by propagators
that describe the amplitude for electron motion between scattering events. The overall
amplitude involves an integration over the space time co-ordinates of the scattering events,
and apparently, when a particle loop appears, we need to introduce the factor ζ(2S + 1)
(where ζ = −1 for fermions) into the scattering amplitude to account for the presence of an
odd-number of backwards-time propagators and the 2S+1 spin components of the particle
field. These rules are summarized in the table below:

Table. 8.1 Real Space Feynman Rules .

1 2 G(2− 1)

x1 U(x1)

1 2 iV (1− 2)

∏

i

∫
d3xidti

Integrate over all intermediate
times and positions.

−(2S + 1)G(~0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

z(1) z(1)

−iz̄(1) −iz̄(1)

p = 2
1

p

×
p = 8

p = order of symmetry group.
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Physically, the vacuum diagram we have drawn here can be associated with the small
first-order shift in the energy ∆E1 of the particle due to the potential scattering. This
inturn produces a phase shift in the scattering S-matrix,

S ∼ exp

[
−i∆E1

∫
dt

]
∼ 1− i∆E1

∫
dt, (9.15)

where the exponential has been audaciously expanded to linear order in the strength of the
scattering potential. If we compare this result with our leading Feynman diagram expansion
of the S-matrix,

〈φo|Ŝ|φo〉 = 1 + ,

we see that we can interpret the overall factor of
∫
dt1 in (9.14) as the time period over which

the scattering potential acts on the particle. If we factor this term out of the expression we
may identify

∆E1 =

ρ︷ ︸︸ ︷
iζ(2S + 1)G(~0, 0−)

∫
d3xU(x) (9.16)

Here, following our work in the previous chapter, we have identified iζ(2S + 1)G(~0, 0−) =∑
σ〈ψ†σ(x)ψσ(x)〉 = ρ as the density of particles. giving ∆E1 = ρ

∫
d3xU(x). The corre-

spondence of our result with first order perturbation theory is a check that the tentative
Feynman rules are correct.

Let us go on to look at the second order contractions

〈φ0|T V (t1)V (t2) |φ0〉 = 〈φ0|T V (t1)V (t2) |φ0〉+ 〈φ0|T V (t1)V (t2) |φ0〉 (9.17)

which now generate two diagrams

1

2!
(−i)2

∫ ∞

−∞
dt1dt2〈φ0|T V (t1)V (t2) |φ0〉 =

1

2
[ ]2 = [ ]

1

2!
(−i)2

∫ ∞

−∞
dt1dt2〈φ0|T V (t1)V (t2) |φ0〉 = , (9.18)

The first term is simply a product of two first order terms- the beginning of an exponential
combination of such terms. Notice how the square of one diagram is the original diagram,
repeated twice. The factor of 1/2 that occurs in the expression on the left hand-side is
absorbed into this double diagram as a so-called “symmetry factor”. We shall return to
this issue shortly, but briefly, this diagram has a permutation symmetry described by a
group of dimension d = 2, according to the Feynman rules, this generates a prefactor
1/d = 1/2. The second term derives from the second-order shift in the particle energies due
to scattering, and which, like the first order shift, produces a phase shift in the S-matrix.
This diagram has a cyclic group symmetry of dimension d = 2, and once again, there is
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a symmetry factor of 1/d = 1/2. This connected, second-order diagram gives rise to the
scattering amplitude

=
1

2
ζ(2S + 1)

∫
d1d2U(1)U(2)G(1− 2)G(2− 1) (9.19)

where 1 ≡ ( ~x1, t1), so that
∫
d1 ≡

∫
dt1d

3x1

G(2− 1) ≡ G(~x2 − ~x1, t2 − t1). (9.20)

Once again, the particle loop gives a factor ζ(2S+1), and the amplitude involves an integral
over all possible space-time co-ordinates of the two scattering events. You may interpret
this diagram in various ways- as the creation of a particle-hole pair at (~x1, t1) and their
subsequent reannilation at (~x2, t2) (or vice versa). Alternatively, we can adopt an idea that
Feynman developed as a graduate student with John Wheeler- the idea than that an anti-
particle (or hole), is a particle propagating backwards in time. From this perspective, this
second-order diagram represents a single particle that propagates around a loop in space
time. Equation (9.19) can be simplified by first making the change of variables t = t1 − t2,
T = (t1 + t2)/2, so that

∫
dt1dt2 =

∫
dT × ∫ dt. Next, if we Fourier transform the scattering

potential and Green functions, we obtain

=

∫
dT × 1

2
ζ(2S + 1)

∫
dtd3qd3k|U(~q1)|2G(~k + ~q, t)G(~k,−t) (9.21)

Once again, an overall time-integral factors out of the overall expression, and we can identify
the remaining term as the second-order shift in the energy

∆E2 =
i

2
ζ(2S + 1)

∫
dt

d3k

(2π)3
d3q

(2π)3
|U(~q1)|2G(~k + ~q, t)G(~k,−t). (9.22)

To check that this result is correct, let us consider the case of fermions, where

G(k, t) = −i[(1− nk)θ(t)− nkθ(−t)]e−iǫkt (9.23)

which enables us to do the integral

i

∫
dte−δ|t|G(~k + ~q, t)G(~k,−t) =

(1− nk+q)nk

ǫk+q − ǫk
+ (k↔ k + q) (9.24)

We recognize the first process as the virtual creation of an electron of momentum ~k + ~q,
leaving behind a hole in the state with momentum ~k. The second-term is simply a duplicate
of the first, with the momenta interchanged, and the sum of the two terms cancels the factor
of 1/2 infront of the integral. The final result

∆E2 = −(2S + 1)

∫
d3k

(2π)3
d3q

(2π)3
|U(~q)|2 (1− nk+q)nk

ǫk+q − ǫk
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is recognized as the second-order correction to the energy derived from these virtual pro-
cesses. Of course, we could have derived these results directly, but the important point,
is that we have established a tentative link between the diagramatic expansion of the con-
tractions, and the perturbation expansion for the ground-state energy. Moreover, we begin
to see that our diagrams have a direct interpretation in terms of the virtual excitation
processes that are generated by the scattering events.

To second-order, our results do indeed correspond to the leading order terms in the
exponential

S = 1 +

[
+ . . .

]
+

1

2!

[
+ . . .

]2
+ . . . = exp

[
+ + . . .

]
.

Before we go on to complete this connection more formally in the next section, we need
to briefly discuss “source terms”, which couple directly to the creation and annihilation
operators. The source terms let us examine how the S-matrix responds to incoming currents
of particles. Source terms add directly to the scattering potential, so that

V (1) −→ V (1) + z̄(1)ψ(1) + ψ†(1)z(1).

The source terms involve a single creation or annihilation operator, thus produce either the
beginning

z(1) ≡
∫
d1 . . .× z(1)

(9.25)

or the end

−iz̄ ≡ −i
∫
d2z̄(2)× . . .

(9.26)

of a Feynman diagram. In practice, each z̄ and z arrive in pairs, and the factor −i which
multiplies z̄ combines the two factors of −i from a pair (z̄, z) with the factor of i derived
from the propagator line they share. We need these terms, so that we can generate diagrams
which involve incoming and outgoing electrons. The simplest contraction with these terms
generates the bare propagator

(−i)2
2!

∫
d2d1〈0|

hV (2) + �z(2) (2) +  y(2)z(2)i hV (1) + �z(1) (1) +  y(1)z(1)i |0〉
=

∫
d1d2

(√
−iz̄(2)G(2− 1)

√
−iz(1)

)

= −iz̄ z. (9.27)

If we now include the contraction with the first scattering term we produce the first scat-
tering correction to the propagator
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(−i)3
3!

∫
d2dXd1〈0|

n[: : :+ �z(2) (2) + : : :℄ hU(X) y(X) (X) + : : :i h: : : +  y(1)z(1)i+ permso |0〉
=

∫
d1d2

(√
−iz̄(2)

∫
dXG(2−X)V (X)G(X − 1)

√
−iz(1)

)

= −iz z. (9.28)

where we have only shown one of six equivalent contractions on the first line. This diagram
is simply interpreted as a particle, created at 1, scattering at position X before propagating
onwards to position 2. Notice how we must integrate over the the space-time co-ordinate of
the intermediate scattering event at X, to obtain the total first order scattering amplitude.
Higher order corrections will merely generate multiple insertions into the propagator and
we will have to integrate over the space-time co-ordinate of each of these scattering events.
Diagramatically, the sum over all such diagrams generates the “renormalized propagator”,
denoted by

G∗(2− 1) = 2 1

= 2 1 + +

2 1 2 1
+ ... (9.29)

Indeed, to second-order in the scattering potential, we can see that all the allowed contrac-
tions are consistent with the following exponential form for the generating functional

S = exp

[
+ + . . .− iz̄ z

]
. (9.30)

To prove this result formally requires a little more work, that we now go into in more detail.
The important point for you to grasp right now, is that the sum over all contractions in the S-
matrix can be represented by a sum of diagrams which concisely represent the contributions
to the scattering amplitude as a sum over all possible virtual excitation processes about the
vacuum.

9.2 Developing the Feynman Diagram Expansion

A neat way to organize this expansion is obtained using the source term approach we
encountered in the last chapter. There we found we could completely evaluate the the
response of a non-interacting the system to a source term which injected and removed
particles. We start with the source term S-matrix

Ŝ[z̄, z] = T exp

[
−i
∫
d1[ψ†(1)z(1) + z̄(1)ψ(1)]

]
. (9.31)

Here, for convenience, we shall hide details of the spin away with the space-time co-ordinate,
so that 1 ≡ (x1, t1, σ1), ψ(1) ≡ ψσ(x, t). You can think of the quantities z(1) and z̄(1) as
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“control-knobs” which we dial up, or down, the rate at which we are adding, or subtracting
particles to the system. For fermions, these numbers must be anticommuting Grassman
numbers: numbers which anticommute with each and all Fermion field operators. The
vacuum expectation value of this S-matrix is then

S[z̄, z] = 〈φ|Ŝ[z̄, z]|φ〉 = exp

[
−i
∫
d1d2z̄(1)G(1− 2)z(2)

]
(9.32)

where here, G(1 − 2) ≡ δσσ2G(x1 − x2, t1 − t2) is diagonal in spin. In preparation for our
diagramatic approach, we shall denote

∫
d1d2z̄(1)G(1− 2)z(2) = z̄ z (9.33)

where an integral over the space-time variables (x1, t1) and (x2, t2) and a sum over spin
variables σ1, σ2 is implied by the diagram. The S-matrix equation can then be written

S[z̄, z] = exp

[
−iz̄ z

]
(9.34)

This is called a “generating functional”. By differentiating this quantity with respect to
the source terms, we can compute the expectation value of any product of operators. Since
Grassman numbers anticommute, we need to distinguish whether we are differentiating from
the right, or the left. We shall adopt the convention that when we functionally differentiate
with respect to z̄, we differentiate from the left, but that when we functionally differentiate
with respect to z, we differentiate from the right, i.e 1

δ

δz̄
≡
→
δ

δz̄
,

δ

δz
≡
←
δ

δz
(9.35)

Each time we differentiate the S-matrix with respect to z̄(1), we pull down a field operator
inside the time-ordered product

i
δ

δz̄(1)
→ ψ(1)

i
δ

δz̄(1)
〈φ|T Ŝ{. . .}|φ〉 = 〈φ|T Ŝ{ψ(1) . . .}|φ〉 (9.36)

For example, the field operator has an expectation value

〈ψ(1)〉 =
〈φ|Ŝ[z̄, z]ψ(1)|φ〉
〈φ|Ŝ[z̄, z]|φ〉

= i
δ

δz̄(1)
lnS[z̄, z]

1With Grassman differentiation, we need to distinguish between left, and right differentiation. The
differential operators δ

δz
and δ

δz̄
are defined to satisfy the Euler expansion F = Fo + z̄ ∂F

∂z̄
+ ∂F

∂z
z where

“barred” quantities lie to the left of unbarred quantities. With this convention, ∂F
∂z

is the coefficient lying

to the left of z. This means that δ
δz

≡
←
δ
δz

differentiates from the right, so that for example, the differential

of a product fg is δ
δz

(fg) = f δg
δz

− δf
δz
g and the chain rule is δ

δz
F [g] = F ′[g] δg

δz
. This definition avoids the

need to carry a factor of ζ in equation (9.38 ).
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=

∫
G(1− 2)z(2)d2

≡ [1 z] (9.37)

Notice how the differential operator i δ
δz̄(1) “grabs hold” of the end of a propagator and

connects it up to space-time co-ordinate 1. Likewise, each time we differentiate the S-
matrix with respect to z(1), we pull down a field creation operator inside the time-ordered
product.

i
δ

δz(1)
→ ψ†(1), (9.38)

so that the creation operator has the value

〈ψ†(2)〉 =
〈φ|Ŝ[z̄, z]ψ†(2)|φ〉
〈φ|Ŝ[z̄, z]|φ〉

= i
δ

δz(2)
lnS[z̄, z]

=

∫
d1z̄(1)G(1− 2)

≡ [z̄ 2] (9.39)

If we differentiate either (9.37) w.r.t. z(2), or (9.39 ) w.r.t. z̄(1) we obtain

i
δ

δz(2)
〈ψ(1)〉

∣∣∣∣
z=z̄=0

= i
δ

δz̄(1)
〈ψ†(2)〉

∣∣∣∣
z=z̄=0

= 〈φ|Tψ(1)ψ†(2)|φ〉 = iG(1− 2) (9.40)

as expected.
In general, we can calculate arbitrary functions of the field operators by acting on the

S-matrix with the appropriate function of derivative operators.

〈φ|T Ŝ[z̄, z]F [ψ†, ψ]|φ〉 = F

[
i
δ

δz
, i
δ

δz̄

]
exp

[
−iz̄ z

]
. (9.41)

If we now set F [ψ†, ψ] = Te−i
∫
V [ψ†,ψ]dt, then

SI [z̄, z] = 〈φ|Te−i
∫∞
−∞

dt(V (ψ†,ψ)+source terms)|φ〉 (9.42)

can be written completely algebraically, in the form

SI [z̄, z] = e
−i
∫∞
−∞

V (i δ
δz
,i δ
δz̄

)dt
exp

[
−iz̄ z

]
(9.43)

The action of the exponentiated differential operator on the source terms generates all of
the contractions. It is convenient to recast this expression in a form that groups all the
factors of “i”. To do this, we write α = z, ᾱ = −iz̄, this enables us to rewrite the expression
as SI [z̄, z] = SI [ᾱ, α]|α=z,ᾱ=−iz̄, where

SI [ᾱ, α] = e
(i)n−1

∫∞
−∞

V ( δ
δα
, δ
δᾱ

)dt
exp

[
ᾱ α

]
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where we have written

V (i
δ

δz
, i
δ

δz̄
) = inV (

δ

δα
,
δ

δᾱ
) (9.44)

for an interaction involving n creation and n annihilation operators ( n-particle interaction).
This equation provides the basis for all Feynman diagram expansions.

To develop the Feynman expansion, we need to recast our expression in a more graphical
form. To see how this works, let us first consider a one-particle scattering potential (n = 1).
In this case, we write

in−1V (
δ

δα
,
δ

δᾱ
) =

∫
d3xU(x)

δ

δα(x)

δ

δᾱ(x)
(9.45)

which we denote as

δ
δᾱ(1)

δ
δα(1)

.
(9.46)

Notice that the basic scattering amplitude for scattering at point x is simply U(x) (or
U(x)/h̄ if we reinstate Planck’s constant). Schematically then, our Feynman diagram ex-
pansion can be written as

SI [ᾱ, α] = exp

[

δ
δᾱ(1)

δ
δα(1)

]
exp

[
ᾱ α

]

The differential operators acting on the bare S-matrix, glue the scattering vertices to the
ends of the propagators, and thereby generate a sum of all possible Feynman diagrams.
Formally, we must expand the exponentials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1

n!m!

[

δ
δᾱ(1)

δ
δα(1)

]n[
ᾱ α

]m

(9.47)

The action of the differential operator on the left hand-side is to glue the m propagators
together with the n vertices, to make a series of Feynman diagrams. Now, at first sight,
this sounds pretty frightening- we will have a profusion of diagrams. Let us just look at a
few: do not at this stage worry about the details, just try to get a feeling for the general
structure. The simplest n = 1, m = 1 term takes the form
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[

δ
δᾱ(1)

δ
δα(1)

][
ᾱ α

]
= ζ

∫
d1V (1)

δ2

δᾱ(1−)δα(1)

∫
dXdY ᾱ(X)G(X − Y )α(Y )

= ζ

∫
d1V (1)G(1− − 1) = (9.48)

This is the simplest example of a “linked-cluster” diagram, and it results from a single con-
traction of the scattering potential. The sign ζ = −1 occurs for fermions, because the fermi
operators need to be interchanged to write the expression as a time-ordered propagator.
One can say that the expectation value involves the fermion propagating backwards in time
from time t to an infinitesimally earlier time t− = t− ǫ. The term n = 1, m = 2 gives rise
to two sets of diagrams, as follows:

[

δ
δᾱ(1)

δ
δα(1)

][
ᾱ α

]2
= ᾱ α+ [ × ᾱ α]

(9.49)

The first term corresponds to the first scattering correction to the propagator, written out
algebraically,

ᾱ α =

∫
d1d2ᾱ(1)

∫
dXG(1−X)V (X)G(X − 2)α(2)

whereas the second term is an unlinked product of the bare propagator, and the first linked
cluster diagram. The Feyman rules enable us to write each possible term in the expansion
of the S-matrix as a sum of unlinked diagrams. Fortunately, we are able to systematically
combine all of these diagrams together, with the end result that

SI(ᾱ, α) = exp
[∑

linked diagrams
]

= exp

[
+ + . . . ᾱ α

]
. (9.50)

When written in this exponential form, the unlinked diagrams entirely disappear- a result of
the so-called “link-cluster” theorem we are shortly to encounter. The Feynman rules tell us
how to convert these diagrams into mathematical expressions. These rules are summarized
in table 8.1.

Let us now look at how the same procedure works for a two-particle interaction. Working
heuristically, we expect a two-body interaction to involve two incoming and two outgoing
propagators. We shall denote a two-body scattering amplitude by the following diagram

1 2 = (
√
i)4 ×−iV (1− 2) ≡ iV (1− 2). (9.51)

Notice how, in contrast to the one-body scattering amplitude, we pick up four factors of√
i from the external legs, so that the net scattering amplitude involves an awkward factor
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of “i”. If we now proceed using the generating function approach, we set n = 2 and then
write

in−1V (
δ

δα
,
δ

δᾱ
) = i

1

2

∫
d3xd3x′V (x− x′) δ

δα(x)

δ

δα(x′)
δ

δᾱ(x′)
δ

δᾱ(x)
(9.52)

Notice how the amplitude for scattering two particles is now iV (x− x′) (or iV (x− x′)/h̄ if
we reinstate Planck’s constant). We can now formally denote the scattering vertex as

1

2
δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)

(9.53)

This gives rise to the following expression for the generating functional

SI [ᾱ, α] = exp

[
1

2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)]

exp

[
ᾱ α

]

for the S-matrix of interacting particles.

As in the one-particle scattering case, the differential operators acting on the bare S-
matrix, glue the scattering vertices to the ends of the propagators, and thereby generate a
sum of all possible Feynman diagrams. Once again, we are supposed to formally expand
the exponentials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1

n!m!

[
1

2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)]n[

ᾱ α

]m
(9.54)

Let us again look at some of the leading diagrams that appear in this process. For instance

1

2!

[
1

2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)][

ᾱ α

]2
=

1

2

[
+ ζ

]
.

We shall see later that these are the Hartree and Fock contributions to the Ground-state
energy. The prefactor of 1

2 arises here because there are two distinct ways of contracting the
vertices with the propagators. At each of the vertices in these diagrams, we must integrate
over the space-time co-ordinates and sum over the spins. Since spin is conserved along each
propagator, so this means that each loop has a factor of (2S + 1) associated with the spin
sum. Once again, for fermions, we have to be careful about the minus signs. For each
particle loop, there is always an odd number of fermion propagators propagating backwards
in time, and this gives rise to a factor

ζ(2S + 1) = −(2S + 1) (9.55)
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per fermion loop. This is the origin of the factor ζ in the second linked cluster diagram
above. The algebraic rendition of these Feynman diagrams is then

1

2

∫
d1d2V (1− 2)

[
(2S + 1)2G(0, 0−)2 + ζ(2S + 1)G(1− 2)G(2− 1)

]
(9.56)

Notice finally, that the first Hartree diagram contains a propagator which “bites its own
tail”. This comes from a contraction of the density operator,

−i
∑

σ

〈. . . ψσ†(x, t)ψσ(x, t) . . .〉 = ζ(2S + 1)G(x, 0−) (9.57)

and since the creation operator lies to the left of the destruction operator, we pick up a
minus sign for fermions. As a second example, consider

1

3!

[
1

2 δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)][

ᾱ α

]3
= ᾱ


ζ +


α

corresponding to the Hartree and Fock corrections to the propagator. Notice how a sim-
ilar minus sign is associated with the single fermion loop in the Hartree self-energy. By
convention the numerical prefactors are implicitly absorbed into the Feynman diagrams, by
introducing two more rules: one which states that each fermion loop gives a factor of ζ,
the other which relates the numerical pre-factor to the symmetry of the Feynman diagram.
When we add all of these terms, the S-matrix becomes

SI(ᾱ, α) = 1 +


 + + + . . .




+ ᾱ


 + + + . . .


α

+ . . .

+

[
×

]
+

[
× + . . .

]
(9.58)

The diagrams on the first line are “linked-cluster” diagrams: they describe the creation
of virtual particle-hole pairs in the vacuum. The second-line of diagrams are the one-
leg diagrams, which describe the one-particle propagators. There are also higher order
diagrams (not shown) with 2n legs, coupled to the source terms, corresponding to the n-
particle Green’s functions. The diagrams on the third line are “unlinked” diagrams. We
shall shortly see that we can remove these diagrams by taking the logarithm of the S-matrix.
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9.2.1 Symmetry factors

Remarkably, in making the contractions of the S-matrix, the prefactors in terms like eq.
(9.54) are almost completely absorbed by the combinatorics. Let us examine the number
of ways of making the contractions between the two terms in (9.54). Our procedure for
constructing a diagram is illustrated in Fig. 9.1
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Figure 9.1: (a) Showing how six propagators and three interaction lines can be arranged on
a Feynman diagram of low symmetry (p = 1). (b) In a Feynman diagram of high symmetry,
each possible assignment of propagators and interaction lines to the diagram belongs to a p−
tuplet of topologically equivalent assignments, where p is the order of the symmetry group
of permutations under which the topology of the diagram is unchanged. In the example
shown above, p = 3 is the order of the symmetry group. In this case, we need to divide the
number of assignments W by a factor of p.

1. We label each propagator on the Feynman diagram 1 through m and label each vertex
on the Feynman diagram (1) through (n).

2. The process of making a contraction corresponds to identifying each vertex and each
propagator in (9.54 ) with each vertex and propagator in the Feynman diagram un-
derconstruction. Thus the P ′r th propagator is placed at position r on the Feynman
diagram, and the Pk-th interaction line is placed at position k on the Feynman dia-
gram, where P is a permutation of (1, . . . n) and P ′ a permutation of (1, . . . ,m).
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3. Since each interaction line can be arranged 2 ways at each location, there are 2nW (P ) =
2nn! ways of putting down the the interaction vertices andW (P ′) = m! ways of putting
down the propagators on the Feynman diagram, giving a total of W = 2nn!m! ways.

4. The most subtle point is notice that if the topology of the Feynman graph is invariant
under certain permutations of the vertices, then the above procedure overcounts the
number of independent contractions by a “symmetry factor” p, where p is the dimen-
sion of the set of permutations under which the topology of the diagram is unchanged.
The point is, that each of the 2nn!m! choices made in (2) actually belongs to a p−
tuplet of different choices which have actually paired up the propagators and vertices
in exactly the same configuration. To adjust for this overcounting, we need to divide
the number of choices by the symmetry factor p, so that the number of ways of making
the same Feynman graph is

W =
2nn!m!

p
(9.59)

As an example, consider the simplest diagram,

1

2 (9.60)

This diagram is topologically invariant under the group of permutations

G = {(12), (21)} (9.61)

so p = 2. In a second example
1 2

4 3

(9.62)

the invariance group is

G = {(1234), (3412)} (9.63)

so once again, p = 2. By contrast, for the diagram
1 2

4 3

(9.64)

the invariance group is

G = {(1234), (3412), (2143), (4321)} (9.65)

so that p = 4.
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9.2.2 Linked Cluster Theorem

One of the major simplifications in developing a Feynman diagram expansion arise because
of the Linked Cluster Theorem. Ultimately, we are more interested in calculating the
logarithm of the S-matrix, lnS(z̄, z). This quantity determines both the energy shift due
to interactions, but also, it provides the n-particle (connected) Green’s functions. In the
Feynman diagram expansion of the S-matrix, we saw that there are two types of diagram:
linked-cluster diagrams, and unlinked diagrams, which are actually products of linked-
cluster diagrams. The linked cluster theorem states that the logarithm of the S-matrix
involves just the sum of the linked cluster diagrams:

lnSI [z̄, z] =
∑
{Linked Cluster Diagrams} (9.66)

To show this result, we shall employ a trick called the “replica trick”, which takes advantage
of the relation

lnS = lim
n→0

[
Sn − 1

n

]
(9.67)

In other words, if we expand Sn as a power-series in n, then the linear coefficient in the
expansion will give us the logarithm of S. It proves much easier to evaluate Sn diagra-
matically. To do this, we introduce n identical, but independent replicas of the original
system, each “replica” labelled by λ = (1, n). The Hamiltonian of the replicated system is
just H =

∑
λ=1,n and since the operators of each replica live in a completely independent

Hilbert space, they commute. This permits us to write

(SI [z̄, z])
N = 〈φ|Te

−i
∫ ∞

−∞
dt
∑

λ

(V (ψλ
†, ψλ) + source terms)

|φ〉 (9.68)

When we expand this, we will generate exactly the same Feynman diagrams as in S, ex-
cepting that now, for each linked Feynman diagram, we will have to multiply the amplitude
by N . The diagram expansion for interacting fermions will look like

SI(ᾱ, α) = 1

+ N ×

 + + ᾱ


 + + + . . .


α+ . . .




+ N2

[( )2

+

( )2

+ ( × + . . .

]

+ N3

[( )3

+ . . .

]
+ . . . (9.69)

from which we see that the coefficient of N in the replica expansion of SN is equal to the
sum of the linked cluster diagrams, so that

lnSI(ᾱ, α) =


 + + ᾱ


 + + + . . .


α+ . . .
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By differentiating the log of the S-matrix with respect to the source terms, extract the
one-particle Green’s functions as the sum of all two-leg diagrams

G(1− 2) =
δ2lnSI(ᾱ, α)

δᾱ(1)δα(2)
=
∑
{Two leg diagrams}

=


2 1 + 2 1 + 2 1 + . . .


 (9.70)

This is a quite non-trivial result. Were we to have attempted a head-on Feynman diagram
expansion of the Green’s function using the Gell Mann Lowe theorem,

G(1− 2) = −i〈φ|TSψ(1)ψ†(2)|φ〉
〈φ|S|φ〉 (9.71)

we would have to consider the quotient of two sets of Feynman diagrams, coming from the
contractions of the denominator and numerator. Remarkably, the unlinked diagrams of the
S matrix in the numerator cancel the unlinked diagrams appearing in the Wick expansion
of the denominator, leaving us with this elegant expansion in terms of two-leg diagrams.

The higher order derivatives w.r.t. α and ᾱ correspond to the connected n-body Green’s
functions

Example 9.21: By introducing a chemical potential source term into the original
Hamiltonian,

H =

∫
d3xδφ(x, t)ρ̂(x) (9.72)

show that the change in the logarithm of the S-matrix is

lnS[φ] = lnS[0] +
1

2


δφ(1)
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= + + + ... (9.74)

denotes the sum of all diagrams that connect two “density” vertices. Use this result to
show that the time-ordered density correlation function is given by

−i〈φ|Tδρ(1)δρ(2)|φ〉 = i
δ2

δφ(1)δφ(2)
lnS[φ] = i 1
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2 (9.75)
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Example 9.22: Expand the S-matrix to quadratic order in α and ᾱ, and use this to
show that the two-particle Green’s function is given by

1

S[ᾱ, α]

δ4S

δᾱ(1)δᾱ(2)δα(3)δα(4)
= −〈φ|T [ψ(1)ψ(2)ψ†(3)ψ†(4)]|φ〉

=
1 4

32

1 4

32

1 4

2 3
+/− +

�����
�����
�����
�����

�����
�����
�����
�����

(9.76)

Show that the last term, which is the connected two-particle Green’s function, is the
quartic term coefficient in the expansion of lnS[ᾱ, α].

9.3 Feynman rules in momentum space

Though it is easiest to motivate the Feynman rules in real space, practical computations are
much more readily effected in momentum space. We can easily transform to momentum
space by expanding each interaction line and Green’s function in terms of their Fourier
components:

1 2 = G(X1 −X2) =

∫
ddp

(2π)d
G(p)eip(X1−X2)

1 2 = V (X1 −X2) =

∫
ddq

(2π)d
V (q)eiq(X1−X2) (9.77)

where we have used a short-hand notation p = (p, ω), q = (q, ν), X = (x, t), and pX =
p · x− ωt. We can deal with source terms in similar way, writing

α(X) =

∫
ddp

(2π)d
eipXα(p). (9.78)

Having made these transformations, we see that the space-time co-ordinates associated with
each vertex, now only appear in the phase factors. At each vertex, we can now carry out the
integral over all space-time co-ordinates, which then imposes the conservation of frequency
and momentum at each vertex.

, q
p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)dδ(d)(p1 − p2 − q) (9.79)

Since momentum and energy are conserved at each vertex, this means that there is one
independent energy and momentum per loop in the Feynman diagram. Thus the trans-
formation from real-space, to momentum space Feynman rules is effected by replacing the
sum over all space-time co-ordinates by the integral over all loop momenta and frequency.
(Table 8.2). The convergence factor

eiωO
+

(9.80)
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is included in the loop integral. This term is only really needed when the loop contains
a single propagator, propagating back to the point from which it eminated. In this case,
the convergence factor builds in the information that the corresponding contraction of field
operators is normal ordered.

Actually, since all propagators and interaction variables depend only on the difference
of position, the integral over all n space-time co-ordinates can be split up into an integral
over the center-or-mass co-ordinate

Xcm =
X1 +X2 + . . . Xn

n
(9.81)

and the relative co-ordinates

X̃r = Xr −X1, (r > 1), (9.82)

as follows
∏

r=1,n

ddXr = ddXcm

∏

r=2,n

ddX̃r (9.83)

The integral over the X̃r imposes momentum and frequency conservation, whilst the integral
over Xcm can be factored out of the diagram, to give an overall factor of

∫
ddXcm = (2π)dδ(d)(0) ≡ V T (9.84)

where V is the volume of the system, and T the time over which the interaction is turned
on. This means that the proper expression for the logarithm of the S-matrix is

ln(S) = V T
∑
{ linked cluster diagrams in momentum space}. (9.85)

In other words, the phase-factor associated with the S-matrix grows extensively with the
volume and the time over which the interactions act.

9.3.1 Relationship between energy, and the S-matrix

One of the most useful relationships of perturbation theory, is the link between the S-
matrix and the ground-state energy. Here the basic idea is very simple. When we turn on
the interaction, the ground-state energy changes which causes the phase of the S-matrix to
evolve. If we turn on the interaction for a time T , then we expect that for sufficiently long
times, the phase of the S-matrix will be given by −i∆ET :

S[T ] = 〈−∞|Û(T/2)U †(−T/2)|∞〉 ∝ e−i∆ET (9.86)

where ∆E = Eg = Eo is the shift in the ground-state energy as a result of interactions.
This means that at long times,

ln(S[T ]) = −i∆ET + constant (9.87)
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Table. 8.2 Momentum Space Feynman Rules .

(k, ω)
Go(k, ω) Fermion propagator

iV (q) Interaction

(q, ν)
1 2

ig2
qDo(q) Exchange Boson.

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, ν)

∫
ddqdν

(2π)d+1
eiω0+ Integrate over internal loop

momenta and frequency.

p = 2

1

p
p = order of symmetry group.

×
p = 8

But from the linked cluster theorem, we know that

S = V T
∑
{linked clusters in momentum space} (9.88)

which then means that the change in the ground-state energy due to interactions is given by

∆E = iV
∑
{linked clusters in momentum space} (9.89)

To show this result, let us turn on the interaction for a period of time T , writing the
ground-state S-matrix as

S[T ] = 〈−∞|Û(T/2)U †(−T/2)|∞〉 (9.90)
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If we insert a complete set of energy eigenstates 1 =
∑
λ |λ〉〈λ| into this expression for the

S-matrix, we obtain

S[T ] =
∑

λ

〈−∞|Û(T/2)|λ〉〈λ|U †(−T/2)|∞〉 (9.91)

In the limit T →∞, the only state with an overlap with the time-evolved state U †(−T/2)|φo〉
will be the true ground-state |ψg〉 of the interacting system, so we can write

S(T )→ U(T/2)U†(−T/2) (9.92)

where U(τ) = 〈−∞|Û(τ/2)|φ〉. Now differentiating the first term in this product, we obtain

∂

∂τ
U(τ) =

∂

∂τ
〈ψo|eiHoτ/2e−iHτ/2|ψg〉

=
i

2
〈ψo|{HoU(τ/2)− U(τ/2)H}|ψg〉

= − i∆E
2
U(τ) (9.93)

Similarly, ∂
∂τ U†(−τ) = − i∆E

2 U†(−τ), so that

∂S(T )

∂T
= −i∆ES(T ) (9.94)

which proves the original claim.

9.4 Examples

9.4.1 Hartree Fock Energy

As a first example of the application of Feynman diagrams, we use the linked cluster theorem
to expand the ground-state energy of an interacting electron gas to first order. To leading
order in the interaction strength, the shift in the ground-state energy is given by

Eg = Eo + iV

[
+

]
(9.95)

corresponding to the Hartree, and Fock contributions to the ground-state energy. Writing
out this expression explicitly, noting that the symmetry factor associated with each diagram
is p = 2, we obtain

∆EHF =
iV

2

∫
d3kd3k′

(2π)6
dωdω′

(2π)2

[
(−[2S + 1])(iVk−k′) + (−[2S + 1])2(iVq=0)

]
G(k)G(k′)

In the last chapter, we obtained the result

∫
dω

2π
G(k, ω) = ifk = iθ(kF − |k|) (9.96)
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Table. 8.3 Relationship With Physical Quantities.

∆E iV
∑{linked clusters} iV

[
+ + . . .

]

lnS V T
∑{linked clusters} V T

[
+ + . . .

]

1
−i〈Tψ(2)ψ†(1)〉

2
∑{Two leg diagrams}

+ + +

(−i)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

(−i)2〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

A(2)
χAB = −iχTAB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB

so that the shift in the ground-state energy is given by

∆EHF =
V

2

∫
d3kd3k′

(2π)6

[
(2S + 1)2(Vq=0)− (2S + 1)(Vk−k′)

]
fkfk′ (9.97)

In the first term, we can identify ρ = (2S+1)
∑
fk as the density, so this term corresponds

to the classical interaction energy of the Fermi gas. The second term is the exchange
energy. This term is present because the spatial wavefunction of parallel spin electrons is
antisymmetric, which keeps them apart, producing a kind of “correlation hole” between
parallel spin electrons.

Let us examine the exchange correlation term in more detail. To this end, it is useful
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to consider the equal time density correlation function,

Cσσ′(~x− ~x′) = 〈φ0| : ρσ(x)ρσ′(x′) : |φ0〉

In real space, the Hartree Fock energy is given by

〈φ0|V̂ |φ0〉 =
1

2

∑

σ,σ′

∫
d3xd3yV (~x− ~y)〈φ0| : ρ̂σ(~x)ρσ′(~y) : |φ0〉

=
1

2

∑

σ,σ′

∫
d3xd3yV (~x− ~y)Cσσ′(~x− ~y) (9.98)

Now if we look at the real-space Feynman diagrams for this energy,

∆E = i

[
+

]

= −1

2

∑

σσ′

∫

x,x′
V (x− x′)

[(
σ

x
σ’

x′
)

+ x
σ

x′
]

(9.99)

since each interaction line contributes a iV (x− x′) to the total energy, we deduce that the
Feynman diagram for the equal time density correlation functions are

Cσσ′(x− y) = −
[(

σ
x

σ’
x′
)

+
(
x

σ
x′
)
δσσ′

]
(9.100)

Written out explicitly,

Cσσ′(~x− ~y) = −


−δσσ′G(~x− ~y, 0−)G(~y − ~x, 0−) + (

−iρ0︷ ︸︸ ︷
−G(~0, 0−))2)




= ρ2
0 + δσσ′G(~x− ~y, 0−)G(~y − ~x, 0−) (9.101)

where we have identified G(~0, 0−) = iρ0 with the density of electrons per spin. From this
we see that C↑↓(~x− ~y) = ρ2

0 is independent of separation- there are no correlations between
the up and down-spin density in the non-interacting electron ground state. However, the
correlation function between parallel spin electrons contains an additional term. We can
calculate this term from the equal time electron propagator, which in real space is given by

G(~x, 0−) =

∫

k
G(k, 0−)ei

~k·~x

= i

∫

k<kF

k2dk

2π2

sin kr
kr︷ ︸︸ ︷∫

d cos θ

2
eikr cos θ

=
kF
2π2

[
sin(kF r)− kF r cos kF r

r2

]
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= ρ0P (kFx) (9.102)

where ρ0 =
k3
F

6π2 and

P (x) =
3π

2x
j1(x) = 3

sinx− x cos(x)

x2
(9.103)

so that

C↑↑(~x− ~y) = ρ2
0

[
1− (P (kF |~x− ~y|))2

]

This function is shown in Fig. 9.2. At ~x−~y = 0, this function goes to zero, corresponding to
the fact that the probability to find two “up” electrons in the same place actually vanishes.
It is this hole in the correlation function that gives the interacting electron fluid a pre-
disposition towards the development of ferromagnetism and triplet paired superfluids.

Figure 9.2: “Correlation hole”. The equal time correlation function C↑↑(kF r) for the non-
interacting Fermi gas. Notice how this function vanishes at the origin, corresponding to a
vanishing probability to find two “up” electrons at the same location in space.

Before we end this section, let us examine the Hartree Fock energy for the Coulomb
gas. Formally, with the Coulomb interaction the Hartree interaction becomes infinite, but
in practice, we need not worry, because to stabilize the charged Fermi gas, we need to
compensate the charge of the Fermi gas with a uniformly charged background. Provided the
Fermi gas is uniform, the classical Coulomb energy of the combined system is then identically
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zero. The leading order expression for the ground-state energy of the compensated Coulomb
gas of Fermions is then

Eg
V

= (2S + 1)

∫

k

h̄2k2

2m
fk −

(2S + 1)

2

∫

k,k′
fkfk′

4πe2

(k− k)2
(9.104)

A careful evaluation of the above integrals (see Problem 8.1) gives

Eg
V

= ρ

[
3

5
ǫF −

3e2kF
4π

]

where ρ = (2S + 1)k3
F /(3π

2) is the density of particles. An important parameter for the
electron gas is the dimensionless separation of the electrons. The separation of electrons
Rein a Fermi gas is defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/a

where a = ch̄2

me2
is the Bohr radius. The Fermi momentum can be expressed

kF =
1

αrsa

where α =
(

4
9π

) 1
3 ≈ 0.521. Using rs, we can re-write the above energy of the electron gas

as

E

ρV
=

3

5

RY
α2r2s

− 3

2π

RY
αrs

=

(
2.21

r2s
− 0.916

rS

)
RY (9.105)

where RY = h̄2

2ma2 = 13.6eV is the Rydberg energy. From this, we see that the most strongly
correlated limit of the electron gas is the dilute limit.

9.4.2 Response functions

One of the most valuable applications of Feynman diagrams, is to evaluate response func-
tions. Suppose we couple the interacting system up to an external source field,

H(t) = Ho +Hs(t) (9.106)

where

Hs(t) = −A(t)f(t) (9.107)
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involves the coupling of an external force to a variable of the system. Examples would
include

Hs(t) = −µB
∫
d3x~σ(x) ·B(x, t), External magnetic field

Hs(t) = −
∫
d3xρ(x)Φ(x, t) External potential (9.108)

In each case, the system will respond by a change in the variable A(t). To calculate this
change, we use the interaction representation of H(t) , so that

AH(t) = U †(t)AI(t)U(t) (9.109)

where, from chapter 7,

U(t) = T exp

[
−i
∫ t

−∞
Hs(t

′)dt′
]

(9.110)

We shall now drop the subscript I, because AI(t) = A(t) also corresponds to the Heisenberg
representation of Ho. Expanding (9.109) to linear order in Hs, we obtain

AH(t) = A(t)− i
∫ t

−∞
[A(t), Hs(t

′)]dt′ +O(H2
s ) (9.111)

Finally, taking expectation values, we obtain

〈AH(t)〉 = 〈φ|A(t)|φ〉 − i
∫ t

−∞
〈φ|[A(t), Hs(t

′)]|φ〉dt′ (9.112)

But if A is zero in the absence of the applied force, i.e. 〈φ|A(t)|φ〉 = 0, then the linear
response of the system is given by

〈AH(t)〉 =

∫ ∞

−∞
dt′χ(t− t′)f(t′)dt′ (9.113)

where

χ(t− t′) = i〈φ|[A(t), A(t′)]|φ〉θ(t− t′) (9.114)

is called the “dynamical susceptibility” and A(t) is in the Heisenberg representation of the
unperturbed system.

Now in diagramatic perturbation theory, we are able to evaluate time-ordered Green
functions, such as

χT (1− 2) = (−i)2〈φ|TA(1)A(2)|φ〉. (9.115)
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Here, the prefactor (−i)2 has been inserted because almost invariably, A is a bilinear of the
quantum field, so that χT is a two-particle Greens function. Fortunately, there is a very
deep link between the dissipative response function, and the fluctuations associaed with a
correlation function, called the “fluctuation-dissipation” theorem. The Fourier transforms
of R and G are both governed by precisely the same many-body excitations, with precisely
the same spectral functions, with one small difference: in the complex structure of χ(ω),
all the poles lie just below the real axis, guaranteeing a retarded response. By contrast, in
χT (ω), the positive and negative energy poles give rise to retarded, and advanced responses,
respectively. The spectral decomposition of these functions are then,

χ(ω) =
∑

λ

2|Mλ|2ωλ
ω2
λ − (ω + iδ)2

χT (ω) = i
∑

λ

2|Mλ|2ωλ
(ωλ − iδ)2 − ω2

(9.116)

where Mλ = 〈λ|A|φ〉 is the matrix element between the ground-state and the excited state
λ and ωλ = Eλ − Eg is the excitation energy. In this way, the response function can be
simply related to the time-ordered response at a small imaginary frequency:

χ(ω) = −iχT (ω + iδ) (9.117)

We can obtain the Feynman rules for the time-ordered correlation function, by introducing
a source term Hs and calculating the S-matrix S[f ]. In this case,

−i δ2

δf(1)δf(2)
lnS[f ] = i〈φ|T [A(1)A(2)]|φ〉 = −i1

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

2 (9.118)

Diagramatically, the time-ordered correlation function for the quantity A, is given by

χT (ω) =
∑
{diagrams formed by connecting two ”A” vertices together.} (9.119)

as summarized in Table 8.3.

9.4.3 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of an fermi liquid, is its non-local response to an applied
field. Suppose for example, one introduces a localized “delta-function” disturbance in the
magnetic field, δBz(x) = Bδ3(x). Since the fermions have a characteristic wave vector of
order kF , this local disturbance will “heal” over a length-scale of order l ∼ 1/kF . Indeed,
since the maximum wavevector for low-energy particle-hole excitations is sharply cut-off at
2kF , the response produces oscillations in the spin density with a wavelength λ = 2π/kF
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Figure 9.3: “Friedel oscillations in the spin density, in response to a delta-function dis-
turbance in the magnetic field at the origin.These oscillations may be calculated from the
Fourier transform of the Lindhard function.

that decay gradually from the site of the disturbance. These oscillations are called “Friedel
Oscillations” (Fig. 9.3). In the case of the example just cited, the change in the spin density
in response to the shift in the chemical potential is given by

δM(~x) = χs(~x)B (9.120)

where

χs(~x) =

∫

q
χ(q, ω = 0)ei~q·~x (9.121)

is the Fourier transform of the dynamical spin susceptibility. We shall now calculate this
quantity as an example of the application of Feynman diagrams.

From the interaction in (9.108 ) the magnetization is given by

~M(x) =

∫
d4x′χ(x− x′) ~B(x′) (9.122)

where

χ
ab

(x) = i〈φ|[σa(x), σb(0)]|φ〉θ(t) (9.123)
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The electron fluid mediates this non-local response. If we Fourier transform this expression,
then ~M(q) = χ(q) ~B(q), where (in a relativistic short-hand)

χab(q) = iµ2
B

∫
d4x〈φ|[σa(x), σb(0)]|φ〉θ(t)e−iq·x (9.124)

We can relate χab(~q, ν) = −iχTab(~q, ν + iδ) where the time ordered Greens function is given
by

χTab(q) = µ2
B

k+q

k

bσ σa

= −µ2
B

∫

k

dω

2π

2δabG(k+q)G(k)︷ ︸︸ ︷
Tr
[
σaG(k + q)σbG(k)

]
= δabχ

T (q). (9.125)

The susceptibility χT (q) is then

χT (q) = −2µ2
B

∫

k

dω

2π

[
1

ω + ν − ǫ̃k+q

1

ω − ǫ̃k

]
(9.126)

where we have invoked the notation ǫ̃k = ǫk−iδsgn(ǫk). The term inside the square brackets
has two poles at ω = ǫ̃k and at ω = ǫ̃k+q − ν,

∫

ω
=

∫
dω

2π

1

(ǫ̃k+q − ǫ̃k)− ν

[
1

ω + ν − ǫk+q + iδk+q

− 1

ω − ǫk + iδk

]

We may carry out the frequency integral by completing the contour in the upper half plane.
Each Green function gives a contribution 2πi× fermi function, so that

χT (q) = −2iµ2
B

∫

k

fk+q − fk
(ǫ̃k+q − ǫ̃k)− ν (9.127)

so that the dynamic susceptibility χ(q, ν) = −iχT (q, ν + iδ) is given by

χ(q, ν + iδ) = 2µ2
B

∫

k

fk+q − fk
ν − (ǫk+q − ǫk) + iδ

dynamic spin susceptibility (9.128)

There are a number of important pieces of physics encoded in the above expression that
deserve special discussion:

• Spin Conservation. The total spin of the system is conserved, so that the application
of a strictly uniform magnetic field to the fluid can not change the total magnetization.
Indeed, in keeping with this expectation, if we take ~q → 0 we find lim~q→0 χ(~q, ν) = 0.
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Figure 9.4: “The Lindhard function”. The Fourier transform of this function governs the
magnetic response of a non-interacting metal to an applied field. Notice the weak singu-
larity around q/(2kF ) = 1 that results from the match between the Fermi surface, and the
wavevector of the magnetic response.

• Static susceptibility. When we take the limit ν → 0, we obtain the magnetization
response to a spatially varying magnetic field. The static susceptibility is given by

χ(q) = 2µ2
B

∫

k

fk − fk+q

(ǫk+q − ǫk)
. (9.129)

This response is finite, because the spins can always redistribute themselves in re-
sponse to a non-uniform field. When we take the wavelength of the applied field to
infinity, i.e q → 0, we recover the Pauli susceptibililty

χ→ 2µ2
B

∫

k

(
−df(ǫ)

dǫ

)
= 2µ2

B

∫

k
δ(ǫk) = µ2

BN(0), (9.130)

where N(0) = mkF
π2 is the total density of states. The detailed momentum-dependent

static susceptibility can be calculated (see below), and is given by

χ(q) = 2µ2
BF (

q

2kF
)

F (x) =
1

4x
(1− x2)ln

∣∣∣∣
1 + x

1− x

∣∣∣∣+
1

2
(9.131)

The function (x) is known as the Lindhard function: it has the property that F (0) = 1,
and that dF/dx is singular at x = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamic spin sus-
ceptibility has both a real and an imaginary part, given by

χ(q, ν) = χ′(q, ν) + iχ′′(q, ν).
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χ
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ν/(4ǫF )

q/(2kF )
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1
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0 1

F

q ~ 0

q ~ 2k

Figure 9.5: Density plot of the imaginary part of the dynamical spin susceptibility, cal-
culated from (9.138) showing the band of width 2kF that spreads up to higher energies.
Excitations on the left side of the band correspond to low momentum transfer excitations of
electrons from just beneath the Fermi surface to just above the Fermi surface. Excitations
on the right hand side of the band correspond to high momentum transfer processes, right
across the Fermi surface.

where the imaginary part determines the dissipative part of the magnetic response.
The dissipation arises because an applied magnetic field generates a cloud of electron
hole pairs which carry away the energy. If we use the Dirac-Cauchy relation 1/(x +
iδ) = P (1/x)− iπδ(x) in (9.128 ), we obtain

χ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (ǫk+q − ǫk)](fk − fk+q), (9.132)

This quantity defines the density of states of particle-hole excitations. The excitation
energy of a particle hole pair is given by

ǫk+q − ǫk =
q2

2m
+
qk

m
cos θ

where θ is the angle between k and q. This quantity is largest when θ = 0, k = kF
and smallest when θ = π, k = kF so that

q2

2m
+
qkF
m

> ν >
q2

2m
− qkF

m

defines a band of allowed wavevectors where the particle-hole density of states is finite,
as shown in Figure 9.5. Outside this region, χo(q, ν) is purely real.
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Derivation of Lindhard Function

The dynamic spin-susceptibility

χ(q, ν) = 2µ2
B

∫

k

fk − fk+q

(ǫk+q − ǫk − ν)
. (9.133)

can be rewritten as

χ(q, ν) = 2µ2
B

∫

k
fk

[
1

(ǫk+q − ǫk − ν)
+

1

(ǫk−q − ǫk + ν)

]
(9.134)

Written out explicity, this is

χ(q, ν) = 2µ2
B

∫ kF

0

k2dk

2π2

∫ 1

−1

d cos θ

2

[
1

(ǫk+q − ǫk − ν)
+ ((ν, q)→ −(ν, q))

]
.

By replacing ǫk → k2

2m − µ rescaling x = k/kF , q̃ = q/(2kF ) and ν̃ = ν/(4ǫF ), we obtain
χ(q, ν) = µ2

BN(0)F(q̃, ν̃), where

F(q̃, ν̃) =
1

4q̃

∫ 1

0
x2dx

∫ 1

−1
dc

[
1

xc+ q̃ − ν̃
q̃

+ (ν → −ν)
]

(9.135)

is the “Lindhard Function”. Carrying out the integral over angle, we obtain

F(q̃, ν̃) =
1

4q̃

∫ 1

0
xdx

(
ln

[
q̃ − ν̃

q̃ + x

q̃ − ν̃
q̃ − x

]
+ (ν̃ → −ν̃)

)

=
1

8q̃

([
1−

(
q̃ − ν̃

q̃

)2
]

ln

[
q̃ − ν̃

q̃ + 1

q̃ − ν̃
q̃ − 1

]
+ (ν̃ → −ν̃)

)
+

1

2
(9.136)

This function is known as the Lindhard function. Its static limit, F (q̃) = F(q̃, ν̃ = 0),

F (q̃) =
1

4q̃

([
1− q̃2

]
ln

∣∣∣∣
q̃ + 1

q̃ − 1

∣∣∣∣
)

+
1

2
(9.137)

has the property that F (0) = 1, and that dF/dx is singular at x = 1 as shown in Fig. 9.4.
The imaginary part of χ(q, ν + iδ) is given

χ′′(q, ν) = µ2
BN(0)× π

8q̃

{(
1−

[
q̃ − ν̃

q̃

]2)
θ

[
1−

[
q̃ − ν̃

q̃

]2]
− (ν → −ν)

}
(9.138)

which is plotted in Fig. 9.5.
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9.4.4 Electron in a scattering potential

As an illustration of the utility of the Feynman diagram approach, we now consider an
electron scattering off an attractive central scattering potential. Here, by resumming the
Feynman diagrams, it is easy to show how in dimensions d ≤ 2, an arbitrarily weak attractive
potential gives rise to bound-states.

The Hamiltonian is given by

H =
∑

k

ǫkc
†
kck +Hsc (9.139)

where ǫk = k2/2m− µ and the scattering potential is given by

Hsc =

∫
d3xψ†(x)ψ(x)U(x) (9.140)

If we Fourier transform the scattering potential, writing

U(x) =

∫

q
U(q)eiq·x (9.141)

then the scattering potential becomes

Hsc =

∫

k,k′
Uk−k′︸ ︷︷ ︸

amplitude to transfer momentum k− k′

c†kck′ (9.142)

The Feynman diagrams for the one-electron Green’s function are then

k′ k
= δk,k

k
+

k′ k
+

k′ k′′ k
+ . . .(9.143)

where

k
= Go(k, ω) =

1

ω − ǫk − iδk
(9.144)

denotes the propagator in the absence of potential scattering and

k′ k
= Uk−k′ (9.145)

is the basic scattering vertex. The first diagram represents the amplitude to be transmitted
without scattering; subsequent diagrams represent multiple scattering processes involving
one, two three and more scattering events. We shall lump all scattering processes into a
single amplitude, called the t-matrix, represented by

tk,k′(ω) = = +
k′′

+
k′′ k′′′

+ . . .(9.146)

With this short-hand notation, the diagrams for the electron propagator become

k′ k
= δk,k′

k
+

k′ k

tkk′(ω)
(9.147)
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Written out as an equation, this is

G(k,k′, ω) = δk,k′G
o(k, ω) +Go(k, ω)tk,k′(ω)Go(k′, ω) (9.148)

If we look at the second, third and higher scattering terms in the t-matrix, we see that they
are a combination of the t-matrix plus the bare scattering amplitude. This enables us to
re-write the t-matrix as the following self-consistent set of Feynman diagrams

= +
k′′

tkk′(ω)
(9.149)

Written out explicitly, this is

tkk′(ω) = Uk−k′ +
∑

k′′

Uk−k′′G
o(k′′, ω)tk′′k′(ω) (9.150)

Equations (9.148) and (9.150) fully describe the scattering off the impurity.
As a simplified example of the application of these equations, let us look at the case of

s-wave scattering off a point-like scattering center:

U(x) = Uδ(d)(x) (9.151)

In this case, U(q) = U is independent of momentum transfer. By observation, this means
that the t-matrix will also be independent of momentum, i.e. tk,k′(ω) = t(ω). The equation
for the t-matrix then becomes

t(ω) = U + U
∑

k′′

Go(k′′, ω)t(ω) (9.152)

or

t(ω) =
U

1− UF (ω)
(9.153)

where

F (ω) =

∫
ddp

(2π)d
1

ω − ǫk + iδk

=

∫ Λ

0
dǫN(ǫ)

1

ω − ǫ+ iδsign(ǫ)
(9.154)

and N(ǫ) is the density of states. A high-energy cut-off has been introduced to guarantee
the convergence of the integral. Physically, such a cut-off corresponds to the energy scale,
beyond which ,the scattering potential no longer behaves as a point potential. At low
energies, F (ω) < 0, so that if U < 0, there is the possibility of poles in the t-matrix,
corresponding to bound-states.

As we have derived it, our scattering t-matrix describes scattering in the presence of a
Fermi sea. To recover free particle behavior, we imagine that the Fermi sea is empty, so
that the chemical potential is zero so that

ǫk =
k2

2m
(9.155)
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In d-dimensions, the density of states is given by

N(ǫ) ∝ kd−1dk

dǫ
∝ ǫ d2−1 (9.156)

The low energy behavior of F (ω) is then given by

F (ω) ∝ −ωd/2−1 (9.157)

This quantity diverges in dimensions d ≤ 2, so that there will be bound-states for arbitrarily
small attractive potentials U < 0. In two dimensions, the density of states is N(ω) =
N(0)and F (ω) = −N(0)ln Λ

−ω , so that for attractive U = −|U |,

t(ω) = − |U |
1− |U |N(0)ln Λ

−ω
=

1

N(0)ln
(
ωo
−ω

) (9.158)

where ωo = Λe
− 1
|U|N(0) , giving rise to a bound-state at energies ω = −ωo.

Remarks

• The energy scale ωo can not be written as a power-series in U , and as such, is an
elementary example of a “non-perturbative” result. The bound-state appears because
an infinite class of Feynman diagrams have been resummed.

• The appearance of a bound-state for electrons scattering off an arbitrarily weak at-
tractive potential is similar to the Cooper instability.

9.5 The self-energy

The concept of the self-energy enables us to understand the feedback of the interacting
environment on a propagating particle. This is one of the most important examples of the
power of Feynman diagram resummation.

Let us consider the Greens function of a fermion in an interacting environment. Every
diagram contributing to the propagator consists of a sequence of free propagators separated
by various many-body scattering processes. The self-energy sums the amplitude for all of
these intermediate scattering processes into a single entity represented by the symbol Σ.
With this conceptual simplification, the propagator has the structure

= + Σ + Σ Σ + . . .(9.159)

where

Σ(k, ω) = Σ = + + + + . . .(9.160)
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denotes the self-energy: the sum of all scattering processes that can not be separated into
two by cutting a single propagator.

The one-particle propagator can be written in terms of the self-energy as follows

G(k, ω) = + Σ + Σ Σ + . . .

= Go + GoΣGo + Go(ΣGo)2 + . . .
= 1

(Go)−1−Σ

(9.161)

So that

G(k, ω) =
1

ω − ǫk − Σ(k, ω)
(9.162)

Physically, the self-energy describes the cloud of particle-hole excitations that form the wake
which accompanies the propagating electron. In general, the self-energy has both a real,
and an imaginary component.

Σ(k, ω − iδ) = Σ′(k, ω) + iΓ(k, ω) (9.163)

If we use this expression to evaluate the one-particle spectral function, we obtain

A(k, ω) =
1

π
ImG(k, ω − iδ) =

Γ(k, ω)

[ω − ǫk − Σ′(k, ω)]2 + Γ(k, ω)2
(9.164)

If the self-energy is small, we see that this corresponds to a Lorentzian of width Γ centered
around a renormalized energy ǫ∗k = ǫk + Σ′(k, ǫ∗k). If we expand the Lorentzian around
this point, we must be careful to write ω − ǫk − Σ′(k, ω) = (ω − ǫ∗k)Zk where Z−1

k =
(1− ∂ωΣ′(k, ω))|ω=ǫ∗

k
. Near the renormalized energy,

G(k, ω − iδ) =
Zk

ω − ǫ∗k − iΓ∗k
(9.165)

corresponding to a “quasiparticle” excitation with a finite lifetime. The finite width reflects
the fact that an electron can now decay into combinations of electrons, plus electron-hole
pairs. The reduced weight reflects the finite overlap between the bare electron, and the
renormalized excitation:

ǫ∗k = ǫk + Σ′(k, ǫ∗k), renormalized energy

τ−1 = ZkΓ(k, ǫ∗k), Lifetime

Zk = |〈q.ptcle kσ|c†kσ|φ〉|2 “Wavefunction renormalization”

(9.166)
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9.5.1 Hartree-Fock Self-energy

The simplest example of the self-energy is the Hartree-Fock self energy, given by the two
diagrams

ΣHF (p, ω) = +

= i

∫

p′

{−(2S + 1)Vq=0 + Vp−p′
} ∫ dω

2π
Go(k)eiω0+

(9.167)

Here we see a case where we must include a convergence factor, associated with the normal
ordering of the operators inside the interaction. Identifying

∫
dωGo(k)eiω0+

= 2πifp′ , we
obtain

ΣHF (p) =

∫

|p′|<kF

d3k′

(2π)3

[
(2S + 1)Vq=0 − Vp−p′

]
(9.168)

In the Hartree-Fock approximation, the electron acquires a renormalized energy

ǫ∗p = ǫp + ΣHF (p) (9.169)

but since the Hartree-Fock self-energy is completely static, in this approximation, the quasi-
particle has an infinite lifetime. The mass of the quasiparticle is nevertheless renormalized.
Suppose we write

p

m∗
= ∇pǫ

∗
p =

[
p

m
+∇pΣHF (p)

]
(9.170)

then integrating by parts,

∇pΣHF (p) = −
∫

p′
Vp−p′∇p′fp′ (9.171)

Writing ∇pfp = ∇pǫ
∗
p∂f/∂ǫ

∗ = p
m∗ δ(ǫ

∗
p), we then obtain

∇pΣHF (p) =
p

3m∗
F s1 (9.172)

where, by analogy with Fermi liquid theory, we have written,

F s1 = −N(0)

∫
dΩp̂′

4π
Vp−p′ cos(p̂ · p̂′). (9.173)

where N(0) = m∗pF /(π2h̄3) is the renormalized density of states, and we have included
the minus sign in the definition in keeping with the exchange origin of this term. The
renormalized mass is then

m∗

m
= 1 +

1

3
F s1 (9.174)

Formally, this result is the same as that derived in Landau Fermi liquid theory. How-
ever, a more realistic theory would take into account the screening and modification of the
interactions by the medium, a subject which we touch on in as our next topic.
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9.6 Large-N electron gas

Although the Feynman diagram approach gives us a way to generate all perturbative cor-
rections, we still need a way to selecting the physically important diagrams. In general, as
we have seen from the last examples, it is important to resum particular classes of diagrams
to obtain a physical result. What principles can be used to select classes of diagrams?

Frequently however, there is no obvious choice of small parameter, in which case, one
needs an alternative strategy. For example, in the electron gas, we could select diagrams
according to the power of rs entering the diagram. This would give us a high-density
expansion of the properties - but what if we would like to examine a low density electron
gas in a controlled way?

One way to select Feynman diagrams in a system with no natural small parameter is
to take the so-called “large-N” limit. This involves generalizing some internal degree of
freedom so that it has N components. Examples include:

• The Hydrogen atom in N-dimensions.

• The electron gas with N = 2S + 1 spin components

• Spin systems, with spin S in the limit that S becomes large.

• Quantum Chromodynamics, with N, rather than three colours.

In each of these cases, the limit N → ∞ corresponds to a new kind of semiclassical limit,
where certain variables cease to undergo quantum fluctuations. The parameter 1/N plays
the role of an effective h̄

1

N
∼ h̄ (9.175)

This does not however mean that quantum effects have been lost, merely that their macro-
scopic consequences can be lumped into certain semi-classical variables.

We shall now examine the second of these two examples. The idea is to take an in-
teracting Fermi gas where each fermion has N = 2S + 1 possible spin components. The
interacting Hamiltonian is still written

H =
∑

k,σ

ǫkc
†
kσckσ +

1

2

∑
Vqc
†
k+qσc

†
k′−qσ′ck′σ′ckσ (9.176)

but now, the spin summations run over N = 2S + 1 values, rather than just two. As N
is made very large, it is important that both the kinetic and the interaction energy scale
extensively with N , and for this reason, the original interaction Vq is rescaled, writing

Vq =
1

N
Vq (9.177)

where it is understood that as N →∞, V is to be kept fixed. The idea is to now calculate
quantities as an expansion in powers of 1/N , and at the end of the calculation, to give N
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the value of specific interest, in our case, N = 2. For example, if we are interested in a
Coulomb gas of spin 1/2 electrons, then study the family of problems where

Vq =
1

N

4πẽ2

q2
(9.178)

and ẽ2 = 2e2. At the end, we set N = 2, hoping that the key features of the solution around
N = 2 will be shared by the entire family of models.

With the above substitution, the Feynman rules are unchanged, excepting that now
we associate a factor 1/N with each interaction vertex. Let us examine how the fermions
interact in this large-N fermi gas. We can expand the effective interaction as follows

iVeff (q)
=

i
Vq
N

+

i
Vq
N i

Vq
N

χ +

i
Vq
N i

Vq
N i

Vq
N

χ χ + . . .
(9.179)

The ”self-energy” diagram for the interaction line is called a ”polarization bubble”, and has
the following diagramatic expansion.

χ
O(N) O(1) O(1) O(1/N)

+ + + +  ...= = iNχ(q) (9.180)

By summing the geometric series that appears in (9.179) we obtain

Veff =
1

N

V(q)

1 + V(q)χ(q)
(9.181)

This modification of the interaction by the polarization of the medium is an example of
“screening”. In the large-N limit, the higher-order Feynman diagrams for χ(q) are smaller
by factors of 1/N ., so in the large-N limit, these terms can be neglected giving

iχ0(q)N = (9.182)

In the case of a Coulomb interaction, where the screened interaction becomes

Veff (q, ω) =
1

N

4πẽ2

q2ǫ(q, ω)
(9.183)

where we have identified

ǫ(q, ω) = 1 + V(q)χ(q) = 1 +
4πẽ2

q2
χo(q) (9.184)

as the dielectric function of the charged medium. Notice how, in the interacting medium,
the interaction between the fermions has become frequency dependent, indicating that the
interactions between the particles are now retarded. From our previous study of the Linhard
function, we showed that χo(q) = Ns(0)F(q/(2kF )), ν/(4ǫF )) where F is the dimensionless
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Lindhard function and Ns(0) = mkF
π2h̄2 is the density of states per spin at the Fermi surface,

so we may write

ǫ(q, ω) = 1 + λ

(F(q̃, ν̃)

q̃2

)
(9.185)

where λ = ẽ2m
πkF h̄

2 =
(

2α
π

)
rs plays the role of a dimensionless coupling constant. Notice that

the accuracy of the large N approach does not restrict the size of λ.

At zero frequency and low momentum, F → 1, so the effective interaction becomes

Veff (q, ν) =
1

N

4πẽ2

q2 + κ2
(9.186)

where κ =
√

4πẽ2Ns(o) can be identified as an inverse screening length. κ−1 is the “Thomas
Fermi” screening length of a classical charge plasma. In this way, the long-range part of the
interaction is screened by the Fermi sea. Note however, that there is still a weak singularity
in the susceptibility which induces a long-range oscillatory interaction between the particles
of the form

Veff (r) ∝
cos 2kF r

r3
(9.187)

This oscillatory component is directly associated with Friedel oscillations.

In the opposite limit of finite frequency, but low momentum, we may approximate χ0

by expanding it in momentum, as follows

χo(q, ν) =

∫

k

fk+q − fk
ν − (ǫk+q − ǫk)

≈
∫

k

(q · vk)

ν − (q · vk)

(
df(ǫ)

dǫ

)
(9.188)

where vk = ∇kǫk is the group velocity. Expanding this to leading order in momentum gives

χo(q, ν) = −
∫

k

(q · vk)2

ν2

(
−df(ǫ)

dǫ

)
= −Ns(0)v2

F

3

(
q2

ν2

)
= −

(
ñ

m

)(
q2

ν2

)
, (9.189)

where ñ = n/N is the density of electrons per spin, so that

ǫo(q, ν) = 1− ω2
p

ν2
(9.190)

where

ω2
p =

4πẽ2ñ

m
. (9.191)

is the plasma frequency. This zero in the dielectric function at ω = ωp indicates the
presence of collective plasma oscillations in the medium at frequency ωp. This collective
mode is split-off above the particle-hole continuum, as shown in Fig. 9.6.
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ν/(4ǫF )

q/(2kF )

χ
′′(q, ν)

2

1

2

0 1

Figure 9.6: Density plot of the imaginary part of the dynamical spin susceptibility
Im[χ0(q, ν)/ǫ(q, ν)] in the presence of the Coulomb interaction calculated for λ = 1,
rs = 3.01. using eq. (9.185) and eq. (9.136). Notice the split-off plasmon frequency
mode, and how the charge fluctuations have moved up to frequencies above the plasma
frequency.

Let us now examine the linked cluster expansion of the ground-state energy. First, note
that all diagrams which involve insertions to zero-momentum interaction lines, other than
the basic Hartree diagram, such as

, (9.192)

identically vanish. This is because, these diagrams involve a power of the propagator higher
than one, inside integrals of the form

∫
dωG(k, ω)n = o, (n > 1) (9.193)

which are zero, because there is no other ω dependent function inside the integral. The
only nonzero diagrams are then:

∆E

V
= i


 +




+ + + +...

O(1)
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+


 + +...

O(1/N)


+




2O(1/N  )

+...


+ . . . ...


 (9.194)

We shall select the two leading contributions,

∆Ecl
V

= i

[ ]
, (O(N)) (9.195)

which corresponds to the classical repulsive energy between particles, and the sum




+ + + +...

O(1)




(9.196)

These diagrams are derived from the zero the zero-point fluctuations in charge density,
which modify the ground-state energy E → Eo + Ezp. Now the nth diagram in this series
has a symmetry factor p = 2n, and a contribution (−χo(q)V(q))n associated with the n
polarization bubbles and interaction lines. The energy per unit volume associated with this
series of diagrams is thus

Ezp = i
∞∑

n=1

1

2n

∫
d4q

(2π)4
(−χo(q)V(q))n. (9.197)

By interchanging the sum and the integral, we see that we obtain a series of the form∑
n

(−x)n
n = −ln(1 + x), so that the zero-point correction to the ground-state energy is

Ezp = −i1
2

∫
d4q

(2π)4
ln[1 + Vqχo(q)]

Now the logarithm has a branch cut just below the real axis, for positive frequency, but
just above the real axis for negative frequency. If we carry out the frequency integral by
completing the contour in the lower half plane, we can distort the contour integral around
the branch cut at positive frequency, to obtain

Ezp = − i
2

∫

q

∫ ∞

0

dω

2π
[ln[1 + χo(q, ν + iδ)Vq]− ln[1 + χo(q, ν − iδ)Vq]]

=
1

2

∫

q

∫ ∞

0

dω

π
arctan

(
Vqχ′′(q, ν)

[1 + Vqχ′(q, ν)]

)
(9.198)

If we associate a “phase shift”

δ(q, ω) = arctan

(
Vqχ′′(q, ν)

[1 + Vqχ′(q, ν)]

)
(9.199)

229



Chapter 9. c©Piers Coleman 09

then we can the zero-point fluctuation energy can also be written in the form

∆Ezp =

∫
d3q

(2π)3

∫ ∞

0
dωΛ(ω)

[
ω

2

]
(9.200)

where

Λ(ω) =
1

π

∂δ(q, ω)

∂ω
. (9.201)

We can interpret Λ(ω) as the “density of states” of charge fluctuations at an energy ω. When
the interactions are turned on, each charge fluctuation mode in the continuum experiences a
scattering phase shift δ(~q, ω) which has the effect of changing the density of states of charge
fluctuations. The zero-point energy describes the change in the energy of the continuum
due to these scattering effects.

9.7 Exercises for chapter 9

1. The separation of electrons Rein a Fermi gas is defined by

4πR3
e

3
= ρ−1

where ρ is the density of electrons. The dimensionless separation rs is defined as rs = Re/a

where a = ch̄2

me2 is the Bohr radius.

(a) Show that the Fermi wavevector is given by

kF =
1

αrsa

where α =
(

4
9π

) 1
3 ≈ 0.521.

(b) Consider an electron plasma where the background charge density precisely cancels the
charge density of the plasma. Show that the ground-state energy to leading order in the
strength of the Coulomb interaction is given by

E

ρV
=

3

5

RY
α2r2s

− 3

2π

RY
αrs

=

(
2.21

r2s
− 0.916

rS

)
RY (9.202)

where RY = h̄2

2ma2 is the Rydberg energy. (Hint - in the electron gas with a constant
charge background, the Hartree part of the energy vanishes. The Fock part is the second
term in this expression. You may find it useful to use the integral

∫ 1

0

dx

∫ 1

0

dyxy ln |x+ y

x− y | =
1

2
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(c) When can the interaction effects be ignored relative the kinetic energy?

2. Consider a gas of particles with interaction

V̂ = 1/2
∑

~k~k′~qσσ′

Vqc
†
~k−~qσc

†
~k′+~qσ′c~k′σ′c~kσ

(a) Let |φ〉 represent a filled Fermi sea, i.e. the ground state of the non interacting problem.
Use Wick’s theorem to evaluate an expression for the expectation value of the interaction
energy 〈φ|V̂ |φ〉 in the non-interacting ground state. Give a physical interpretation of the two
terms that arise and draw the corresponding Feynman diagrams.

(b) Suppose |φ̃〉 is the full ground-state of the interacting system. If we add the the interaction
energy 〈φ̃|V̂ |φ̃〉 to the non-interacting ground-state energy, do we obtain the full ground-state
energy? Please explain your answer.

(c) Draw the Feynman diagrams corresponding to the second order corrections to the ground-
state energy. Without calculation, write out each diagram in terms of the electron propagators
and interaction Vq, being careful about minus signs and overall pre-factors.

3. Consider a d-dimensional system of fermions with spin-degeneracy N = 2S + 1, mass m and
total density Nρ, where ρ is the density per spin component. The fermions attract one-another
via the two-body potential

V (ri − rj) = −αδ(d)(ri − rj), (α > 0) (9.203)

(a.) Calculate the total energy per particle, ǫs(N, ρ) to first order in α.

(b.) Beyond some critical value αc, the attraction between to the particles becomes so great
that the gas becomes unstable, and may collapse. Calculate the dependence of αc on the
density per spin ρ. To what extent do you expect the gas to collapse in d = 1, 2, 3 when αc is
exceeded?

(c.) In addition to the above two-body interaction nucleons are also thought to interact via
a repulsive three-body interaction. Write the three-body potential V (ri, rj , rk) = βδ(d)(ri −
rj)δ

(d)(rj − rk), in second-quantized form.

(d.) Use Feynman diagrams to calculate the ground-state energy per particle, ǫs(N, ρ) to
leading order in both β and α. How does your result compare with that obtained in (a) when
N = 2?

(e.) If we neglect Coulomb interactions, why is the case N = 4 relevant to nuclear matter?

4. (a. )Consider a system of fermions interacting via a momentum-dependent interaction V (q) =
1
NU(q), where N = 2S + 1 is the spin degeneracy. When N is large, the interactions in this
fluid can be treated exactly. Draw the Feynman diagram expansion for the ground-state
energy, identifying the leading and subleading terms in the 1/N expansion.

(b) Certain classes of Feynman diagrams in the linked-cluster expansion of the ground-state
energy identically vanish. Which ones, and why?

(c.) If Nχ(o)(q) = 〈δρ(q)δρ(−q)〉o is the susceptibility of the non-interacting Fermi gas, i.e

= iNχ(o)(q), (9.204)
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where q = (q, ν), what is the effective interaction between the fermions in the large N limit?
Suppose that in real space, U(r) = e2/r is a long-range Coulomb interaction, explain in detail
what happens to the effective interaction at long-distances.

5. Compute the rms quantum fluctuations ∆ρ =
√
〈(ρ− ρo)2〉 in the charge density of the

electron gas about its average density, ρo, in the large-N limit. Show that ∆ρ/ρo ∼ O(1/N),
so that the density behaves as a semiclassical variable in the large N limit.

6. Show that the dynamical charge susceptibility of an interacting electron gas in the large N
limit, defined by

χ(q, ν + iδ) =

∫
d3x

∫ ∞

0

i〈φ|[ρ(x, t), ρ(0, 0)]|φ〉e−i(q·x−ωt) (9.205)

contains a pole at frequencies

ωq = ωp(1 +
3

10
qvF ) (9.206)

where ωp =
√

4πẽ2ñ/m is the Plasma frequency and vF = pF /m is the Fermi velocity.
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Chapter 10

Finite Temperature Many Body
Physics

For most purposes in many body theory, we need to know how to include the effects of
temperature. At first sight, this might be thought to lead to undue extra complexity in the
mathematics, for now we need to average the quantum effects over an ensemble of states,
weighted with the Boltzmann average

pλ =
e−βEλ

Z
(10.1)

It is here that some of the the most profound aspects of many body physics come to our
aid.
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Ground State T=0 p� = e��E�ZEnsemble of states at temperature T> 0

Figure 10.1: At zero temperature, the properties of a system are determined by the
ground-state. At finite temperature, we must average the properties of the system over an
ensemble which includes the ground-state and excited states, averaged with the Boltzmann
probability weight e−βEλ

Z .

Remarkably, finite temperature Many Body physics is no more difficult than its zero
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temperature partner, and in many ways, the formulation is easier to handle. The essential
step that makes this possible is due to the Japanese physicist Kubo, who noticed in the early
fifties that the quantum-mechanical partition function can be regarded as a time-evolution
operator in imaginary time:

ρ̂ ∝ e−βĤ = U(−ih̄β),

where U(t) = e−i
tH
h̄ is the time-evolution operator, and by convention, we write H =

H0 − µN to take into account of the chemical potential. Kubo’s observation led him to
realize that finite temperature many body physics can be compactly reformulated using an
imaginary, rather than a real time to time-evolve all states

it

h̄
−→ τ.

Kubo’s observation was picked up by Matsubara, who wrote down the first imaginary time
formulation of finite temperature many body physics. In the imaginary time approach, the
partition function of a quantum system is simply the trace of the time-evolution operator,
evaluated at imaginary time t = -i h̄β,

Z= Tre− βH= TrU(−ih̄β),

whilst the expectation value of a quantity A in thermal equilibrium is given by

〈A〉 =
Tr [U(−ih̄β)A]

Tr [U(−ih̄β)]
,

an expression reminiscent of the Gell-Mann Lowe formula excepting that now, the S-matrix
is replaced by time-evolution over the finite interval t ∈ [0,−ih̄β]: The imaginary time
universe is of finite extent in the time direction! We will see that physical quantities turn
out to be periodic in imaginary time, over this finite interval τ ∈ [0, h̄β]. This can loosely
understood as a consequence of the incoherence induced by thermal fluctuations: thermal
fluctuations lead to an uncertainty kBT in energies, so

τT =
h̄

kBT

represents a characteristic time of a thermal fluctuation. Processes of duration longer than
τT loose their phase coherence, so coherent quantum processes are limited within a world
of finite temporal extent, h̄β.

One of the most valuable aspects of finite temperature quantum mechanics, first explored
by Kubo concerns the intimate relationship between response functions and correlation
functions in both real and imaginary time, which are mathematically quantified via the
“fluctuation dissipation theorem”.
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T> 0

�1 y
x

y

x

t
τ(a) �hkBT

(b)

0

0

ψF (β) = −ψF (0)
ψB(β) = ψB(0)

Figure 10.2: (a) Zero temperature field theory is carried out in a space that extends
infinitely from t = −∞ to t = ∞. (b) Finite temperature field theory is carried out in a
space that extends over a finite time, from τ = 0 to τ = h̄β. Bosonic fields (ψB) are periodic
over this interval whereas Fermionic fields (ψF ) are antiperiodic over this interval.

Quantum/thermal Fluctuations↔ Dynamic Response

“Fluctuation dissipation”

These relationships, first exploited in detail by Kubo, and now known as the “Kubo for-
malism”, enable us to calculate correlation functions in imaginary time, and then, by ana-
lytically continuing the Fourier spectrum, to obtain the real-time response and correlation
functions at a finite temperature.

Most theoretical many body physics is conducted in the imaginary time formalism, and
theorists rarely give the use of this wonderful method a moments use. It is probably fair to
say that we do not understand the deep reasons why the imaginary time formalism works.
Feynman admits in his book on Statistical mechanics, that he has sought, but not found a
reason for why imaginary time and thermal equilibrium are so intimately intertwined. In
relativity, it turns out that thermal density matrices are always generated in the presence
of an event horizon, which excludes any transmission of information between the halves of
the universe of different sides of the horizon. It would seem that a complete understanding
of imaginary time may be bound-up with a more complete understanding of information
theory and quantum mechanics than we currently possess. What-ever the reason, it is a very
pragmatic and beautiful approach, and it is this which motivates us to explore it further!
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10.1 Imaginary time

The key step in making the jump from zero temperature, to finite temperatures many body
physics, is the replacement

it

h̄
→ τ. (10.2)

With this single generalization, we can generalize almost everything we have done at zero
temperature. In zero temperature quantum mechanics, we introduced the idea of the
Schrödinger, Heisenberg and interaction representations. We went on to introduce the
concept of the Greens function, and developed a Feynman diagram expansion of the S-
matrix. We shall now repeat this exact procedure in imaginary time, reinterpreting the
various entities which appear in terms of finite temperature statistical mechanics. Table
1. summarizes the key analogies between real time zero temperature, and imaginary time,
finite temperature many body physics.

Table. 9.0 The link between real and imaginary time formalisms.

Schrödinger eqn |ψs(t)〉 = e−itH |ψs(0)〉 |ψs(τ)〉 = e−τH |ψs(0)〉

Heisenberg rep Ah = eitHAse
−itH AH = eτHAse

−τH

Interaction rep |ψI(t)〉 = e−itH0 |ψI(t)〉 |ψI(τ)〉 = e−τH0 |ψI(τ)〉
Perturbation
Expansion S = 〈−∞|Te−i

∫
V dt|∞〉 Z

Z0
= Tr

[
e−
∫ β
0
V dτ

]

Wick’s Theorem  (1) y(2) = h0jT (1) y(2)j0i  (1) y(2) = hT (1) y(2)i
Green’s function Gλλ′(t) = −i〈0|Tψλ(τ)ψ†λ′(0)|0〉 Gλλ′(τ) = −〈Tψλ(τ)ψ†λ′(0)〉

Feynman Diagrams
lnS = TV

∑
[linked clusters] =
−iT∆E

ln Z
Zo

= βV
∑

[linked clusters] =

−β∆F
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10.1.1 Representations

The imaginary time generalization of the Heisenberg and interaction representations pre-
cisely parallels the development in real time, but there are some minor differences that
require us to go through the details here. After making the substitution t→ −iτ h̄, the real
time Schrödinger equation

H|ψs〉 = ih̄
∂

∂t
|ψs〉, (10.3)

becomes

H|ψs〉 = − ∂

∂τ
|ψs〉. (10.4)

so the time-evolved wavefunction is given by

|ψs(τ)〉 = e−Hτ |ψs(0)〉. (10.5)

The Heisenberg representation removes all time-dependence from the wavefunction, so
that |ψH〉 = |ψs(0)〉 and all time-evolution is transfered to the operators,

AH(τ) = eiH(−iτ)ASe
−iH(−iτ) = eHτASe

−Hτ . (10.6)

so that the Heisenberg equation of motion becomes

∂AH
∂τ

= [H,AH ]

If we apply this to the free particle Hamiltonian

H =
∑

ǫkc
†
kck

we obtain

∂ck
∂τ

= [H, ck] = −ǫkck
∂c†k
∂τ

= [H, c†k] = ǫkc
†
k (10.7)

so that

ck(τ) = e−ǫkτck
c†k(τ) = eǫkτc†k

}
(p.s c†k(τ) = (ck(−τ))† 6= (ck(τ))

† ). (10.8)

Notice a key difference to the real-time formalism: in the imaginary time Heisenberg rep-
resentation, creation and annihilation operator are no longer Hermitian conjugates.

We go on next, to develop the Interaction representation, which freezes time-evolution
from the non-interacting part of the Hamiltonian H0, so that

|ψI(τ)〉 = eH0τ |ψs(τ)〉 = eH0τe−Hτ |ψH〉 = U(τ)|ψH〉

239



Chapter 10. c©Piers Coleman 09

where U(τ) = eH0τe−Hτ is the time evolution operator. The relationship between the
Heisenberg and the interaction representation of operators is given by

AH(τ) = eHτASe
−Hτ = U−1(τ)AI(τ)U(τ)

In the interaction representation, states can be evolved between two times as follows

|ψI(τ1)〉 = U(τ1)U
−1(τ2))|ψI(τ2)〉 = S(τ1, τ2)|ψI(τ2)〉

The equation of motion for U(τ) is given by

− ∂

∂τ
U(τ) = − ∂

∂τ

[
eHoτe−Hτ

]

= eHoτV e−Hτ

= eHoτV e−HoτU(τ)
= VI(τ)U(τ) (10.9)

and a similar equation applies to S(τ1, τ2),

− ∂

∂τ
S(τ1, τ2) = VI(τ1)S(τ1, τ2). (10.10)

These equations parallel those in real time, and following exactly analogous procedures, we
deduce that the imaginary time evolution operator in the interaction representation is given
by a time-ordered exponential, as follows

U(τ) = T exp

[
−
∫ τ

0
VI(τ)dτ

]

S(τ1, τ2) = T exp

[
−
∫ τ2

τ1
VI(τ)dτ

]
. (10.11)

One of the immediate applications of these results, is to provide a perturbation expan-
sion for the partition function. We can relate the partition function to the time-evolution
operator in the interaction representation as follows

Z = Tr
[
e−βH

]
= Tr

[
e−βHoU(β)

]

=

Z0︷ ︸︸ ︷
Tr
[
e−βH0

]

〈U(β)〉0︷ ︸︸ ︷


Tr
[
e−βHoU(β)

]

Tr [e−βH0 ]




= Z0〈U(β)〉0 (10.12)

enabling us to write the ratio of the interacting, to the non-interacting partition function
as the expectation value of the time-ordered exponential in the non-interacting system.

Z

Z0
= e−β∆F = 〈T exp

[
−
∫ β

0
VI(τ)dτ

]
〉 (10.13)
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Notice how the logarithm of this expression gives the shift in Free energy resulting from
interactions. The perturbative expansion of this relation in powers of V is basis for the
finite temperature Feynman diagram approach.

10.2 Imaginary Time Green Functions

The finite temperature Green function is defined to be

Gλλ′(τ − τ ′) = −〈Tψλ(τ)ψλ′†(τ ′)〉 = −Tr
[
e−β(H−F )ψλ(τ)ψλ′

†(τ ′)
]

(10.14)

where ψλ can be either a fermionic or bosonic field, evaluated in the Heisenberg represen-
tation, F = −T lnZ is the Free energy. The T inside the angle brackets the time-ordering
operator. Provided H is time independent, time-translational invariance insures that G is
solely a function of the time difference τ − τ ′. In most cases, we will refer to situations
where the quantum number λ is conserved, which will permit us to write

Gλλ′(τ) = δλλ′Gλ(τ).

For the case of continuous quantum numbers λ, such as momentum, it is convention to
promote the quantum number into the argument of the Green function, writing G(p, τ)
rather than Gp(τ).

As an example, consider a non-interacting system with Hamiltonian

H =
∑

ǫλψ
†
λψλ, (10.15)

where ǫλ = Eλ − µ is the one-particle energy, shifted by the chemical potential. Here, the
equal time expectation value of the fields is

〈ψλ′†ψλ〉 = δλλ′

{
n(ǫλ) (Bosons)
f(ǫλ) (Fermions)

(10.16)

where

n(ǫλ) =
1

eβǫλ − 1

f(ǫλ) =
1

eβǫλ + 1
(10.17)

are the Bose and Fermi functions respectively. Similarly,

〈ψλψ†λ′〉 = δλλ′ ± 〈ψλ′†ψλ〉 = δλλ′

{
1 + n(ǫλ) (Bosons)
1− f(ǫλ) (Fermions)

(10.18)

Using the time evolution of the operators,

ψλ(τ) = e−ǫλτψλ(0)
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ψ†λ(τ) = eǫλτψ†λ(0) (10.19)

we deduce that

Gλλ′(τ − τ ′) = −
[
θ(τ − τ ′)〈ψλψ†λ′〉+ ζθ(τ ′ − τ)〈ψ†λ′ψλ〉

]
e−ǫλ(τ−τ ′) (10.20)

where we have re-introduced ζ = 1 for Bosons and −1 for fermions, from Chapter 8. If we
now write Gλλ′(τ − τ ′) = δλλ′Gλ(τ − τ ′), then

Gλ(τ) = −e−ǫλτ .
{

[(1 + n(ǫλ))θ(τ) + n(ǫλ)θ(−τ)] (Bosons)
[(1− f(ǫλ))θ(τ)− f(ǫλ)θ(−τ)] (Fermions)

(10.21)

There are several points to notice about this Green’s function:

• Apart from prefactors, at zero temperature the imaginary time Green’s function Gλ(τ)
is equal to zero-temperature Green’s function Gλ(t), evaluated at a time t = −iτ ,
Gλ(τ) = −iGλ(−iτ).

• If τ < 0 the Green function satisfies the relation

Gλλ′(τ + β) = ζGλλ′(τ)

so that the bosonic Green function is periodic in imaginary time, while the fermionic
Green function is antiperiodic in imaginary time, with period β.

10.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is actually a general property of finite
temperature Green functions. To see this, take −β < τ < 0, then we can expand the Green
function as follows

Gλλ′(τ) = ζ〈ψ†λ′(0)ψλ(τ)〉
= ζTr

[
e−β(H−F )ψ†λ′e

τHψλe
−τH

]
(10.22)

Now we can use the periodicity of the trace Tr(AB) = Tr(BA) to cycle the operators on
the left of the trace over to the right of the trace, as follows

Gλλ′(τ) = ζTr
[
eτHψλe

−τHe−β(H−F )ψ†λ′
]

= ζTr
[
eβF eτHψλe

−(τ+β)Hψ†λ′
]

= ζTr
[
e−β(H−F )e(τ+β)Hψλe

−(τ+β)Hψ†λ′
]

= ζTr〈ψλ(τ + β)ψ†λ′(0)〉
= ζGλλ′(τ + β) (10.23)

This periodicity, or antiperiodicity was noted by Matsubara. In the late 1950’s, Abrikosov,
Gorkov and Dzyalozinski observed that we are in fact at liberty to extend the function out-
side G(τ) outside the range τ ∈ [−β, β] by assuming that this periodicity, or antiperiodicity
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extends indefinitely along the entire imaginary time axis. In otherwords, there need be no
constraint on the value of τ in the periodic or antiperiodic boundary conditions

Gλλ′(τ + β) = ±Gλλ′(τ)

With this observation, it becomes possible to carry out a Fourier expansion of the Green
function in terms of discrete, so called “Matsubara” frequencies.

10.2.2 Matsubara Representation

The Matsubara frequencies are defined as

νn = 2πnkBT (Boson)
ωn = π(2n+ 1)kBT (Fermion). (10.24)

where by convention, νn is reserved for Bosons and ωn for fermions. These frequencies have
the property that

eiνn(τ+β) = eiνnτ

eiωn(τ+β) = −eiωnτ (10.25)

The periodicity or antiperiodicity of the Green function is then captured by expanding it
as a linear sum of these functions:

Gλλ′(τ) =

{
T
∑
n Gλλ′(iνn)e−iνnτ Boson

T
∑
n Gλλ′(iωn)e−iωnτ Fermion

(10.26)

and the inverse of these relations is given by

Gλλ′(iαn) =

∫ β

0
dτGλλ′(τ)eiαnτ , (αn = {Matsubara frequency}) (10.27)

Example : Free Fermions and Free Bosons

For example, let us use (10.27) to derive the propagator for non-interacting fermions or
bosons with H =

∑
ǫλψ

†
λψλ. For fermions, the Matsubara frequencies are iωn = π(2n +

1)kBT so using the real time propagator(10.21), we obtain

Gλ(iωn) = −
∫ β

0
dτe(iωn−ǫλ)τ

[1+e−βǫλ ]−1

︷ ︸︸ ︷
(1− f(ǫλ))

= − 1

iωn − ǫλ

−1︷ ︸︸ ︷
(e(iωn−ǫλ) − 1)

1 + e−βǫλ
(10.28)

so that
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Gλ(iωn) =
1

iωn − ǫλ
Free Fermions (10.29)

In a similar way, for free Bosons, where the Matsubara frequencies are iνn = π2nkBT ,
using (10.27) and (10.21), we obtain

Gλ(iνn) = −
∫ β

0
dτe(iνn−ǫλ)τ

[1−e−βǫλ ]−1

︷ ︸︸ ︷
(1 + n(ǫλ))

= − 1

iνn − ǫλ

−1︷ ︸︸ ︷
(e(iνn−ǫλ) − 1)

1− e−βǫλ (10.30)

so that

Gλ(iνn) =
1

iνn − ǫλ
Free Bosons (10.31)

Remarks

• Notice how the finite temperature propagators (10.29) and (10.31) are essentially
identical for free fermions and bosons. All the information about the statistics is
encoded in the Matsubara frequencies.

• With the replacement ω → iωn the finite temperature propagator for Free fermions
(10.29) is essentially identical to the zero temperature propagator, but notice that the
inconvenient iδsign(ǫλ) in the denominator has now disappeared.

Example: Finite temperature Propagator for the Harmonic Oscillator

As a second example, let us calculate the finite temperature Green function

D(τ) = −〈Tx(τ)x(0)〉 (10.32)

and its corresponding propagator

D(iν) =

∫ β

0
eiνnτD(τ) (10.33)

for the simple harmonic oscillator

H = h̄ω(b†b+
1

2
)
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x =

√
h̄

2mω
(b+ b†) (10.34)

Expanding the Green function in terms of the creation and annihilation operators, we
have

D(τ) = − h̄

2mω
〈T (b(τ) + b†(τ))(b(0) + b†(0))〉

= − h̄

2mω

(
〈Tb(τ)b†(0)〉+ 〈Tb†(τ)b(0)〉

)
, (10.35)

where terms involving two creation or two annihilation operators vanish. Now using the
derivations that led to (10.21 )

−〈Tb(τ)b†(0)〉 = G(τ) = −[(1 + n(ω))θ(τ) + n(ω)θ(−τ)]e−ωτ . (10.36)

and

−〈Tb†(τ)b(0)〉 = −[n(ω)θ(τ) + (1 + n(ω))]eωτ

= [(1 + n(−ω))θ(τ) + n(−ω)θ(−τ)]eωτ . (10.37)

which corresponds to −G(τ) with the sign of ω inverted. With this observation,

D(τ) =
h̄

2mω
[G(τ)− {ω → −ω}] . (10.38)

When we Fourier transform the first term inside the brackets, we obtain 1
iνn−ω , so that

D(iνn) =
h̄

2mω

[
1

iνn − ω
− 1

iνn + ω

]

=
h̄

2mω

[
2ω

(iνn)2 − ω2

]
. (10.39)

This expression is identical to the corresponding zero temperature propagator, evaluated at
frequency z = iνn.

Example 10.23: Consider a system of non-interacting Fermions, described by the
Hamiltonian H =

∑
λ ǫλc

†
λcλ where ǫλ = Eλ−µ and Eλ is the energy of a one-particle

eigenstate and µ is the chemical potential.

Show that the total number of particles in equilibrium is

N(µ) = T
∑
Gλ(iωn)eiωnO

+

where Gλ(iωn) = (iωn − ǫλ)
−1 is the Matsubara propagator. Using the relationship

N = −∂F/∂µ show that that Free energy is given by

F (T, µ) = −kBT
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+ C(T ) (10.40)
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Solution: The number of particles in state λ can be related to the equal time Green’s
function as follows

Nλ = 〈c†λcλ〉 = −〈Tcλ(0−)c†λ〉 = Gλ(0−).

Rewriting Gλ(τ) = T
∑
iωn
Gλe−iωnτ , we obtain

N(µ) =
∑

λ

Nλ = T
∑

λ,iωn

Gλ(iωn)eiωn0+

Now since −∂F/∂µ = N(µ), it follows that

F = −
∫ µ

dµN(µ) = −T
∑

λ,iωn

∫ µ

dµ
eiωnO

+

iωn −Eλ + µ

= −T
∑

λ,iωn

ln [ǫλ − iωn] eiωnO
+

= −T
∑

λ,iωn

ln
[
−Gλ(iωn)−1

]
eiωnO

+

+ C(T ). (10.41)

We shall shortly see that C = 0 using Contour integral methods.

Example 10.24: Consider an electron gas where the spins are coupled to a magnetic
field, so that ǫλ ≡ ǫk − µBσB. Write down an expression for the magnetization and
by differentiating w.r.t the field B, show that the temperature dependent magnetic
susceptibility is given by

χ(T ) =
∂M

∂B

∣∣∣∣
B=0

= −2µ2
BkBT

∑

k,iωn

G(k)2

where G(k) ≡ G(k, iωn) is the Matsubara propagator.

Solution: The magnetization is given by

M = µB
∑

λ,σ

σ〈c†kσckσ〉 = µBT
∑

kσ,iωn

σGσ(k, iωn)eiωn0+

Differentiating this w.r.t. B and then setting B = 0, we obtain

χ =
∂M

∂B

∣∣∣∣
B=0

= −µ2
BT

∑

kσiωn

σ2Gσ(k, iωn)2
∣∣∣∣∣
B=0

= −2µ2
BkBT

∑

k,iωn

G(k)2 (10.42)

10.3 The contour integral method

In practice, we shall do almost all of our finite temperature calculations in the frequency
domain. To obtain practical results, we will need to be able to sum over the Matsubara
frequencies, and this forces us to make an important technical digression. As an example
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of the kind of tasks we might want to carry out, consider how we would calculate the
occupancy of a given momentum state in a Fermi gas at finite temperature, using the
Matsubara propagator G(p, iωn). This can be written in terms of the equal time Green
function, as follows

〈c†pσcpσ〉 = G(p, 0−) = T
∑

n

1

iωn − ǫ(p)
eiωnO

+
. (10.43)

A more involved example, is the calculation of the finite temperature dynamical spin sus-
ceptibility χ(q) of the Free electron gas at wavevector and frequency q ≡ (q, iνn). We shall
see that this quantity derives from a Feynman polarization bubble diagram which gives

χ(q) = −2µ2
BT

∑

p

G(p+ q)G(p) = 2µ2
B

∑

p

(
kBT

∑

r

G(p + q, iωr + iνn)G(p, iωr)

)
.(10.44)

where the −1 derives from the Fermion loop. In both cases, we need to know how to do the
sum over the discrete Matsubara frequencies, and to do this, we use the method of contour
integration. To make this possible, observe that the Fermi function f(z) = 1/[ezβ + 1] has
poles of strength −kBT at each discrete frequency z = iωn, because

f(iωn + δ) =
1

eβ(iωn+δ) + 1
= − 1

βδ
= −kBT

δ

so that for a general function F (iωn), we may write

kBT
∑

n

F (iωn) = −
∫

C

dz

2πi
F (z)f(z) (10.45)

where the contour integral C is to be taken anticlockwise around the poles at z = iωn as
shown in Fig. 10.3 (a)

Once we have cast the sum as a contour integral, we may introduce “null” contours
(Fig. 10.3 (b)) which allow us to distort the original contour C into the modified contour
C ′ shown in Fig. 10.3 (c), so that now

kBT
∑

n

F (iωn) = −
∫

C′

dz

2πi
F (z)f(z) (10.46)

where C ′ runs clockwise around all the poles and branch-cuts in F (z). Here we have used
“Jordan’s lemma” which guarantees that the contribution to the integral from the contour
at infinity vanishes, provided the function F (z)× f(z) dies away faster than 1/|z| over the
whole contour.

For example, in case (10.43), F (z) = ez0
+

z−ǫp , so that F (z) has a single pole at z = ǫp, and
hence

〈npσ〉 = T
∑

n

1

iωn − ǫ(p)
eiωnO

+
= −

∫

C′

dz

2πi

1

z − ǫp
ez0

+
f(z)
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C

n

Pole of F(z)

C’C’

(c)

of F(z)
Branch−cut

ιωn(a)

Pole of F(z)
of F(z)
Branch−cut

C

(b)

ιω

Figure 10.3: (a) Contour integration around the poles in the Fermi function enables us to
convert a discrete Matsubara sum T

∑
F (iωn) to a continuous integral (b) The integral can

be distorted around the poles and branch-cuts of F (z) provided that F (z) dies away faster
than 1/|z| at infinity.

= f(ǫp), (10.47)

recovering the expected result. In this example, the convergence factor ez0
+

that results
from the small negative time increment in the Green function, plays an important role
inside the Contour integral, where it gently forces the function F (z) to die away faster than
1/|z| in the negative half-plane. Of course the original contour C integral could have been
made by arbitrarily replacing f(z) with f(z)−constant. However, the requirement that the
function dies away in the positive half plane forces us to set the constant term here to zero.

In the second example (10.44)

F (z) = G(p + q, iνn + z)G(p, z) =
1

iνn + z − ǫp+q

1

z − ǫp

which has two poles at z = ǫp and z = −iνn+ ǫp+q. The integral for this case is then given
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by

χ(q) = 2µ2
B

∑

p

∫

C′

dz

2πi
G(p + q, z + iνn)G(p, z)f(z)

= −
∑

p

(G(p,−iνn + ǫp+q)f(−iνn + ǫp+q) +G(p + q, ǫp)f(ǫp)) (10.48)

The first term in the above expression deserves some special attention. In this term we
shall make use the periodicity of the Fermi function to replace

f(−iνn + ǫp+q) = f(ǫp+q).

This replacement may seem obvious, however, later, when analytically extending iνn → z
we will keep this quantity fixed, i.e, we will not analytically extend f(−iνn + ǫp+q) →
f(−z + ǫp+q). In other words, the Matsubara sum and the replacement iνn → z are not to
be commuted. With this understanding, we continue, and find that the resulting expression
is given by

χ(q, iνn) = 2µ2
B

∑

p

(
fp+q − fp

iνn − (ǫp+q − ǫp)

)
(10.49)

where we have used the shorthand fp ≡ f(ǫp). The analytic extension of this quantity is
then

χ(q, z) = 2µ2
B

∑

p

(
fp+q − fp

z − (ǫp+q − ǫp)

)
(10.50)

A completely parallel set of procedures can be carried for summation over Matsubara
boson frequencies iνn, by making the observation that the Bose function n(z) = 1

eβz−1
has

a string of poles at z = iνn of strength kBT . Using a completely parallel procedure to the
fermions, we obtain

kBT
∑

n

P (iνn) =

∫

C

dz

2πi
P (z)n(z) =

∫

C′

dz

2πi
P (z)n(z)

where C is an anticlockwise integral around the imaginary axis and C ′ is a clockwise integral
around the poles and branch-cuts of F (z). (See problem 9.1.)

Example 10.25: Starting with the expression

F = −T
∑

λiωn

ln[(ǫλ − iωn)]eiωn0+

+ C(T )

derived in example (9.1), use the contour integration method to show that

F = −T
∑

λ

ln
[
1 + e−βǫλ

]
+ C(T )

so that C(T ) = 0.
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Solution: Writing the Free energy as a contour integral around the poles of the imaginary
axis, we have

F =
∑

λ

∫

P

dz

2πi
f(z) ln [ǫλ − z] ez0

+

+ C(T )

where the path P runs anticlockwise around the imaginary axis. There is a branch cut
in the function F (z) = ln[ǫλ − z] running from z = ǫλ to z = +∞. If we distort the
contour P around this branch-cut, we obtain

F =
∑

λ

∫

P ′

dz

2πi
f(z) ln [ǫλ − z] ez0

+

+ C(T )

where P ′ runs clockwise around the branch cut, so that

F =
∑

λ

∫ ∞

ǫλ

dω

π
f(ω) + C(T )

=
∑

λ

−T ln(1 + e−βǫλ) + C(T ) (10.51)

so that C(T ) = 0, to reproduce the standard expression for the Free energy of a set of
non-interacting fermions.

10.4 Generating Function and Wick’s theorem

The zero temperature generating functions for Free fermions or bosons, derived in chapter
7. can be generalized to finite temperatures. Quite generally we can consider adding a
source term to a free particle Hamiltonian to form H(τ) = H0 + V (τ),

H0 =
∑
ǫψ†λψλ

V (τ) = −∑λ z̄(τ)ψλ + ψ†λz(τ)

}
(10.52)

The corresponding finite temperature Generating functional is actually the partition func-
tion in the presence of the perturbation V . Using a simple generalization of (10.13), we
have

Z0[z̄, z] = Z0〈Te−
∫ β
0
VI(τ)dτ 〉0

= Z0〈T exp

[∫ β

0
dτ
∑

λ

(
z̄λ(τ)ψλ(τ) + ψ†λ(τ)zλ(τ)

)]
〉0 (10.53)

where the driving terms are complex numbers for bosons, but are anticommuting C-numbers
or Grassman numbers, for fermions. For free fields, the Generating functional is given by

Z0[z̄, z]

Z0
= exp

[
−
∑

λ

∫ β

0
dτ1dτ2z̄λ(1)Gλ(τ1 − τ2)zλ(2)

]

Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (10.54)

250



c©2009 Piers Coleman Chapter 10.

A detailed proof of this result is given in Appendix A of this chapter. However, a heuristic
proof is obtained by appealing to the “Gaussian” nature of the underlying Free fields. As
at zero temperature, we expect the the physics to be entirely Gaussian, that is, that the
amplitudes of fluctuation of the free fields are entirely independent of the driving terms.
The usefulness of the generating function, is that we can convert partial derivatives with
respect to the source terms into field operators inside the expectation values,

δ

δz̄(1)
→ ψλ1

†(1),

δ

δz(2)
→ ψ†(2), (10.55)

where we have used the short-hand notation z(1) ≡ zλ(τ1), ψ(1) ≡ ψλ(τ1)). In particular

δ lnZ0[z̄, z]

δzλ(2)
= 〈ψ†(2)〉, (10.56)

where the derivative of the logarithm of Z0[z̄, z] is required to place a Z0[z̄, z] in the denom-
inator for the correctly normalized expectation value. Likewise,

δ2 lnZ0[z̄, z]

δz̄(1)δz(2)
=

1

Z0[z̄, z]

δ

δz̄(1)

[
1

Z0[z̄, z]

δZ0[z̄, z]

δz(2)

]

=
1

Z0[z̄, z]

δ2Z0[z̄, z]

δz̄(1)δz(2)
− 1

Z0[z̄, z]

[
δZ0[z̄, z]

δz̄(1)

]
1

Z0[z̄, z]

[
δZ0[z̄, z]

δz(2)

]

= 〈ψ(1)ψ†(2)〉 − 〈ψ(1)〉〈ψ†(2)〉
= 〈(ψ(1)− 〈ψ(1)〉)

(
ψ†(2)− 〈ψ†(2)〉

)
〉 (10.57)

which represents the fluctuation of the field ψ around its mean value. If this quantity is
independent of the source terms, then it follows that the fluctuations must be equal to their
value in the absence of any source field, i.e.

δ2 lnZ0[z̄, z]

δz̄λ(τ1)δzλ(τ2)
= −Gλ(τ1 − τ2).

A more detailed, algebraic rederivation of this result is given in Appendix A. One of the
immediate corolloraries of (10.128) is that the multi-particle Green functions can be en-
tirely decomposed in terms of one-particle Green functions, i.e., the imaginary time Green
functions obey a Wick’s theorem. If we decompose the original generating function (10.127)
into a power series, we find that the general coefficient of the source terms is given by

(−1)nG(1, 2, . . . n; 1′, 2′, . . . n′) = 〈Tψ(1) . . . ψ(n)ψ†(n′) . . . ψ(1′)〉

by contrast, if we expand the right-hand side of (10.128) in the same way, we find that the
same coefficient is given by

(−1)n
∑

P

(ζ)p
n∏

r=1

G(r − Pr)
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where p is the number of pairwise permutations required to produce the permutation P .
Comparing the two results, we obtain the imaginary time Wick’s theorem

G(1, 2, . . . n; 1′, 2′, . . . n′) =
∑

P

(−1)p
n∏

r=1

G(r − Pr)

Although this result is the precise analog of the zero-temperature Wick’s theorem, notice
that that unlike its zero-temperature counterpart, we can not easily derive this result for
simple cases by commuting the destruction operators so that they annihilate against the
vacuum, since there is no finite temperature vacuum.

Just as in the zero temperature case, we can define a “contraction” as the process of
connecting two free -field operators inside the correlation function,

〈T [. . . ψ(1) . . . ψ†(2) . . .]〉 −→ 〈T [ψ(1)ψ†(2)]〉 = −G(1− 2)

〈T [. . . ψ†(2) . . . ψ(1) . . .]〉 −→ 〈T [ψ†(2)ψ(1)]〉 = −ζG(1− 2)

so that as before,

(−1)n〈T [ψ(1)ψ(2) . . . ψ(n) . . . ψ†(P′
2) . . . ψ†(P′

1) . . . ψ†(P′
n)]〉

= ζPG(1− P ′1)G(2− P ′2) . . . G(n− P ′n). (10.58)

Example 10.26:
Use Wick’s theorem to calculate the interaction energy of a dilute Bose gas of spin S

bosons particles interacting via a the interaction

V̂ =
1

2

∑

q,kσ,k′,σ′

V (q)b†k+qσb
†
k′σ′bk′+qσ′bkσ

at a temperature above the Bose Einstein condensation temperature.
Solution: To leading order in the interaction strength, the interaction energy is given by

〈V 〉 =
∑

q,k,k′,σ,σ′

V (q)〈b†k+q,σb†k′,σ′bk′+q,σ′bkσ〉

252



c©2009 Piers Coleman Chapter 10.

Using Wick’s theorem, we evalute

〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉 = 〈b†k+q,σb
†
k′,σ′bk′+q,σ′bk,σ〉+ 〈b†k+q,σb

†
k′,σ′bk′+q,σ′bk,σ〉

= nknk′δq,0 + nknk+qδk,k′δσσ′ (10.59)

so that

〈V̂ 〉 =
1

2

∫

k,k′
nknk′

[
(2S + 1)2Vq=0 + (2S + 1)Vk−k′

]

where nk = 1
eβ(ǫk−µ)−1

.

10.5 Feynman diagram expansion

We are now ready to generalize the Feynman approach to finite temperatures. Apart from
a very small change in nomenclature, almost everything we learnt for zero temperature
in chapter 8 now generalizes to finite temperature. Whereas previously, we began with a
Wick expansion of the S matrix, now we must carry out a Wick expansion of the partition
function

Z = e−βF = Z0〈T exp

[
−
∫ β

0
V̂ (τ)dτ

]
〉0 =

All the combinatorics of this expansion are unchanged at finite temperatures.

Now we are at finite temperature, the Free energy F = E−ST−µN replaces the energy.
The main results of this procedure can almost entirely be guessed by analogy. In particular:

• The partition function

Z = Z0

∑
{Unlinked Feynman diagrams }

• The change in the Free energy due to the perturbation V is given by

∆F = F − F0 = −kBT ln

[
Z

Z0

]
= −kBT

∑
{Linked Feynman diagrams}

This is the finite temperature version of the linked cluster theorem.

• Matsubara one-particle Green’s functions

G(1− 2) =
∑
{Two-legged Feynman diagrams}

, and the main changes are

(i) the replacement of a −i −→ −1 in the time-ordered exponential.
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(ii) the finite range of integration in time

∫ ∞

−∞
dt −→

∫ β

0
dτ

which leads to the discrete Matsubara frequencies.

The effect of these changes on the real-space Feynman rules is summarized in Table 9.1.

The book-keeping that leads to these diagrams now involves the redistribution of a “−1”
associated with each propagator (2) : : :  y(1) −→ (i)2 × G(2− 1). (10.60)

where as before,

G(2− 1) = 2 1
(10.61)

represents the propagation of a particle from “1” to “2”, but now we must redistribute an i
(rather than a

√
−i) to each end of the progator. When these terms are redistributed onto

one-particle scattering vertices, they cancel the −1 from the time-ordered exponential

i

i

−U(x) = (i)2 ×−U(x) ≡ U(x)
(10.62)

whereas for a two-particle scattering potential V (1−2), the four factors of i give a (i)4 = 1,
so that the two-particle scattering amplitude is −V (1− 2).

1 2 = (i)4 ×−V (1− 2) ≡ −V (1− 2). (10.63)

Apart from these small changes, the real-time Feynman rules are basically the same as those
at zero temperature.

10.5.1 Feynman rules from Functional Derivative

As in chapter 8, we can formally derive the Feynman rules from a functional derivative
formulation. Using the notation

∫
d1d2z̄(1)G(1− 2)z(2) = z̄ z (10.64)
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Table. 9.1 Real Space Feynman Rules: Finite Temperature .

2 1 G(2− 1)

x1 U(x1)

1 2 −V (1− 2)

∏

i

∫
d3xi

∫ β

0
dτ Integrate over all intermediate times and positions.

−(2S + 1)G(~0, 0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

z(1) z(1)

− z̄(1) −z̄(1)

p = 2
1

p

×
p = 8

p = order of symmetry group.
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where d1 and d2 implies the integration over the space-time variables (~1, τ1) and (~2, τ2) and
a sum over suppressed spin variables σ1 and σ2, we can write the non-interacting generating
functional as

Z0[z̄, z]

Z0
= 〈Ŝ〉0 = exp

[
−z̄ z

]
(10.65)

where we have used the short-hand

Ŝ = T exp

[∫ β

0
d1[z̄(1)ψ(1) + ψ†(1)z(1)]

]

Now each time we differentiate Ŝ with respect to its source terms, we bring down an
additional field operator, so that

δ

δz̄(1)
〈T . . . Ŝ〉0 = 〈. . . ψ(1) . . . Ŝ〉0,

δ

δz(2)
〈T . . . Ŝ〉0 = 〈T . . . ψ†(2) . . . Ŝ〉0 (10.66)

we can formally evaluate the time-ordered expectation value of any operator F [ψ†, ψ] as

〈TF
[
ψ†, ψ

]
Ŝ〉0 = F [

δ

δz
,
δ

δz̄
] exp

[
−z̄ z

]

so that

Z[z̄, z]

Z0
= 〈Texp

[
−
∫ β

0
V̂ (τ)dτ

]
Ŝ〉0

= 〈exp

[
−
∫ β

0
dτV

(
δ

δz
,
δ

δz̄

)]
exp

[
−z̄ z

]

The formal expansion of this functional derivative generates the Feynman diagram ex-
pansion. Changing variables to (α, ᾱ) = (z,−z̄), we can remove the minus-sign associated
with each propagator, to obtain

Z[−ᾱ, α]

Z0
= exp

[
(−1)n

∫ β

0
dτV

(
δ

δα
,
δ

δᾱ

)]
exp

[
ᾱ α

]
(10.67)

for an n− body interaction. The appearance of the (−1)n in the exponent indicates that
we should associate a (−1)n with the corresponding scattering amplitude.

As in the case of zero temperature, we may regard (??) as a machine for generating a
series of Feynman diagrams- both linked and unlinked, so that formally,

Z[ᾱ, α] = Z0

∑
{Unlinked Feynman diagrams}.
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Table. 9.2 Momentum Space Feynman Rules: Finite Temperature .

(k, iωn)
Go(k, iωn) Fermion propagator

−V (q) Interaction

(q, νn)
1 2

−g2
qDo(q, iνn) Exchange Boson.

= −g2
q

[
2ωq

(iνn)2 − ω2
q

]

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, iνn)
T
∑

n

∫
ddq

(2π)d
eiαn0+ Sum over internal loop frequency

and momenta.

p = 2

1

p
p = order of symmetry group.

×
p = 8
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10.5.2 Feynman rules in frequency/momentum space

As at zero temperature, it is generally more convenient to work in Fourier space. The
transformation to Fourier transform space follows precisely parallel lines to that at zero
temperature, and the Feynman rules which result are summarized in Table 9.2. We first
re-write each interaction line and Green’s function in a Feynman diagram in terms of their
Fourier transformed variables

1 2 = G(X1 −X2) =
∑

n

∫
dd−1p

(2π)d−1
G(p)eip(X1−X2)

1 2 = V (X1 −X2) = T
∑

n

∫
dd−1q

(2π)d−1
V (q)eiq(X1−X2) (10.68)

where we have used a short-hand notation p = (p, iαn) (where αn = ωn for fermions,
αn = νn for bosons), q = (q, iνn), X = (x, iτ), ip.X = ip ·x−iωnτ and iq.X = iq ·x−iνrτ).
As an example, consider a screened Coulomb interaction

V (r) =
e2

r
e−κr

In our space time notation, we write the interaction as

V (X) = V (x, τ) =
e2

|x|e
−κ|x| × δ̃(τ)

Where the delta function in time arises because the interaction is instantaneous. (Subtle
point: we will in fact inforce periodic boundary conditions by taking the delta function
to be a periodic delta function δ̃(τ) =

∑
n δ(τ − nβ)). When we Fourier transform this

interaction, we obtain

V (Q) = V (q, iνr) =

∫
d4XV (X)e−iQ.X

=

∫
d3x

∫ β

0
dτV (x)δ̃(τ)e−i(q·x−νrτ)

= V (q) =
4πe2

q2 + κ2
(10.69)

and the delta function in time translates to an interaction that is frequency independent.

We can also transform the source terms in a similar way, writing

z(X) = T
∑

n

∫
dd−1p

(2π)d−1
eipXz(p)

z̄(X) = T
∑

n

∫
dd−1p

(2π)d−1
e−ipX z̄(p)

(10.70)

258



c©2009 Piers Coleman Chapter 10.

where, ipX = i~p · ~x − iαnτ . With these transformations, the space-time co-ordinates as-
sociated with each scattering vertex now only appear as “phase factors”. By making the
integral over space-time co-ordinates at each such vertex, we impose the conservation of
momentum and (discrete) Matsubara frequencies at each vertex

, q
p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)3βδ(d−1)(p1 − p2 − q)δα1+α2−νr (10.71)

Since momentum and frequency are conserved at each vertex, this means that there is one
independent energy and frequency per loop in the Feynman diagram. To be sure that
this really works, let us count the number of independent momenta that are left over after
imposing a constraint at each vertex in the diagram. Consider a diagram with V vertices
and P propagators. Each propagator introduces P × d, momenta. When we integrate over
the space-time co-ordinates of the V vertices, we must be careful to split the integral up
into the integral over the V − 1 relative co-ordinates X̃j = Xj+1 − Xj and the center of
mass co-ordinates: ∫ V∏

j=1

ddXj =

∫
ddXCM

∫ V−1∏

j=1

ddX̃j

This imposes (V − 1) constraints per dimension, so the number of independent momenta
are then

no. of independent momenta = d[P − (V − 1)]

Now in a general Feynman graph, the apparent number of momentum loops is the same as
the number of facets in the graph, and this is given by

L = E + (P − V )

where E is the Euler characteristic of the object. The Euler characteristic is equal to one for
planar diagrams, and equal to one plus the number of “handles” in a non-planar diagram.
For example, the diagram

V=4, P=6, L=4 (10.72)

has V = 4 vertices, P = 6 propagators and it has one handle with Euler characteristic
E = 2, so that L = 6 − 4 + 2 = 4 as expected. So from the above, we deduce that the
number of independent momenta is given by

d[L− (E − 1)]
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This result needs a moments pause. One might have expected number of independent
momentum loops to be equal to L. However, when there are handles, this overcounts the
number of independent momentum loops - for each handle added to the diagram adds only
one additional momentum loop, but L increases by 2. If you look at our one example,
this diagram can be embedded on a cylinder, and the interaction propagator which loops
around the cylinder only counts as one momentum loop, giving a total of 4 − (2 − 1) = 3
independent momentum loops.

L =  4 − 1 = 3

Handle

L=4 (10.73)

In this way, we see that L̃ = L+ (E − 1) is the correct number of independent momentum
loops. Indeed, our momentum constraint does indeed convert the diagram from an integral
over V space-time co-ordinates to L̃ independent momentum loops.

In this way, we see that the transformation from real-space, to momentum space Feyn-
man rules is effected by replacing the sum over all internal space-time co-ordinates by an
integral/sum over all loop momenta and frequencies. A convergence factor

eiαn0+

is included in the loop integral. This term guarantees that if the loop contains a single prop-
agator which propagates back to the point from which it eminated, then the corresponding
contraction of field operators is normal ordered.

10.5.3 Linked Cluster Theorem

The linked cluster theorem for imaginary time follows from the replica trick, as at zero
temperature. In this case, we wish to compute the logarithm of the partition function

ln(
Z

Z0
) = lim

n→0

1

n

[(
Z

Z0

)n
− 1

]

It is worth mentioning here that the replica trick was in fact originally invented by Edwards
as a device for dealing with disorder- we shall have more to say about this in chapter 11.

We now write the term that contains (Z/Z0)
n as the product of contributions from n

replica systems, so that
(
Z

Z0

)n
=

〈
exp

[
−
∫ β

0
dτ

n∑

λ=1

V (λ)(τ)

]〉

0
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When we expand the right-hand side as a sum over unlinked Feynman diagrams, each
separate Feynman diagram has a replica index that must be summed over, so that a single
linked diagram is of order O(n), whereas a group of k unlinked diagrams is of order O(nk).
In this way, as n → 0, only the unlinked diagrams survive, so that. The upshot of this
result is that the shift in the Free energy ∆F produced by the perturbation V̂ , is given by

−β∆F = ln(Z/Z0) =
∑
{Closed link diagrams in real space}}

Notice that unlike the zero temperature proof, here we do not have to appeal to adiabaticity
to extract the shift in Free energy from the closed loop diagrams.

When we convert to momentum space, Fourier transforming each propagator and inter-
action line, an overall integral over the center of mass co-ordinates factors out of the entire
diagram, giving rise to a prefactor

∫
ddXcm = β(2π)d−1δ(d−1)(0) ≡ V β

where V is the spatial volume. Consequently, expressed in momentum space, the change in
Free energy is given by

∆F

V
= −

∑
{Closed linked diagrams in momentum space} .

Finally, let us say a few words about Green-functions Since the n− th order coefficients
of α and ᾱ are the irreducible n-point Green-functions,

lnZ[ᾱ, α] = −β∆F +

∫
d1d2ᾱ(1)G(1− 2)α(2)

+
1

(2!)2

∫
d1d2d3d4ᾱ(1)ᾱ(2)α(3)α(4)Girr(1, 2; 3, 4) + . . . . (10.74)

n-particle irreducible Green functions are simply the n-particle Green functions in which
all contributions from n− 1 particle Green functions have been subtracted. Now since the
n-th order coefficients in the Feynman diagram expansion of lnZ[ᾱ, α] are the connected
2n-point diagrams, it follows that the n-paricle irreducible Green functions are given by the
sum of all 2n point diagrams

Girr(1, 2, . . . n; 1′, 2′, . . . n′) =
∑
{Connected n-point diagrams}.

The main links between finite temperature Feynman diagrams and physical quantities
are given in table 9.3.

10.6 Examples of the application of the Matsubara Tech-
nique

To illustrate the Matsubara technique, we shall examine three examples. In the first, we
will see briefly how the Hartree Fock approximation is modified at finite temperatures. This
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will give some familiarily with the techniques. In the second, we shall examine the effect
of disorder on the electron propagator. Surprisingly, the spatial fluctuations in the electron
potential that arise in a disordered medium behave like a highly retarded potential, and the
scattering created by these fluctuations is responsible for the Drude lifetime in a disordered
medium. As our third introductory example, we will examine an electron moving under the
retarded interaction effects produced by the exchange of phonons, examining for the first
time how inelastic scattering generates an electron lifetime.

10.6.1 Hartree Fock at a finite temperature.

As a first example, consider the Hartree-Fock correction to the Free energy,

∆FHF
V

= −


 +


 (10.75)

These diagrams are precisely the same as those encountered in chapter 8, but now to evaluate
them, we implement the finite temperature rules, which give,

∆FHF
V

=
1

2

∑

k

G(k)
∑

k′

G(k′)
{
[−(2S + 1)]2 V (k − k′)− (2S + 1)V (q = 0)

}
(10.76)

where the prefactor is the p = 2 symmetry factor for these diagrams and

∑

k

G(k) ≡
∫

k
T
∑ 1

iωn − ǫk
eiωn0+

Using the contour integration method introduced in section (10.3), following (10.47 ), we
have

T
∑ 1

iωn − ǫk
eiωn0+

=

∫

C

dz

2πi

1

z − ǫk
ez0

+
f(z) = f(ǫk),

where the contour C runs anticlockwise around the pole at z = ǫk, so that the first order
shift in the Free energy is

∆FHF =
1

2

∫

k,k′

[
(2S + 1)2(Vq=0)− (2S + 1)(Vk−k′)

]
fkfk′ .

This is formally exactly the same as at zero temperature, excepting that now fk refers to
the finite temperature Fermi Dirac. Notice that we could have applied exactly the same
method to bosons, the main result being a change in sign of the second Fock term.

10.6.2 Electron in a disordered potential

As a second example of the application of finite temperature methods, we shall consider the
propagator for an electron in a disordered potential. This will introduce the concept of an
“impurity average”.
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Our interest in this problem is driven ultimately by a desire to understand the bulk
properties of a disordered metal. The problem of electron transport is almost as old as
our knowledge of the electron itself. The term “electron” was first coined to describe
the fundamental unit of charge (already measured from electrolysis) by the Irish physicist
George Johnstone Stoney in 1891[1]. Heinrich Lorentz derived his famous force law for
charged “ions” in 1895[2], but did not use the term electron until 1899. In 1897 J. J.
(“JJ”) Thomson[3] made the crucial discovery of the electron by correctly interpreting his
measurement of the m/e ratio of cathode rays in terms of a new state of particulate matter
“from which all chemical elements are built up”. Within three years of this discovery, Paul
Drude[4] had synthesized these ideas and had argued, based on the idea of a classical gas
of charged electrons, that electrons would exhibit a mean-free path l = velectronτ , where
τ is the scattering rate an l the average distance between scattering events. In Drude’s
theory electrons were envisioned as diffusing through the metal, and he was able to derive
his famous formula for the conductivity σ

σ =
ne2τ

m
.

Missing from Drude’s pioneering picture, was any notion of the Fermi-Dirac statistics of
the electron fluid. He had for example, no notion that the characteristic velocity of the
electrons was given by the Fermi velocity, velectron ∼ vF a vastly greater velocity at low
temperatures than could ever be expected on the grounds of a Maxwell Boltzman fluid of
particles. This raises the question - how - in a fully quantum mechanical picture of the
electron fluid, can we rederive Drude’s basic model?

A real metal contains both disorder and electron-electron interactions - in this course
we shall only touch on the simpler problem of disorder in an otherwise free electron gas.
We shall actually return to this problem in earnest in the next chapter. Our task here in
our first example will be to examine the electron propagator in a disordered medium of
elastically scattering impurities. We shall consider an electron in a disordered potential

H =
∑

k

ǫkc
†
kck + Vdisorder

Vdisorder =

∫
d3xU(~x)ψ†(x)ψ†(x) (10.77)

where U(x) represents the scattering potential generated by a random array ofNi impurities
located at positions Rj, each with atomic potential U(x−Rj),

U(x) =
∑

j

U(x−Rj)

An important aspect of this Hamiltonian, is that it contains no interactions between elec-
trons, and as such the energy of each individual electron is conserved: all interactions are
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elastic.

We shall not be interested in calculating the value of a physical quantity for a specific
location of impurities, but rather on the value of that quantity after we have averaged over
the locations of the impurities, i.e.

〈A〉 =

∫ ∏

j

1

V
d3Rj〈Â[{Rj}]〉

This is an elementary example of a “quenched average”, in which the “impurity average”
takes place after the Thermodynamic average. Here, we’ll calculate the impurity averaged
Green function. To do this we need to know something about the fluctuations of the
impurity scattering potential about its average. It is these fluctuations that scatter the
electrons.

Electrons will in general scatter off the fluctuations in the potential. The average im-
purity potential U(x) plays the roll of a kind of shifted chemical potential. Indeed, if we
shift the chemical potential by an amount ∆µ, the scattering potential becomes U(x)−∆µ,
and we can always choose ∆µ so that U(x) − µ = 0. The more important quantity are
the fluctuations about the average potential δU(x) = U(x)− U(x). These fluctuations are
spatially correlated, with variance

δU(x)δU(x′) =

∫

q
eiq·(x−x′)ni |u(q)|2 (10.78)

where u(q) =
∫
d3xU(x)e−iq·x is the Fourier transform of the scattering potential and

ni = Ni/V is the concentration of impurities. It is these fluctuations that scatter the
electrons, and when we come to draw the impurity averaged Feynman diagrams, we’ll
see that the spatial correlations in the potential fluctuations induce a sort of “attractive
interaction”, denoted by the diagram

x x’
∫
ni|u(q)|2eiq·(x−x′) = −Veff(x− x′)

(10.79)

Although in principle, we should keep all higher moments of the impurity scattering po-
tential, in practice, the leading order moments are enough to extract a lot of the basic
physics in weakly disordered metals. Notice that the fluctuations in the scattering potential
are short-range - they only extend over the range of the scattering potential. Indeed, if
we neglect the momentum dependence of u(q), assuming that the impurity scattering is
dominated by low energy s-wave scattering, then we can write u(q) = u0. In this situation,
the fluctuations in the impurity scattering potential are entirely local,

δU(x)δU(x′) = niu
2
0δ(x− x′) white noise potential
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In our discussion today, we will neglect the higher order moments of the scattering potential,
effectively assuming that it is purely Gaussian.

To prove (10.78 ), we first Fourier transform the potential

U(q) =
∑

j

e−iq·Rj

∫
d3x U(x−Rj)e

−iq·(x−Rj) = u(q)
∑

j

e−iq·Rj , (10.80)

so that the locations of the impurities are encoded in the phase shifts which multiply u(q).
If we now carry out the average,

δU(x)δU(x′) =

∫

q,q′
ei(q·x−q·x′)

(
U(q)U(−q′)− U(q) U(−q′)

)

=

∫

q,q′
ei(q·x−q·x′) u(q)u(−q′)

∑

i,j

(
e−iq·Rieiq

′·Rj − e−iq·Ri eiq
′·Rj

)
(10.81)

Now since the phase terms are independent at different sites, the variance of the random
phase term in the above expression vanishes unless i = j, so

∑

i,j

(
e−iq·Rieiq

′·Rj − e−iq·Ri eiq
′·Rj

)
= Ni ×

∫
1

V
d3Rje

−i(q−q′)·Rj

= ni(2π)3δ(3)(q− q′) (10.82)

from which
U(q)U(−q′)− U(q) U(−q′) = ni|u(q)|2(2π)3δ(3)(q− q′)

and (10.78) follows.
Now let us examine how electrons scatter off these fluctuations. If we substitute ψ†(x) =∫

k c
†
ke
−ik·x into V̂disorder, we obtain

V̂disorder =

∫

k,k′
c†kck′δU(k− k′)

We shall represent the scattering amplitude for scattering once

jR

k k’

δU(k− k′) =


u(k− k′)

∑

j

ei(k−k′)·Rj


−∆µδk−k′ .

(10.83)

where we have subtracted the scattering off the average potential. The potential transfers
momentum, but does not impart any energy to the electron, and for this reason frequency
is conserved along the electron propagator. Let us now write down, in momentum space
the Greens function of the electron
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Figure 10.4: Double scattering event in the random impurity potential.

G(k,k′, iωn) = ++ + + ,

= G0(k, iωn)δk,k′ + G0(k, iωn)δU(k− k′)G0(k′, iωn)

+

∫

k1

G0(k, iωn)δU(k− k1)G0(k1, iωn)δU(k1 − k′)G0(k′, iωn) + . . .(10.84)

where the frequency iωn is constant along the electron line. Notice that G is actually
a function of each impurity position! Fig. 10.4 illustrates one of the scattering events
contributing to the third diagram in this sum. We want to calculate the quenched avaerage
G(k,k′, iωn), and to do this, we need to average each Feynman diagram in the above series.

When we impurity average the single scattering event, it vanishes:

G0(k, iωn)δU(k− k′)G0(k′, iωn) = G0(k, iωn)

=0︷ ︸︸ ︷
δU(k− k′)G0(k′, iωn)
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but the average of a double scattering event is

∑

k1

G0(k, iωn)G0(k1, iωn)G0(k′, iωn)×

ni|uk−k′ |2δk−k′︷ ︸︸ ︷
δU(k− k1)δU(k1 − k′)

= δk−k′ × G0(k, iωn)
2ni

∑

k1

u(k− k1)
2G0(k1, iωn)G0(k, iωn)(10.85)

Notice something fascinating - after impurity averaging, momentum is now conserved. We
can denote the impurity averaged double scattering event Feynman diagram

k k

k−q

q

=
(10.86)

where we have introduced the Feynman diagram

k

k−Q

Q k’+Q

k’

ni|u(q)|2 = −Veff(Q)

(10.87)

to denote the momentum transfer produced by the quenched fluctuations in the random
potential. In writing the diagram this way, we bring out the notion that quenched disorder
can be very loosely thought of as an interaction with an effective potential

Veff(q, iνn) =

∫ β

0
dτeiνnτ

−ni|u(q)|2︷ ︸︸ ︷
Veff(q, τ) = −βδn0ni|u(q)|2

where the βδn0 ≡
∫
dτeiνnτ is derived from the fact that the interaction Veff(q, τ)does not

depend on the time difference guarantees that there is no energy transferred by the quenched
scattering events. In otherwords, quenched disorder induces a sort of infinitely retarded,
but “attractive” potential between electrons. (Our statement can be made formally correct
in the language of replicas - this interaction takes place between electrons of the same, or
different replica index. In the n→ 0 limit, the residual interaction only acts on one electron
in the same replica. ) The notion that disorder induces interactions is an interesting one,
for it motivates the idea that disorder can lead to new kinds of collective behavior.

After the impurity averaging, we notice that momentum is now conserved, so that the
impurity averaged Green function is now diagonal in momentum space,

G(k,k′, iνn) = δk−k′G(k, iνn).
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If we now carry out the impurity averaging on multiple scattering events, only repeated
scattering events at the same sites will give rise to non-vanishing contributions. If we
take account of all scattering events induced by the Gaussian fluctuations in the scattering
potential, then we generate a series of diagrams of the form

G(k) = + + +

In the Feynman diagrams, we can group all scatterings into connected self-energy diagrams,
as follows:

Σ(k) = Σ = + + +

G(k) = + += Σ Σ Σ

= [iωn − ǫk − Σ(k)]−1 (10.88)

In the case of s-wave scattering, all momentum dependence of the scattering processes
is lost, so that in this case Σ(k) = Σ(iωn) only depends on the frequency. In the above
diagram, the double line on the electron propagator indicates that all self-energy corrections
have been included. From the above, you can see that the self-energy corrections calculated
from the first expression are fed into the electron propagator, which in turn is used in a
self-consistent way inside the self-energy

We shall begin by trying to calculate the first order above diagrams for the self-energy
without imposing any self-consistency. This diagram is given by

Σ(iωn) = = ni
∑

k′

|u(k− k′)|2G(k′, iωn)

= ni
∑

k′

|u(k− k′)|2 1

iωn − ǫk′
(10.89)

Now we can replace the summation over momentum inside this self-energy by an integration
over solid angle and energy, as follows

∑

k′

→
∫
dΩk′

4π
dǫ′N(ǫ′)

where N(ǫ) is the density of states. With this replacement,

Σ(iωn) = niu
2
0

∫
dǫN(ǫ)

1

iωn − ǫ
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where

u2
0 =

∫
dΩk′

4π
|u(k− k′)|2 =

1

2

∫ 1

−1
d cos θ|u(θ)|2

is the angular average of the squared scattering amplitude. To a good approximation, this
expression can be calculated by replacing the energy dependent density of states by its value
at the Fermi energy. In so doing, we neglect a small real part to the self-energy, which can,
in any case be absorbed by the chemical potential. This kind of approximation is extremely
common in many body physics, in cases where the key physics is dominated by electrons
close to the Fermi energy. The deviations from constancy in N(ǫ), will in practice affect the
real part of Σ(iωn), and these small changes can be accomodated by a shift in the chemical
potential. The resulting expression for Σ(iωn) is then

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dǫ

1

iωn − ǫ
= −i 1

2τ
sgn(ωn) (10.90)

where we have identified 1
τ = 2πniu

2
0 as the electron elastic scattering rate. We notice that

this expression is entirely imaginary, and it only depends on the sign of the Matsubara
frequency. Notice that in deriving this result we have extended the limits of integration to
infinity, an approximation that involves neglecting terms of order 1/(ǫF τ).

We can now attempt to recompute Σ(iωn) with self-consistency. In this case,

Σ(iωn) = = niu
2
0

∑

k′

1

iωn − ǫk′ − Σ(iωn)
(10.91)

If carry out the energy integration again, we see that the imposition of self-consistency has
no effect on the scattering rate

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dǫ

1

iωn − ǫ− Σ(iωn)

= −i 1

2τ
sgn(ωn). (10.92)

Our result for the electron propagator, ignoring the “vertex corrections” to the scattering
self-energy is given by

G(k, z) =
1

z − ǫk + i 1
2τ sgnIm(z)

where we have boldly extended the Green function into the complex plane. We may now
make a few remarks:

• The original pole of the Green function has been broadened. The electron “spectral
function”,

A(k, ω) =
1

π
ℑG(k, ω − iδ) =

1

π

(2τ)−1

(ω − ǫk)2 + (2τ)−2
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is a Lorentzian of width 1/τ . The electron of momentum k now has a lifetime τ due
to elastic scattering effects.

• Although the electron has a mean-free path, l = vF τthe electron propagator displays
no features of diffusion. The main effect of the finite scattering rate is to introduce
a decay length into the electron propagation. The electron propagator does not bear
any resemblance to the “diffusion propagator” χ = 1/(iν − Dq2) that is the Greens
function for the diffusion equation (∂t −D∇2)χ = −δ(x, t). The physics of diffusion
and Ohm’s law do not appear until we are able to examine the charge and spin
response functions, and for this, we have to learn how to compute the density and
current fluctuations in thermal equilibrium. (Chapter 10).

• The scattering rate that we have computed is often called the “classical” electron
scattering rate. The neglected higher order diagrams with vertex corrections are
actually smaller than the leading order contribution by an amount of order

1

ǫF τ
=

1

kF l

This small parameter defines the size of “quantum corrections” to the Drude scattering
physics, which are the origin of the physics of electron localization. To understand
how this small number arises in the self-energy, consider the first vertex correction to
the impurity scattering,

k  + k   − k1 2

k 2 k 1k k

(10.93)

This diagram is given by

Σ2 =

−i 1
2τ︷ ︸︸ ︷

N(0)

∫
dǫ1

iωn − ǫ1

−i 1
2τ︷ ︸︸ ︷

N(0)

∫
dǫ2

iωn − ǫ2

∼ −i
kF vF︷ ︸︸ ︷∫

dΩ1dΩ2

(4π)2
1

iωn − ǫk1+k2−k

∼ i
1

τ
× 1

kF l
(10.94)

where the last term in the integral derives from the central propagator in the self-
energy. In this self-energy, the momentum of the central propagator is entirely deter-
mined by the momentum of the two other internal legs, so that the energy associated
with this propagator is ǫ−k+k1+k2 . This energy is only close to the Fermi energy when
k1 ∼ −k2, so that only a small fraction 1/(kF l) of the possible directions of k2 give a
large contribution to the scattering processes.
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10.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest successes of many body physics
in condensed matter. In many ways, it is the condensed matter analog of quantum-
electrodynamics - and the early work on the electron phonon problem was carried out
by physicists who had made their early training in the area of quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local
build-up of positive charge. Perhaps a better analogy, is with a supersonic aircraft, for
indeed, an electron is a truly supersonic particle inside crystals, moving at many times the
velocity of sound. To get an idea of just how much faster the electron moves in compar-
ison with sound, notice that the ratio of the sound velocity vs to the Fermi velocity vF is
determined by the ratio of the Debye frequency to the Fermi energy, for

vs
vF
∼ ∇kωk∇kǫk

∼ ωD/a

ǫF /a
=
ωD
ǫF

where a is the size of the unit cell. Now an approximate estimate for the Debye frequency
is given by ω2

D ∼ k/M , where M is the mass of an atomic nucleus and k ∼ ǫF /a
2 is the

“spring constant” associated with atomic motions, thus

ω2
D ∼

(
ǫF
a2

)
1

M

and
ω2
D

ǫ2F
∼ 1

(ǫFa
2)︸ ︷︷ ︸

∼1/m

1

M
∼ m

M

so that the ratio
vs
vF
∼
√
m

M
∼ 1

100
.

so an electron moves at around Mach 100. As it moves through the crystal, it leaves behind
it a very narrow wake of “positively charged” distortion in the crystal lattice which attracts
other electrons, long after the original disturbance has passed by. This is the origin of the
weak attractive interaction produced by the exchange of virtual phonons. This attractive
interaction is highly retarded, quite unlike the strongly repulsive Coulomb interaction that
acts between electrons which is almost instantaneous in time. (The ratio of characteristic

timescales being ∼ ǫF
ωD
∼
√

M
m ∼ 100). Thus- whereas two electrons at the same place

and time, feel a strong mutual Coulomb repulsion, two electrons which arrive at the same
place, but at different times can be subject to an attractive electron phonon interaction.
It is this interaction that is responsible for the development of superconductivity in many
conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound-
vibrations. An electron can not continously interact with the surrounding atomic lattice
- it must do so by the emission and absorption of sound quanta or “phonons”. The basic
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Hamiltonian to describe the electron phonon problem is the Frohlich Hamiltonian, derived
by Fröhlich, a German emigré to Britain, who worked in Liverpool shortly after the second-
world war[5]. Fröhlich recognized that the electron-phonon interaction is closely analogous
to the electron-photon interaction of QED. Fröhlich appreciated that this interaction would
give rise to an effective attraction between electrons and he was the first to identify it as
the driving force behind conventional superconductivity.

To introduce the Frohlich Hamiltonian, we will imagine we have a three phonon modes
labelled by the index λ = (1, 2, 3), with frequency ωqλ. For the moment, we shall also ignore
the Coulomb interaction between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ

ǫkc
†
kσckσ

Hp =
∑

q,λ

ωqλ(a
†
qλaqλ +

1

2
)

HI =
∑

k,q,λ

gqλc
†
k+qσckσ

[
aqλ + a†−qλ

]
(10.95)

To understand the electron phonon coupling, let us consider how long-wavelength fluctu-
ations of the lattice couple to the electron energies. Let ~Φ(x) be the displacement of the
lattice at a given point x, so that the strain tensor in the lattice is given by

uµν(x) =
1

2
(∇µΦν(x) +∇νΦµ(x))

In general, we expect a small change in the strain to modify the background potential of
the lattice, modifying the energies of the electrons, so that locally,

ǫ(k) = ǫ0(k) + Cµνuµν(x) + . . .

Consider the following, very simple model. In a free electron gas, the Fermi energy is related
to the density of the electrons N/V by

ǫF =
1

2m

(
3π2N

V

) 2
3

. (10.96)

When a portion of the lattice expands from V → V + dV , the positive charge of the
background lattice is unchanged, and preservation of overall charge neutrality guarantees
that the number of electrons N remains constant, so the change in the Fermi energy is given
by

δǫF
ǫF

= −2

3

dV

V
∼ −2

3
~∇ · ~Φ

On the basis of this simple model, we expect the following coupling between the displacement
vector and the electron field
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HI = C

∫
d3xψσ

†(x)ψσ(x)~∇.~Φ C = −2

3
ǫF (10.97)

The quantity C is often called the “deformation potential”. Now the displacement of the
the phonons was studied in Chapter 4. In a general model, it is given by

Φ(x) = −i
∑

qλ

eλq ∆xqλ

[
aqλ + a†−qλ

]
eiq·x

where we’ve introduced the shorthand

∆xqλ =

(
h̄

2MNsωqλ

) 1
2

to denote the characteristic zero point fluctuation associated with a given mode. (Ns is the
number of sites in the lattice. ) The body of this expression is essentially identical to the
displacement of a one-dimensional harmonic lattice (see (4.60)), dressed up with additional
polarization indices. The unfamiliar quantity eλq is the polarization vector of the mode. For

longitudinal phonons, for instance, eLq = q̂. The “−i” infront of the expression has been
introduced into the definition of the phonon creation and annihilation operators so that the
requirement that the Hamiltonian is hermitian (which implies (eλq)∗ = −(eλ−q)) is consistent
with the convention that e changes sign when the momentum vector q is inverted.

The divergence of the phonon field is then

~∇ · Φ(x) =
∑

qλ

q · eλq∆xqλ

[
aqλ + a†−qλ

]
eiq·x

In this simple model, the electrons only couple to the longitudinal phonons, since these are
the only phonons that change the density of the unit cell. When we now Fourier transform
the interaction Hamiltonian, making the insertion ψσ(x) = 1√

V

∑
k ckσe

ik·x (10.97), we

obtain

HI = C

∫
d3xψσ

†(x)ψσ(x)~∇ · ~Φ(x)

=
∑

k,k′,q,λ

c†k′σckσ
[
aqλ + a†−qλ

]
δk′−(k+q)︷ ︸︸ ︷

1

V

∫
d3xei(q+k−k′)·x×C∆xqλ(q · eλq)

=
∑

qkλ

gqλc
†
k+qσckσ

[
aqλ + a†−qλ

]
(10.98)

where

gqλ =




Cq∆xqλ = Cq

(
h̄

2MNsωqλ

) 1
2 (λ = L)

0 (otherwise )
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Note that Ns = V/a3, where a is the lattice spacing. To go over to the thermodynamic limit,
we will replace our discrete momentum sums by continuous integrals,

∑
q ≡ V

∫
q →

∫
q.

Rather than spending a lot of time keeping track of how the volume factor is absorbed into
the integrals, it is simpler to regard V = 1 as a unit volume, replacing Ns → a−3 whenever
we switch from discrete, to continuous integrals. With this understanding, we will use

gq = Cq
√
h̄a3/(2Mωqλ) (10.99)

for the electron-phonon coupling to the longitudinal modes. Our simple model captures the
basic aspects of the electron phonon interaction, and it can be readily generalized. In a
more sophisticated model,

• C becomes momentum dependent and should be replaced by the Fourier transform of
the atomic potential. For example, if we compute the electron - phonon potential from
given by the change in the atomic potential Vatomic resulting from the displacement
of atoms,

δV (x) =
∑

j

δVatomic(x−R0
j − ~Φj) = −

∑

j

~Φj · ~∇Vatomic(x−R0
j )

we must replace interaction,

C → Vatomic(q) =
1

vcell

∫
d3xVatomic(x)e−iq·x. (10.100)

• When the plane-wave functions are replaced by the detailed Bloch wavefunctions of the
electron band, the electron phonon coupling becomes dependent on both the incoming
and outgoing electron momenta, so that

gk′−kλ → gk′,kλ.

Nevertheless, much can be learnt from our simplified model In the discussion that follows,
we shall drop the polarization index, and assume that the phonon modes we refer to are
exclusively longitudinal modes.

In setting up the Feynman diagrams for our Frohlich model, we need to introduce two
new elements- a diagram for the phonon propagator, and a diagram to denote the vertex.
If we denote φq = aq + a†−q, then the phonon Green function is given by

D(q, τ − τ ′) = −〈Tφq(τ)φq(τ ′)〉 = T
∑

iνn

D(q)e−iνn(τ−τ ′) (10.101)

where the propagator

D(q) =
2ωq

(iνn)2 − (ωq)2

is denoted by the diagram

(q, iνn)
= D(q, iνn) (10.102)
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The interaction vertex between electrons and phonon is denoted by the diagram

k

k + q

q
= (i)3 ×−gq = igq (10.103)

The factor i3 arises because we have three propagators entering the vertex, each donating
a factor of i. The −1gq derives from the interaction Hamiltonian in the time-ordered
exponential. Combining these two Feynman rules, we see that when two electrons exchange
a boson, this gives rise to the diagram

(q, νn)
1 2 = (igq)2D(q) = −(gq)2D(q) (10.104)

so that the exchange of a boson induces an effective interaction

Veff(q, z) = g2
q

2ωq

(z)2 − ω2
q

(10.105)

Notice three things about this interaction -

• It is strongly frequency dependent, reflecting the strongly retarded nature of the elec-
tron phonon interaction. The characteristic phonon frequency is the Debye frequency
ωD, and the characteristic “restitution” time associated with the electron phonon in-
teraction is τ ∼ 1/ωD, whereas the corresponding time associated with the repulsive
Coulomb interaction is of order 1/ǫF . The ratio ǫF /ωD ∼ 100 is a measure of how
much more retarded the electron-phonon interaction is compared with the Coulomb
potential.

• It is weakly dependent on momentum, describing an interaction that is spatially local
over one or two lattice spacings.

• At frequencies below the Debye energy, ω <˜ωD the denominator in Veff changes sign,

and the residual low-energy interaction is actually attractive. It is this component of
the interaction that is responsible for superconductivity in conventional superconduc-
tors.

We wish to now calculate the effect of the electron-phonon interaction on electron prop-
agation. The main effect on the electron propagation is determined by the electron-phonon
self energy. The leading order Feynman diagram for the self-energy is given by

k
k − q

q

k
≡ Σ(k) =

∑

q

(igq)2G0(k − q)D(q) (10.106)
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or written out explicitly,

Σ(k, iωn) = −T
∑

q,iνn

g2
q

[
2ωq

(iνn)2 − ω2
q

]
1

iωn − iνn − ǫk−q

= −T
∑

q,iνn

[
1

iνn − ωq

1

iωn − iνn − ǫk−q

− (ωq → −ωq)

]
(10.107)

where we have simplified the expression by splitting up the boson propagator into a positive
and negative frequency component, the latter being obtained by reversing the sign on ωq.
We shall carry out the Matsubara sum over the bosonic frequencies by writing it as a contour
integral with the Bose function:

−T
∑

iνn

F (iνn) = −
∫

C

dz

2πi
n(z)F (z) =

∫

C′

dz

2πi
n(z)F (z) (10.108)

where C runs anti-clockwise around the imaginary axis and C ′ runs anticlockwise around
the poles in F (z). In this case, we choose

F (z) =
1

z − ωq

1

iωn − z − ǫk−q

=

[
1

z − ωq

− 1

z − (iωn − ǫk−q)

]
1

iωn − (ωq + ǫk−q)
(10.109)

which has two poles, one at z = ωq and one at z = iωn − ǫk−q (Fig. 10.5). Carrying out

ιω  − εn k−q

ωq

ιω  − εn k−q

ωq
−1 x   =

C

C’

C’

Figure 10.5: Contours C and C ′ used in evaluation of Σ(k, iωn)

the contour integral, we then obtain

Σ(k) =
∑

q

g2
q



n(ωq)−

−(1−fk−q)
︷ ︸︸ ︷
n(iωn − ǫk−q)

iωn − (ωq + ǫk−q)
− {ωq → −ωq}
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=
∑

q

g2
q

[
1 + nq − fk−q

iωn − (ωq + ǫk−q)
− {ωq → −ωq}

]
(10.110)

The second term in this expression is obtained by reversing the sign on ωq in the first term,
which gives finally,

Σ(k, z) =
∑

q

g2
q

[
1 + nq − fk−q

z − (ǫk−q + ωq)
+

nq + fk−q

z − (ǫk−q − ωq)

]

where we have taken the liberty of analytically extending the function into the complex
plane. There is a remarkable amount of physics hidden in this expression.

The terms appearing in the electron phonon self-energy can be interpreted in terms of
virtual and real phonon emission processes. Consider the zero temperature limit, when the
Bose terms nq = 0. If we look at the first term in Σ(k), we see that the numerator is only
finite if the intermediate electron state is empty, i.e |k−q| > kF . Furthermore, the poles of
the first expression are located at energies ωq + ǫk−q, which is the energy of an electron of
momentum k−q and an emitted phonon of momentum ωq, so the first process corresponds
to phonon emission by an electron. If we look at the second term, then at zero temperature,
the numerator is only finite if |k− q| < kF , so the intermediate state is a hole. The pole in
the second term occurs at −z = −ǫk−q + ωq, corresponding to a state of one hole and one
phonon, so one way to interpret the second term as the energy shift that results from the
emission of virtual phonons by holes. At zero temperature then,

Σ(k, z) =
∑

q

g2
q

[
virtual/real phonon emission by electron

︷ ︸︸ ︷
1− fk−q

z − (ǫk−q + ωq)
+

virtual/real phonon emission by hole
︷ ︸︸ ︷

fk−q

z − (ǫk−q − ωq)

]

As we shall discuss in more detail in the next chapter, the analytically extended Greens
function

G(k, z) =
1

z − ǫk − Σ(k, z)

can be used to derive the real-time dynamics of the electron in thermal equilibrium. In
general, Σ(k, ω− iδ) = ReΣ(k, ω− iδ) + iImΣ(k, ω− iδ) will have a real and an imaginary
part. The solution of the relation

ǫ∗k = ǫk +ReΣ(k, ǫ∗k)

determines the renormalized energy of the electron due to virtual phonon emission. Let’s
consider the case of an electron, for which ǫ∗k is above the Fermi energy. The quasiparticle
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energy takes the form

ǫ∗k = ǫk −

energy lowered by virtual phonon emission︷ ︸︸ ︷
∑

|k−q|>kF
g2
q

1

(ǫk−q + ωq)− ǫ∗k
+

energy raised by blocking vacuum fluctuations︷ ︸︸ ︷
∑

|k−q|<kF
g2
q

1

ǫ∗k + |ǫk−q|+ ωq

.

If we approximate ǫ∗k by its unrenormalized value ǫk, we obtain the second-order pertur-
bation correction to the electron quasiparticle energy, due to virtual phonon processes. To
understand these two terms, it is helpful to redraw the Feynman diagram for the self energy
so that the scattering events are explicitly time ordered, then we see that there are two vir-
tual processes - depending on whether the intermediate electron line propagates forwards
or backwards in time:

Virtual phonon emission

2t
1t

1 2<(t t  )

Virtual phonon and e−h pair

1t
2t

1 2>(t t  )k

k

k−q

k−q

q

The first term is recognized as the effect of virtual scattering into an intermediate state
with one photon and one electron. But what about the second term? This term involves
the initial formation of an electron-hole pair and the subsequent reannihilation of the hole
with the incoming electron. During the intermediate process, there seem to be two electrons
(with the same spin) in the same momentum state k. Can it really be that virtual processes
violate the exculsion principle? Fortunately, another interpretation can be given. Under
close examination, we see that unlike typical virtual fluctuations to high energy states,
which lower the total energy, this term actually raises the quasiparticle energy. These
energy raising processes are a “blocking effect” produced by the exclusion principle, on the
vacuum fluctuations. In the ground-state, there are virtual fluctuations

GS ⇀↽ electron (k′) + hole (−k′ − q) + phonon (q)

which lower the energy of the ground-state. When a single electron occupies the state of
momentum k, the exclusion principle prevents vacuum fluctuations with k′ = k, raising the
energy of the quasiparticle. So time ordered diagrams that appear to violate the exclusion
principle describe the suppression of vacuum fluctuations by the exclusion principle.

If we now extend our discussion to finite temperatures, for any given k and q, both
the first and the second terms in the phonon self-energy are present. For phonon emission
processes, the appearance of the additional Bose terms nq is the the effect of stimulated
emission, whereby the occupancy of phonon states enhances the emission of phonons. The
terms which vanish at zero temperature can also be interpreted as the effect of phonon

278



c©2009 Piers Coleman Chapter 10.

absorption of the now thermally excited phonons, i.e

Σ(k, z) =
∑

q

g2
q

[
1− fk−q + nq

z − (ǫk−q + ωq)
︸ ︷︷ ︸

virtual/real phonon absorption by hole

+
fk−q + nq

z − (ǫk−q − ωq)
︸ ︷︷ ︸

virtual/real phonon absorption by electron

]

By contrast, the imaginary part of the self-energy determines the decay rate of the
electron due to real phonon emission, and the decay rate of the electron is related to the
quantity

Γk = 2ImΣ(k, ǫ∗k − iδ) ≈ 2ImΣ(k, ǫk − iδ)
If we use the Dirac relation

[
1

x− a− iδ

]
= P

1

x− a + iπδ(x− a)

then we see that for a weak interaction, the decay rate of the electron is given by

Γk = 2π
∑

q

g2
q

[ phonon emission︷ ︸︸ ︷
(1 + nq − fk−q)δ(ǫk − (ǫk−q + ωq)) +

phonon absorption︷ ︸︸ ︷
(nq + fk−q)δ(ǫk − (ǫk−q − ωq))

]

which we may identify as the contribution to the decay rate from phonon emission and
absorption, respectively. Schematically, we may write

Im

[

k k − q

q

k
]

=
∑

q





[

k
k− q

q

]2

+

[

k
k− q

q

]2


× 2πδ(Ef − Ei)

so that taking the imaginary part of the self-energy “cuts” the internal lines. The link
between the imaginary part of the self-energy and the real decay processes of absorption
and emission is sometimes refered to as the “optical theorem”.

10.7.1 α2F : the electron-phonon coupling function

One of the most important effects of the electron phonon interaction, is to give rise to a
superconducting instability. Superconductivity is driven by the interaction of low-energy
electrons very close to the Fermi surface, so the amount of energy transferred in an interac-
tion is almost zero. For this reason, the effective interaction between the electrons is given
by (10.105)

Veff(q, 0) = −2g2
q

ωq

Now the momentum dependence of this interaction is very weak. In our simple model, for

example, g2
q/2ωq ∼ q2

ω2
q
∼ constant, and a weak momentum dependence implies that to a
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first approximation then, the effective low energy interaction is local, extending over one
unit cell and of approximate form

Heff ≈ −g
∑

σσ′

∑

q,k,k′,(|ǫk|, |ǫk′ |, |ǫk+q|, |ǫk′+q|, <ωD)

ψ†k+qσψ
†
k′σ′ψk′+qσ′ψkσ (10.111)

where the sum over electron momenta is restricted to within a narrow band of energies,
within ωD of the Fermi energy. This means that the interaction is “instantaneous” to
within a time-scale of δt ∼ 1/ωD. The effective interaction strength g is the sum over all
2g2

q/ωq,

g =
1

V

∑

q

2g2
q

ωq

≡
∫

q

2g2
q

ωq

(V ≡ 1) (10.112)

Bardeen and Pines were amongst the first to realize that the electron-electron interaction in-
duced by phonon exchange is highly retarded relative to the almost instantaneous Coulomb
interaction, so that for low energy processes, the Coulomb interaction could be ignored.
The attractive interaction in (10.111) was then the basis of the “Bardeen-Pines” model[6] -
a predecessor of the BCS Hamiltonian. We can make an order-of-magnitude estimate of g,
by replacing

g ∼
g2
2kF

a3ωD
∼ 1

a3ωD

(g2kF )2

︷ ︸︸ ︷[(
a3

2MωD

)
ǫ2F (2kF )2

]
∼

M
m︷ ︸︸ ︷(
ǫ2F
ω2
D

)
k2
F

2M
∼ ǫF

where we have taken h̄ = 1 and replaced
∫
q → 1/a3. The electron phonon coupling constant

is defined as the product of the interaction strength, times the electron density of states,

λ = N(0)g =
∑

q

2N(0)g2
q

ωq

(10.113)

This dimensionless quantity is not reduced by the small ratio of electron to atom mass, and
in typical metals λ ∼ 0.1 − 0.2. We’ll now relate the electron phonon self energy to this
quantity.

The electron-phonon self-energy can be simplified by the introduction of a function we
call “α2F”, that keeps track of the frequency dependence of the electron-phonon coupling
constant, where α(ω) is the typical energy dependent coupling constant and F is the phonon
density of states. It turns out that α2F can be actually measured inside superconductors
and F can be measured by neutron scattering.

The basic idea here, is that the momentum dependence of the electron-phonon self
energy is far smaller than the frequency dependence, so the momentum dependence of the
self-energy can be neglected. The dimensionless ratio between these two dependences is a
small number of order ωD/ǫF ,

(
1

vF
|∇kΣ|

)
/

(
∂Σ

∂ω

)
∼ ωD

ǫF
<< 1
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To a good approximation then, the electron phonon self-energy can be averaged over the
Fermi surface, writing

Σ(ω) =

∫
dS Σ(k, ω)∫

dS

where
∫
dS ≡ ∫ d2k/(2π)3 is an integral over the Fermi surface. Now the sum over k′ inside

the self-energy can be replaced by a combination of an energy integral, and a Fermi surface
integral, as follows

∑

k′

→
∫
dS′dk′perp =

∫
dS′

|dǫk′/dk′|
dǫ′ =

∫
dS′

vF (S′)
dǫ′

where dS′ ≡ d2k is a surface integral along the surface of constant energy and vF (S) =
n · ∇kǫk is the local Fermi velocity normal to this surface. Making this substitution,

Σ(ω) =
1∫
dS

∫
dSdS′

v′F
dǫ′g2

k−k′

[
1 + nk−k′ − f(ǫ′)
z − (ǫ′ + ωk−k′)

+
nk−k′ + f(ǫ′)
z − (ǫ′ − ωk−k′)

]

If we introduce a delta function in the phonon frequency into this expression, using the
identity 1 =

∫
dνδ(ν − ωqλ), then we may rewrite it as follows

Σ(ω) =
1∫
dS

∫
dǫ′dν

∫
dS dS′

v′F
g2
k−k′δ(ν − ωk−k′)

[
1 + n(ν)− f(ǫ′)
z − (ǫ′ + ν)

+
n(ν) + f(ǫ′)
z − (ǫ′ − ν)

]

=

∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F (ν)

[
1 + n(ν)− f(ǫ′)
z − (ǫ′ + ν)

+
n(ν) + f(ǫ′)
z − (ǫ′ − ν)

]
(10.114)

where the function
F (ω) =

∑

q,λ

δ(ω − ωqλ)

is the phonon density of states, and

α2F (ν) =
1∫
dS

∫
dS dS′

v′F
δ(ω − ωk−k′)g

2
k−k′λ

is the Fermi surface average of the phonon matrix element and density of states. With this
definition, we may rewrite the self energy as

Σ(z) =

∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F (ν)

[
1 + n(ν)− f(ǫ)

z − (ǫ+ ν)
+
n(ν) + f(ǫ)

z − (ǫ− ν)

]
,

where the energy dependence of the electron density of states has been neglected. This is a
very practical form for the electron self-energy. In practice, most of the energy dependence
in α2F is determined by the phonon density of states. As we shall see later, in a conven-
tional electron-phonon superconductor, one may infer the function α2F using the density of
electron states in the superconductor measured by tunneling in the superconducting state.
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10.7.2 Mass Renormalization by the electron phonon interaction

Our simplified expression for of the self-energy enables us to examine how electron propa-
gation is modified by the exchange of virtual phonons. Let us expand the electron-phonon
self energy around zero frequency in the ground-state. In the ground-state,

Σ(ω) =

∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F (ν)

[
θ(ǫ)

z − (ǫ+ ν)
+

θ(−ǫ)
z − (ǫ′ − ν)

]

=

∫ ∞

0
dνα2(ν)F (ν) ln

[
ν − z
ν + z

]

so that at low frequencies,
Σ(ω) = Σ(0)− λω

where

λ = − dΣ(ω)

dω

∣∣∣∣
ω=0

= 2

∫
dν
α2(ν)F (ν)

ν
(10.115)

If we look at our definition of α2F , we see that this expression is the Fermi surface average
of the electron phonon coupling constant defined in (10.113).

Now at low energies, we can write the electron propagator in terms of the quasiparticle
energies, as follows

G(k, ω − iδ) =
1

ω − ǫk − Σ(ω − iδ)
=

1

ω − ǫk − Σ(ǫ∗k − iδ)︸ ︷︷ ︸
ǫ∗
k
−iΓ/2

+λ(ω − ǫ∗k)
, (10.116)

or

G(k, ω − iδ) =
Z

ω − ǫ∗k − iΓ∗/2
(10.117)

where

Z = (1 + λ)−1 wavefunction renormalization
ǫ∗k = ǫk + Σ(ǫ∗k) quasiparticle energy
Γ∗ = 2ZImΣ(ǫ∗k − iδ) quasiparticle decay rate.

(10.118)

We see that in the presence of the electron phonon interaction, electron quasiparticles are
still well-defined at low temperatures. Indeed, at the Fermi surface, Γ∗ = 0 in the ground-
state, so that electron quasiparticles are infinitely long-lived. This is an example of a Landau
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Fermi liquid, discussed in chapter 8. If we differentiate ǫk with respect to ǫ∗k, we obtain

dǫk
dǫ∗k

= (1 + λ) =

(
m∗

m

)

so that the effective mass of the electron is enhanced by the cloud of virtual phonons which
trails behind it. The density of states is also renormalized in the same way

N(0)∗ =
dǫk
dǫ∗k

N(0) = N(0)(1 + λ)

while the electron group velocity is renormalized downwards according to

v∗F = ∇kǫ
∗
k =

dǫ∗k
dǫk
∇kǫk = ZvF

Thus the electron phonon interaction drives up the mass of the electron, effect of squeez-
ing the one-particle states more closely together and driving the electron group velocity
downwards. This in turn will mean that the linear coefficient of the electronic specific heat
Cv = γ∗T

γ∗ =
π2k2

B

3
N∗(0) = γ0(1 + λ)

is enhanced.
We can give the wavefunction renormalization another interpretation. Recall that using

the method of contour integration, we can always rewrite the Matsubara representation of
the Green function

G(k, τ) = T
∑

n

G(k, iωn)e
−iωnτ

as

G(k, τ) = −
∫
dω

π
[(1− f(ω))θ(τ)− f(ω)θ(−τ)]A(k, ω)e−ωτ , (10.119)

where A(k, ω) = ImG(k, ω − iδ) is the spectral function. Now, from the normalization of
the fermionic commutation relation {ckσ, c†kσ} = 1, we deduce that the spectral function
is normalized:

1 = 〈{ckσ, c†kσ}〉 =

〈c†kσckσ〉︷ ︸︸ ︷
G(k, 0−)−

−〈ckσc†kσ〉︷ ︸︸ ︷
G(k, 0+)

=

∫
dω

π
A(k, ω) (10.120)

The quasiparticle part of the spectral function (10.117) is a Lorentzian of width Γ∗k, weight
πZ, and since the width Γ∗k → 0 as ǫ∗k gets closer to the Fermi energy, we deduce that for
k ∼ kF , the quasiparticle part of the spectral function ever more closely represents a delta
function of weight Z, so that

1

π
A(k, ω) ∼ Zδ(ω − ǫ∗k) + incoherent background
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where the incoherent background is required so that the total frequency integral of the
spectral function is equal to unity.

Now from (10.119), we see that the ground-state occupancy of the electron momentum
state k is given by

nkσ = 〈n̂kσ〉T=0 = −G(k, 0−) =

∫
dω

π
f(ω)A(k, ω)

∣∣∣∣
T=0

=

∫ 0

−∞

dω

π
A(k, ω), (T = 0) (10.121)

The presence of the quasiparticle pole in the spectral function means that at the Fermi
surface, there is a discontinuity in the occupancy given by

nkσ|k=k−F − nkσ|k=k+
F

= Z =
1

1 + λ

as shown in Fig. 10.6

ZZ
F

−

F

+

F

1

a) b)

c)

A(k,  )ω

ω

A(k,  )ω

ω

k = k k = k 

k

kn

k

Z= 1/(1+  )λ

Figure 10.6: Illustrating the relationship between the coherent, quasiparticle component in
the electron spectral function, and the discontinuity in the momentum-space occupancy at
the Fermi surface due to the electron-phonon interaction. a) Spectral function just below
the Fermi surface - quasiparticle peak occupied. b) Spectral function just above Fermi
surface - quasiparticle peak unoccupied. c) Momentum space occupancy nk.

Remarks:

• The survival of a sharp “coherent” delta-function peak in the quasiparticle spectral
function, together with this sharp precipace-like discontinuity in the momentum-space
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occupancy, are one of the hallmark features of the Landau Fermi liquid. In an electron-
phonon mediated superconductor, it is the coherent part of the spectral function which
condenses into the pair condensate.

• At first sight, one might imagine that since the density of states N∗(0) = (1+λ)N(0) is
enhanced, the magnetic susceptibility will follow suit. In actual fact, the compression
of the density of states produced by phonons is always located at the Fermi energy,
and this means that if the electron phonon interaction is turned on adiabatically,
it does not affect the Fermi momenta of either up, or down electrons, so that the
magnetization, and hence the magnetic susceptibility are unaffected by the electron
phonon interaction.

10.7.3 Migdal’s theorem.

At first sight, one might worry about the usefulness of our leading order self-energy correc-
tion. We have already seen that the size of the electron phonon interaction λ is of order
unity. So what permits us to ignore the vertex corrections to the self energy?

One of the classic early results in the electron phonon problem, is Migdal’s theorem[7],
according to which that the renormalization of the electron-phonon coupling by phonon

exchange, is of order
√

m
M . Migdal’s theorem is a result of the huge mismatch between the

electron and phonon dispersion. Basically- when an electron scatters off a phonon, it moves
away so fast that other phonons can not “catch up” with the outgoing electron.

Migdal’s theorem concerns the correction to the electron-phonon vertex. Diagramati-
cally, the electron self-energy can be expanded as follows

Σ = + + . . . (10.122)

which we can denote by the shorthand

Σ = (10.123)
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Here, the shaded circle denotes the vertex part, given by

q

k′ + q

k − k′

k + q

k′
k

= + + . . . = ig(q)(1 + Λ(q)) (10.124)

We shall discuss the leading order vertex correction,

q

k′ + q

k − k′

k + q

k′
k

= (igq)Λ(q) (10.125)

where the vertex function Λ(q) is given by

Λ(q) = T
∑

k′≡(iω′n,k
′)

(igk−k′)
2G(k′ + q)G(k′)D(k − k′) (10.126)

We are interested in an order of magnitude estimate of this quantity.
Now at low temperatures, we can replace the summation over the Matsubara frequency

can be replaced by an integral,

T
∑

ω′n

→
∫
dω′n
2π

so that

Λ(q) = −
∫
dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2G(k′ + q)G(k′)D(k − k′)

Now the propogator

D(k − k′) = − ωk−k′

(ωn − ω′n)2 + ω2
q

vanishes as 1/(ω′n)
2 in the region where |ωn−ω′n|>˜ωD, so we restrict this integral, writing

Λ(q) = −
∫ ωD

−ωD

dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2D(k − k′)G(k′ + q)G(k′)

Inside the restricted frequency integral, to obtain an estimate of this quantity, we shall
replace g2

k−k′D(k − k′) ∼ a3g × 2ωk−k′D(k − k′) ∼ −g, since 2ωk−k′D(k − k′) ∼ −1. To
good approximation, the frequency integral may be replaced by a single factor ωD, so that

Λ(q) ∼ ωDga3

∼ (kF )3

ǫ2
F︷ ︸︸ ︷∫

d3k′

(2π)3
G(k′ + q)G(k′)

∣∣∣∣∣
ω′n=ωn

.
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Now inside the momentum summation over k′, the electron momenta are unrestricted so
the energies ǫk′ and ǫk′+q are far from the Fermi energy and we may estimate this term as

of order (kF a)
3

ǫ2F
. Putting these results together,

Λ ∼ gωD
(kFa)

3

ǫ2F

Now since g ∼ λǫF and (kFa)
3 ∼ 1, we see that

Λ ∼ λωD
ǫF
∼
√
m

M

In otherwords, even though the electron phonon interaction is of order unity, the large ratio
of electron to ion mass leads to a very small vertex correction.
Remarks:

• Perhaps the main difficulty of the Migdal argument, is that it provides a false sense
of security to the theorist- giving the impression that one has “proven” that the
perturbative treatment of the electron phonon interaction is always justified. Migdal’s
argument is basically a dimensional analysis. The weak-point of the derivation, is that
the dimensional analysis does not work for those scattering events where the energies
of the scattered electrons are degenerate. While such scattering events may make up
a small contribution to the overall phase space contributing to the self-energy, they
become important because the associated scattering amplitudes can develop strong
singularities that ultimately result in a catastrophic instability of the Fermi liquid. The
dimensional analysis in the Migdal argument breaks down when electrons inside the
loop have almost degenerate energies. For example, the Migdal calculation, does not
work for the case where q is close to a nesting vector of the Fermi surface, when q spans
two nested Fermi surfaces, this causes ǫk′ and ǫk′+q to become degenerate, enhancing
the size of the vertex by a factor of ǫF /ωD× log(ωD/T ). The singular term ultimately
grows to a point where an instability to a density wave takes place, producing a
charge density wave. The other parallel instability is the Cooper instability, which is a
singular correction to the particle-particle scattering vertex, caused by the degeneracy
of electron energies for electrons of opposite momenta.

10.8 Appendix A

In this appendix, we consider the Hamiltonian

H =

H0︷ ︸︸ ︷∑

λ

ǫλψ
†
λψλ−

−VI︷ ︸︸ ︷∑

λ

[
z̄λ(τ)ψλ + ψ†)λ

]

and show that the generating functional

Z0[z̄, z] = Z0〈Te−
∫ β
0
VI(τ)dτ 〉0
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= Z0〈T exp

[∫ β

0
dτ
∑

λ

(
z̄λ(τ)ψλ(τ) + ψ†λ(τ)zλ(τ)

)]
〉0 (10.127)

is explicitly given by

Z0[z̄, z]

Z0
= exp

[
−
∑

λ

∫ β

0
dτ1dτ2z̄λ(1)Gλ(τ1 − τ2)zλ(2)

]

Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (10.128)

for both bosons and fermions.
We begin by evaluating the equation of motion of the fields in the Heisenberg represen-

tation:
∂ψλ
∂τ

= [H,ψλ] = −ǫλψλ(τ) + zλ(τ)

Multiplying this expression by the integrating factor eǫλτ , we obtain

∂

∂τ
[eǫλτψλ(τ)] = eǫλτzλ(τ)

which we may integrate from τ ′ = 0 to τ ′ = τ , to obtain

ψλ(τ) = e−ǫλτψλ(0) +

∫ τ

0
dτ ′e−ǫλ(τ−τ ′)zλ(τ

′)dτ ′

We shall now take expectation values of this equation, so that

〈ψλ(τ)〉 = e−ǫλτ 〈ψλ(0)〉+
∫ τ

0
dτ ′e−ǫλ(τ−τ ′)zλ(τ

′)dτ ′ (10.129)

If we impose the boundary condition 〈ψλ(β)〉 = ζ〈ψλ(0)〉, where ζ = 1 for bosons and
ζ = −1 for fermions, then we deduce that

〈ψλ(0)〉 = ζnλ

∫ β

0
eǫλτ

′
zλ(τ

′)dτ ′,

where nλ = 1/(eβǫλ − ζ) is the Bose (ζ = 1), or Fermi function ζ = −1. Inserting this into
(10.129), we obtain

〈ψλ(τ)〉 = ζnλ

∫ β

0
e−ǫλ(τ−τ ′)zλ(τ

′)dτ ′ +
∫ β

0
e−ǫλ(τ−τ ′)θ(τ − τ ′)zλ(τ ′)dτ ′, (10.130)

where we have introduced a theta function in the second term, in order to extend the upper
limit of integration to β. Rearranging this expression, we obtain

〈ψλ(τ)〉 =

∫ β

0
dτ ′

−Gλ(τ−τ ′)︷ ︸︸ ︷
e−ǫλ(τ − τ ′) [(1 + ζnλ)θ(τ − τ ′) + ζnλθ(τ

′ − τ)]
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= −
∫ β

0
dτ ′Gλ(τ − τ ′)zλ(τ ′) (10.131)

so Gλ(τ) is the imaginary time response of the field to the source term. We may repeat the
same procedure for the expectation value of the creation operator. The results of these two
calculations may be summarized as

〈ψλ(τ)〉 =
δZ[z̄, z]

δz̄(τ)
= −

∫ β

0
dτ ′Gλ(τ − τ ′)zλ(τ ′)

〈ψ†λ(τ)〉 =
δZ[z̄, z]

δz(τ)
= −

∫ β

0
dτ ′z̄(τ)Gλ(τ − τ ′). (10.132)

Notice how the creation field propagates backwards in time from the source. The common
integral to these two expression is

lnZ[z̄, z] = lnZ0 −
∫ β

0
dτdτ ′z̄λ(τ)Gλ(τ − τ ′)zλ(τ ′)

where the constant term lnZ0 has to be intependent of both z and z̄. The exponential of
this expression recovers the result (10.128 ).

10.9 Exercises for chapter 10

1. Use the method of complex contour integration to carry out the Matsubara sums in the
following:

(i) Derive the density of a spinless Bose Gas at finite temperature from the boson propagator
D(k) ≡ D(k, iνn) = [iνn − ωk]−1, where ωk = Ek − µ is the energy of a boson, measured
relative to the chemical potential.

ρ(T ) =
N

V
= V −1

∑

k

〈Tbk(0−)b†k(0)〉 = −(βV )−1
∑

iνn,k

D(k)eiνn0+

. (10.133)

How do you need to modify your answer to take account of Bose Einstein condensation?

(ii) The dynamic charge-susceptibility of a free Bose gas, i.e

χc(q, iνn) =

D(k+q)

D(k)

= T
∑

iνn

∫
d3k

(2π)3
D(q + k)D(k). (10.134)

Please analytically extend your final answer to real frequencies.

(iii) The “pair-susceptibility” of a spin-1/2 free Fermi gas, i.e.

χP (q, iνn) =

G(k+q)

G(-k)

= T
∑

iωr

∫
d3k

(2π)3
G(q + k)G(−k) (10.135)
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where G(k) ≡ G(k, iωn) = [iωn − ǫk]−1. (Note the direction of the arrows: why is there no
minus sign for the Fermion loop?) Show that the static pair susceptibility, χP (0)is given by

χP =

∫
d3k

(2π)3
tanh[βǫk/2]

2ǫk
(10.136)

Can you see that this quantity diverges at low temperatures? How does it diverge, and why ?
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2. A simple model an atom with two atomic levels coupled to a radiation field is described by
the Hamiltonian

H = Ho +HI +Hphoton, (10.137)
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�������������
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γ

����������������������������

����������������������������

E

E-

+

οω

where

Ho = Ẽ−c
†
−c− + Ẽ+c

†
+c+ (10.138)

describes the atom, treating it as a fermion

HI = V −1/2
∑

~q

g(ω~q)

(
c†+c− + c†−c+

)[
a†~q + a−~q

]
(10.139)

describes the coupling to the radiation field (V is the volume of the box enclosing the radiation)
and

Hphoton =
∑

~q

ω~qa
†
~qa~q, (ωq = cq) (10.140)

is the Hamiltonian for the electromagnetic field. The “dipole” matrix element g(ω) is weak
enough to be treated by second order perturbation theory and the polarization of the photon
is ignored.

(i) Calculate the self-energy Σ+(ω) and Σ−(ω) for an atom in the + and − states.

(ii) Use the self-energy obtained above to calculate the life-times τ± of the atomic states, i.e.

τ−1
± = 2ImΣ±(Ẽ± − iδ). (10.141)

If the gas of atoms is non-degenerate, i.e the Fermi functions are all small compared with
unity, f(E±) ∼ 0 show that

τ−1
+ = 2π|g(ωo)|2F (ωo)[1 + n(ωo)]

τ−1
− = 2π|g(ωo)|2F (ωo)n(ωo), (10.142)

where ωo = Ẽ+ − Ẽ− is the separation of the atomic levels and

F (ω) =

∫
d3q

(2π)3
δ(ω − ωq) =

ω2

2πc3
(10.143)

is the density of state of the photons at energy ω. What do these results have to do with
stimulated emission? Do your final results depend on the initial assumption that the atoms
were fermions?

(iii)Why is the decay rate of the upper state larger than the decay rate of the lower state by
the factor [1 + n(ω0)]/n(ω0)?
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Table. 9.3 Relationship With Physical Quantities: Finite Temperature

∆F −V ∑{linked clusters} −V
[

+ + . . .

]

lnZ/Zo V β
∑{linked clusters} V T

[
+ + . . .

]

1
−〈Tψ(2)ψ†(1)〉

2
∑{Two leg diagrams}

+ + +

(−1)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

〈ψ|T [A(2)B(1)]|ψ〉 = χTAB

B(1)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

A(2)
χAB = χTAB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB
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Chapter 11

Fluctuation Dissipation Theorem
and Linear Response Theory

11.1 Introduction

In this chapter we will discuss the deep link between fluctuations about equilibrium, and
the response of a system to external forces. If the susceptibility of a system to external
change is large, then the fluctuations about equilibrium are expected to be large. The
mathematical relationship that quantifies this this connection is called the “fluctuation-
dissipation” theorem. We shall discuss and derive this relationship in this chapter. It
turns out that the link between fluctuations and dissipation also extends to imaginary
time, enabling us to relate equilibrium correlation functions and response functions to the
imaginary time Greens function of the corresponding variables.

To describe the fluctuations and response at a finite temperature we will introduce three
related three types of Green function- the correlation function S(t),

S(t− t′) = 〈A(t) A(t′)〉 =

∫ ∞

−∞

dω

2π
e−iω(t−t′)S(ω),

the dynamical susceptibility χ(t)

χ(t− t′) = i〈[A(t), A(t′)]〉θ(t− t′),

which determines the retarded response

〈A(t)〉 =

∫ ∞

−∞
dt′χ(t− t′)f(t′), 〈A(ω)〉 = χ(ω)f(ω),

to a force f(t) term coupled to A inside the Hamiltonian HI = −f(t)A(t), and lastly, the
imaginary time response function χ(τ)

χ(τ − τ ′) = 〈TA(τ)A(τ ′)〉
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.
The fluctuation dissipation theorem relates the Fourier transforms of these quantities.

according to

S(ω)︸ ︷︷ ︸
Fluctuations

= 2h̄[

Quantum︷︸︸︷
1 +

Thermal︷ ︸︸ ︷
nB(ω)] χ′′(ω)︸ ︷︷ ︸

Dissipation

,

where χ′′(ω) = Im χ(ω) describes the dissipative part of the response function. In the limit,
ω << kBT , when n(ω) ∼ kBT/h̄ω, this result reverts to the classical fluctuation-dissipation
theorem,

S(ω) =
2kBT

ω
χ′′(ω).

Thus in principle, if we know the correlation functions in thermal equilibrium, we can
compute the response function of the system.

The dissipative response of the system also enters into the Kramer’s Kronig expansion
of the response function,

χ(z) =

∫
dω

π

1

ω − zχ
′′(ω)

and this expression can be used to analytically extend χ(ω) into the complex plane. In prac-
tice, the theorist takes advantage of a completely parallel fluctuation-dissipation theorem
which exists in imaginary time. The imaginary time correlation function χ(τ) is periodic
in time. χ(τ + β) = χ(τ), and has an discrete Matsubara Fourier expansion, given by

χ(τ) = 〈TA(τ)A(0)〉 =
1

β

∑

n

e−iνnτχM (iνn)

The key relation between this function and the physical response function is that

χM (iνn) = χ(z).|z=iνn .
This relation permits us to compute the physical response function by analytically con-
tinuing the Fourier components of the imaginary-time correlation functions onto the real
axis.

To understand these relations, we need first to understand the nature of the quantum
mechanical response functions. We shall then carry out a “spectral decomposition” of each
of the above functions, deriving the fluctuation dissipation theorem by showing that the
same underlying matrix elements enter into each expression. A heuristic understanding of
the relationship between fluctuations and dissipation, is obtained by examining a classical
example. The main difference between the classical and the quantum fluctuation-dissipation
theorem, is that in classical mechanics we are obliged to explicitly include the external
sources of noise, whereas in the quantum case, the noise is intrinsic, and we can analyse the
fluctuations without any specific reference to external sources of noise. Nevertheless, the
classical case is highly pedagagocical, and it is this limit that we shall consider first.
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11.2 Fluctuation dissipation theorem for a classical harmonic

oscillator

fluctuations︷ ︸︸ ︷
〈x(t)x(0)〉 = 2kBT

∫
dω

2π

χ′′(ω)

ω︸ ︷︷ ︸
dissipation

e−iωt

t

x(t)

Figure 11.1: Fluctuations in a classical harmonic oscillator are directly related to the dissi-
pative response function via the “fluctuation dissipation theorem”.

In a classical system, to examine correlation functions we need to include an explicit
source of external noise. To illustrate the procedure, consider a harmonic oscillator in
thermal equilibrium inside a viscous medium. Suppose that thermal fluctuations give rise
to a random force, acting on the oscillator, according to the quation of motion:

m(ẍ+ ω2
ox) + ηẋ = f(t)

If we Fourier transform this relationship, we obtain

x(ω) = χ(ω)f(ω)
χ(ω) = [m(ω2

0 − ω2)− iωη]−1 (11.1)

Here χ(ω) is the response function , or susceptibility to the external force. The imaginary
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part of the susceptibility governs the dissipation and is given by

χ′′(ω) =
ωη

m(ω2
0 − ω2) + ω2η2

= |χ(ω)|2ωη. (11.2)

Now let us consider the fluctuations in thermal equilibrium. Over long time periods, we
expect the two-point correlation function to be purely a function of the time difference:

〈x(t)x(t′)〉 = 〈x(t− t′)x(0)〉

The power spectrum of fluctuations is defined as

〈|x(ω)|2〉 =

∫
dt〈x(t)x(0)〉eiωt

and the inverse relation gives

〈x(t)x(t′)〉 =

∫
dω

2π
e−iω(t−t′)〈|x(ω)|2〉.

Now in thermal equilibrium, the equipartition theorem tells us that

mω2
0

2
〈x2〉 =

kBT

2
,

or

〈x2〉 =

∫
dω

2π
〈|x(ω)|2〉 =

∫
dω

2π
|χ(ω)|2〈|f(ω)|2〉 =

kBT

mω2
0

Since the integrand is very sharply peaked around |ω| = ω0, we replace 〈|f(ω)|2〉 →
〈|f(ω0)|2〉 in the above expression. Replacing |χ(ω)|2 → 1

ωηχ
′′(ω) we then obtain

kBT

mω2
0

=
〈|f(ω0)|2〉

2η

∫
dω

π

χ′′(ω)

ω
=
|f(ω0)|2
2ηmω2

0

.

so that the spectrum of force fluctuations is determined by the viscosity η

〈|f(ω0)|2〉 = 2ηkBT.

Now if we assume that the noise spectrum it depends only on the properties of the viscous
medium in which the oscillator is embedded, and that it does not depend on the properties
of the oscillator, then we expect this expression holds for any frequency ω0, and since it is
independent of the frequency, we conclude that the power spectrum of the force is a flat
function of frequency, enabling us to replace ω0 → ω in the above expression. This implies
that in thermal equilibrium, the force coupling the system to the environment is a source
of white noise of amplitude which depends on the viscosity of the medium

〈f(t)f(t′)〉 =

∫
dω

2π
e−iω(t−t′)

2ηkBT︷ ︸︸ ︷
〈|f(ω)|2〉 = 2ηkBTδ(t− t′)
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We can now compute the noise spectrum of fluctuations, which is given by

S(ω) = 〈|x(ω)|2〉 = |χ(ω)|2〈|f(ω)|2〉 = 〈|f(ω)|2〉χ
′′(ω)

ωη
=

2kBT

ω
χ′′(ω).

This expression relates the thermal fluctuations of a classical system to the dissipation, as
described by the imaginary part of the response function, χ′′(ω).

11.3 Quantum Mechanical Response Functions.

Suppose we couple a force f to variable A. For later generality, it suits our need to consider
a force in both in real and imaginary time, with Hamiltonian

H = Ho − f(t)A
H = Ho − f(τ)A. (11.3)

We shall now show that the response to these forces are given by

〈A(t)〉 = 〈A〉+
∫ ∞

−∞
χ(t− t′)f(t′)dt′

〈A(τ)〉 = 〈A〉+
∫ β

0
χ̃(τ − τ ′)f(τ ′)dτ ′ (11.4)

χ(t− t′) = i〈[A(t), A(t′)]〉θ(t− t′)

χ̃(τ − τ ′) = 〈TA(τ)A(τ ′)]〉 − 〈A〉2 (11.5)

where 〈A〉 is the value of A in thermal equilibrium. Let us begin in real time. Using the
interaction representation, we know that

AH(t) = U †(t)AI(t) U(t),

where

U(t) = T exp i

∫ t

−∞
dt′AI(t

′)f(t′).
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Remembering that the interaction representation corresponds to the Heisenberg represen-
tation for Ho, we can drop the subscript on AI(t) ≡ A(t), so that to linear order in f(t),

U(t) = 1 + i

∫ t

−∞
dt′A(t′)f(t′),

U †(t) = 1− i
∫ t

−∞
dt′A(t′)f(t′)

so that

AH(t) = A(t) + i

∫ t

−∞
dt′[A(t), A(t′)] f(t′),

In thermal equilibrium if 〈A(t)〉 = 〈A〉 , so the response to the applied force is given by

〈AH(t)〉 = 〈A〉+
∫ +∞

−∞
dt′ χ(t− t′) f(t′),

where

χ(t− t′) = i〈[A(t), A(t′)] 〉θ(t− t′)

is the “retarded response function”, also known as the “dynamical susceptibility”. The
above equation is particularly interesting, for it relates a quantum-mechanical response
function to a correlation-function.

Let us now consider imaginary time. In this case, the partition function in the presence
of the perturbation is

Z = Z0〈T exp

∫ β

0
dτf(τ)AI(τ)〉0

The expectation value of A(τ) is then given by

〈A(τ)〉 =
δ lnZ

δf(τ)
=
〈TA(τ) exp

∫ β
0 dτ

′f(τ ′)AI(τ ′)〉
〈T exp

∫ β
0 dτ

′f(τ ′)AI(τ ′)〉

= 〈A〉+
∫ β

0
dτ ′

χ̃(τ−τ ′)︷ ︸︸ ︷[
〈TA(τ)A(τ ′)〉 − 〈A〉2

]
f(τ ′) +O(f2) (11.6)

so that

χ̃(τ) = 〈TA(τ)A(0)〉 − 〈A〉2
= 〈T (A(τ)− 〈A〉)(A(0)− 〈A〉)〉 (11.7)

where the expectation values are to be taken in thermal equilibrium for H0.

300



c©2009 Piers Coleman Chapter 11.

11.4 Fluctuations and Dissipation in a quantum world

Unlike classical mechanics, the quantum Boltzmann formulation of many body physics is
naturally tailored to a discussion of the statistics of fluctuations and dissipation. Quantum
systems are naturally noisy, and there is no need for us to add any additional noise source
to examine the deep link between flucutations and dissipation in a quantum many body
system. Indeed, the quantum fluctuation dissipation theorem can be derived in rather
mechanistic fashion by carrying out out a spectral decomposition of the various response
and correlation functions. The procedure is formally more direct that its classical analogue,
but the algebra tends to hide the fact that the underlying physics holds precisely the same
link between fluctuations- now both thermal and quantum in character- and dissipation.

To derive the quantum fluctuation theorem, we must first spectrally decompose the
correlation function S(t− t′) and the response function χ(t− t′).

11.4.1 Spectral decomposition I: the correlation function S(t− t′)

This is the easiest decomposition of the three to carry out. We begin by expanding the
response function in terms of a complete set of energy eigenstates which satisfy

H |λ〉 = Eλ |λ〉 ,∑

λ

|λ〉 〈λ| = 1,

〈λ |A(t)| ζ〉 =
〈
λ
∣∣∣eiHtAe−iHt

∣∣∣ ζ
〉

= e−i(Eζ−Eλ)(t−t′) 〈λ |A| ζ〉 .

Using these key results, we make the expansion as follows,

S(t− t′) = 〈A(t)A(t′)〉
=

∑

λ,ζ

e−β(Eλ−F ) 〈λ |A(t)| ζ〉 〈ζ
∣∣A(t′)

∣∣λ
〉

=
∑

λ,ζ

e−β(Eλ−F ) |〈ζ |A|λ〉|2 e−i(Eζ−Eλ)(t−t′) (11.8)

If we now Fourier transform this expression, the frequency dependent correlation function
can be written

S(ω) =

∫ ∞

−∞
dteiωtS(t)

=
∑

λ,ζ

e−β(Eλ−F ) |〈ζ |A|λ〉|2 2πδ(Eζ − Eλ − ω). (11.9)

This is the frequency spectrum of the correlations.
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11.4.2 Spectral decomposition II: the response function χ(t− t′)

We now use the same spectral decomposition approach for the response function. In this
case, we need to take care of two operator orderings inside the commutator, which yield

χ(t− t′) = i
∑

λ,ζ

e−β(Eλ−F ) {〈λ |A(t)| ζ〉 〈ζ
∣∣A(t′)

∣∣λ
〉− 〈λ

∣∣A(t′)
∣∣ ζ
〉 〈ζ |A(t)|λ〉} θ(t− t′)

= i
∑

λ,ζ

eβF (e−βEλ − e−βEζ ) |〈ζ |A|λ〉|2 e−i(Eζ−Eλ)(t−t′)θ(t− t′).

By introducing the spectral function

χ′′(ω) = π(1− e−βω)
∑

λ,ζ

|〈ζ |A|λ〉|2 δ[ω − (Eζ − Eλ)]e−β(Eλ−F ), (11.10)

we see that the retarded response function can be written,

χ(t) = i

∫
dω e−iωtθ(t)χ′′(ω). (11.11)

Fourier transforming this result, using

i

∫ ∞

0
dtei(ω−ω

′+iδ) t =
1

ω′ − ω − iδ ,

we obtain

χ(ω) =

∫
dω′

π

1

ω′ − ω − iδχ
′′(ω′). (11.12)

This “Kramers-Krönig” relation can be used to extend the response function into the com-
plex plane. Notice that because the response function is retarded, χ(ω) is analytic in the
upper-half complex plane and the poles lie just below the real axis, at z = ω′ − iδ. Finally,
taking the imaginary part of this expression, using the Dirac relation Im[1/(ω′ −ω− iδ) =
πδ(ω′ − ω), we are able to identify

χ′′(ω) = Imχ(ω + iδ)

as the dissipative part of the response function.

11.4.3 Quantum Fluctuation dissipation Theorem

If we compare the relations (11.10 ) and (11.9), we see that

S(ω) =
2

1− e−βωχ
′′(ω).

If we restore h̄, this becomes

S(ω) =
2h̄

1− e−βh̄ωχ
′′(ω) = 2h̄ [1 + nB(h̄ω)]χ′′(ω). (11.13)

Thus, by carrying out a spectral analysis, we have been able to directly link the correlation
function S(ω) with the dissipative part of the response function χ(ω).
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11.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imaginary time, and write, τ −τ ′ > 0,

χ(τ − τ ′) =
∑

λ,ζ

e−β(Eλ−F ) {〈λ |A(τ)| ζ〉 〈ζ
∣∣A(τ ′)

∣∣λ
〉}

=
∑

λ,ζ

e−β(Eλ−F )e−(Eλ−Eζ)(τ−τ ′) |〈ζ |A|λ〉|2 .

Now ∫ β

0
dτ eiνnτe−(Eλ−Eζ)τ =

1

(Eζ − Eλ − iνn)
(1− e−(Eλ−Eζ)β),

so

χ(iνn) =

∫ β

0
dτ eiνnτχ(τ)

=
∑

λ,ζ

e−β(Eλ−F )(1− e−β(Eζ−Eλ)) |〈ζ |A|λ〉|2 1

(Eζ − Eλ − iνn)
.

Using (11.10 ), we can write this as

χ(iνn) =

∫
dω

π

1

ω − iνn
χ′′(ω) (11.14)

so that χ(iνn) is the unique analytic extension of χ(ω) into the complex plane. Our proce-
dure to calculate response functions will be to write χ(iνn) in the form 11.14, and to use
this to read off χ′′(ω).

11.5 Calculation of response functions

Having made the link between the imaginary time, and real time response functions, we
are ready to discuss how we can calculate response functions from Feynman diagrams.
Our procedure is to compute the imaginary time response function, and then analytically
continue to real frequencies. Suppose we are interested in the response function for A where,

A(x) = ψ†α(x)Aαβψβ(x).

(See table 10.0). The corresponding operator generates the vertex

β

α

x = Aαβ

(11.15)
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Table. 10.0 Selected Operators and corresponding response function.

Quantity Operator Â A(k) Response Function

Density ρ̂(x) = ψ†(x)ψ(x) ραβ = δαβ Charge susceptibility

Spin density ~S(x) = ψα
†(x)

(
~σ
2

)
αβ
ψβ(x) ~Mαβ = µB~σαβ Spin susceptibility

Current density e
mψ
†(x)

(
−ih̄ ↔∇ −e ~A

)
ψ(x) ~j = e~vk = e~∇ǫk Conductivity

Thermal current h̄2

2mψ
†(x)

↔
∇
↔
∂ t ψ(x) ~jT = iωn~vk = iωn~∇ǫk Thermal conductivity

(Where
↔
∇≡ 1

2

(→
∇ −

←
∇
)
,
↔
∂ t≡ 1

2

(→
∂ t −

←
∂ t
)

)

where the spin variables αβ are to be contracted with the internal spin variables of the
Feynman diagram. This innevitably means that the variable Aαβ becomes part of an in-
ternal trace over spin variables. If we expand the corresponding response function χ(x) =
〈A(x)A(0)〉 using Feynman diagrams, then we obtain

χ(τ) = 〈A(x)A(0)〉 =
∑

closed linked two-vertex diagrams

=

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

x 0

For example, in a non-interacting electron system, the imaginary time spin response
function involves A(x) = µBψα

†(x)σαβψβ(x), so the corresponding response function is

χab(x− x′) = µ2
B × αβ

a
σ βα

b
σ

β

α

x x’

= −

Trace over
spin variables︷ ︸︸ ︷

Tr
[
σaG(x− x′)σbG(x′ − x)

]

= −δab2µ2
BG(x− x′)G(x′ − x) (11.16)
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Now to analytically continue to real frequencies, we need to transform to Fourier space,
writing

χ(q) =

∫
d4xe−iqxχ(x)

where the integral over time τ runs from 0 to β. This procedure converts the Feynman
diagram from a real-space, to a momentum space Feynman diagram. At the measurement
vertex at position x, the incoming and outgoing momenta of the fermion line give the
following integral ∫

d4xe−iqxei(kin−kout)x = βV δ4(kout − kin + q).

As in the case of the Free energy, the βV term cancels with the 1/(βV )
∑
k terms associated

with each propogator, leaving behind one factor of 1/(βV ) = T/V per internal momentum
loop. Schematically, the effect of the Fourier transform on the measurement vertex at
position x, is then

∫
d4xe−iqx


x


 =

q

k

k+q

(11.17)

For example, the momentum-dependent spin response function of the free electron gas
is given by

χab(q) = µ2
B × a

σ
b

σ

k

k+q

= − 1

βV

∑

k

Tr
[
σaG(k + q)σbG(k)

]
= δabχ(q) (11.18)

where

χ(q, iνr) = −2µ2
B

∫

k
T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) (11.19)

When we carry out the Matsubara summation in the above expression by a contour integral,
(see Chapter 9), we obtain

−T
∑

iωn

G(k + q, iωn + iνr)G(k, iωn) = −
∫

C′

dz

2πi
f(z)G(k + q, z + iνr)G(k, z)

=

(
fk − fk−q

(ǫk+q − ǫk)− iνr

)
, (11.20)
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where C ′ encloses the poles of the Green functions. Inserting this into (11.19), we obtain
χ(q, iνr) = χ(q, z)|z=iνr , where

χ(q, z) = 2µ2
B

∫

k

(
fk − fk−q

(ǫk+q − ǫk)− iνr

)
(11.21)

From this we can also read off the power-spectrum of spin fluctuations

χ′′(q, ω) = Imχ(q, ω + iδ) = 2µ2
B

∫

q
πδ(ǫq+k − ǫk − ω) [fk − fk+q] (11.22)

When we come to consider conductivities, which involve the response function of current
operators, we need to know how to deal with an operator that involves spatial, or temporal
derivatives. To do this, it is convenient to examine the Fourier transform of the operator
A(x), ∫

d4xe−iqxψ†(x)Aψ(x) =
∑

k

ψ†(k − q/2)Aψ(k + q/2)

In current operators, A is a function of gradient terms such as
↔
∇ and

↔
∂ t. In this case,

the use of the symmetrized gradient terms ensures that when we Fourier transform, the
derivative terms are replaced by the midpoint momentum and frequency of the incoming
or outgoing electron.

∫
d4xe−iqxψ†(x)A[−i ↔∇, i

↔
∂ t]ψ(x) =

∑

k

ψ†(k − q/2)A(k, iωn)ψ(k + q/2)

for example, the current operator ~J(x) = eh̄
m

(
−i ↔∇

)
becomes

J(q) =
∑

k

e~vkψ
†(k − q/2)ψ(k + q/2),

where ~vk = h̄~k
m is the electron velocity. For the thermal current operator ~Jt(~x) = h̄2

m

(↔
∇
↔
∂ t
)
,

~Jt(q) =
∑

k

iωn
h̄2~k

m
ψ†(k − q/2)ψ(k + q/2).

Example 11.27: Calculate the imaginary part of the dynamic susceptibility for non-
interacting electrons and show that at low energies ω << ǫF ,

χ′′(q, ω)

ω
=

{
µ2
B
N(0)
vF q

(q ≤ 2kF )

0 (q > 2kF )

where vF = h̄kF /m is the Fermi velocity.
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Solution: Starting with (11.22) In the low energy limit, we can write

lim
ω→0

χ′′(q, ω)

ω
= 2µ2

B

∫

q

δ(ǫq+k − ǫk)
fk+q − fk
ǫk − ǫk+q

= 2µ2
B

∫

q

δ(ǫq+k − ǫk)

(
− df

dǫk

)
(11.23)

Replacing ∫

q

→
∫
dǫN(ǫ)

∫ 1

−1

d cos θ

2

we obtain

lim
ω→0

χ′′(q, ω)

ω
= 2µ2

BN(0)

∫ 1

−1

d cos θ

2
δ(
q2

2m
+
qkF
m

cos θ)

= 2µ2
BN(0)

m

2qkF
= µ2

B

(
N(0)

vF q

)
(q < 2kF ) (11.24)

11.6 Spectroscopy: linking measurement and correlation

The spectroscopies of condensed matter provide the essential window on the underlying
excitation spectrum, the collective modes and ultimately the ground-state correlations of
the medium. Research in condensed matter depends critically on the creative new inter-
pretations given to measurements. It is from these interpretations, that new models can be
built, and new insights discovered, leading ultimately to quantitative theories of matter.

Understanding the link between experiment and the microscopic world is essential for
theorist and experimentalist. At the start of a career, the student is often flung into a
seminar room, where it is often difficult to absorb the content of the talk, because the true
meaning of the spectroscopy or measurements is obscure to all but the expert - so it is
important to get a rough idea of how and what each measurement technique probes - to
know some of the pitfalls of interpretation - and to have an idea about how one begins to
calculate the corresponding quantities from simple theoretical models.
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Table. 10.1 Selected Spectroscopies .

C
H

A
R

G
E

S
P

IN
E

L
E

C
T

R
O

N

NAME SPECTRUM Â Questions and Issues

Surface probe. T ∼ 0 measurement.

STM
dI

dV

dI

dV
(x) ∝ A(x, ω)|ω=eV ψ(x) Is the surface different?

ARPES I(k, ω) ∝ f(−ω)A(k,−ω) ckσ(t) p⊥ unresolved.
Surface probe. No magnetic field

Inverse PES I(ω) ∝
∑

k

[1− f(ω)]A(k, ω) c†kσ(t) p unresolved.

Surface probe.

χDC χDC =

∫
dω

πω
χ′′(q = 0, ω) M χ ∼ 1

T local moments.

Uniform Susceptibility χ ∼ cons paramagnet

Inelastic Neutron
Scattering What is the background?
d2σ

dΩdω
S(q, ω) =

1

1− e−βωχ
′′(q, ω) S(q, t) Quality of crystal?

NMR
Knight Shift Kcontact ∝ χlocal S(x, t) How is the orbital part subtracted?

1

T1
T

∫

q
F (q)

χ′′(q, ω)

ω

∣∣∣∣
ω=ωN

How does powdering affect sample?

What is the resistance ratio?

Resistivity ρ ρ =
1

σ(0)
~j(q = 0) (R300/R0)

Reflectivity:

Optical σ(ω) =
1

−iω
[〈j(ω′)j(−ω′)〉]ω0 ~j(ω) How was the Kramer’s Krönig done?

Conductivity Spectral weight transfer?
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Fundamentally, each measurement is related to a given correlation function. This is seen
most explicity in scattering experiments. Here, one is sending in one a beam of particles,
and measuring the flux of outgoing particles at a given energy transfer E and momentum
transfer q. The ratio of outgoing to incoming particle flux determines the differential
scattering cross-section

d2σ

dΩdω
=

Outward particle flux

Inward particle flux

When the particles scatter, they couple to some microscopic variable A(x) within the matter,
such as the spin density in neutron scattering, or the particle field itself A(x) = ψ(x)
in photo-emission. The differential scattering cross-section this gives rise to what is, in
essence a measure of the autocorrelation function of A(x) at the wavevector q and frequency
ω = E/h̄ inside the material,

d2σ

dΩdω
∼
∫
d4x〈A(x, t)A(0)〉e−i(q·x−ωt) = S(q, ω)

Remarkably scattering probes matter at two points in space! How can this be? To un-
derstand it, recall that the differential scattering rate is actually an (imaginary) part of
the forward scattering amplitude of the incoming particle. The amplitude for the incoming
particle to scatter in a forward direction, contains the Feynman process where it omits a
fluctuation of the quantity A at position x′, travelling for a brief period of time as a scat-
tered particle, before reabsorbing the fluctuation at x. The amplitude for the intermediate
process is nothing more than

k−q

k

k

A(x’)

A(x)

amplitude =

amplitude for fluctuation︷ ︸︸ ︷
〈A(x)A(x′)〉 × ei[q·(x−x′)−ω(t−t′)]

︸ ︷︷ ︸
amplitude for particle to scatter at x’,

and reabsorb fluctuation at x .

(11.25)

(In practice, since the whole process is translationally invariant, we can replace x by x− x′
and set x′ = 0. )

The relationship between the correlation function and scattering rate is really a natural
consequence of Fermi’s Golden rule, according to which

d2σ

dΩdω
∼ Γi→f =

2π

h̄

∑

f

pi|〈f |V |i〉|2δ(Ef − Ei)
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where pi is the probability of being in the initial state |i〉. Typically, an incoming particle
(photon, electron, neutron) with momentum k scatters into an outgoing particle state (pho-
ton, electron, neutron) with momentum k′ = k− q, and the system undergoes a transition
from a state |λ〉 to a final state |λ′〉:

|i〉 = |λ〉|k〉, |f〉 = |λ′〉|k′〉
If the scattering Hamiltonian with V ∼ g

∫
x ρ(x)A(x), where ρ(x) is the density of the

particle beam, then the scattering matrix element is

〈f |V̂ |i〉 = g

∫

x′
〈k′|x′〉〈λ′|A(x′)|λ〉〈x′|k〉 = g

Vo

∫

x′
eiq·x

′〈λ′|A(x′)|λ〉 (11.26)

so the scattering rate is

Γi→f =
g2

V 2
0

∫

x, x′
pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉e−iq·(x−x′)2πδ(Eλ′ − Eλ − ω) (11.27)

where pλ = e−β(Eλ−F ) is the Boltzmann probability. Now if we repeat the spectral decom-
position of the correlation function made in (11.9)

∫
dteiωt〈A(x, t)A(x′, 0)〉 = 2π

∑

λ,λ′

pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉δ(Eλ′ − Eλ − ω),

we see that

Γi→f ∼ g2

V 2
0

∫

x,x′
dteiωt〈A(x, t)A(x′, 0)〉e−iq·(x−x′)

=
g2

V0

∫
d3xdte−i(q·x−ωt)〈A(x, t)A(0)〉

where the last simplification results from translational invariance. Finally, if we divide the
transition rate by the incoming flux of particles ∼ 1/V0, we obtain the differential scattering
cross-section.

For example, in an inelastic neutron scattering (INS) experiment, the neutrons couple
to the electron spin density A = S(x) of the material, so that

d2σ

dΩdω
(q, ω) ∼

∫
d4x〈S−(x, t)S+(0)〉e−i(q·x−ωt) ∝ 1

1− e−βωχ
′′(q, ω)

where χ(q, ω) is the dynamic spin susceptibility which determines the magnetizationM(q, ω) =
χ(q, ω)B(q, ω) by a modulated magnetic field of wavevector q, frequency ω. By contrast,
in an angle resolved photo-emission (ARPES) experiment, incoming X-rays eject electrons
from the material, leaving behind “holes”, so that A = ψ is the electron annihilation oper-
ator and the intensity of emitted electrons measures the correlation function

I(k, ω) ∼
∫
d4x〈ψ†(x)ψ(0)〉e−i(k·x−ωt) =

f(−ω)︷ ︸︸ ︷
1

1 + eβω
A(k,−ω)

where the Fermi function replaces the Bose function in the fluctuation dissipation theorem.
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11.7 Electron Spectroscopy

11.7.1 Formal properties of the electron Green function

The spectral decompositions carried out for a bosonic variable A can all be generalized to
the fermionic variable ckσ. The basic electron “correlation” functions are

〈ckσ(t)c†kσ(0)〉 =

∫
dω

2π
G>(k, ω)e−iωt

〈c†kσ(0)ckσ(t)〉 =

∫
dω

2π
G<(k, ω)e−iωt (11.28)

called the “greater” and “lesser” Green functions. A spectral decomposition of these rela-
tions reveals that

G>(k, ω) =
∑

λ,ζ

pλ|〈ζ|c†kσ|λ〉|22πδ(Eζ − Eλ − ω)

G<(k, ω) =
∑

λ,ζ

pλ|〈ζ|ckσ|λ〉|22πδ(Eζ − Eλ + ω)

describe the positive energy distribution functions for particles (G>) and the negative
energ distribution function for holes (G<) respectively. By relabelling ζ ↔ λ in (11.29) it
is straightforward to show that

G<(k, ω) = e−βωG>(k, ω)

We also need to introduce the retarded electron Green function, given by

GR(k, t) = −i〈{ckσ(t), c†kσ(0)}〉θ(t) =

∫
dω

2π
GR(k, ω)e−iωt

(note the appearance of an anticommutator for fermions and the minus sign pre-factor)
which is the real-time analog of the imaginary time Green function

G(k, τ) = −〈Tckσ(τ)c†kσ(0)〉 = T
∑

n

G(k, iωn)e−iωnτ

A spectral decomposition of these two functions reveals that they share the same power-
spectrum and Kramer’s Krönig relation, and can both be related to the generalized Green
function

G(k, z) =

∫
dω

π

1

z − ωA(k, ω) (11.29)

where

GR(k, ω) = G(k, ω + iδ) =

∫
dω′

π

1

ω − ω′ + iδ
A(k, ω)
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G(k, iωn) = G(k, z)|z=iωn =

∫
dω

π

1

iωn − ω
A(k, ω′), (11.30)

and the spectral function

A(k, ω) = (1 + e−βω)
∑

λ,ζ

pλ|〈ζ|c†kσ|λ〉|2πδ(Eζ − Eλ − ω)

=
1

2
[G>(k, ω) +G<(k, ω)] (11.31)

is the sum of the particle and hole energy distribution functions. From the second of (11.31)
and (11.28), it follows that A(k, ω) is the Fourier transform of the anticommutator

〈{ckσ(t), c†kσ(0)}〉 =

∫
dω

π
A(k, ω)e−iωt (11.32)

At equal times, the commutator is equal to unity, {ckσ, c†kσ} = 1, from which we deduce
the normalization ∫

dω

π
A(k, ω) = 1.

For non-interacting fermions, the spectral function is a pure delta-function, but in Fermi
liquids the delta-function is renormalized by a factor Z and the remainder of the spectral
weight is transfered to an incoherent background.

A(k, ω)

π
= Zkδ(ω − Ek) + background

The relations

G>(k, ω) =
2

1 + e−βω
A(k, ω) = 2(1− f(ω))A(k, ω) (particles)

G<(k, ω) =
2

1 + eβω
A(k, ω) = 2f(ω)A(k, ω) (holes) (11.33)

are the fermion analog of the fluctuation dissipation theorem.

11.7.2 Tunneling spectroscopy

Tunneling spectroscopy is one of the most direct ways of probing the electron spectral
function. The basic idea behind tunneling spectroscopy, is that a tunneling probe is close
enough to the surface that electrons can tunnel through the forbidden region between the
probe and surface material. Traditionally, tunneling was carried out using point contact
spectroscopy, whereby a sharp probe is brought into contact with the surface, and tunneling
takes place through the oxide layer separating probe and surface. With the invention of
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π
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Figure 11.2: Showing the redistribution of the quasiparticle weight into an incoherent back-
ground in a Fermi liquid.

the Scanning Tunneling Microscope, by Gerd Binnig and Heinrich Rohrer in the 80’s has
revolutionized the field. In recent times, Seamus Davis has developed this tool into a
method that permits the spectral function of electrons to be mapped out with Angstrom
level precision across the surface of a conductor.

In the WKB approximation, the amplitude for an electron to tunnel between probe and
surface is

t(x1, x2) ∼ exp

[
−1

h̄

∫ x2

x1

√
2m[U(x)− E]ds

]
(11.34)

where the integral is evaluated along the saddle-point path between probe and surface. The
exponential dependence of this quantity on distance means that tunneling is dominated
by the extremal path from a single atom at the end of a scanning probe, giving rise to
Angström - level spatial resolution.

The Hamiltonian governing the interaction between the probe and the sample can be
written

V̂ =
∑

k,k′

tk,k′
[
c†kσpk′σ + H.c.

]
.

where tk,k′ is the tunnelling matrix element between the probe and substrate, c†kσ and
p†kσ create electrons in the sample and the probe respectively. The tunneling current of
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electrons from probe to sample is given by

iP→S = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ ′|c†kσpk′σ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

where |λ, λ′〉 ≡ |λ〉|λ′〉 and |ζ, ζ ′〉 ≡ |ζ〉|ζ ′〉 refer to the joint many body states of the sample
(unprimed) and probe (primed), and we have dropped h̄ from the equation. This term
creates electrons in the sample, leaving behind holes in the probe.

Now if we rewrite this expression in terms of the spectral functions of the probe and
sample, after a little work, we obtain

iP→S = 4π
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

ÃP (k, ω)

π
(1− f(ω))fP (ω),

where ÃP (k, ω) and fP (ω) are the spectral function and distribution function of the voltage-
biased probe. We have doubled the expression to account for spin. You can check the validity
of these expressions by expanding the spectral functions using (11.31), but the expression is
simply recognized as a product of matrix element, density of states and Fermi-Dirac electron
and hole occupancy factors.

Similarly, the tunneling current of electrons from sample to probe is

iS→P = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ ′|p†k′σckσ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

= 4π
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

ÃP (k, ω)

π
[1− fP (ω)]f(ω). (11.35)

Subtracting these two expressions, the total charge current I = −|e|(iP→S − iS→P ) from
probe to sample is

I = 4π|e|
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

ÃP (k, ω)

π
[f(ω)− fP (ω)]. (11.36)

The effect of applying a voltage bias V > 0 to the probe is to lower the energy of the electrons
in the probe, so that both the energy distribution function fP (ω) and the spectral function of
electrons in the probe ÃP (k, ω) are shifted down in energy by an amount |e|V with respect to
their unbiased values, in other words fP (ω) = f(ω+ |e|V ) and ÃP (k, ω) = AP (k, ω+ |e|V ),
so that

I = 4π|e|
∑

k,k′

|tk,k′ |2
∫
dω
AS(k, ω)

π

AP (k, ω + |e|V )

π
[f(ω)− f(ω + |e|V )]. (11.37)

We shall ignore the momentum dependence of the tunneling matrix elements, writing
|t|2 = |tk,k′ |2, we obtain

I(V ) = 2|e|
Γ︷ ︸︸ ︷

2π|t|2N(0)

∫
dω

π

AS(ω)

π
[f(ω)− f(ω + |e|V )]. (11.38)
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and

AS(ω) =
∑

k

AS(k, ω)

N(ω + |e|V ) =
∑

k

AP (k, ω + |e|V ) ∼ N(0) (11.39)

are the local spectral functions for the sample and probe, respectively. Typically, the probe
is a metal with a featureless density of states, and this justifies the replacement N(ω) ∼
N(0) in the above expression. The quantity 2πt2N(0) = Γ is the characteristic resonance
broadening width created by the tunnelling out of the probe. If we now differentiate the
current with respect to the applied voltage, we see that the differential conductivity

G(V ) =
dI

dV
=

(
2e2

h̄

)
Γ

∫
dω

π
A(S)(ω)

∼δ(ω+|e|V )︷ ︸︸ ︷(
−df(ω + |e|V )

dω

)

At low temperatures, the derivative of the Fermi function gives a delta function in energy,
so that

G(V ) =

(
4e2Γ

h

)
AS(ω)|ω=−|e|V

Thus by mapping out the differential conductance as a function of position, it becomes
possible to obtain a complete spatial map of the spectral function on the surface of the
sample.

11.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), AIPES (angle integrated photoemi-
sion spectroscopy) and inverse PES (inverse photo-electron spectrosopy) are the alternative
ways of probing the hole and electron spectra in matter. The first two involve “photon
in, electron out”, the second “electron in, photon out”. The coupling of radiation to light
involves the dipole coupling term

HI = −
∫
d3x~j(x) · ~A(x)

where ~j(x) = i eh̄2mψσ
†(x)~∇ψσ(x) is the paramagnetic electron current operator. Unlike STM

or neutron scattering, this is a strongly coupled interaction, and the assumption that we can
use the Golden Rule to relate the absorption to a correlation function is on much shakier
ground. ARPES spectroscopy involves the absorption of a photon, and the emission of
a photo-electron from the material. The interpretation of ARPES spectra is based on the
“sudden approximation”, whereby it is assumed that the dipole matrix element between the
intial and final states has a slow dependence on the incoming photon energy and momentum,
so that the matrix element is i.e

〈ζ,k + q| −~j · ~A|λ,q〉 ∼ Λ(q, êλ)〈ζ|ckσ|λ〉
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On the assumption that Λ is weakly energy and momentum dependent, we are able to
directly relate the absorption intensity to the spectral density beneath the Fermi energy,

IARPES(k, ω) ∝ f(−ω)A(k,−ω)
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inγ e out

(11.40)

The appearance of the Fermi function masks states above the Fermi energy, and some-
times causes problems for the interpretation of ARPES spectra near the Fermi energy -
particularly for the estimation of anisotropic, superconducting gaps. There is a large caveat
to go with this equation: when photo-electrons escape from a surface, the component of
their momentum perpendicular to the surface is modified by interactions with the surface.
Consequently, ARPES spectroscopy can not resolve the momenta of the spectral function
perpendicular to the surface. The other consideration about ARPES, is that it is essentially
a surface probe - X-ray radiation has only the smallest ability to penetrate samples, so that
the information obtained by these methods provides strictly a surface probe of the system.

In recent years, tremendous strides in the resolution of ARPES have taken place, in large
part because of the interest in probing the electron spectrum of the quasi- two-dimensional
cuprate superconductors. These methods have, for example, played an important role in
exhibiting the anisotropic d-wave gap of these materials.

Inverse photo-electron spectroscopy probes the spectral function above the Fermi energy.
At present, angle resolved IPES is not a as well developed, and most IPES work involves
unresolved momenta, i.e

IIPES(ω) ∝
∑

k

[1− f(ω)]A(k, ω)
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(11.41)

In certain materials, both PES and IPES spectra are available. A classic example is in the
spectroscopy of mixed valent cerium compounds. In these materials, the Ce atoms have a
singly occupied f-level, in the 4f1 configuration. PES spectroscopy is able to resolve the
energy for the hole excitation

4f1 → 4f0 + e−, ∆EI = −Ef

where Ef is the energy of a single occupied 4f level. By contrast, inverse PES reveals the
energy to add an electron to the 4f1 state,

e− + 4f1 → 4f2, ∆EII = Ef + U
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where U is the size of the Coulomb interaction between two electrons in an f-state. By
comparing these two absorption energies, it is possible to determine the size of the Coulomb
interaction energy

11.8 Spin Spectroscopy

11.8.1 D.C. magnetic susceptibility

If one measures the static D. C. magnetization of a medium, one is measuring the magnetic
response at zero wavevector q = 0 and zero frequency ω = 0. By the Kramer’s Krönig
relation encountered in (11.12), we know that

χDC =

∫
dω

π

χ′′(q = 0, ω)

ω

So the static magnetic susceptibility is an economy-class measurement of the magnetic fluc-
tuation power spectrum at zero wavevector. Indeed, this link between the two measurements
sometimes provides an important consistency check of neutron scattering experiments.

In static susceptibility measurements, there are two important limiting classes of behav-
ior, Pauli paramagnetism, in which the susceptibility is derived from the polarization of a
Fermi surface, and is weakly temperature dependent,

χ ∼ µ2
B

ǫF
∼ constant. (Pauli paramagnetism)

and Curie paramagnetism, produced by unpaired electrons localized inside atoms, com-
monly known as “local moments”. where the magnetic susceptibilty is inversely proportional
to the temperature, or more generally

χ(T ) ∼ ni

M2
eff︷ ︸︸ ︷(

g2µ2
Bj(j + 1)

3

)
× 1

T + T ∗
(local moment paramagnetism)

where ni is the concentration of local moments and M2
eff is the effective moment produced

by a moment of total angular momentum j, with gyromagnetic ratio, g. T ∗ is a measure of
the interaction between local moments. For Ferromagnets, T ∗ = −Tc < 0, and ferromag-
netic magnetic order sets in at T = Tc, where the uniform magnetic susceptibility diverges.
For antiferromagnetis, T ∗ > 0 gives a measure of the strength of interaction between the
local moments.

11.8.2 Neutron scattering

Neutrons interact weakly with matter, so that unlike electrons or photons, they provide an
ideal probe of the bulk properties of matter. Neutrons interact with atomic nucleii via an
interaction of the form

ĤI = α

∫
d3xψ†N (x)ψN (x)ρ(x),
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where ρ(x) is the density of nucleii and ψN (x) is the field of the neutrons. This interaction
produces unpolarized scattering of the neutrons, with an inelastic scattering cross-section
of the form (see example below),

d2σ̃

dΩdE
=
kf
ki

(
αmN

2πh̄2

)2 S(q, E)

2π

where S(q, E) is the autocorrelation function of nuclear density fluctuations in the medium.
Where do these come from? They are of course produced by phonons in the crystal. The
neutrons transfer energy to the nucleii by exciting phonons, and we expect that

S(q, E) ∼ (1 + nB(E))δ(E − h̄ωq)

where ωqλ is the phonon dispersion spectrum inside the medium.
The second important interaction between neutrons and matter, is produced by the

interaction between the nuclear moment and the magnetic fields inside the material. The
magnetic moment of the neutron is given by

~M = γµN
~σ

2

where γ = −1.91 is the gyromagnetic ratio of the neutron and µN = eh̄
2mN

is the neutron
Bohr magneton. The interaction with the fields inside the material is then given by

ĤI =
γµN

2

∫
d3xψ†N (x)~σψN (x) · ~B(x),

The magnetic field inside matter is produced by two sources- the dipole field generated by
the electron spins, and the orbital field produced by the motion of electrons. We will only
discuss the spin component here. The dipole magnetic field produced by spins is given by

B(x) =

∫
d3x′V (x− x′) · ~M(x′)

where ~M(x) = µBψ
†(x)~σψ(x) is the electron spin density and

V (x) = −~∇× ~∇×
(

µ0

4π|x|

)

We can readily Fourier transform this expression, by making the replacements

~∇ → i~q,
1

(4π|x|) →
1

q2
(11.42)

so that in Fourier space,

[V (q)]ab = µ0

[
~q × ~q ×

(
1

q2

)]

ab

= µ0 [q̂ × q̂×]ab
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= µ0

Pab(q̂)︷ ︸︸ ︷
[δab − q̂aq̂b] . (11.43)

The only effect of the complicated dipole interaction, is to remove the component of the
spin parallel to the q-vector. The interaction between the neutron and electron spin density
is simply written

HI = g

∫

q
σN (−q)P(q̂) · ~Se(q), g = µ0γµNµB

Apart from the projector term, this is essentially, a “point interaction” between the neutron
and electron spin density. Using this result, we can easily generalize our earlier expression for
the nuclear differential scattering to the case of unpolarized neutron scattering by replacing
α→ g, and identifying

S⊥(q, E) = Pab(q̂)Sab(q, E)

as the projection of the spin-spin correlation function perpendicular to the q-vector. For
unpolarized neutrons, the differential scattering cross-section is then

d2σ̃

dΩdE
=
kf
ki
r2oS⊥(q, E)

where

r0 =

(
gmN

2πh̄2

)
=
γ

2

1
4πǫ0c

2

︷ ︸︸ ︷(
µ0

4π

)
e2

m

=

(
γ

2

)
e2cgs
mc2

(11.44)

is, apart from the prefactor, the classical radius of the electron.

Example 11.28: Calculate, in the imaginary time formalism, the self-energy of a
neutron interacting with matter and use this to compute the differential scattering
cross-section. Assume the interaction between the neutron and matter is given by

ĤI = α

∫
d3xψ†

N (x)ψN (x)ρ(x)

where ψN (x) is the neutron field and ρ(x) is the density of nuclear matter.

Solution:

We begin by noting that the the real-space self-energy of the neutron is given by

Σ(x− x′) = α2〈δρ(x)δρ(x′)〉G(x− x′)
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where 〈δρ(x)δρ(x′)〉 = χ(x−x′) is the real-time density response function of the nuclear
matter. (Note that the minus sign in −α2 associated with the vertices is absent because
the propagator used here 〈δρ(x)δρ(0)〉 contains no minus sign pre-factor. ) If we Fourier
transform this expression, we obtain

Σ(k) =
α2

βV

∑

q

G(k − q)χ(q)

= α2

∫

q

T
∑

iνn

G(k − q)χ(q) (11.45)

Carrying out the Matsubara summation, we obtain

Σ(k, z) = α2

∫

q

dE′

π

1 + n(E′)− fk−q

z − (Ek−q + E′)
χ′′(q, E′)

where Ek is the kinetic energy of the neutron and the Fermi function fk of the neutron
can be ultimately set to zero (there is no Fermi sea of neutrons), fk → 0, so that

Σ(k, z) = α2

∫

q

dE′

π

1

z − (Ek−q +E′)

S(q,E)︷ ︸︸ ︷
(1 + n(E′))χ′′(q, E′)

From the imaginary part of the self-energy, we deduce that the lifetime τ of the neutron
is given by

1

τ
=

2

h̄
ImΣ(k, Ek − iδ) =

2α2

h̄

∫

k′

S(k− k′, Ek − Ek′)

where we have changed the momentum integration variable from q to k′ = k − q.
Splitting the momentum integration up into an integral over solid angle and an integral
over energy, we have ∫

k′

=

∫ (
mNkf

8π2h̄2

)
dE′dΩ′

from which we deduce that the mean-free path l of the neutron is given by

1

l
=

1

vNτ
=

1

vN
2ImΣ(k, Ek − iδ) =

∫
dΩk′dEk′ ×

[
kf
ki

(
αmN

2πh̄2

)2

S(q, E)

]

where q = k−k′ and E = Ek−Ek′ and vN = h̄ki/mN is the incoming neutron velocity.

Normally we write l = 1/(niσ) , where σ is the cross-section of each scatterer and ni is
the concentration of scattering centers. Suppose σ̃ = niσ is the scattering cross-section
per unit volume, then σ̃ = 1/l, so it follows that

σ̃ =
1

vN
2ImΣ(k, Ek − iδ) =

∫
dΩk′dEk′ ×

[
kf
ki

(
αmN

2πh̄2

)2

S(q, E)

]

from which we may identify the differential scattering cross-section as

d2σ̃

dΩdE
=
kf
ki

(
αmN

2πh̄2

)2

S(q, E)
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11.8.3 NMR

Knight Shift K

Nuclear Magnetic resonance, or “Magnetic resonance imaging” (MRI), as it is more
commonly referred to in medical usage, is the use of nuclear magnetic absorption lines
to probe the local spin environment in a material. The basic idea, is that the Zeeman
interaction of a nuclear spin in a magnetic field gives rise to a resonant absorption line in
the microwave domain. The interaction of the nucleus with surrounding spins and orbital
moments produces a “Knight shift” this line and it also broadens the line, giving it a width
that is associated with the nuclear spin relaxation rate 1/T1.

The basic Hamiltonian describing a nuclear spin is

H = −µn~I · ~B +Hhf

where ~I is the nuclear spin, µn is the nuclear magnetic moment. The term Hhf describes the
“hyperfine” interaction between the nuclear spin and surrounding spin degrees of freedom.
The hyperfine interaction between a nucleus at site i and the nearby spins can be written

Hhf = −~Ii · ~Bhf (i)
~Bhf (i) = Acontact · ~Si +Aorbital · ~Li +

∑

j

Atrans(i− j) · Sj . (11.46)

where Bhf (i) is an effective field induced by the hyperfine couplings. The three terms
in this Hamiltonian are derived from a local contact interaction, with s-electrons at the
same site, an orbital interaction, and lastly, a transfered hyperfine interaction with spins
at neighboring sites. The various tensors A are not generally isotropic, but for pedagogical
purposes, let us ignore the anisotropy.

The Knight shift - the shift in the magnetic resonance line, is basically the expectation
value of the hyperfine field Bhf In a magnetic field, the electronic spins inside the material
become polarized, with 〈Sj〉 ∼ χB, where χ is the magnetic susceptibility, so in the simplest
situation, the Knight shift is simply a measure of the local magnetic susceptibility of the
medium. n turn, a measure of the electron density of states 〈N(ǫ)〉, thermally averaged
around the Fermi energy, so

K ∼ Bhf ∼ χB ∼ 〈N(ǫ)〉B.

One of the classic indications of the development of a gap in the electron excitation spectrum
of an electronic system, is the sudden reduction in the Knight shift. In more complex
systems, where there are different spin sites, the dependence of the Knight shift can depart
from the global spin susceptibility.

Another application of the Knight shift, is as a method to detect magnetic, or antiferro-
magnetic order. If the electrons inside a metal develop magnetic order, then this produces
a large, field-independent Knight shift that can be directly related to the size of the ordered
magnetic moment

K ∼ 〈Slocal〉
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Unlike neutron scattering, NMR is able to distinguish between homogeneous and inhomo-
geneous magnetic order.

Relaxation rate 1/T1

The second aspect to NMR, is the broadening of the nuclear resonance. If we ignore all
but the contact interaction, then the spin-flip decay rate of the local spin is determined by
the Golden Rule,

1

T1
=

2π

h̄
I2A2

contactS+−(ω)

∣∣∣∣
ω=ωN

where ωN is the nuclear resonance frequency and

S+−(ω) =

∫

q
[1 + nB(ω)]χ′′+−(q, ω)

∼ T

∫
d3q

(2π)3
1

ω
χ′′+−(q, ω) (11.47)

at frequencies ω ∼ ωN , so for a contact interaction, the net nuclear relaxation rate is then

1

T1
=

2π

h̄
I2A2

contact × T
∫

d3q

(2π)3
1

ω
χ′′+−(q, ω)

∣∣∣∣∣
ω=ωN

In a classical metal, χ′′(ω)/ω ∼ N(0)2 is determined by the square of the density of states.
This leads to an NMR relaxation rate

1

T1
∝ TN(0)2 ∼ kBT

ǫ2F
Korringa relaxation

This linear dependence of the nuclear relaxation rate on temperature is name a “Korringa
relaxation” law, after the Japanese theorist who first discovered it. Korringa relaxation
occurs because the Pauli principle allows only a fraction fraction TN(0) ∼ T/ǫF of the
electrons to relax the nuclear moment. In a more general Fermi system, the NMR relaxation
rate is determined by the thermally averaged square density of states.

1

T1
∼ T

∫ (
−df(ω)

dω

)
N(ω)2 ∼ T × [N(ω ∼ kBT )]2

In a wide class of anisotropic superconductors with lines of nodes along the Fermi surface,
the density of states is a linear function of energy. One of the classic signatures of these
line nodes across the Fermi surface is then a cubic dependence of 1/T1 on the temperature

line nodes in gap ⇒ N(ǫ) ∝ ǫ, ⇒ 1

T1
∝ T 3

In cases where the transferred hyperfine couplings are important, the non-locality in-

troduces a momentum dependence into A(k) =
∑

~RA(~Rj)e
−ik·~Rj these couplings. In this

case,
1

T1
=

2π

h̄
I2 × T

∫
d3q

(2π)3
A(q)2

1

ω
χ′′+−(q, ω)

∣∣∣∣∣
ω=ωN
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These momentum dependences can lead to radically different temperature dependences
in the relaxation rate at different sites. One of the classic examples of this behavior oc-
curs in the normal state of the high temperature superconductors. The active physics of
these materials takes place in quasi-two dimensional layers of copper oxide, and the NMR
relaxation rate can be measured at both the oxygen (O17) and copper sites.

(
1

T1

)

Cu
∼ constant,

(
1

T1

)

O
∼ T,

The appearance of two qualitatively different relaxation rates is surprising, because the
physics of the copper-oxide layers is thought to be described by a single-band model, with
a single Fermi surface that can be seen in ARPES measurements. Why then are there two
relaxation rates?

One explanation for this behavior has been advanced by Mila and Rice, who argue that
there is indeed a single spin fluid, located at the copper sites. They noticed that whereas
the copper relaxation involves spins at the same site, so that

ACu(q) ∼ constant,

the spin relaxation rate on the oxygen sites involves a transfered hyperfine coupling between
the oxygen px or py orbitals and the neigboring copper spins. The odd-parity of a px or py
orbital means that the corresponding form factors have the form

Apx(q) ∼ sin(qxa/2).

Now high temperature superconductors are doped insulators. In the insulating state,
cuprate superconductors are “Mott insulators”, in which the spins on the Copper sites
are antiferromagnetically ordered. In the doped metallic state, the spin fluctuations on
the copper sites still contain strong antiferromagnetic correlations, and they are strongly
peaked around ~Q0 ∼ (π/a, π/a), where a is the unit cell size. But this is precisely the point
in momentum space where the transfered hyperfine couplings for the Oxygen sites vanish.
The absence of the Korringa relaxation at the cupper sites is then taken as a sign that the
copper relaxation rate is driven by strong antiferromagnetic spin fluctuations which do not
couple to oxygen nucleii.

11.9 Electron Transport spectroscopy

11.9.1 Resistivity and the transport relaxation rate

One of the remarkable things about electron transport, is that one of the simplest possi-
ble measurements - the measurement of electrical resistivity, requires quite a sophisticated
understanding of the interaction between matter and radiation for its microscopic under-
standing. We shall cover this relationship in more detail in the next chapter, however, at
basic level, DC electrical resistivity can be interpreted in terms of the basic Drude formula

σ =
ne2

m
τtr
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where 1/τtr is the transport relaxation rate. In Drude theory, the electron scattering rate
τtr is related to the electron mean-free path l via the relation

l = vF τ

where vF is the Fermi velocity. We need to sharpen this understanding, for 1/τtr is not the
actual electron scattering rate, it is the rate at which currents decay in the material. For
example, if we consider impurity scattering of electrons with a scattering amplitude u(θ)
which depends on the scattering angle θ, the electron scattering rate is

1

τ
= 2πniN(0)|u(θ)|2

where

|u(θ)|2 =

∫ 1

−1

d cos θ

2
|u(θ)|2.

denotes the angular average of the scattering rate. However, as we shall see shortly, the
transport scattering rate which governs the decay of electrical current contains an extra
weighting factor:

1

τtr
= 2πniN(0)|u(θ)|2(1− cos θ)

|u(θ)|2(1− cos θ) =

∫ 1

−1

d cos θ

2
|u(θ)|2(1− cos θ). (11.48)

The angular weighting factor (1−cos θ) derives from the fact that the change in the current
carried by an electron upon scattering through an angle θe is evF (1−cos θ). In other words,
only large angle scattering causes current decay. For impurity scattering, this distinction
is not very important but in systems where the scattering is concentrated near q = 0, such
as scattering off ferromagnetic spin fluctuations, the (1− cos θ) term substantially reduces
the effectiveness of scattering as a source of resistance.

At zero temperature, the electron scattering is purely elastic, and the zero temperature
resistance R0 is then a measure of the elastic scattering rate off impurities. At finite tem-
peratures, electrons also experience inelastic scattering, which can be strongly temperature
dependent. One of the most important diagnostic quantities to characterize the quality of a
metal is the resistance ratio - the ratio of resistance at room temperature to the resistance
at absolute zero

RR = Resistance Ratio =
R(300K)

R(0)

The higher this ratio, the lower the amount of impurities and the higher the quality of
sample. Hardware quality copper piping already has a resistance ratio of order a thousand!
A high resistance ratio is vital for the observation of properties which depend on the coherent
balistic motion of Bloch waves, such as de-Haas van Alphen oscillations or the development
of anisotropic superconductivity, which is ultra-sensitive to impurity scattering.
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With the small caveat of distinction between transport and scattering relaxation rates,
the temperature dependent resistivity is an excellent diagnostic tool for understanding the
inelastic scattering rates of electrons:

ρ(T ) =
m

ne2
×
(

1

τtr(T )

)

There are three classic dependences that you should be familiar with:

• Electron phonon scattering above the Debye temperature

1

τtr
= 2πλkBT

Linear resistivity is produced by electron-phonon scattering at temperatures above the
Debye temperature, where the coefficient λ is the electron-phonon coupling constant
defined in the previous chapter. In practice, this type of scattering always tends
to saturate once the electron mean-free path starts to become comparable with the
electron wavelength. It is this type of scattering that is responsible for the weak linear
temperature dependence of resistivity in many metals. A note of caution - for linear
resistivity does not necessarily imply electron phonon scattering! The most well-known
example of linear resitivity occurs in the normal state of the cuprate superconductors,
but here the resistance does not saturate at high temperatures, and the scattering
mechanism is almost certainly a consequence of electron-electron scattering.

• Electron-electron or Baber scattering

1

τtr
=
π

h̄
|UN(0)|2N(0)(πkBT )2

where

|UN(0)|2 = N(0)2
∫
dΩk̂′

4π
|U(k− k′)|2(1− cos(θk,k′))

is the weighted average of the electron-electron interaction U(q). This quadratic
temperature dependence of the inelastic scattering rate can be derived from the Golden
rule scattering rate

1

τtr
=

4π

h̄

∑

k′,k′′

|U(k− k′)|2(1− cos θk,k′)(1− fk′)(1− fk′′)fk′+k′′−kδ(ǫk′ + ǫk′′ − ǫk′′′)

where the 4π = 2× 2π prefactor is derived from the sum over internal spin indices If
we neglect the momentum dependence of the scattering amplitude, then this quantity
is determined entirely by the three-particle phase space

1

τtr
∝

∫
dǫ′dǫ′′(1− f(ǫ′))(1− f(ǫ′′))f(−ǫ′ − ǫ′′)
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= T 2
∫
dxdy

(
1

1− e−x
)(

1

1− e−y
)(

1

1− e−(x+y)

)
=
π2

4
T 2 (11.49)

In practice, this type of resistivity is only easily observed in strongly interacting
electron materials, where it is generally seen to develop at low temperatures when
a Landau Fermi liquid develops. The T 2 resistivity is a classic hallmark of Fermi
liquid behavior.

• Kondo spin-flip scattering

In metals containing a dilute concentration of magnetic impurities, the spin-flip scat-
tering generated by the impurities gives rise to a temperature dependent scattering
rate of the form

1

τtr
∼ ni

1

ln2
(
T
TK

)

where TK is the “Kondo temperature”, which characterizes the characteristic spin
fluctuation rate of magnetic impurity. This scattering is unusual, because it becomes
stronger at lower temperatures, giving rise to a “ resistance minimum” in the resis-
tivity.

In heavy electron materials, the Kondo spin-flip scattering is seen at high temperatures, but
once a coherent Fermi liquid is formed, the resistivity drops down again at low temperatures,
ultimately following a T 2 behavior.

11.9.2 Optical conductivity

Probing the electrical properties of matter at finite frequencies requires the use of optical
spectroscopy. In principle, optical spectroscopy provides a direct probe of the frequency
dependent conductivity inside a conductor. The frequency dependent conductivity is defined
by the relation

~j(ω) = σ(ω) ~E(ω)

Modern optical conductivity measurements can be made from frequencies in the infra -red
of order ω ∼ 10cm−1 ∼ 1meV up to frequencies in the optical, of order 50, 000cm−1 ∼ 5eV .
The most direct way of obtaining the optical conductivity is from the reflectivity, which is
given by

r(ω) =
1− n(ω)

1 + n(ω)
=

1−
√
ǫ(ω)

1 +
√
ǫ(ω)

,

where n(ω) =
√
ǫ(ω) is the diffractive index and ǫ(ω) is the frequency dependent dielectric

constant. Now ǫ(ω) = 1 + χ(ω) where χ(ω) is the frequency dependent dielectric suscep-
tibility. Now since the polarization P (ω) = χ(ω)E(ω), and since the current is given by
j = ∂tP , it follows that j(ω) = −iωP (ω) = −iωχ(ω)E(ω), so that χ(ω) = σ(ω)/(−iω) and
hence

ǫ(ω) = 1 +
σ(ω)

−iω .
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Thus in principle, knowledge of the complex reflectivity determines the opical conductivity.
In the simplest measurements, it is only possible to measure the intensity of reflected

radiation, giving |r(ω)|2. More sophisticated “ elipsometry” techniques which measure the
reflectivity as a function of angle and polarization, are able to provide both the amplitude
and phase of the reflectivity, but here we shall discuss the simplest case where only the
amplitude |r(ω)| is available. In this situation, experimentalists use the “Kramers’ Kronig”
relationship which determines the imaginary part σ2(ω) of the optical conductivity in terms
of the real part, σ1(ω), (Appendix A)

σ2(ω) = ω

∫ ∞

0

dω′

π

σ1(ω
′)

ω2 − ω′2

This is a very general relationship that relies on the retarded nature of the optical response.
In principle, this uniquely determines the dielectric function and reflectivity. However, since
the range of measurement is limited below about 5eV , an assumption has to be made about
the high frequency behavior of the optical conductivity where normally, a Lorentzian form
is assumed.

With these provisos, it becomes possible to invert the frequency dependent reflectivity
in terms of the frequency dependent conductivity. We shall return in the next chapter for a
consideration of the detailed relationship between the optical conductivity and the micro-
scopic correlation functions. We will see shortly that the interaction of an electromagnetic
field with matter involves the transverse vector potential, which couples to the currents in
the material without changing the charge density. The optical conductivity can be related
to the following response function

σ(ω) =
1

−iω

[
ne2

m
− 〈j(ω)j(−ω)〉

]

This expression contains two parts - a leading diamagnetic part, which describes the high
frequency, short-time response of the medium to the vector potential, and a second, “para-
magnetic” part, which describes the slow recovery of the current towards zero. We have
used the shorthand

〈j(ω)j(−ω)〉 = i

∫ ∞

0
dtd3x〈[j(x, t), j(0)]〉eiωt

to denote the retarded response function for the “paramagnetic” part of the electron current
density j(x) = −i h̄mψ†~∇ψ(x).

11.9.3 The f-sum rule.

One of the most valuable relations for the analysis of optical conductivity data, is the so-
called “f-sum rule”, according to which the total integrated weight under the conductivity
spectrum is constrained to equal the plasma frequency of the medium,

∫ ∞

0

dω

π
σ(ω) =

ne2

m
= ω2

P ǫ0 (11.50)

327



Chapter 11. c©Piers Coleman 09

where n is the density of electronic charge and ωP is the Plasma frequency. To understand
this relation, suppose we apply a sudden pulse of electric field to a conductor

E(t) = E0δ(t), (11.51)

then immediately after the pulse, the net drift velocity of the electrons is changed to v =
eE0/m, so the instantaneous charge current after the field pulse is

j(0+) = nev =
ne2

m
E0, (11.52)

where n is the density of carriers. After the current pulse, the electric current will decay.
For example, in the Drude theory, there is a single current relaxation time rate τtr, so that

j(t) =
ne2

m
e−t/τtrE0 (11.53)

and thus

σ(t− t′) =
ne2

m
e−(t−t′)/τtrθ(t− t′) (11.54)

and by Fourier transforming we deduce that

σ(ω) =

∫ ∞

0
dteiωtσ(t) =

ne2

m

1

τ−1
tr − iω

(11.55)

Actually, the f-sum rule does not depend on the detailed form of the curent relaxation.
Using the instantaneous response in (11.52) we obtain

J(t = 0+) = Eoσ(t = 0+) = Eo

∫ ∞

−∞

dω

2π
e−i0

+
σ(ω) =

ne2

m
E0 (11.56)

is a consequence of Newton’s law. It follows that (independently of how the current subse-
quently decays), ∫ ∞

0

dω

π
σ(ω) =

ne2

m
= ǫ0ω

2
p (11.57)

where we have identified ǫ0ω
2
p = ne2

m with the plasma frequency ωp of the gas. This rela-
tionship is called the f-sum rule, and it is important because it holds, independently of the
details of how the current decays.

The important point about the f-sum rule, is that in principle, the total weight under the
optical spectrum, is a constant, providing one integrates up to a high-enough energy. When
the temperature changes however, it is possible for the spectral weight to redistribute. In a
simple metal, the optical conductivity forms a simple “Drude peak” - Lorentzian of width
1/τtr around zero frequency. In a semi-conductor, the weight inside this peak decays as
e−∆/T , where ∆ is the semi-conducting gap. In a simple insulator, the balance of spectral
weight must then reappear at energies above the direct gap energy ∆g. By contrast, in a
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Figure 11.3: The f-sum rule. Illustrating (a ) the spectral weight transfer down to the
condensate in a superconductor (b) the Drude weight in a simple metal and (c) The spectral
weight transfer up to the conduction band in an insulator. )

superconductor, the formation of a superconducting condensate causes the spectral weight
in the optical conductivity to collapse into a delta-function peak.

Appendix A: Kramer’s Krönig relation

The Kramer’s Krönig relation applies to any retarded linear response function, but we
shall derive it here in special reference to the conductivity. In time, the current and electric
field are related by the retarded response function

j(t) =

∫ t

−∞
dt′σ(t− t′)E(t′) (11.58)

which becomes j(ω) = σ(ω)E(ω) in Fourier space, where σ(ω) is the Fourier transform of
the real-time response function σ(t− t′)

σ(ω) =

∫ ∞

0
dteiωtσ(t).

This function can be analytically extended into the upper-half complex plain ,

σ(z) = σ(x+ iy) =

∫ ∞

0
dteiztσ(t) = .

∫ ∞

0
dteixt−ytσ(t).

So long as z lies above the real axis, the real part −yt of the exponent is negative, guaran-
teeing that the integral σ(z) is both convergent and analytic. Provided Imz0 > 0, then the
conductivity can be written down using Cauchy’s theorem

σ(z0) =

∫

C′

dz

2πi

σ(z)

z − zo
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where C ′ runs anti-clockwise around the point z0. By distorting the contour onto the real
axis, and neglecting the contour at infinity, it follows that

σ(z0) =

∫ ∞

−∞

dω′

2πi

σ(ω′)
ω′ − z0

Taking z0 = ω + iδ, and writing σ(ω + iδ) = σ1(ω) + iσ2(ω) on the real axis, we arrive at
the “Kramer’s Krönig” relations

σ2(ω) = −
∫ ∞

−∞

dω′

2π

σ1(ω
′)

ω′ − ω = ω

∫ ∞

0

dω′

π

σ1(ω
′)

ω2 − ω′2

σ1(ω) =

∫ ∞

−∞

dω′

2π

σ2(ω
′)

ω′ − ω =

∫ ∞

0

dω′

π

ω′σ2(ω
′)

ω2 − ω′2 (11.59)

11.10 Exercises for chapter 11

1. Spectral decomposition. The dynamic spin susceptibility of a magnetic system, is defined as

χ(q, t1 − t2) = i〈[S−(q, t1), S
+(−q, t2)] > θ(t1 − t2) (11.60)

where S±(q) = Sx(q) ± iSy(q) are the spin raising and lowering operators at wavevector q,
i.e

S±(q) =

∫
d3e−iq·xS±(x) (11.61)

so that S−(q) = [S+(−q)]†. The dynamic spin susceptibility determines the response of the
magnetization at wavevector q in response to an applied magnetic field at this wavevector

M(q, t) = (gµB)2
∫
dt′χ(q, t− t′)B(t′). (11.62)

(i)Make a spectral decomposition, and show that

χ(q, t) = iθ(t)

∫
dω

π
χ′′(q, ω)eiωt (11.63)

where χ′′(q, ω) ( often called the “power-spectrum” of spin fluctuations) is given by

χ′′(q, ω) = (1− e−βω)
∑

λ,ζ

e−β(Eλ−F )|〈ζ|S+(−q)|λ〉|2πδ[ω − (Eζ − Eλ)] (11.64)

and F is the Free energy.

(ii)Fourier transform the above result to obtain a simple integral transform which relates
χ(q, ω) and χ′′(q, ω). The correct result is a “Kramers Kronig” transformation.

(iii)In neutron scattering experiments, the inelastic scattering cross-section is directly propor-
tional to a spectral function called S(q, ω),

d2σ

dΩdω
∝ S(q, ω) (11.65)
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where S(q, ω) is the Fourier transform of a correlation function:

S(q, ω) =

∫ ∞

−∞
dteiωt〈S−(q, t)S+(−q, 0)〉 (11.66)

By carrying out a spectral decomposition, show that

S(q, ω) = (1 + n(ω))χ
′′

(q, ω) (11.67)

This relationship, plus the one you derived in part (i) can be used to completely measure the
dynamical spin susceptibility via inelastic neutron scattering.
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Chapter 12

Electron transport Theory

12.1 Introduction

Resistivity is one of the most basic properties of conductors. Surprisingly, Ohm’s law

V = IR

requires quite a sophisticated understanding of the quantum many body physics for its
understanding. In the classical electron gas, the electron current density

~j(x) = −ne~v(x)

is a simple c-number related to the average drift velocity ~v(x) of the negatively charged
electron fluid. This is the basis of the Drude model of electricity, which Paul Drude intro-
duced shortly after the discovery of the electron. Fortunately, many of the key concepts
evolved in the Drude model extend to the a quantum description of electrons, where ~j(x)
is an operator. To derive the current operator, we may appeal to the continuity equation,
or alternatively, we can take the derivative of the Hamiltonian with respect to the vector
potential,

~j(x) = − δH

δ ~A(x)

where

H =

∫
d3x

[
1

2m
ψ†(x)

(
− ih̄~∇− e ~A(x)

)2

ψ(x)− eφ(x)ψ†(x)ψ(x)

]
+ VINT

where the Hamiltonian is written out for electrons of charge q = e = −|e|. Now only the
Kinetic term depends on ~A, so that

~j(x) = − ieh̄
2m

ψ†(x)
↔
∇ ψ(x)−

(
e2

m

)
~A(x)ρ(x), (12.1)
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where
↔
∇= 1

2

(→
∇ −

←
∇
)

is the symmetrized derivative.

The discussion we shall follow dates back to pioneering work by Fritz London[1]. London
noticed in connection with his research on superconductivity, that the current operator splits
up into components, which he identified with the paramagnetic and diamagnetic response
of the electron fluid:

~j(x) = ~jP (x) +~jD(x) (12.2)

where
~jP (x) = − ieh̄

m
ψ†(x)

↔
∇ ψ(x) (12.3)

and

~jD(x) = −
(
e2

m

)
~A(x)ρ(x). (12.4)

Although the complete expression for the current density is invariant under gauge transfor-
mations ψ(x)→ eiφ(x)ψ(x), ~A(x)→ ~A− h̄

e
~∇φ(x) the separate parts are not. However, in a

specific gauge, such as the London or Coulomb gauge, where ~∇ ·A = 0, they do have phys-
ical meaning. We shall identify this last term as the term responsible for the diamagnetic
response of a conductor, and the first term, the “paramagnetic current”, is responsible for
the decay of the current a metal.

In a non-interacting system, the current operator commutes with the Kinetic energy
operator H0 and is formally a constant of the motion. In a periodic crystal, electron
momentum is replaced by the lattice momentum k, which is, in the absence of lattice
vibrations, a constant of the motion, with the result that the electron current still does not
decay. What is the origin of electrical resistance?

There are then two basic sources of current decay inside a conductor:

• Disorder - which destroys the translational invariance of the crystal,

• Interactions - between the electrons and phonons, and between the electrons them-
selves, which cause the electron momenta and currents to decay.

The key response function which determines electron current is the conductivity, relating
the Fourier component of current density at frequency ω, to the corresponding frequency
dependent electric field,

~j(ω) = σ(ω) ~E(ω)

We should like to understand how to calculate this response function in terms of microscopic
correlation functions.

The classical picture of electron conductivity was developed by Paul Drude, shortly
after the discovery of the electron. Although his model was introduced before the advent of
quantum mechanics, many of the basic concepts he introduced carry over to the quantum
theory of conductivity. Drude introduced the the concept of the electron mean-free path
l - the mean distance between scattering events. The characteristic timescale between
scattering events is called the transport scattering time τtr. ( We use the “tr” subscript to
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Figure 12.1: (a) Illustrating the diffusion of electrons on length-scales large compared with
the mean-free path l, (b) The Drude frequency dependent conductivity. The short-time
behavior of the current is determined by Newton’s law, which constrains the area under the
curve to equal

∫
dωσ(ω) = π ne

2

m , a relation known as the f-sum rule.

delineate this quantity from the quasiparticle scattering time τ , because not all scattering
events decay the electric current.) In a Fermi gas, the characteristic velocity of electrons is
the Fermi velocity and the mean-free path and transport scattering time are related by the
simple relation

l = vF τtr

The ratio of the mean-free path to the electron wavelength is the same order of magnitude
as the ratio of the scattering time to the characteristic timescale associated with the Fermi
energy h̄/ǫF is determined by the product of the Fermi wavevector and the mean-free path

l

λF
=
kF l

2π
∼ τtr
h̄/ǫF

=
ǫτtr
h̄

In very pure metals , the mean-free path of Bloch wave electrons l can be tens, even hundreds
of microns, l ∼ 10−6m, so that this ratio can become as large as 104 or even 106. From

337



Chapter 12. c©Piers Coleman 09

this perspective, the rate at which current decays in a good metal is very slow on atomic
time-scales.

There are two important aspects to the Drude model:

• the diffusive nature of density fluctuations,

• the Lorentzian line-shape of the optical conductivity

σ(ω) =
ne2

m

1

τ−1
tr − iω

Drude recognized that on length scales much larger than the mean-free path multiple
scattering events induce diffusion into the electron motion. On large length scales, the
current and density will be related by he diffusion equation,

~j(x) = −D~∇ρ(x),

where D = 1
3
l2

τtr
= 1

3v
2
F τtr, which together with the continuity equation

~∇ ·~j = −∂ρ
∂t

gives rise to the diffusion equation

[
− ∂

∂t
+D∇2

]
ρ = 0.

The response function χ(q, ν) of the density to small changes in potential must be the
Green’s function for this equation, so that in Fourier space

[iν −Dq2]χ(q, ν) = 1

from which we expect the response function and density-density correlation functions to
contain a diffusive pole

〈δρ(q, ν)δρ(−q,−ν)〉 ∼ 1

iν −Dq2
The second aspect of the Drude theory concerns the slow decay of current on the typical

time-scale τtr, so that in response to an electric field pulse E = E0δ(t), the current decays
as

j(t) = e
− t
τtr

In the last chapter, we discussed how, from a quantum perspective, this current is made up
of two components, a diamagnetic component

jDIA = −ne
2

m
A =

ne2

m
E0, (t > 0)
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and a paramagnetic part associated with the relax9ation of the electron wavefunction, which
grows to cancel this component,

jPARA =
ne2

m
E0(e

−t/τtr − 1), (t > 0)

We should now like to see how each of these heuristic features emerges from a microscopic
treatment of the conductivity and charge response functions. To do this, we need to relate
the conductivity to a response fucntion - and this brings us to the Kubo formula.

12.2 The Kubo Formula

Lets now look again at the form of the current density operator. According to (12.1), it can
divided into two parts

~j(x) = ~jP +~jD (12.5)

where

~jP = − ih̄

2m
ψ†(x)

↔
∇ ψ(x) paramagnetic current

~jD = −e
2

m

∫
d3x ρ(x) ~A(x) diamagnetic current (12.6)

are the “paramagnetic” and “ diamagnetic” parts of the current. The total current operator
is invariant under gauge transformations ψ(x) → eiφ(x)ψ(x), ~A(x) → ~A + h̄

e
~∇φ(x) and

speaking, the two terms in this expression for the current can’t be separated in a gauge
invariant fashion. However, in a specific gauge. We shall work in the London gauge

~∇ · ~A = 0 “London Gauge” .

In this gauge, the vector potential is completely transverse, ~q · ~A(~q) = 0. The equations of
the electromagnetic field in the London Gauge are

(
1

c2
∂2
t −∇2

)
~A(x) = µ0

~j(x)

−∇2φ(x) =
ρ(x)

ǫ0
(12.7)

so that the potential field ρ(x) is entirely determined by the distribution of charges inside
the material, and the only independent external dynamic field coupling to the material is
the vector potential. We shall then regard the vector potential as the only external field
coupling to the material.

We shall now follow Fritz London’s argument for the interpretation of these two terms.
Let us carry out a thought experiment, in which we imagine a toroidal piece of metal, as in
Fig. 12.2 in which a magnetic flux is turned on at t = 0, passing up through the conducting
ring, creating a vector potential around the ring given by A = A0θ(t) = φ0

2πrθ(t), where r is

339



Chapter 12. c©Piers Coleman 09

the radius of the ring. The Electric field is related to the external vector potential via the
relation

~E = −∂
~A

∂t
= −A0δ(t)

so ~E = − ~Aoδ(t) is a sudden inductively induced electrical pulse.

~jD = �ne2m ~A
�(t) = �0�(t) A(t)

�ne2m A0
j0 ttA0

�tr
Figure 12.2: Schematic diagram to illustrate diamagnetic current pulse produced by a
sudden change of flux through the conducting loop.

Suppose the system is described in the Schrödinger representation by the wavefunction
|ψ(t)〉, then the current flowing after time t is given by

〈~j(t)〉 = 〈ψ(t)|~jP |ψ(t)〉 − ne2

m
Aoθ(t) (12.8)

where we have assumed that 〈ρ(x)〉 = n is the equilibrium density of electrons in the
material. We see that the second “diamagnetic” term switches on immediately after the
pulse. This is nothing more than the diamagnetic response - the effect of the field induced
by Faraday’s effect. What is so interesting, is that this component of the current remains
indefinitely, after the initial step in the flux through the toroid. But the current must decay!
How?
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The answer is that the initial “paramagnetic” contribution to the current starts to de-
velop after the flux is turned on. Once the vector potential is present, the wavefunction
|ψ(t)〉 starts to evolve, producing a paramagnetic current that rises and in a regular conduc-
tor, ultimately exactly cancels the time-independent diamagnetic current. From this point
of view, the only difference between an insulator and a metal, is the timescale required
for the paramagnetic current to cancel the diamagnetic component. In an insulator, this
time-scale is of order the inverse (direct) gap ∆g, τ ∼ h̄/∆g, whereas in a metal, it is the
transport relaxation time τ ∼ τtr.

These arguments were first advanced by Fritz London. He noticed that if, for some
unknown reason the wavefunction of the material could become “rigid”, so that it would
not respond to the applied vector potential. In this special case, the paramagnetic current
would never build up, and one would then have a perfect diamagnet - a superconductor.
Lets now look at this in more detail. We need to compute

~j(~x, t) = 〈~jP (x, t)〉 − ne2

m
~A(x, t)

Now if we are to compute the response of the current to the applied field, we need to
compute the build up of the paramagnetic part of the current. Here we can use linear
response theory. The coupling of the vector potential to the paramagnetic current is simply
− ∫ d3x~j(x) · ~A(x), so the response of this current is given by

〈jαP (t)〉 =

∫

t′<t
d3x′dt′i〈[jαP (x), jβP (x′)]〉Aβ(x′) (12.9)

In other words, we may write

~j(1) = −
∫
d2Q(1− 2) ~A(2)

Qαβ(1− 2) =
ne2

m
δαβδ(1− 2)− i〈[jαP (1), jβP (2)]〉θ(t1 − t2). (12.10)

The quantity Q(1 − 2) is the “London response” Kernel. In the most general case, this
response is non-local in both space and time. In a metal, this response is non-local over a
distance given by the electron mean-free path l = vF τtr. In a superconductor the response
to the vector potential is non-local over the “Pippard coherence length”, ξ = vF /∆, where
∆ is the superconducting gap. We can write the above result in Fourier space as

~j(q) = −Q(q) ~A(q)

where

Qαβ(q) =
ne2

m
δαβ − i〈[jα(q), jβ(−q)〉
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and we have used the cavalier notation,

〈[jα(q), jβ(−q)〉 =

∫
d3x

∫ ∞

0
dt〈[jα(x, t), jβ(0)〉e−i(~q·~x−νt).

Finally, if we write ~E = −∂A
∂t , or A(q) = 1

iνE(q), we deduce that

~j(q) = σ(q) ~E(q) Kubo formula

σαβ(q) = − 1

iν
Qαβ(q) =

1

−iν

{
ne2

m
δαβ − i〈[jα(q), jβ(−q)〉

}
(12.11)

Now in practice, the high velocity of light means that q = ν/c << kF is much shorter than
an electronic wavevector, so that in electronic condensed matter physics, we may consider
the limit ~q = 0, writing σ(ν) = σ(~q = 0, ν). This is the quantity that is measured in optical
conductivity measurements. The D.C. conductivity is given by the zero-frequency limit of
the uniform conductivity, i.e. σDC = Ltν→0σ(ν).

In a regular conductor, σDC is finite, which implies that Q(ν = 0) = 0, so that in a
conductor

i〈[jα(q), jβ(−q)〉|q=0 =
ne2

m
δαβ

We shall see that this identity breaks down in a system with broken gauge invariance - and
this is the origin of superconductivity. In a normal fluid however, we can use this identity
to rewrite the expression for the conductivity as

σαβ(ν) =
1

−iν

[
− i〈[jα(ν ′), jβ(−ν ′)〉

]ν′=ν

ν′=0
(12.12)

A practical calculation of conductivity depends on our ability to extract this quantity
from the imaginary time response function. We can quickly generalize expression (12.10)
to imaginary time, by replacing i〈[A(1), B(2)]〉 → 〈TA(1)B(2)〉, so that in imaginary time,

~j(1) = −
∫
d2Q(1− 2) ~A(2), (1 ≡ (~x1, τ1))

Qαβ(1− 2) =
ne2

m
δαβδ(1− 2)− 〈TjαP (1)jβP (2)〉 (12.13)

so that in Fourier space, our expression for the optical conductivity is given by

σαβ(iνn) = − 1

νn

[
〈Tjα(ν ′)jβ(−ν ′)〉

]ν′=iνn

ν′=0
(12.14)

where we have used the short-hand notation

〈Tjα(iνn)j
β(−iνn)〉 =

∫ β

0
dτeiνnτ 〈Tjα(τ)jβ(0)〉
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12.3 Drude conductivity: diagramatic derivation

In the last section we showed how the fluctuations of the electrical current can be related
to the optical conductivity. Let us now see how these fluctuations can be computed using
Feynman diagrams in a disordered electron gas with dispersion ǫk = k2

2m . First, let us review
the Feynman rules. We shall assume that we have taken the leading order effects of disorder
into account in the electron propagator, denoted by

= G(k) =
1

iωn − ǫk + isgnωn
1
2τ

The current operator is jα(q) =
∑
ek

α

m ψ
†
k−q/2σψk+q/2σ, which we denote by the vertex

α ≡ e
kα

m

The set of diagrams that represent the current fluctuations can then be written

〈jα(q)jβ(−q)〉 = α β

k+q

k

+ +α β α β + . . .

+ +βα βα + . . . (12.15)

In the above expansion, we have identified three classes of diagrams. The first diagram,
denotes the simplest contribution to the current fluctuation: we shall see shortly that this is
already sufficient to capture the Drude conductivity. The second set of diagrams represent
the leading impurity corrections to the current vertex: these terms take account of the fact
that low-angle scattering does not affect the electric current, and it is these terms that are
responsible for the replacement of the electron scattering rate τ by the transport relaxation
rate τtr. We shall see that these terms vanish for isotropicaly scattering impurities, and
justifying our neglect of these contributions in our warm-up calculation of the conductivity.

The last set of diagrams involve crossed impurity scattering lines - we have already
encountered these types of diagrams in passing, and the momentum restrictions associated
with crossed diagrams lead to a reduction factor of order O( 1

kF l
) ∼ λ

l , or the ratio of the
electron wavelength to the mean-free path. These are the “quantum corrections” to the
conductivity. These maximally crossed diagrams were first investigated by Langer and Neal
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in 1966, during the early years of research into electron transport , but it was not until the
late 1970’s that they became associated with the physics of electron localization - more on
this later.

Using the Feynman rules, the first contribution to the current fluctuations is given by

i rω  

βα

ω   +    νii r n

= 〈jα(iνn)j
β(−iνn)〉

= −2e2T
∑

k,iωr

kαkβ

m2
G(k, iωr + iνn)G(k, iωr) (12.16)

where the minus sign derives from the fermion loop and the factor of two derives from
the sum over spin components. The difference between the fluctuations at finite and zero
frequencies is then

[
〈jα(ν)jβ(−ν)〉

]iνn
0

= −2e2T
∑

k,iωr

kαkβ

m2

[
G(k, iωr + iνn)G(k, iωr)− {iνn → 0}

]
(12.17)

Now the amplitude at current fluctuations at any one frequency involves electron states far
from the Fermi surface. However, the difference between the current fluctuations at two
low frequencies cancels out most of these contributions, and the only important remaining
contributions involve electrons with near the Fermi surface. This observation means that
we can replace the momentum summation in (12.17) by an energy integral in which the
density of states is approximated by a constant, and the limits are extended to infinity, as
follows

∑

k

kαkβ

m2

[
. . .

]
→

∫
4πk2dk

(2π)3

∫
dΩ

k̂

4π

kαkβ

m2

[
. . .

]

→ δαβ
v2
FN(0)

3

∫ ∞

−∞
dǫ

[
. . .

]
(12.18)

The London Kernel then becomes

Qαβ(iνn) = 2δαβ
e2v2

FN(0)

3
T
∑

ωr

×

2

∫ ∞

−∞
dǫ





Poles on opposite side if ω+
r > ωr︷ ︸︸ ︷(

1

iω+
r − ǫ+ isgnω+

r /2τ

)(
1

iωr − ǫ+ isgnωr/2τ

)
−

Poles on same side︷ ︸︸ ︷(
iνn → 0

)




We can now carry out the energy integral by contour methods. We shall assume that νn > 0.
Now, provided that iω+

r > 0 and iωr < 0, the first term inside this summation has poles on
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opposite sides of the real axis, at ǫ = iωr+i/2τ and ǫ = iωr−1/2τ , whereas the second term
has poles on the same side of the real axis. Thus, when we complete the energy integral
we only pick up contributions from the first term. (It doesn’t matter which side of the real
axis we complete the contour, but if we choose the contour to lie on the side where there
are no poles in the second term, we are able to immediately see that this term gives no
contribution. ) The result of the integrals is then

Qαβ(iνn) = δαβ

ne2

m︷ ︸︸ ︷
2e2v2

FN(0)

3
T

∑

0>ωr>−νn,

2πi

iνn + iτ−1

= δαβ
ne2

m

νn
τ−1 + νn

(12.19)

Converting the London Kernel into the optical conductivity,

σαβ(iνn) =
1

νn
Qαβ(iνn) = δαβ

ne2

m

1

τ−1 − i(iνn)

Finally, analytically continuing onto the real axis, we obtain

σαβ(ν + iδ) =
ne2

m

1

τ−1 − iν Transverse conductivity

There are a number of important points to make about this result

• Our result ignores the effects of anisotropic scattering. To obtain these we need to
include the “ladder” vertex corrections, which we will shortly see, replace

1

τ
→ 1

τtr
= 2πniN(0)(1− cos θ)|u(θ)|2, (12.20)

where the (1 − cos θ) term takes into account that small angle scattering does not
relax the electrical current.

• Our result ignores localization effects that become important when 1
kF l
∼ 1. In one or

two dimensions, the effects of these scattering events accumulates at long distances,
ultimately localizing electrons, no matter how weak the impurity scattering.

• Transverse current fluctuations are not diffusive - this is not surprising, since trans-
verse current fluctuations do not involve any fluctuation in the charge density.
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To improve our calculation, let us now examine the vertex corrections that we have so
far neglected. Let us now re-introduce the “ladder” vertex corrections shown in (12.15).
We shall write the current-current correlator as

〈jα(q)jβ(−q)〉 = α β

k+q

k

(12.21)

where the vertex correction is approximated by a sum of ladder diagrams, as follows

β = β + +β β+ . . . = ΛevβF

(12.22)

We shall re-write the vertex part as a self-consistent Dyson equation, as follows:

eΛvβF = β + β
p’

p’+q

(12.23)

where q = (0, iνn) and p′ = (~p ′, iωr). The equation for the vertex part is then

evβFΛ(ωr, νn) = evβF + ni
∑

~p ′

|u(~p− ~p ′)|2G(~p ′, iω+
r )G(~p ′, iωr)Λ(ωr, νn)ev

′β
F . (12.24)

Assuming that the vertex part only depends on frequencies, and has no momentum depen-
dence, we may then write

Λ = 1 + Λni

∫
d cos θ

2
|u(θ)|2 cos θ

∫
d3p′

(2π)3
G(~p ′, iω+

r )G(~p ′, iωr)

We can now carry out the integral over ~p ′ as an energy integral, writing

N(0)

∫
dǫG(ǫ, iω+

r )G(ǫ, iωr) = N(0)

∫
dǫ

1

iω̃+
n − ǫ

1

iω̃n − ǫ

where we use the short-hand

ω̃n = ωn + signωn(
1

2τ
). (12.25)
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Carrying out this integral, we obtain

N(0)

∫
dǫG(ǫ, iω+

r )G(ǫ, iωr) =

{
πN(0) 1

νn+τ−1 −νn < ωr < 0

0 otherwise

so that

Λ = 1 +

(
τ̃−1

νn + τ−1

)
Λθνn,ωr

where τ̃−1 = 2πniN(0)cos θ|u(θ)|2 and θνn,ωr = 1 if −νn < ωr < 0 and zero otherwise, so
that

Λ =

{
νn+τ−1

νn+τ−1
tr

−νn < ωr < 0

1 otherwise
(12.26)

where

τ−1
tr = τ−1 − τ̃−1 = 2πniN(0)(1− cos θ)|u(θ)|2.

when we now repeat the calculation, we obtain

Qαβ(iωn) =
ne2

m
δαβT

∑

iωr

∫ ∞

−∞
dǫ
[
G(ǫ, iω+

r )G(ǫ, iωr)− (iνn → 0)
]
Λ(iωr, iνn)

=
ne2

m
δαβT

∑

iωr

2πi

iνn + iτ−1

νn + τ−1

νn + τ−1
tr

=
ne2

m

(
νn

νn + τ−1
tr

)
δαβ (12.27)

So making the analytic continuation to real frequencies, we obtain

σ(ν + iδ) =
ne2

m

1

τ−1
tr − iν

Note that

• We see that transverse current fluctuations decay at a rate τ−1
tr < τ . By renormalizing

τ → τtr, we take into account the fact that only backwards scattering relaxes the
current. τtr and τtr are only identical in the special case of isotropic scattering. This
distinction between scattering rates becomes particularly marked when the scattering
is dominated by low angle scattering, which contributes to τ−1, but does not contribute
to the decay of current fluctuations.

• There is no diffusive pole in the transverse current fluctuations. This is not surprising,
since transverse current fluctuations do not change the charge density.
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12.4 Electron Diffusion

To display the presence of diffusion, we need to examine the density response function.
Remember that a change in density is given by

〈δρ(q)〉 = i〈[ρ(q), ρ(−q)]〉
−eV (q)︷ ︸︸ ︷
δµ(q)

where V is the change in the electrical potential and

i〈[ρ(q), ρ(−q)]〉 =

∫
d3xdti〈[ρ(x, t), ρ(0)]〉e−i~q·~x+iωt

We shall calculate this using the same set of ladder diagrams, but now using the charge
vertex. Working with Matsubara frequencies, we have

〈ρ(q, iνn)ρ(−q,−iνn)〉 =
k

k+q

+ + + . . .

=

k+q

k

(12.28)

where the current vertex

k+q

k

= +
k

k+q k’+q

k’
= −eΛc(k, q).

(12.29)

Let us now rewrite (12.28) and (12.29) as equations. From (12.28) the density-density
response function is given by

〈ρ(q, iνn)ρ(−q,−iνn)〉 = −2T
∑

k

G(k + q)G(k)Λc(k, q).

From (12.29), the Dyson equation for the vertex is

Λc(k, q) = 1 + ni
∑

k′

|u(k− k′)|2G(k′ + q)G(k′)Λc(k
′, q) (12.30)

For convenience, we will assume point scattering, so that u = u0 is momentum independent
so that Λc(k, q) only depends on k through its frequency component iωr, so Λ(k, q) =
Λ(iωr, q)

Λc(iωr, q) = 1 + niu
2
0

∑

k′

G(k′ + q)G(k′)Λc(iωr, q)
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= 1 + Π(iωr, q)Λc(iωr, q) (12.31)

or

Λc(iωr, q) =
1

1−Π(iωr, q)

where the polarization bubble is given by

Π(iωr, q) = niu
2
0

∑

p′

G(k′ + q)G(k′)

= niu
2
0N(0)

∫
dΩ

4π

∫
dǫ

1

iω̃+
r − (ǫ+ ~q · ~vF )

1

iω̃r − ǫ
. (12.32)

(Note the use of the tilde frequencies, as defined in (12.25).) Now if iνn > 0, then the energy
integral in π(iωr, q) will only give a finite result if −νn < ωr < 0. Outside this frequency
range, π(iωr, q) = 0 and Λc = 1. Inside this frequency range, Π(iωr, q) = Π(q) is frequency
independent, and given by

Π(q) =

τ−1/(2π)︷ ︸︸ ︷
niu

2
0N(0)

∫
dΩ

4π

2πi

iνn + iτ−1 + ~q · ~vF
=

∫
dΩ

4π

1

1 + νnτ − i~q · ~vF τ
(12.33)

Now we would like to examine the slow, very long wavelength charge flucations, which means
we are interested in q small compared with the inverse mean-free path, q << l−1 = 1/(vF τ),
and in frequencies that are much smaller than the inverse scattering length νnτ << 1. This
permits us to expand Π in powers of ~q. We shall take the first non-zero contribution, which
comes in at order q2. With these considerations in mind, we may expand Π as follows

Π(q) =

∫
dΩ

4π

(
1− νnτ + i~q · ~vF τ + i2(vF · q)2τ2 + . . .

)

=

(
1− νnτ −

v2
F τ

3
q2τ + . . .

)
(12.34)

where we neglect terms of order O(q2νn). We may identify the combination v2
fτ/3 = D in

the second term with the diffusion constant D. Note that had we done this integral in d
dimensions, the “3” in the denominator of the second term above would be replaced by d,
but the general form for the diffusion constant in d dimensions is D = v2

fτ/d, so that in any
dimension, we obtain

Π(q) =
(
1− νnτ −Dq2τ + . . .

)
(12.35)

We then obtain

Λc(q) =
1

1−Π(q)
=

τ−1

νn +Dq2
, (−νn < ωr < 0). (12.36)
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Summarizing then, the long-wavelength, low frequency charge vertex has the form

Λc(iωr, q) =

{
iτ−1

νn+Dq2
, (−|νn| < sgn(νn)ωr < 0)

1 otherwise

and thus the dynamic charge correlation function is given by

〈ρ(q)ρ(−q)〉 =

k+q

k

= −2N(0)T
∑

iωr

∫
dǫG(ǫ, iω+

r )G(ǫ, iωr)Λc(iωr, q)

(12.37)

Now if we evaluate this quantity at zero frequency, νn = 0, where Λc = 1, we obtain the
static susceptibility

χ0 = −2T
∑

r,k

!

(iω̃r − ǫk)2

= 2

∫
dǫN(ǫ)

∫
dω

2πi
f(ω)

{
1

(ω + i/(2τ)− ǫ)2 −
1

(ω − i/(2τ)− ǫ)2
}

= 2

∫
dǫN(ǫ)

∫
dω

2πi

df(ω)

dω

−2iA(ǫ,ω)︷ ︸︸ ︷{
1

(ω + i/(2τ)− ǫ) −
1

(ω − i/(2τ)− ǫ)

}

= 2

∫
dω

(
−df(ω)

dω

)
=N(ω)︷ ︸︸ ︷∫

dǫ
N(ǫ)

π
A(ǫ, ω) = 2N(0) unrenormalized (12.38)

so that the static charge susceptibility is unaffected by the disorder. This enables us to
write

〈ρ(q)ρ(−q)〉 = χ0 − 2T
∑

iωr

∫
N(ǫ)dǫ

[
G(ǫ, iω+

r )G(ǫ, iωr)Λc(ωr, νn)− {νn → 0}]

Since this intgeral is dominated by contributions near the Fermi energy, we can extend the
energy integral over the whole real axis, replacing

∫
N(ǫ)dǫ→ N(0)

∫ ∞

−∞
dǫ

enabling the energy integral to be carried out by contour methods, whereupon,

〈ρ(q)ρ(−q)〉 = χ0 − 2TN(0)
∑

iωr

∫ ∞

−∞
dǫ
[
G(ǫ, iω+

r )G(ǫ, iωr)Λc(ωr, νn)− {νn → 0}]

= χ0 − χ0

→νnτ︷ ︸︸ ︷(
νn

νn + τ−1

)[
τ−1

νn +Dq2

]
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where, again, in the last step we have assumed |νn|τ << 1. The Matsubara form for the
charge susceptibility is then

χo(~q, iνn) = χ0
Dq2

|νn|+Dq2

Analytically continuing this result, we finally obtain

χ(~q, ν + iδ) = χ0

(
Dq2

Dq2 − iν

)
(12.39)

. Note that:

• Density fluctuations are diffusive. Indeed, we could have anticipated the above form
on heuristic grounds. The solution of the diffusion equation D∇2ρ = ∂ρ

∂t is, in Fourier
space,

ρ(~q, ν) =
1

Dq2 − iν ρ(q)

where ρ(q) is the Fourier transform of the initial charge distribution. If we require
ρ(~q, ν = 0) = χ0U(~q), where U(~q) is the Fourier transform of the applied potential,
then this implies (12.39)

• The order of limits is important, for whereas

lim
q→0

lim
ν→0

χ(q, ν) = χ0

which is the response to a static potential of large, but finite wavelength,

lim
ν→0

lim
q→0

χ(q, ν) = 0

which states that the response to a uniform potential of vanishingly small frequency
is zero. The difference in these two response functions is due to the conservation of
charge - if one wants to change the charge density in one place, it can only be done by
redistributing the charge. If one applies a static uniform potential, the charge density
does not change.

• We can use these results to deduce the longitudinal conductivity - the current response
to a longitudinal electric field for which ~q · ~E 6= 0. Let φ(q) be the electric potential,
then δρ(q) = χ(q)eφ(q), so that

δρ(q) = χ0
Dq2

Dq2 − iν eφ(q) = −χ0
Di~q ·

~∇φ=− ~E(q)︷ ︸︸ ︷
(i~qφ(q))

Dq2 − iν
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= χ0

(
Di~q

Dq2 − iν

)
· ~E(q) (12.40)

Now since ∂ρ
∂t ≡ −iνρ(q), it follows that

ρ̇(q) = eχ0

(
Dν~q

Dq2 − iν

)
· ~E(q). (12.41)

Now by continuity, e∂ρ∂t = −~∇ ·~j(q) = −i~q ·~j(q), where ~j is the charge current, so by
comparing with (12.41) we deduce that the longitudinal current is

jL(q) = e2χ0D

(
iν

iν −Dq2
)
~E(q),

so the longitudinal conductivity contains a diffusive pole

σLONG(q) = e2χ0D

(
iν

iν −Dq2
)
.

Note also that at q = 0, σ = e2χ0D, which can be written as the Einstein relation

σ = e2χ0D =
ne2

m
τ Einstein Relation

12.5 Weak Localization

We should like to finish our brief introduction to electron transport by touching on the
concept of electron localization. The disorder that has been considered in this chapter is
weak and the electron states we have considered are delocalized. We have remarked on a
few occasions that disorder is like a kind of “attractive” but infinitely retarded interaction,
and like other attractive interactions, it has the capacity to induce new kinds of collective
behavior amongst the electrons. Infact, disorder actually gives rise to collective interference
effects within the electron gas, which ultimately lead to the localization of the electron
wavefunction. This idea was first proposed by Anderson in the late 1950’s, but it took two
decades for the idea to gain acceptance in the physics community. Our modern understand-
ing of electron localization was greatly aided by a conceptual break-through on this problem
made by Thouless who proposed that the resistance of a material, or rather, the inverse re-
sistance, the conducance G = 1/R is a function of scale. Thouless’s idea, initially proposed
for one dimension, was taken up by the so called “Gang of Four”, Abrahams, Anderson
Licciardello and Ramakrishnan and extended to higher dimensions leading to the modern
“scaling theory” of localization. One of the ideas that emerged from this break-through,
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is that electron localization results from the coherent interference between electron waves,
which at long-distances ultimately builds up to produce a disorder-drive metal-insulator
transition - a kind of phase transition in which the order parameter is the conductance.
Like all phase transitions, localization is sensitive to the dimensionality. Whereas in three
dimensions, electron localization requires that the disorder exceed a critical value, in two
and one dimension, an arbitrarily small amount of disorder is sufficient to localize elec-
trons, and the leading order effects of localization can already be seen in weakly disordered
materials. These ideas can all be developed for weakly disordered conductors by a simple
extention of the Feynman diagram methods we have been using.

To develop a rudimentary conceptual understanding of electron localization, we shall
follow a heuristic argument by Altshuler, Aronov, Larkin and Khmelnitskii[??], (see also
Bergman [??]) who pointed out that weak localization results from the constructive inter-
ference between electrons passing along time-reversed paths. Consider the amplitude for

P

P

n−1

1

2

3n−2

Figure 12.3: Scattering of an electron around two time-reversed paths

an electron to return to its starting point. In general, it can do this by passing around a a
sequence of scattering sites labelled 1 through n, as shown in Fig. 12.3, where we identify
n ≡ 1 as the same scattering site. The amplitude for scattering around this loop is

AP = GR(n, n− 1)GR(n− 1, n− 2) . . . GR(2, 1)

where

GR(~x1, ~x2) =

∫
ddk

(2π)d
1

ω − ǫk + iδ
ei
~k·(~x1−~x2)

is the retarded propagator describing the amplitude for an electron of frequency ω to prop-
agate between two sites. Now for each path P, there is a corresponding time-reversed path
P̃ . The amplitude for the same electron to follow P̃ starting at 1 ≡ n, is

AP̃ = GR(1, 2)GR(2, 3) . . . GR(n− 1, n)
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The total propability associated with passage along both paths is given by

P = |AP +AP̃ |2 = |AP |2 + |AP̃ |2 + 2Re[A∗
P̃
AP ]

Now if AP =
√
p1e

iφ1 and AP̃ =
√
p2e

iφ2 then total probability to scatter back to the
starting point via the two paths,

pTOT = p1 + p2 + 2
√
p1p2 cos(φ2 − φ1).

contains an interference term 2
√
p1p2 cos(φ2 − φ1). If the two paths were unrelated, then

the impurity average of interference term would be zero, and we would expect P = p1 + p2.
However! The two paths are related by time-reversal, so that AP̃ = AP , with precisely the
same magnitude and phase, and so the two processes always constructively interfere,

pTOT = 4p1

Without the interference term pTOT = 2p1, so we see that constructive interference between
time-reversed paths doubles the return probabilty.

This means that an electron that enters into a random medium has an quantum-
mechanically enhanced probability of returning to its starting point - quantum electrons
“bounce back” twice as often as classical electrons in a a random medium! The same phe-
nomenon causes the light from a car’s headlamps to reflect backwards in a Fog. These
effects tend to localize waves - causing light localization in the case of fog - and electron
localization in disordered conductors. We shall see that the return probability is enhanced
in lower dimensions, and in one, or two dimensions, these effects innevitably lead to the
localization of electrons, for arbitrarily small amounts of disorder.

Let us now make a diagramatic identification of these interference terms. The complex
conjugate of the retarded propagator is the advanced propagator

GR(2− 1, ω)∗ = G(2− 1, ω + iδ)∗ = G(2− 1, ω − iδ) == GA(2− 1, ω)

so the interference term

A∗
P̃
AP =

n−1∏

j=1

GR(j + 1, j;ω)GA(j + 1, j;ω)

which is represented by a “ladder diagram” for repeated scattering of electron pairs. The

ωi +

ωi
r

r 2 n−1 n

j j+1

1

Figure 12.4: n-th order contribution to the “Cooperon”
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sum of all such diagrams is called a “Cooperon”, because of its similarity to the pair
susceptibility in superconductivity. Notice that the lower electron line involves the advanced
propagator GA, whereas the upper involves the retarded propagator GR. In the Matsubara
approach the distinction between these two propagators is enforced by running a frequency
iω+
r ≡ iωr + iνn along the top line, and a frequency iωr along the bottom. When νn is

analytically continued and ultimately set to zero, this enforces the distinction betwen the
two propagators. Now if we twist the Cooperon around, we see that it is equivalent to a
maximally crossed, or “Langer-Neal” diagram

ωi r

ωi +
r

21 n−1 n

n n−1 2 1

Figure 12.5: A twisted cooper diagram forms a maximally crossed diagram.

Let us now compute the amplitudes associated with these localization corrections to the
conductivity. We begin by denoting the Cooperon by a sum of ladder diagrams

C(q) =

q

= + + ...+

k’kk

−k+q −k+q −k’+q

=
niu

2
0

1− Π̃(q)
(12.42)

where

Π̃(q) = niu
2
0

∑

k

GR(k)GA(−k + q)

where we have denoted GR(k) ≡ G(k, iω+
r ) and GA(k) ≡ G(k, iωr), implicitly assuming that

ω+
r and ωr are of opposite sign. Now if we look carefully at Π̃, we see that it is identical to

the particle hole bubble Π that we encountered when computing diffusive charge fluctuations
in (12.32 ), excepting that in the hole line has been replaced by a particle line, and in so
doing, we replace k + q → −k + q in the momentum of the propagator. However, thanks
to time-reversal symmetry holds, this this does not change the value of the polarization
bubble, and we conclude that

Π̃(q) =
(
1− νnτ −Dq2τ + . . .

)

and thus

C(q) = niu
2
0

τ−1

Dq2 + |νn|
=

1

2πN(0)τ2

1

Dq2 + |νn|
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We shall redraw the maximally crossed contributions to the conductivity as follows

∆Qab = + +

=

k −k+q

k −k+q

+

k −k+q

k −k+q

+

k −k+q

k −k+q

= q

k −k+q

k −k+q

(12.43)

Written out explicitly, this gives

∆σab(iνn) =
∆Qab

νn

=
2e2T

νn

∑

k=(k,iωr)
q

vakv
b
−k+q

[
C(q)G+(k)G−(k)G+(−k + q)G−(−k + q)− {iνn → 0}]

At this point, we can simplify the diagram by observing that to extract the most singular,
long-distance effects of localization, we can ignore the smooth q dependence of the conduc-
tion electron lines. By setting q = 0 along the conduction lines, we decouple ∆σ into a
product of two terms

∆σab(iνn) =
2e2T

νn

∑

q

C(q)

− νn
2πT

ne2

m
δab
∫
dǫ

︷ ︸︸ ︷∑

k

vakv
b
−k

[
(G+(k))2(G−(k))2 − {iνn → 0}

]

= −ne
2

m
δab

1

2πN(0)τ2

∫
ddq

(2π)d
1

Dq2 + |νn|

∫
dǫ

2π
G2
R(ǫ)G2

A(ǫ) (12.44)

The energy integral in the second term yields

∫
dǫ

2π
G2
R(ǫ)G2

A(ǫ) = 2τ3.

We need to consider the upper and lower bounds to the momentum integral. The upper
bound is set by the condition that Dq2 = τ−1, the elastic scattering rate. The lower bound
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is set either by the size of the system L, in which case q = L−1, or by the inelastic scattering
rate τ−1

i . We may define

τ−1
0 = max(

D

L2
, τ−1
i )

as the inverse time-scale associated with the lower cutoff. The quantity

Eth = h̄
D

L2

is called the “Thouless” energy, and corresponds to the energy scale associated with the
phase-coherent diffusion of electrons from one side of the sample, to the other. In an ultra-
pure, or small system, it is this scale that provides the infra-red cut-off to localization effects.
We may then write

∆σab(ν) = −δab
(
ne2τ

m

)
1

2πN(0)

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d
1

Dq2 − iν (12.45)

If we apply a sudden pulse of electric field E = E0δ(t), giving rise to a white noise field
spectrum, E(ν) = E0, the current induced by localization effects has a frequency spectrum

j(ν) = ∆σ(ν)E(ν) = ∆σ(ν)E0 ∝
∫ (Dτ)−1/2

(Dτ0)−1/2

ddq

(2π)d
1

Dq2 − iν
In highly phase-coherent systems, the characteristic time scale of the localization back-
scattering response in the current pulse is given by t ∼ D/L2 which we recongnize as the
time for electrons to diffuse across the entire sample. This is a kind of backscattering “echo”
produced by the phase-coherent diffusion of electrons along time-reversed paths that cross
the entire sample. The momentum integral in ∆σ is strongly dependent on dimensionality.
in three and higher dimensions, this term is finite, so that the weak-localization effects are
a perturbation to the Drude conductivity. However, if the dimension d ≤ 2, this integral
becomes divergent, and in a non-interacting system, it is cut off only by the frequency, or
the finite size L of the system. In two dimensions,

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d
1

Dq2 − iν =
1

4πD
ln(

τ

τ0
)

giving rise to a localization correction to the static conductivity that is

∆σ = −
(
ne2τ

m

)
1

8π2N(0)D
ln(

τ0
τ

) (12.46)

Replacing nτ/m→ 2N(0)D, we obtain

∆σ = −
(
e2

2π2

)
ln(

τ

τ0
)→ − 1

2π2

(
e2

h̄

)
ln(

τ0
τ

) (12.47)

where we have restored h̄ into the expression. The quantity g0 = e2

h̄ ∼ 1
10(kΩ)−1 is known

as the universal conductance.
There are a number of interesting consequences of these results
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• By replacing 2πN(0)D = 1
2kF l, the total conductivity can be written

σ = σ0

[
1− 1

2πkF l
ln(

τ0
τ

)

]
(12.48)

We see that the quantum-interference correction to the conductivity is of orderO(1/(kF l)),
justifying their neglect in our earlier calculations.

• If we consider the case where inelastic scattering is negligible, the localization correc-
tion to the conductivity in two dimensions is

σ = σ0

[
1− 1

2πkF l
ln(

1

EThτ
)

]

∼ σ0

[
1− 1

πkF l
ln(

L

l
)

]
(12.49)

so that the conductivity drops gradually to zero as the size of the sample increases.
The conductivity becomes of order e2

h̄ at the “localization length”

Lc ∼ lekF l

independently of the strength of the interaction. In two dimensions, resistivity and
resistance have the same dimension, so we expect that when the size of the system
is equal to the localization length, the resistivity is always of order 10kΩ! At longer
length-scales, the material evolves into insulator.

• The weak localization corrections are not divergent for dimensions greater than 2, but
become much stronger in dimensions below d = 2. It was this observation that led the
the “Gang of Four”, Abrahams, Anderson, Licciardello and Ramakrishnan, to propose
the scaling theory for localization, in which dc = 2 is the critical dimensionality.

We shall end this section by making a brief remark about the scaling theory of local-
ization. Stimulated by the results in two dimensions, and earlier work on one dimensional
wires, by Thouless, Abrahams et al. were led to propose that in any dimension, conduc-
tance, or inverse resistance, G = 1/R could always be normalized to form a dimensionless
parameter

g(L) =
G(L)
e2

h̄

which satisfies a one-parameter scaling equation

d ln g(L)

d lnL
= β(g)

When this quantity is large, we may use the Drude model, so that g(L) = ne2τ
m Ld−2, and

β(g) = (d− 2), (g →∞)
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−(L / L   )cg(L) ~ e

g(L) ~ L
(d−2)

d ln (g)

d ln L
β(    ) = g

gc

d−2

d>2

d=2

d<2

ln g

Insulator

Metal

Figure 12.6: The scaling function β(g) deduced by Abrahams et al. for a non-interacting
metal. For d > 2 there is critical conductance gc which gives rise to a disorder-driven metal-
insulator transition. In d ≤ 2, disorder always gives rise to localization and the formation
of an insulator.

is independent of g. When the conductance was small g → 0, on scales longer than the
localization length Lc, they argued that g(L) would decay exponentially g(L) ∼ e−L/Lc , so
that for small conductance,

β(g) ∼ − ln g, (g → 0)

By connecting up these two asymptotic limits, Abrahams et al reasoned that the beta
function for conductance would take the form shown in Fig. 12.6. In dimensions d ≤ 2,
the β(g) is always negative, so the conductance always scales to zero and electrons are
always localized. However in dimensions d > 2, there is a disorder-driven metal-insulator
transition at the critical conductance g = gc. As the amount of disorder is increased, when
the short-distance conductance g passes below gc, the material becomes an insulator in the
thermodynamic limit. These heuristic arguments stimulated the development of a whole
new field of research into the collective effects of disorder on conductors, and the basic
results of the scaling theory of localization are well-established in metals where the effects
of interactions between electrons are negligible. Interest in this field continues actively
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today, with the surprise discovery in the late 1990s that two dimensional electron gases
formed within heterojunctions appear to exhibit a metal insulator transition - a result that
confounds the one-parameter scaling theory, and is thought in some circles to result from
electron-electron interaction effects.

12.6 Exercises for chapter 12

1. (Alternative derivation of the electrical conductivity. )

In our treatment of the electrical conductivity, we derived

σab(iνn) = e2
T

νn

∑

k,iωr

vakv
b
k

[
G(k, iωr + iνn)G(k, iωr)−G(k, iωr)

2
]

This integral was carried out by first integrating over momentum, then integrating over fre-
quency. This techique is hard to generalize and it is often more convenient to integrate the
expression in the opposite order. This is the topic of this question. Consider the case where

G(k, iωr) =
1

iωr − ǫk − Σ(iωr)

and Σ(iωr) is any momentum-independent self-energy.

(a) By rewriting the momentum integral as an integral over kinetic energy ǫ and, angle show
that the conductivity can be rewritten as σab(iνn) = δabσ(iνn), where

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞
dǫ T

∑

iωr

[
G(ǫ, iωr + iνn)G(ǫ, iωr)−G(ǫ, iωr)

2
]
.

and

G(ǫ, z) ≡ 1

z − ǫ− Σ(z)

(b) Carry out the Matsubara sum in the above expression to obtain

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞

dω

π

∫ ∞

−∞
dǫf(ω) [G(ǫ, ω + iνn) +G(ǫ, ω − iνn)]A(ǫ, ω),

where A(ǫ, ω) = ImG(ǫ, ω − iδ). (Hint - replace T
∑
n → −

∫
dz
2πif(z), and notice

that while G(ǫ, z) has a branch cut along z = ω with discontinuity given by G(ǫ, ω −
iδ) − G(ǫ, ω + iδ) = 2iA(ǫ, ω), while while G(ǫ, z + iνn) has a similar branch cut along
z = ω − iνn. Wrap the contour around these branch cuts and evaluate the result).

(c) Carry out the energy integral in the above expression to obtain

σ(iωn) =
ne2

m

1

νn

∫ ∞

−∞

dω

π
f(ω)

×
[

1

iνn − (Σ(ω + iνn)− Σ(ω − iδ)) −
1

iνn − (Σ(ω + iδ)− Σ(ω − iνn))

]
.(12.50)
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(d) Carry out the analytic continuation in the above expression to finally obtain

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f(ω − ν/2)− f(ω + ν/2)

ν

]
×

1

−iν + i(Σ(ω + ν/2 + iδ)− Σ(ω − ν/2− iδ)) . (12.51)

(e) Show that your expression for the optical conductivity can be rewritten in the form

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f(ω − ν/2)− f(ω + ν/2)

ν

]
1

τ−1(ω, ν)− iνZ(ω, ν)
. (12.52)

where

τ−1(ω, ν) = Im [Σ(ω − nu/2− iδ) + Σ(ω + ν/2− iδ)] (12.53)

is the average of the scattering rate at frequencies ω ± ν/2 and

Z−1(ω, ν)− 1 = −1

ν
Re [Σ(ω − ν/2)− Σ(ω + ν/2)]

is a kind of “wavefunction renormalization”.

(f) Show that if the ω dependence of Z and τ−1 can be neglected, one arrives at the phe-
nomenological form

σ(ν) =
ne2

m

[
1

τ−1(ν)− iνZ−1(ν)

]

This form is often used to analyze optical spectra.

(g) Show that the zero temperature conductivity is given by the thermal average

σ(ν + iδ) =
ne2τ

m
(12.54)

where τ−1 = 2ImΣ(0− iδ).
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Chapter 13

Phase Transitions and broken
symmetry

13.1 Order parameter concept

The idea that phase transitions involve the development of an order parameter which low-
ers, or “breaks” the symmetry is one of the most beautiful ideas of many body physics.
In this chapter, we introduce this new concept, which plays a central role in our under-
standing of the way complex systems transform themselves into new states of matter at low
temperatures.

Landau introduced the order parameter concept in 1937[1] as a means to quantify the
dramatic transformation of matter at a phase transition. Examples of such transformations
abound: a snowflake forms when water freezes; iron becomes magnetic when electron spins
align into a single direction; superfluidity and superconductivity develop when quantum
fluids are cooled and bosons or pairs of fermions condense into a single quantum state with a
well-defined phase. Phase transitions can even take place in very fabric of space, and there is
very good evidence that we are living in a broken symmetry universe, which underwent one,
or more phase transitions which broke the degeneracy between the fundamental forces[2],
shortly after the big bang. Indeed, when the sun shines on our faces, we are experiencing
the consequences of this broken symmetry. Remarkably, while the microscopic physics of
each case is different, they are unified by a single concept.

Landau’s theory associates each phase transition with the development of an “order
parameter” ψ once the temperature drops below the transition temperature Tc:

|ψ| =

{
0 (T > Tc)

|ψ0| > 0 (T < Tc)

The order parameter can be a real or complex number, a vector or a spinor that can, in
general, be related to an n-component real vector ψ(x) = (ψ1, ψ2 . . . ψn). For example:
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Order parameter Realization Microscopic origin

m = ψ1 Ising ferromagnet 〈σ̂z〉
ψ = ψ1 + iψ2 Superfluid, Superconductor 〈ψ̂B〉, 〈ψ̂↑ψ̂↓〉
~M = (ψ1, ψ2, ψ3) Heisenberg Ferromagnet 〈~σ〉

Φ =

(
ψ1 + iψ2

ψ3 + iψ4

)
Higg’s Field

( 〈φ̂+〉
〈φ̂−〉

)

Figure 13.1: “Broken symmetry”. The development of crystalline order within a spherical
waterdroplet leads to the formation of a snowflake, reducing the symmetry from spherical
symmetry, to six-fold symmetry. (Snowflake picture reproduced with permission from K.
G. Librrecht.)

Microscopically, each order parameter is directly related to the expectation value of a quan-
tum operator. Thus, in an Ising ferromagnet “m = 〈σz(x)〉” is the expectation value of
the spin density along a particular anisotropic axis, while in a Heisenberg ferromagnet, the
magnetization can point in any direction, so that the order parameter is a vector pointing
in the direction of the spin density ~m = 〈~σ(x)〉. In a superconductor or superfluid, the
order parameter is a complex number related to the expectation value a bosonic field in the
condensate.
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(c)(b)

(a)

ψ = 0

ψFM 6= 0 ψSC 6= 0

Figure 13.2: (a) In a normal metal, there is no long-range order. (b) Below the Curie
temperature Tc of a ferromagnet, electron spins align to develop a ferromagnetic order
parameter. The resulting metal has a finite magnetic moment. (c) Below the transitition
temperature of a superconductor, electrons pair together to develop a superconducting order
parameter. The resulting metal exhibits the Meissner effect, excluding magnetic fields from
its interior.

The emergence of an order parameter often has dramatic macroscopic consequences in a
material. In zero gravity, water droplets are perfectly spherical, yet if cooled through their
freezing point they form crystals of ice with the classic six-fold symmetry of a snowflake.
We say that the symmetry of the water has “broken the symmetry”, because the symmetry
of the ice crystal no longer enjoys the continuous rotational symmetry of the original water
droplet. Equally dramatic effects occur within quantum fluids. Thus, when a metal develops
a ferromagnetic order parameter, it spontaneously develops an internal magnetic field. By
contrast, when a metal develops superconducting order, it behaves as a perfect diamagnet,
and will spontaneously expel magnetic fields from its interior even when cooled in a magnetic
field, giving rise to what is called the “Meissner effect”.

Part of the beauty of Landau theory, is that the precise microscopic expression for the
order parameter is not required to development a theory of the macroscopic consequences
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of broken symmetry. The Ginzburg-Landau theory of superconductivity pre-dated the
microscopic theory by seven years. Landau theory provides a “coarse grained” description
of the properties of matter. In general, the order parameter description is good on length
scales larger than

ξ0 = “coherence length”. (13.1)

On length-scales longer than coherence length, the internal structure of the order parameter
is irrelevant and it behaves as a smootly varying function that has forgotten about its
microscopic origins. However, physics on scales smaller than ξ0 requires a microscopic
description. For example, in a superconductor, the coherence length is a measure of the
size of a Cooper pair - a number that can be hundred or thousands of atom spacings, while
in superfluid He− 4, the coherence length is basically an atom spacing.

13.2 Landau Theory

13.2.1 Field cooling and the development of order

The basic idea of Landau theory, is to write the free energy as a function F [ψ] of the order
parameter. To keep things simple, we will begin our discussion with the simpest case when
ψ is a one-component Ising order parameter representing, for example, the magnetization
of an Ising Ferromagnet. We begin by considering the meaning of an order parameter, and
the relationship of the the free energy to the microscopic physics.

We can always induce the order parameter to develop by cooling in the presence of an
external field h that couples to the order parameter. In general, the inverse dependence of
the field on the order parameter, h[ψ] will be highly non-linear, but once we know it, we can
convert the dependence of the energy on h to a function of ψ. Broken symmetry develops
if ψ remains finite once the external field is removed.

Mathematically, an external field introduces a “source term” into the microscopic Hamil-
tonian:

H → H − h
∫
d3xψ̂(x).

The field h that couples linearly to the order parameter is called the conjugate field. For
an magnet, where ψ ≡ M is the magnetization, h ≡ B is the external magnetic field. For
a ferro-electric, where ψ ≡ P is the electric polarization, the conjugate field h ≡ E is the
external electric field. For many classes of order parameter, such as the pair density of a
superconductor, or the staggered magnetization of an antiferromagnet, although there is no
naturally occuring external field that couples linearly to the order parameter, but the idea
of a conjugate field is still a very useful concept.

The free energy of the system in the presence of an external field is a Gibb’s free energy
which takes account of the coupling to the field G[h] = F [ψ]− V ψh. G[h] is given by

G[h] = −kBT ln(Z[h]) = −kBT ln
(
Tr
[
e−β(Ĥ−h

∫
ψ̂d3x)

])
(13.2)
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where the partition function Z[h] involves the trace over the many body system. If we
differentiate (13.2) with respect to h we recover the expectation value of the induced order
parameter ψ[h] = 〈ψ̂〉

ψ(h, V ) =
1

Z[h]
Tr
[
e−β(H−h

∫
ψd3x)ψ̂(x)

]
= − 1

V

∂G[h]
∂h

, (13.3)

It follows that −δG = ψV δh.
In a finite system, the order parameter will generally disappear once we remove the

finite field. For example, if we take a molecular spin cluster and field-cool it below its bulk
Curie temperature it will develop a finite magnetization. However, once we remove the
external field, thermal fluctuations will generate domains with reversed order. Each time
a domain wall crosses the system, the magnetization reverses, so that on long enough time
scales, the magnetization will average to zero. But as the size of the system grows beyond
the nano-scale, two things will happen - first infinitesimal fields will prevent the thermal
excitation of macroscopic domains - and second - even in a truly zero field, the probability
to form these large domains becomes astronomically small. (See example Ex. 13.2.1) In this
way, broken symmetry “freezes into” the system and becomes stable in the thermodynamic
limit.

From this line of reasoning, it becomes clear that the development of a thermally stable
order parameter requires that we take the thermodynamic limit V →∞ before we remove
the external field. When we “field cool” an infinitely large system below a second-order
phase transition, the order parameter remains after the external field is removed. The
equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h, V ).

To obtain the Landau function, F [ψ], must write G[h] in terms of ψ and then,

F [ψ] = G[h] + V hψ = G[h]− h∂G[h]
∂h

.

This expression for F [ψ] is a Legendre transformation of G[h]. Since δG = −V ψδh, δF =
δG + V δ(hψ) = V hδψ, so the inverse transformation is h = V −1 ∂F

∂ψ . If h = 0, then

hV =
∂F

∂ψ
= 0

which states the intuitively obvious fact that when h = 0, the equilibrium value of ψ is
determined by a stationary point of F [ψ].

Example 13.29: Consider a cubic nanomagnet of N = L3 Ising spins interacting via
a nearest neighbor ferromagnetic interaction of strength J . Suppose the dynamics can
be approximated by Monte Carlo dynamics, in which each spin is “updated” after a a
time τ0. At T = 2J , (the bulk Tc = 4.52J) estimate the time, in units of τ0 required
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to form a domain that will cross the entire sample. If τ0 = 1ns, estimate the minimum
size L for the decay time of the total magnetization to become comparable with the
time span of a Ph. D. degree.

Solution: To form a domain wall of area A ∼ L2 costs an free energy ∆F ∼ 2JL2,
occuring with probability p ∼ e−(∆F/T ). The time required for formation may be
estimated to be

τ ∼ τ0p−1 ∼ τ0e2JL
2/T .

where the most important aspect of the estimate, is that the exponent grows with L2.
Our naive estimate does not take into account the configurational entropy (the number
of ways of arranging a domain wall), but it will give a rough idea of the required
size. Putting τ0 ∼ 10−9s and τ = 5y ∼ 108s for a typical Ph. D, this requires
τ/τ0 = 1019 ∼ e40, thus L ∼

√
40 ∼ 6. Already by about L3 = 403/2 ∼250 spins the

time for the magnetization to decay is of the order of years. By N ∼ 500, this same
timescale has stretched to the age of the universe.

TTc

ψ

h>0

ψ

(a) (b)F(   )ψ
cT>T

T<T

T=T

c

c

Figure 13.3: (a) The Landau free energy F (ψ) as a function of temperature for an Ising
order parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

13.2.2 The Landau Free energy

Landau theory concentrates on the region of small ψ, audaciously expanding the free energy
of the many body system as a simple polynomial:

fL[ψ] =
1

V
F [ψ] =

r

2
ψ2 +

u

4
ψ4. (13.4)
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• The Landau free energy describes the leading dependence of the total free energy on
ψ. The full free energy is given by ftot = fn(T )+ f [ψ]+O[ψ4], where fn is the energy
of the “normal” state without long range order.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even
function of ψ: H[ψ] = H[−ψ]. We say that the system possesses a “global Z2 sym-
metry”, because the Hamiltonian is invariant under transformations of the Z2 group
that takes ψ → ±ψ.

Provided r and u are greater than zero, the minimum of fL[ψ] lies at ψ = 0. Landau
theory assumes that the phase transition temperuture, r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 13.3 (a). The minimum of the free energy occurs when

df

dψ
= 0 = rψ + uψ3 ⇒ ψ =

{
0 (T > Tc)

±
√

a(Tc−T )
u (T < Tc)

(13.5)

so that for T < Tc, there are two minima of the free energy function (Fig. 13.3 (a)). Note
that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects
the sign of the field (Fig. 13.3 (b)):

ψ = sgn(h)

√
a(Tc − T )

u
, (T < Tc). (13.6)

This branch-cut along the temperature axis of the phase diagram, is an example of
a first-order phase boundary. The point T = Tc, h = 0 where the line ends is a
“critical point”.

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau
free energy must be expanded to sixth order in ψ:

f [ψ] =
1

V
F [ψ] =

r

2
ψ2 +

u

4
ψ4 +

u6

6
ψ6

When u < 0 the free energy curve develops three minima and the phase transition
becomes first order; the special point at r = h = u = 0 is a convergence of three
critical points called a tri-critical point (see exercise 3).
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(b)(a)

ψ

T

Figure 13.4: Phase diagram in an applied field. A first order line stretches along the zero
field axis, h = 0 up to the critical point. The equilibrium order parameter changes sign
when this phase boundary is crossed. (a) Three dimensional plot showing discontinuity in
order parameter as a function of field ψ. (b) Two dimensional phase boundary showing first
order line.

13.2.3 Singularities at the critical point.

At a second order phase transition, the second derivatives of the Free energy develop sin-
gularities. If we plug (13.6) back into the Free energy fL[ψ] (13.4), we find that

fL =

{
0 (T > Tc)

− a2

4u(Tc − T )2 (T < Tc)

In this way, the free energy and the entropy S = −∂F
∂T are continuous at the phase transition,

but the specific heat

CV = −T ∂
2F

∂T 2
= C0(T ) +

{
0 (T > Tc)
a2T
2u (T < Tc)

(13.7)

where C0 is the background component of the specific heat not associated with the ordering
process. We see that CV “jumps” by an amount

∆CV =
a2Tc
2u

below the transition. The jump size ∆CV has the dimensions of entropy per unit volume,
and sets a characteristic size of the entropy lost per unit volume once long-range order sets
in.
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At a second-order transition, matter also becomes infinitely susceptible to the applied
field h, as signalled by a divergence in susceptibility χ = ∂ψ

∂h . To see this in Landau theory,
let us introduce a field by replacing

f(ψ)→ f(ψ)− hψ =
r

2
ψ2 +

u

4
ψ4 − hψ (13.8)

A finite field h > 0 has the effect of “tipping” the free energy contour to the right, prefer-
entially lowering the energy of the right-hand minimum, as illustrated in Fig. (13.4). For
h 6= 0, equilibrium requires ∂f/∂ψ = rψ+uψ3−h = 0, which we can solve for r = h

ψ−4uψ2.
Above and below Tc, we can solve for ψ by linearizing ψ[h] = δψ + ψ0 around the h = 0
value given in (13.6), to obtain δψ = χ(T )h+O(h3), (See Fig. 13.3(b)) where

χ(T ) =
dψ

dh
=

1

a|T − Tc|
×
{

1 (T > Tc)
1
2 (T < Tc)

(13.9)

describes the divergence of the “susceptibility” at the critical point. When we are actually
at the critical point (r = 0), the induced order parameter is a non-linear function of field,

ψ =

(
h

u

)1/3

(T = Tc) (13.10)

The divergence of the susceptibility at the critical point means that if cool through the
critical point in the absence of a field, the tiniest stray field will produce a huge effect,
tipping the system into either an up or down state. Once this happens, we say that the
system has “spontaneously broken the Z2 inversion symmetry” of the original Hamiltonian.

The singular powerlaw dependences of the order parameter, specific heat and suscep-
tibility near a second order transition described by Landau theory are preserved at real
second-order phase transitions, but the critical exponents are changed by the effects of
spatial fluctuations of the order parameter. In general, we write

CV ∝ (|T − Tc|)−α (Specific heat),

ψ ∝
{

(Tc − T )β

h
1
δ

(Order parameter),

χ ∝ (T − Tc)−γ (Susceptibility),

(13.11)

which Landau theory estimates as α = 0, β = 1/2, δ = 3 and γ = 1. Remarkably, this
simple prediction of Landau theory continues to hold once the full-fledged effects of order
parameter fluctuations are included, and still more remarkably, the exponents that emerge
are found to be universal for each class of phase transition, independently of the microscopic
physics[?].

13.2.4 Broken Continuous symmetries : the Mexican Hat Potential

We now take the leap from a one, to an n-component order parameter. We shall be par-
ticularly interested in a particularly important class of multi-component order in which the
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underlying physics involves a continous symmetry that is broken by the phase transition.
In this case, the n− component order parameter ~ψ = (ψ1 . . . ψn) acquires both magnitude
and direction, and the discrete Z2 inversion symmetry of the Ising model is now replaced
by a continuous “O(N)” rotational symmetry. At a phase transition the breaking of such
continous symmetries has remarkable consequences.

The O(N) symmetric Landau theory is simply constructed by replacing ψ2 → |ψ|2 =
(ψ2

1 + . . . ψ2
n) = ~ψ · ~ψ, taking the form

fL[~ψ] =
r

2
(~ψ · ~ψ) +

u

4
[(~ψ · ~ψ)]2, O(N) invariant Landau theory

where as before r = a(T − Tc). This Landau function is invariant under O(N) rotations
~ψ → R~ψ that preserve the magnitude of the order parameter. Such symmetries do not
occur by accident, but owe their origin to conservation laws which protect them in both the
microscopic Hamiltonian and the macroscopic Landau theory. For example, in a Heisen-
berg magnet, the corresponding Landau theory has O(3) symmetry associated with the
underlying conservation of the total spin magnetization.

Once T < Tc, the order parameter acquires a definite magnitude and direction given by

~ψ =

√
|r|
u
n̂

where n̂ is a unit (n-component) vector. By acquiring a definite direction, the order param-
eter breaks the O(N) symmetry. In a magnet, this would correspond to the spontaneous
development of a uniform magnetization. In a superconductor or superfluid, it corresponds
to the development of a macroscopic phase.

A particularly important example of a broken continuous symmetry occurs in superfluids
and superconductors, where the the order parameter is a single complex order parameter
composed from two real order parameters ψ = ψ1 + iψ2 = |ψ|eiφ. In this case, the Landau
free energy takes the form1

f [ψ] = r(ψ∗ψ) +
u

2
(ψ∗ψ)2, U(1) invariant Landau theory

ψ ≡ ψ1 + iψ2 ≡ |ψ|eiφ. (13.12)

Fig. (13.5) shows the Landau free energy as a function of ψ, where the magnitude of the
order parameter |ψ| is represented in polar co-ordinates. The free energy surface displays a

1For complex fields, it is more convenient to work without the factor of 1/2 in front of the quadratic
terms. To keep the numerology simple, the interaction term is also multiplied by two.
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ψ = ψ1

ψ

ψ1

ψ2

(b) ψ = ψ1 + iψ2
(a)

ψ1

f(ψ)

f(ψ)
|ψ|

φ

Figure 13.5: Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter ψ = ψ1 + iψ2 =
|ψ|eiφ, where the the Landau free energy forms a “Mexican Hat Potential” in which the free
energy minimum forms a rim of degenerate states with energy that is independent of the
phase φ of the uniform order parameter.

striking rotational invariance, associated with the fact that the free energy is independent
of the global phase of the order parameter

f [ψ] = f [eiαψ]. U(1) gauge invariance

This is a direct consequence of the global U(1) invariance of the particle fields that have
condensed to develop the complex order parameter. For T < Tc, the negative curvature of
the free energy surface at ψ = 0 causes the free energy surface to develops the profile of a
“Mexican Hat”, with a continuous rim of equivalent minima where

ψ =

√
|r|
u
eiφ

The appearance of a well-defined phase breaks the continuous U(1) symmetry.
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The “Mexican hat” potential illustrates a special property of phases with broken con-
tinuous symmetry: it becomes possible to continuously rotate the order parameter from
one broken symmetry state to another. Notice however, that if the order parameter is to
maintain a well-defined phase, or direction then it is clear that there must be an energy
cost for deforming or “twisting” the direction of the order parameter. This rigidity is an
essential component of broken continuous symmetry. In superfluids, the emergence of a
well-defined phase associated with the order parameter is intimately related to persistent
currents, or superflow. We shall shortly see that when we “twist” the phase, a superflow
develops.

~j ∝ ~∇φ.

To describe this rigidity, we need to take the next step, introducing a term into energy
functional that keeps track of the energy cost of a non-uniform order parameter. This leads
us onto Landau Ginzburg theory.

13.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general
theory needs to account for inhomogenious order parameters in which the amplitude varies
or the direction of the order parameter is “twisted”. This development of Landau theory
is called “Ginzburg Landau” theory2, after Ginzburg and Landau[5], who developed this
formalism as part of their macroscopic theory of superconductivity. We will begin our
discussion of Landau Ginzburg theory with the simplest case a one-component “Ising”
order parameter.

Ginzburg Landau theory[5] introduces an addition energy cost δf ∝ |∇ψ|2 associated
with gradients in the order parameter: fGL[ψ,∇ψ] = s

2 |∇ψ|2 + fL[ψ(x)]. For a single, Ising
order parameter, the Free energy (in “d” dimensions) is given by

FGL[ψ] =

∫
ddxfGL[ψ(x),∇ψ(x), h(x)]

fGL[ψ,∇ψ, h] =
s

2
(∇ψ)2 +

r

2
ψ2 +

u

4
ψ4 − hψ (13.13)

Ginzburg Landau Free energy: one component order

There are two points to be made here:

• Ginzburg Landau (GL) theory is only valid near the critical point, where the order
parameter is small enough to permit a leading order expansion.

2The idea of using a gradient expansion of the free energy first appears in print in the work of Ginzburg
and Landau. However, germs of this theory are contained in the work of Ornstein and Zernicke, who in 1914
developed a theory to describe critical opalescence[3].
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• Dimensional analysis shows that [c]/[r] = L2 has the dimensions of length-squared.
The new length-scale introduced by the gradient term, called the “correlation length”

ξ(T ) =

√
s

|r(T )| = ξ0

∣∣∣∣1−
T

Tc

∣∣∣∣
− 1

2

correlation length (13.14)

sets the characteristic length-scale of order-parameter fluctuations, where

ξ0 = ξ(T = 0) =

√
s

aTc
coherence length

is a measure of the microscopic coherence length. Near the transition, ξ(T ) diverges,
but far from the transition, it becomes comparable with the coherence length.

The traditional use of Ginzburg Landau theory, is as a as a variational principle, using
the condition of stationarity δF/δψ = 0 to determine non-equilibrium configurations of the
order parameter. Landau Ginzburg theory is also the starting point for a more general
analysis of thermal fluctuations around the mean-field theory. We shall return at the end
of this chapter.

13.3.1 Non-uniform solutions of Ginzburg Landau theory

There are two kinds of non-uniform solutions we will consider:

1. The linear, but non-local response to a small external field.

2. “Soliton” or domain wall solutions, in which the order parameter changes sign, passing
through the maximum in the free energy at ψ = 0. (Such domain walls are particular
to Ising order ).

To obtain the equation governing non-uniform solutions, we write

δFGL =

∫
ddx δψ(x)

[
−s∇2ψ(x) +

∂fL[ψ]

∂ψ(x)

]
. (13.15)

Since the Ginzburg Landau free energy must be stationary with respect to small variations
in the field:

δFGL
δψ(x)

= −s∇2ψ +
∂fL[ψ]

∂ψ
= 0 (13.16)

or more explicitly

[
(−s∇2 + r) + uψ2

]
ψ(x)− h(x) = 0 (13.17)
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Susceptibility and linear response

The simplest application of GL theory, is to calculate the linear response to a non-uniform
applied field. For T > Tc, for a small linear response we can neglect the cubic term so that
(−c∇2 + r)ψ(x) = h(x). If we Fourier transform this equation, we obtain

(sq2 + r)ψq = hq (13.18)

or ψq = χqhq, where

χq =
1

sq2 + r
=

1

s(q2 + ξ−2)
(13.19)

is the momentum-dependent susceptibility and ξ =
√
s/r is the correlation length defined

in (13.14). Notice that χq=0 = 1/[a(T − Tc)] = r−1 is the uniform susceptibility obtained
in (13.9) earlier. For large q >> ξ−1, χ(q) ∼ 1/q2 becomes strongly momentum dependent:
in otherwords, the response to an applied field is non-local up to a the correlation length.

Example 13.30:

(a) Show that in d = 3 dimensions, for T > Tc, the response of the order parameter
field to an applied field is non-local, and given by

ψ(x) =

∫
d3x′χ(x− x′)h(x′)

χ(x− x′) =
χ

4πξ2
e−|x−x′|/ξ

|x− x′| (13.20)

(b) Show that provided h(x) is slowly varying on scales of order ξ, the linear response
can be approximated by

ψ(x) = χh(x)

Solution:

(a) If we carry out the inverse Fourier transform of the response ψ(q) = χ(q)h(q), we
obtain

ψ(x) =

∫

x′

χ(x− x′)h(x′)

In example (5.6) we showed that under a Fourier transform

e−λ|x|

|x|
FT−→ 4π

q2 + λ2

so the (inverse) Fourier transform of the non-local susceptibility is

χ(q) =
c−1

q2 + ξ−2

FT−1

−→ 1

4πs

e−|x|/ξ

|x| =
χ

4πξ2
e−|x|/ξ

|x|

(b) At small q, we may replace χ(q) ≈ χ, so that for slowly varying h in real space we
can replace χ(x − x′) → χδ(d)(x − x′). So that provided h is slowly varying over
lengths longer than the correlation length, ψ(x) = χh(x).
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(b)

x

(a)

ψ
ψ

V [ψ] = −f(ψ)
f(ψ)

−ψ0
ψ0

+ψ0

−ψ0 ψ0

−ψ0

ψ

ξ

≡ψ(x)

ψ(t)

Figure 13.6: Soliton solution of Ginzburg Landau equations. (a) The evolution of ψ in
one dimension is equivalent to a particle at position ψ, moving in an inverted potential
V [ψ] = −fL[ψ]. A soliton is equivalent to a “bounce” between maxima at ψ = ±ψ0 of
V [ψ]. (b) The “path” that the particle traces out in time “t” ≡ x defines the spatial
dependence of the order parameter ψ[x].

Domain Walls

Once T < Tc, it is energetically costly for the order parameter to deviate seriously from the
equilibrium values ψ0. Major deviations from these “stable vacua” can however take place
at “domain walls” or “solitons”, which are narrow walls of space which separate the two
stable “vacua” of opposite sign, where ψ = ±ψ0. To change sign, and Ising order parameter
must pass through zero at the center of the domain wall, passing over the “hump” in the
free energy.

We now solve for the soliton in one dimension, where the Ginzburg Landau equation
becomes

cψ′′ =
dfL[ψ]

dψ
. (13.21)

This formula has an intriguing interpretation as Newton’s law of motion for a particle of
mass c moving in an inverted potential V [ψ] = −fL[ψ]. This observation permits an analogy
between a soliton and and motion in one dimension which enables us to to quickly develop
a solution for the soliton. In this analogy, ψ plays the role of displacement while x plays
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the role of time. It follows that s
2(ψ′)2 is an effective “kinetic energy” 3 and the effective

“energy”

E =
s

2
(ψ′)2 − fL[ψ]

is conserved and independent of x. With our simple analogy, we can map a soliton onto
the problem of a particle rolling off one maxima of the inverted potential V [ψ] = −fL[ψ],
“bouncing” through ψ = 0 out to the other maxima (Fig13.6). Fixing the conserved initial
energy to be E = −fL[ψ0], we deduce the “velocity”

ψ′ =
dψ

dx
=

√
2

s
(E + fL[ψ]) =

ψ0√
2ξ

(
1− ψ2

ψ2
0

)
,

To make the last step we have replaced ψ2
0 = |r|

u and ξ =
√

s
|r| . Solving for dx =

(
√

2ξ/ψ0)[1− (ψ̃/ψ0)
2]−

1
2dψ and integrating both sides yields

x− x0 =

√
2ξ

ψ0

∫ ψ

0

dψ̃

1− (ψ̃/ψ0)2
=
√

2ξ tanh−1(ψ/ψ0),

where x = x0 is the point where the order parameter passes through zero, so that

ψ(x) = ψ0 tanh(
x− x0√

2ξ
). “soliton”

This describes a “soliton” solution to the Ginzburg Landau located at x = x0.

Example 13.31: Show that the Ginzburg Landau free energy of a Domain wall can
be written

∆F = A
u

4

∫
dx[ψ4

0 − ψ4(x)]

where A = Ld−1 is the area of the domain wall. Using this result, show that surface
tension σ = ∆F/A is given by

σ =

√
8

3
ξuψ4

0 .

Solution: First, let us integrate by parts to write the total energy of the domain in the
form

F = A

∫
dx
[
−s

2
ψψ′′ + fL[ψ]

]
(13.22)

3This can be derived by multiplying (13.21) by the integrating factor ψ′ then

c(ψ′ψ′′) − ψ′
dfL[ψ]

dψ
=

d

dx

[
s

2
(ψ′)2 − fL[ψ]

]
= 0.
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where for r < 0, fL[ψ] = − |r|
2 ψ

4 + u
4ψ

4 Using the GL equation (13.21)

sψ′′ =
dfL
dψ

= −|r|ψ + uψ3.

Subsituting into (13.22), we obtain

F = −A
∫
dx

[
−1

2
ψ
(
−��|r|ψ + uψ3

)
−

�
�
�|r|

2
ψ2 +

u

4
ψ4

]

= −uA
∫
dxψ4(x) (13.23)

Subtracting off the energy of the uniform configuration, we then obtain

∆F = A
u

4

∫
dx(ψ4

0 − ψ4(x))

To calculate the surface tension, substitute ψ(x) = ψ0 tanh[x/(
√

2ξ)], which gives

σ =
∆F

A
=

u

4
ψ4

0

∫ ∞

−∞
dx(1− tanh[x/(

√
2ξ)4)

=
ξu√

8
ψ4

0

8/3︷ ︸︸ ︷∫ ∞

−∞
du(1− tanh[u]4) =

√
8

3
ξuψ4

0 . (13.24)

13.4 Landau Ginzburg II: Complex order and Superflow

13.4.1 “A macroscopic wavefunction”

We now turn to discuss the Ginzburg Landau theory of complex, or two component order
parameters. Here, we shall focus on the use of Ginzburg Landau theory to understand
superfluids and superconductors. At the heart of our discussion, is the emergence of a kind
of “macroscopic wavefunction” in which the microscopic field operators of the quantum fluid
ψ̂(x) acquire an expectation value

〈ψ̂(x)〉 ≡ ψ(x) = |ψ(x)|eiφ(x) “Macroscopic wavefunction”

complete with phase. The magnitude of this order parameter determines the density of
particles in the superfluid

|ψ(x)|2 = ns(x)

while the twist, or gradient of the phase determines the superfluid velocity.

vs(x) =
h̄

m
∇φ(x).

The idea that the wavefunction can acquire a kind of Newtonian reality in a superfluid
or superconductor goes deeply against our training in quantum physics: at first sight, it
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appears to defy the Copenhagen interpretation of quantum mechanics, in which ψ(x) is
an unobservable variable. The bold idea suggested by Ginzburg Landau is that ψ(x) is a
macroscopic manifestation of quintillions of particles - bosons - all condensed into precisely
the same quantum state. Even the great figures of the field - Landau himself - found
this hard to absort, and debate continues today. Yet on his issue, history and discovery
appear to consistently have sided with the bold, if perhaps naive, interpretation of the
superconducting and superfluid order parameter as a essentially real, observable property
of quantum fluids 4. It is the classic example of an “emergent phenomenon” - one of the
many collective properties of matter that we are still discovering today which is a not a
priori self-evident from the microscopic physics.

Vitalii Ginzburg and Lev Landau introduced their theory in 1950, as a phenomenological
theory of superconductivity, in which ψ(x) played the role of a macroscopic wavefunction
whose microscopic origin was, at the time, unknown. We shall begin by illustrating the
application of with an application of this method to superfluids. For a superfluid, the GL
free energy density is

fGL[ψ,∇ψ] =
h̄2

2m
|∇ψ|2 + r|ψ|2 +

u

2
|ψ|4, (13.25)

GL free energy: superfluid

Before continuing, let us make a few heuristic remarks about the GL free energy:

• The the GL free energy is to be interpreted as the energy density of a condensate of
bosons in which the field operator behaves as a complex order parameter. This leads
us to identify the coefficient of the gradient term

s|∇ψ|2 ≡ h̄2

2m

〈
∇ψ̂†∇ψ̂

〉
(13.26)

as the kinetic energy, so that s = h̄2

2m .

• As in the case of Ising order, the correlation length, or “Ginzburg Landau coher-
ence length” governing the characteristic range of amplitude fluctuations of the order
parameter is given by

ξ =

√
s

|r| =
√

h̄2

2M |r| = ξ0

(
1− T

Tc

)−1/2

(13.27)

4On more than one occasion, senior physicists advised their students and younger colleagues against such
a brash interpretation. One such story took place in Moscow in 1953. Shortly after Ginzburg Landau theory
was introduced, a young student of Landau, Alexei Abrikosov showed that a naive classical interpretation of
the order parameter field led naturally to the predication of quantized vortices and superconducting vortex
lattices. Landau himself could not bring himself to make this leap and persuaded his student to shelve the
theory. It was only after Feynman published a theory of vortices in superfluid helium, that Landau accepted
the idea, clearing the way for Abrikosov to finally publish his paper. [?]

382



c©2009 Piers Coleman Chapter 13.

where ξ0 = ξ(T = 0) =
√

h̄2

2maTc
is the coherence length. Beyond this length-scale,

only phase fluctuations survive.

• If we freeze out fluctuations in amplitude, writing ψ(x) =
√
nse

iφ(x), then∇ψ = i∇φ ψ
and |∇ψ|2 = ns(∇φ)2, the residual dependence of the kinetic energy on the twist in
the phase is

h̄2ns
2m

(∇φ)2 =
mns

2

v2
s︷ ︸︸ ︷(

h̄

m
∇φ
)2

.

Since mns is the mass density, we see that a twist of the phase results in an increase
in the kinetic energy that we may associate with a “superfluid” velocity

vs =
h̄

m
∇φ.

13.4.2 Off-diagonal long range order and coherent states

What then, is the meaning of the complex order parameter ψ? It is tempting to associate
it with the expectation value of the field operator

〈ψ̂(x, t)〉 = ψ(x, t)

Yet, paradoxically, a field operator, links states with different particle numbers, so such
an expectation value can never develop in a state in a state with a definite number of
particles. One way to avoid this problem, proposed by Penrose and Onsager, is to define
the order parameter in terms of correlation functions[?, ?]. The authors noted that even in
a state with a definite particle number, broken symmetry manifests itself as a long-distance
factorization [?] of the correlation function 〈ψ†(x)ψ(x)〉:

〈ψ†(x′)ψ(x)〉 |x
′−x|≫ξ−−−−−→ ψ∗(x′) ψ(x) + small terms (13.28)

Off-diagonal long range order.

in terms of the order parameter. This property is called “off-diagonal long range order”
[?](ODLRO).

However, a more modern view is that in macroscopic systems, we don’t need to restrict
our attention to to states of definite particle number, and indeed, once we bring a system
into contact with a bath of particles, quantum states of indefinite particle number do arise.
This issue also arises in a ferromagnet where, the analog of particle number is the conserved
magnetization Sz along the z-axis. A ferromagnet of N spins polarized in the z direction
has wavefunction

|Z〉 =
∏

⊗
i=1,N

| ↑〉i
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However, if we cool the magnet in a field aligned along the x-axis, coupled via the Hamil-
tonian H = −2BSx = −B(S+ + S−), then once we remove the field at low temperatures,
the magnet remains polarized in the x direction:

|X〉 =
∏

⊗
i=1,N

| →〉i =
∏

⊗
i=1,N

( | ↑〉+ | ↓〉√
2

)

i

.

Thus the coherent exchange of spin with the environment leads to a state that contains an
admixture of states of different Sz. In a similar way, we may consider cooling a quantum
fluid in a field that couples to the superfluid order parameter. Such a field is created by a
“proximity effect” of the exchange of particles with a pre-cooled superfluid in close vicinity,
giving rise to a field term in the Hamiltonian such as

H ′ = −∆

∫
ddx[ψ†(x) + ψ(x)]

When we cool below the superfluid transition temperature Tc in the presence of this pairing
field, removing the proximity field at low temperatures, then like a magnet, the resulting
state acquires an order parameter forming a stable state of indefinite particle number. 5

To describe such states requires the many body equivalent of wave-packets: a type of state
called a “coherent state”.

Coherent states are eigenstates of the field operator

ψ̂(x)|ψ〉 = ψ(x)|ψ〉. (13.29)

These states form an invaluable basis for describing superfluid states of matter. A coherent
state can be simply written as

|ψ〉 ∼ e
√
Nsa† |0〉 coherent state. (13.30)

where

a† =
1√
Ns

∫
ddx ψ(x)ψ̂†(x),

coherently adds a boson to a condensate with with wavefunction ψ(x). Here, Ns =∫
ddx|ψ(x)|2 is the average number of bosons in the superfluid and the normalization is

chosen so that [a, a†] = 1. (See example 13.4 and exercise 13.6.)

Similarly, the conjugate state 〈ψ| = 〈0|e
√
Nsâ diagonalizes the creation operator:

〈ψ|ψ̂†(x) = ψ∗(x)〈ψ|. (13.31)

5One might well object to this line of reasoning - for clearly, creating a state with a definite phase requires
we have another pre-cooled superfluid prepared in a state of definite phase. But what happens if we have
none to start with? It turns out that what we really can do, is to control the relative phase of two superfluids.
By field-cooling, and it is the relative phase that we can actually measure.
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However, it not possible to simultaneously diagonalize both creation and annihilation op-
erators because they don’t commute. Thus |ψ〉 only diagonalizes the destruction operator
and 〈ψ∗| only diagonalizes the creation operator.

Coherent states are really the many body analog of “wave-packets”, with the roles of
momentum and position replaced by N and φ respectively. Just as p̂ generates spatial

translations ,e−iPa/h̄|x〉 = |x+a〉, N̂ translates the phase (see exercise 1), so that eiαN̂ |φ〉 =
|φ + α〉. (Notice the difference in the sign in the exponent). For an infinitesimal phase
translation 〈φ+ δφ| = 〈φ|(1− iδφN̂), so i ddφ〈φ| = 〈φ|N̂ , implying

N̂ = i
d

dφ
.

This is the many body analog of the identity p̂ ≡ −ih̄ d
dx . Just as periodic boundary

conditions in space give rise to discrete quantized values of momentum, the periodic nature
of phase, gives rise to a quantized particle number. It follows that

[N̂ , φ̂] = i

implying phase and particle number are conjugate variables which obey an uncertainty
relation 6

∆φ∆N >
˜

1

A coherent state trades in a small fractional uncertainty in particle number to gain a high
degree of precision in its phase. For small quantum systems where the uncertainty in particle
number is small, phase becomes ill-defined. If we write the uncertainty principle in terms of
the relative error ∆ǫ = ∆N/N , then ∆φ∆ǫ >˜ 1/N we see that once N ∼ 1023, the fractional

uncertaintly in particle number and the phase can be known to an accuracy of order 10−11.
In the thermodynamic limit this means we can localize and measuring both the phase and
the particle density with Newtonian precision.

Example 13.32: The coherent state (13.30) is not normalized. Show that the properly
normalized coherent state

|ψ〉 = e−Ns/2e
√
Nsâ

† |0〉,
a† =

1√
Ns

∫

x

ψ(x)ψ̂†(x) (13.32)

is an eigenstate of the annihilation operator ψ̂(x) with eigenvalue ψ(x), where Ns =∫
ddx|ψ(x)|2.

Solution:

6The strict relation is ∆φ∆N ≥ 1
2
|[φ̂, N̂ ]| = 1

2
. As in the case of wavepackets, in heuristic discussion, we

drop the factor of one half.
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1. First, since [ψ̂(x), ψ̂†(x′)] = δ(d)(x− x′), we note that

[a, a†] =
1

Ns

∫

x,x′

ψ(x)ψ∗(x′)

δ(d)(x−x′)︷ ︸︸ ︷
[ψ̂(x), ψ̂†(x′)] =

1

Ns

∫

x

|ψ(x)|2 = 1,

so that a and a† are canonical bosons.

2. To obtain the normalization of a coherent state, let us expand the exponential in

|z〉 = ezâ
† |0〉 in terms of eigenstates of the boson number operator n̂ = a†a, |n〉,

as follows:

|z〉 =

∞∑

n=0

(za†)n

n!
|0〉 =

∞∑

n=0

zn√
n!

|n〉︷ ︸︸ ︷
(a†)n√
n!
|0〉 =

∞∑

n=0

zn√
n!
|n〉

Since 〈n′|n〉 = δn,n′ , taking the norm, we obtain

〈z|z〉 =
∑

n

|z|n
n!

= e|z|
2

Placing z =
√
Ns, it follows that the normalized coherent state is |ψ〉 = e−Ns/2e

√
Nsa

† |0〉.
3. Since ψ̂(x)|0〉 = 0, the action of the field operator on the coherent state is

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x), e
√
Nsa

†

]|0〉 (13.33)

To simplify notation, let us denote α† =
√
Nsa

†. The commutator

[ψ̂(x), α†] =

∫

x′

ψ(x′)

δ(d)(x−x′)︷ ︸︸ ︷
[ψ̂(x), ψ̂†(x′)] = ψ(x)

which in turn implies that [ψ̂(x), (α†)r] = rψ(x)(α†)r−1. Now expanding

eα
†

=
∑

r

1

r!
(α†)r

we find that

[ψ̂(x), eα̂
†

] =
∞∑

r=0

1

r!
[ψ̂(x), (α̂†)r] = ψ(x)

∞∑

r=1

(α̂†)r−1

(r − 1)!
= ψ(x)eα̂

†

so that finally,

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x), e
√
Nsa

†

]|0〉 = ψ(x)e−Ns/2e
√
Nsa

† |0〉 = ψ(x)|ψ〉. (13.34)
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Ginzburg Landau energy for a coherent state

We shall now link the one-particle wavefunction of the condensate to the order parameter of
Ginzburg Landau theory. While coherent states are not perfect energy eigenstates, at high
density they provide an increasingly accurate description of the ground-state wavefunction of
a condensate. To take the expectation value of normal ordered operators between coherent
states, one simply replaces the fields by the order parameter, so that if

Ĥ =
h̄2

2m
∇ψ̂†(x)∇ψ̂(x) + (U(x)− µ)ψ̂†(x)ψ̂(x) +

u

2
: (ψ̂†(x)ψ̂(x))2 : (13.35)

is the energy density of the microscopic fields, where U(x) is the one-particle potential, then
the energy density of the condensate is

〈ψ|H[ψ̂†, ψ̂]|ψ〉 = H[ψ∗, ψ] =
h̄2

2m
|∇ψ(x)|2 + (U(x)− µ)|ψ(x)|2 +

u

2
|ψ(x)|4.

which we recognize as a Ginzburg Landau energy density with

s =
h̄2

2m
, r(x) = U(x)− µ.

At a finite temperature, this analysis needs modification. For instance, µ will acquire a
temperature dependence that permits r(T ) to vanish at Tc, while the relevant functional
becomes free energy F = E − TS. Finally, note that at a finite temperature, ns(T ) only
defines the superfluid component of the total particle density n, which contains both a
normal and a superfluid component n = ns(T ) + nn(T ).

13.4.3 Phase rigidity and superflow

In GL theory the energy is sensitive to a “twist” of the phase. If we substitute ψ = |ψ|eiφ
into the GL free energy, the gradient term becomes ∇ψ = (∇|ψ|+ i∇φ|ψ|)eiφ, so that

fGL =

KE: phase rigidity︷ ︸︸ ︷
h̄2

2m
|ψ|2(∇φ)2 +

amplitude flucts︷ ︸︸ ︷[
h̄2

2m
(∇|ψ|)2 + r|ψ|2 +

u

2
|ψ|4

]
(13.36)

The second term resembles the Ginzburg Landau functional for an Ising order parameter,
and describes the energy cost of variations in the magnitude of the order parameter. The
first term term is new. This term describes the “phase rigidity”. As we learnt in the
previous section, amplitude fluctuations of the order parameter are confined to scales shorter
than the correlation length ξ. On longer length-scales the physics is entirely controlled by
the phase degrees of freedom, so that

fGL =
ρφ
2

(∇φ)2 + constant (13.37)
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The quantity ρφ = h̄2

m ns is often called the “superfluid phase stiffness”.
From a microscopic point of view, the phase rigidity term is simply the kinetic energy of

particles in the condensate, but from a macroscopic view, it is an elastic energy associated
with the twisted phase. The only way to reconcile these two viewpoints, is if a twist of the
condensate wavefunction results in a coherent flow of particles.

To see this explicitly, let us calculate the current in a coherent state. Microscopically,
the current operator is

~J = −i h̄
2m

(
ψ̂†~∇ψ̂ − ~∇ψ̂†ψ̂

)

so in a coherent state,

〈ψ| ~J |ψ〉 = −i h̄
2m

(
ψ∗~∇ψ − ~∇ψ∗ψ

)
(13.38)

If we substitute ψ(x) =
√
ns(x)e

iφ(x) into this expression, we find that

Js = ns
h̄

m
∇φ (13.39)

so that constant twist of the phase generates a flow of matter. Writing Js = nsvs, we can
identify

vs =
h̄

m
∇φ.

as the “superfluid velocity” generated by the twisted phase of the condensate. Conventional
particle flow is acheived by the addition of excitations above the ground-state, but superflow
occurs through a deformation of the ground-state phase and every single particle moves in
perfect synchrony.

Example 13.33:

(a) Show that in a condensate, the quantum equations of motion for the phase and
particle number can be replaced by Hamiltonian dynamics[?]:

h̄
dN

dt
= i[N,H] =

∂H

∂φ

h̄
dφ

dt
= i[φ,H] = −∂H

∂N
(13.40)

which are the analog of q̇ = ∂H
∂p and ṗ = −∂H∂q .

(b) Use the second of the above equations to show that in a superfluid at chemical
potential µ, the equilibrium order parameter will precess with time, according to

ψ(x, t) = ψ(x, 0)e−iµt/h̄

(c) If two superfluids with the same superfluid density, but at different chemical po-
tentials µ1 and µ2 are connected by a tube of length L show that the superfluid
velocity from 1→ 2 will “accelerate” according to the equation

dvs
dt

= − h̄
m

µ2 − µ1

L
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Solution:

(a) Since [φ, N̂ ] = i, there are two alternative representations of the operators:

N̂ = −i d
dφ
, φ̂ = φ (13.41)

or, in the case that N is large enough to be considered a continuous variable,

φ̂ = i
d

dN
, N̂ = N (13.42)

Using (13.41), the Heisenberg equation of motion for N(t) is given by

dN

dt
=
i

h̄
[N,H] =

i

h̄
[−i d

dφ
,H(N,φ)] =

1

h̄

∂H

∂φ
(13.43)

while using (13.42), the Heisenberg equation of motion for φ(t) is given by

dφ

dt
=
i

h̄
[φ,H] =

i

h̄
[i
d

dN
,H] = − 1

h̄

∂H

∂N
, (13.44)

(b) In a bulk superfluid, ∂H
∂N = µ, so using (13.44 ), φ̇ = µ/h̄, and hence φ(t) =

−µth̄ + φ0, or

ψ(x, t) = ψ(x, 0)e−iµt/h̄

(c) Assuming a constant gradient of phase along the tube connecting the two super-
fluids, the superfluid velocity is given by

vs =
h̄

m
∇φ(t) =

h̄

m
(φ2(t)− φ1(t))/L

But φ(2)− φ(1) = −(µ2 − µ1)t+ cons, hence

dvs
dt

= − h̄
m

µ2 − µ1

L

Vortices and topological stability of superflow

Superflow is stable because of the underlying topology of a twisted order parameter. If we
wrap the system around on itself then the the single-valued nature of the order parameter
implies that the change in phase around the sample must be an integer multiple of 2π:

∆φ =

∮
dx · ∇φ = 2π × nφ

corresponding to nφ twists of the order parameter. But since vs = h̄
m∇φ, this implies that

line-integral, or “circulation” of the superflow around the sample is quantized

ω =

∮
dx · vs =

h

m
× nφ quantization of circulation
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(note h without a slash). Assuming translational symmetry, this implies

vs =
h

mL
nφ quantization of velocity,

a phenomenon first predicted by Onsager and Feynman[?, ?]. The number of twists of the
order parameter nφ is a “topological invariant” of the superfluid condensate, since it can
not be changed by any continuous deformation of the phase. The only way to decay the
superflow is to create high energy domain walls: a process that is exponentially suppressed
in the thermodyanmic limit. Thus the topological stability of a twisted order parametery
sustains a persistent superflow.

Another topologically stable configuration of a superfluid is a “vortex”. A vortex is a
singular line in the superfluid around which the phase of the order parameter precesses by
an integer multiple of 2π. If we take a circular path of radius r around the vortex then the
quantization of circulation implies

ω = nφ

(
h

m

)
=

∮
dx · vs(x) = 2πrvs

or

vs = nφ ×
(
h̄

m

)
1

r
, (r >

˜
ξ)

This formula, where the superfluid velocity appears to diverge at short distances, is no longer
reliable for r <˜ ξ, where amplitude variations in the order parameter become important.

Let us now calculate the energy of a vortex. Suppose the vortex is centered in the middle
of a large cylinder of radius R, then the energy per unit length is

F

L
=
ρφ
2

∫
d2x(∇φ)2 =

ρφ
2

∫ R

ξ
2πrdr

(
2πnφ
2πr

)2

= πρφ ln

(
R

ξ

)
× n2

φ.

In this way, we see that the energy of nφ isolated vortices with unit circulation, is nφ times
smaller than one vortex with nφ-fold circulation. For this reason, vortices occur with single
quanta of circulation, and their interaction is repulsive.

13.5 Landau Ginzburg III: Charged fields

13.5.1 Gauge Invariance

In a neutral superfluid the emergence of a macrosopic wavefunction with a phase leads
superfluidity. When the corresponding fluid is charged, the superflow carries charge, forming
a superconductor. One of the key properties of superconductors, is their ability to actively
exclude magnetic fields from their interior, a phenomenon called the “Meissner effect”.
Ginzburg Landau theory provides a beautiful account of this effect.
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The introduction of charge into a field theory brings with it the notion of gauge invari-
ance. From one-body Schrödinger equation,

ih̄
∂ψ

∂t
=

[
− h̄2

2m

(
∇− i e

h̄
A

)2

+ eϕ(x)

]
ψ

where ϕ is the scalar electric potential, we learn that we can change the phase of a particle
wavefunction by an arbitrary amount at each point in space and time, ψ(x, t)→ eiα(t)ψ(x, t)
without without altering the equation of motion, so long as the change is compensated by
a corresponding gauge transformation of the electromagnetic field:

A→ A +
h̄

e
∇α, ϕ→ ϕ− h̄

e

∂α

∂t
. (13.45)

This intimate link between changes in the phase of the wavefunction and gauge transfor-
mations of the electromagnetic field threads through all of many body physics and field
theory. Once we second-quantize quantum mechanics, the same rules of gauge invariance
apply to the fields that create charged particles, and when these fields, or combinations of
them condense, the corresponding charged order parameter also obeys the rules of gauge
invariance, with the proviso that the charge e∗ is the charge of the condensate field. These
kinds of arguments imply that in the Ginzburg Landau theory of a charged quantum fluid,
normal derivatives of the field are replaced by gauge invariant derivatives

∇ → D = ∇− ie∗

h̄
A

where e∗ is the charge of the condensing field. Thus the simple replacement

fGL[ψ,∇ψ]→ fGL[ψ,Dψ]

incorporates the coupling of the superfluid to the electromagnetic field. To this, we must
add the energy density of the magnetic field B2/(2µ0), to obtain

F [ψ,A] =

∫
ddx

[
fψ︷ ︸︸ ︷

h̄2

2M

∣∣∣∣(∇−
ie∗

h̄
A)ψ

∣∣∣∣
2

+ r|ψ|2 +
u

2
|ψ|4 +

(∇×A)2

2µ0︸ ︷︷ ︸
fEM

]
(13.46)

GL Free energy: charged superfluid.

where M is mass of the condensed field and ∇×A = B is the magnetic field.

Note that:
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• So long as we are considering superconductors, where the condensing boson is a Cooper
pair of electrons, e∗ = 2e. Although there are cases of charged bosonic superfluids,
such as a fluid of deuterium nucleii, in which e∗ = e, for the rest of this book, we shall
adopt

e∗ ≡ 2e (13.47)

as an equivalence.

• Under the gauge transformation

ψ(x)→ ψ(x)eiα(x), A→ A +
h̄

e∗
∇α

Dψ → eiα(x)Dψ, so that |Dψ|2 is unchanged and the GL free energy is gauge invariant.

• F [ψ,A] really contains two intertwined Ginzburg Landau theories for ψ and A re-

spectively, with two corresponding length scales: the coherence length ξ =

√
h̄2

2M |r|
governing amplitude fluctuations of ψ and and the “London penetration depth” λL,
which sets the distance a magnetic field penetrates into the superconductor. In a
uniform condensate ψ =

√
ns, the free energy dependence on the vector potential is

given by

f [A] ∼ cA
(∇×A)2

2
+
rA
2

A2, (13.48)

where cA = 1
µ0

and rA = e∗2ns
M . This is a Ginzburg Landau functional for the vector

potential with a characteristic London penetration depth

λL =

√
cA
rA

=

√
M

nse∗2µ0
, (13.49)

13.5.2 Ginzburg Landau Equations

To obtain the equations of motion we need to take variations of the free with respect to
the vector potential and the order parameter ψ. Variations in the vector potential recover
Ampères equation, while variations in the order parameter lead to a generalization of the
non-linear Schrodinger equation obtained previously for non-uniform Ising fields. Each of
these equations is of great importance - non-uniform solutions determine the physics of the
domain walls between “normal” and “superconducting” regions of a type II superconductor,
while the Ginzburg Landau formulation of Ampère’s equation provides an understanding
of the Meissner effect.

If we vary the vector potential, then δF = δFψ + δFEM , where

δFψ = −
∫

x
δA(x) ·

J(x)︷ ︸︸ ︷[
− ih̄

2M

(
ψ∗~∇ψ − ~∇ψ ψ

)
− e∗2

M
|ψ|2

]
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is the variation in the condensate energy and 7

δFEM =
1

µ0

∫
∇× δA ·B =

1

µ0

=0︷ ︸︸ ︷∫

x
∇ · (δA×B)+

1

µ0

∫

x
δA(x) · (∇×B)

is the variation in the magnetic field energy. Setting the total variation to zero, we obtain:

δF

δA(x)
= −J(x) +

∇×B

µ0
= 0. (13.51)

where

J(x) = − ih̄

2M

(
ψ∗~∇ψ − ~∇ψ∗ ψ

)
− e∗2

M
|ψ|2. (13.52)

is the supercurrent density. In this way, we have rederived Ampère’s equation, where
the current density takes the well-known form of a probability current in the Schrodinger
equation. However, ψ(x) now assumes a macroscopic, physical significance - it is literally,
the “macroscopic wavefunction” of the superconducting condensate. We will shortly see
how Eq. (13.51) leads to the Meissner effect.

To take variations with respect to ψ, it is useful to first integrate by parts, writing

Fψ =

∫

x

h̄2

2M
ψ∗(−i∇− e∗

h̄
A)2ψ + rψ∗ψ +

u

2
(ψ∗ψ)2

]
. (13.53)

If we now take variations with respect to ψ∗ and ψ, we obtain

δF =

∫
ddx

(
δψ∗(x)

[
h̄2

2M
(−i∇− e∗

h̄
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x)

]
+ H.c

)

implying that

− h̄2

2M
(∇− ie

∗

h̄
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (13.54)

This “non-linear Schroedinger equation” is almost identical to (13.17) obtained for an Ising
order parameter, but here ∇2 → (∇ − i qh̄A)2 to incorporate the gauge invariance and
ψ3 → |ψ|2ψ takes account of the complex order parameter. We will shortly see how this
equation can be used to determine the surface tension σsn of a drop of superconducting
fluid.

7The variation of FEM is tricky. We can carry it out using index notation to integrate δFEM by parts as
follows:

δFEM =
1

µ0

∫

x

ǫabc(∇bδAc)Ba =
1

µ0

∫

x

=−ǫcba︷︸︸︷
ǫabc

[
∇b(δAcBa)︸ ︷︷ ︸

0

−δAc∇bBa

]

=
1

µ0

∫

x

δAc(x)ǫcba∇bBa =
1

µ0

∫

x

δA(x) · (∇× B) (13.50)

where we have set total derivative terms to zero.
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13.5.3 The Meissner Effect

We now examine how a superconductor behaves in the presence of a magnetic field. It is
useful to write the supercurrent (13.52)

J(x) = − ie
∗h̄

2M

(
ψ∗~∇ψ −H.c

)
− e∗2

M
|ψ|2A

in terms of the amplitude and phase of the order parameter ψ = |ψ|eiφ (c.f. 13.36). The
derivative term ψ∗∇ψ can be re-written

ψ∗∇ψ = |ψ|e−iφ~∇(|ψ|eiφ) = i|ψ|2~∇φ+ |ψ|~∇|ψ|,

so that the term ψ∗∇ψ −H.c = 2i|ψ|2∇φ and hence

J(x) =
e∗h̄
M
|ψ|2∇φ− e∗2

M
|ψ|2A

= e∗ns

vs︷ ︸︸ ︷
h̄

M

(
~∇φ− e∗

h̄
A

)
= e∗nsvs (13.55)

where we have replaced |ψ|2 = ns and identified

vs =
h̄

M

(
∇φ− e∗

h̄
A

)
. (13.56)

as the superfluid velocity. Note that in contrast with (13.39), either a twist in the phase,
or an external vector potential can promote a superflow. Under a gauge transformation,
φ → φ + α, A → A + h̄

e∗∇α, this combination is gauge-invariant. Written out explicitly,
Ampéres equation then becomes

∇×B = −µ0
nse
∗2

M

(
A− h̄

e∗
∇φ
)

(13.57)

If we take the curl of this expression (assuming ns is constant), we obtain

∇× (∇×B) = µ0∇× J = −µ0nse
∗2

M
B (13.58)

where we have used the identity ∇ × ∇φ = 0 to eliminate the phase gradient. But ∇ ×
(∇×B) = ∇(∇ ·B)−∇2B = −∇2B, since ∇ ·B = 0, so that

∇2B =
1

λ2
L

B, Meissner Effect

1

λ2
L

=
µ0nse

∗2

M
(13.59)
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This equation, first derived by Fritz London on phenomenological grounds[?], expresses the
astonishing property that magnetic fields are actively expelled from superconductors. The
only uniform solutions that are possible are

B = 0, ns > 0, superconductor
B 6= 0, ns = 0, normal state (13.60)

One dimensional solutions to the London equation∇2B = B/λ2
L take the formB ∼ B0e

− x
λL ,

showing that near the surface of a superconductor, magnetic fields only penetrate a distance
depth λL into the condensate. The persistent supercurrents that screen the field out of the
superconductor lie within this thin shell on the surface.

As we shall see however, in the class of type II superconductors, where the coherence
length is small compared with the penetration depth (ξ < λL/

√
2), magnetic fields can

penetrate the superconductor in a non-uniform way as vortices.

Lastly, note that in a superconductor, where M = 2me and e∗ = 2e are the mass and
charge of the Cooper pair respectively, while ns = 1

2ne is half the concentration of electrons
in the condensate,

nse
∗2

M
=

1
2ne4e

2

2me
=
nee

2

m

so the expression for the penetration depth has the same form when written in terms of the
charge and mass of the electron.

1

λ2
L

= µ0
nee

2

m

The critical field Hc

In a medium that is immersed in an external field, we can divide the magnetic field into an
“external” magnetizing field H and the magnetization M. In SI units,

B = µ0(H + M)

where jext = ∇ ×H is the current density in the external coils and jint = ∇ ×M are the
internal currents of the material: in a superconductor, these are the supercurrents. Now the
ratio χ = M/H, is the magnetic susceptibility. Since the magnetic field B = µ0(M + H)
vanishes inside a superconductor, this implies M = −H, so that 8

χSC = −1. Perfect diamagnet.

In other words, superconductors are perfect diamagnets, in which shielding supercurrents
Jint = ∇ ×M provide a perfect Faraday cage to screen out the magnetic field from the
interior of the superconductor.

8Most older texts use Gaussian units, for which χSC = − 1
4π

in a superconductor. In Gaussian units
B = H + 4πM = (1 + 4πχ)H. If B = 0, this implies that χSC = − 1

4π
in Gaussian units.
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In a superconductor, F = Fψ+FEM is a sum of two terms, where δFψ/δB(x) = −M(x)
is the magnetization induced by the supercurrents while δFEM/δB(x) = µ0

−1B(x) is the
magnetic field. Adding these terms together,

δF

δB(x)
= −M(x) +

1

µ0
B(x) = H

Now the magnetizing field H is determined by the external coils, and can be taken to be
constant over the scale of the coherence and penetration depth. Since it is the external field
H that is fixed, it is more convenient to use the Gibb’s free energy

G[H, ψ] = F [B, ψ]−
∫
d3xB(x) ·H

which is a functional of the external field H and independent of the B− field (δG/δB = 0).
The second term describes the work done by the coils in producing the constant external
field. This is analogous to setting G[P ] = F [V ] + PV to include the work PV done by a
piston to maintain a fluid at constant pressure. In a uniform superconductor,

g =
G

V
= r|ψ|2 +

u

2
|ψ|4 +

B2

2µ0
−BH

In the normal state, ψ = 0, B = µ0H, so that

gn = − B
2

2µ0

whereas in the superconducting state, B = 0, and |ψ| = ψ0 =
√
−r/u, so that

gsc = rψ2
0 +

u

2
ψ4

0 = − r
2

2u

Clearly, if gsc < gn, i.e, if

B < Bc =

√

µ0
r2

u
critical field (13.61)

the superconductor is thermodynamically stable. The free energy density of the supercon-
ductor can then be written

gsc = − r
2

2u
= − 1

2µ0
B2
c

Surface energy of a superconductor.

When B = Bc, the free energy density of the normal state and the superconductor are
identical, and so the two phases can co-exist. The interface between the degenerate super-
conductor and normal is a domain wall, where the Gibb’s energy per unit energy defines
the surface energy

∆G/A = σsn
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ξ

λL

ψ0

Bc

x

Figure 13.7: Schematic figure illustrating a superconductor-normal domain wall.

where A is the area of the interface. At the interface, the superconducting order parameter
and the magnetic field decay away to zero over length scales of order the coherence length
ξ and penetration depth λL, respectively, as illustrated below.

The surface tension σsn (surface energy) σns of the domain wall between the super-
conductor and normal phase has a profound influence on the macroscopic behavior of a
superconductor. The key parameter which controls the surface tension is the ratio of the
magnetic penetration to the coherence length,

κ =
λL
ξ
, Ginzburg Landau parameter.

There are two types of superconductor:

1. κ < 1√
2

Type I superconductors, with a positive domain wall energy. In type I

superconductors, magnetic fields are vigorously excluded from the material by a thin
surface layer of screening currents (Fig 13.8(a)). At H = Hc there is a first order
transition into the normal state.

2. κ > 1√
2

Type II superconductors, with a negative surface tension (σsn < 0). In

type II superconductors, the surface layer of screening currents is smeared out on the
scale of the coherence length, and the magnetic field penetrates much further into the
superonductor (Fig 13.8(b)). In type II superconductors, there are now two critical
fields, an “upper” critical field Hc2 > Hc and a lower critical field Hc1 < Hc. Between
these two fields, Hc1 < H < Hc2 the magnetic field penetrates the bulk, forming
vortices in which the high energy of the normal core is offset by the negative surface
energy of the layer of screening currents.

The domain wall energy between a superconductor and a metal at H = Hc is the excess
energy associated with a departure from uniformity:

σns =
1

A

∫
d3x

[
h̄2

2M

∣∣∣∣(∇−
ie∗

h̄
A)ψ

∣∣∣∣
2

+ r|ψ|2 +
u

2
|ψ|4 +

B2

2µ0
−B ·Hc − gsc

]
(13.62)
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Figure 13.8: Superconductor-normal domain wall in type I and type II superconductors.
(a) For κ = λL

ξ < 1√
2
, the superconductor is a type I superconductor. In the limit κ → 0

illustrated here, the magnetic field drops precipitously to zero at x = 0. In the extreme
type I limit κ >> 1/

√
2, the magnetic field and the screening currents extend a distance of

λL >> ξ into the superconductor, while the order parameter drops rapidly to zero at x = 0.

Inserting Hc = Bc/µ0 and gsc = − B2
c

2µ0
, we see that the last three terms can be combined

into one, to obtain

σns =
1

A

∫
d3x

[
h̄2

2M

∣∣∣∣(∇−
ie∗

h̄
A)ψ

∣∣∣∣
2

+ r|ψ|2 +
u

2
|ψ|4 +

(B −Bc)2
2µ0

]
(13.63)

By imposing the condition of stationarity, it is straightforward to show (see example 13.6)
that the domain wall energy of a domain in the y-z plane can be cast into the compact form

σsn =
B2
c

2µ0

∫ ∞

−∞
dx

[(
B(x)

Bc
− 1

)2

−
(
ψ(x)

ψ0

)4
]
. (13.64)

Using this result, it is instructive to compare the surface tension of extreme type I and type
II superconductors (Fig. 13.8). In the former, where λL << ξ, the length scale over which
the magnetic field varies is negligible relative to the coherence length(see Fig. 13.8(a)), so
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that the magnetic field can be approximated by a step function

B(x) = Bcθ(x), Extreme type I.

For x > 0, B(x) = Bc is constant, which implies that B′′ ∝ ψ2Bc = 0, so that ψ(x) = 0
for x ≥ 0. For x < 0, on the superconducting side of the domain wall, B = A = 0 and in
the absence of a field, the evolution equation for ψ is identical to an Ising kink treated in
section (13.3.1), for which the solution is ψ/ψ0 = tanh(x/(

√
2ξ)). Substituting into (13.64),

the surface tension is then

σI
sn =

B2
c

2µ0

∫ 0

−∞
dx
[
1− tanh(x/(

√
2ξ))4

]
=

B2
c

2µ0
× 1.89ξ

For an extreme type II superconductor, the situation is reversed: now it is the coherence
length that is negligible, so that the order parameter can be approximated by a step function

ψ(x) = ψ0θ(−x), Extreme type II.

(Fig 13.8 (b)). Using A′′ = 1
λ2
L
(ψ/ψ0)

2A, it follows that

B(x) = Bc ×
{
ex/λL (x < 0)

1 (x > 0)
(13.65)

Substituting into (13.73 ), this then gives

σII
sn =

B2
c

2µ0

∫ 0

−∞
dx[(ex/λL − 1)2 − 1] = − B

2
c

2µ0
× 3

2
λL

showing that at large κ, the surface tension becomes negative. Summarizing these results

σns =
B2
c

2µ0
×
{

1.89ξ (extreme type I)
−3

2λL (extreme type II)

In fact, within Ginzburg Landau theory, the surface tension vanishes at κ = 1/
√

2, as we
show in example 13.7.

One of the most dramatic effects of a negative surface tension, is the stabilization of
non-uniform superconducting states at fields over a wide range of fields between Bc1 and
Bc2, where Bc2 =

√
2κBc is the “upper critical field”, and Bc1 ∼ Bc/(

√
2κ) is the “lower

critical field”.

Example 13.34: Calculate the domain wall energy per unit area σns of a superconducting-
normal interface lying in the y − z plane, and show that it can be written

σsn =
B2
c

2µ0

∫ ∞

−∞
dx

[(
B(x)

Bc
− 1

)2

−
(
ψ(x)

ψ0

)4
]
. (13.66)
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Solution: Consider a domain wall in the y − z plane separating a superconductor at
x < 0 from a metal at x > 0, immersed in a magnetic field along the z − axis. Let us
take

A(x) = (0, A(x), 0), B(x) = (0, 0, A′(x)),

seeking a domain wall solution in which ψ(x) is real. Our boundary conditions are then

(ψ(x), A(x)) =

{
(ψ0, 0) (x→ −∞)
(0, xBc) (x→ +∞)

(13.67)

The domain wall energy is then

σsn =
G

A
=

∫
dx

[
h̄2

2M

{(
dψ

dx

)2

+
e∗2A2

h̄2 ψ2

}
+ rψ2 +

u

2
ψ4 +

(B −Bc)2
2µ0

]
(13.68)

Notice that there are no terms linear in dψ/dx, because the vector potential and the
gradient of the order parameter are orthgonal (∇ψ ·A = 0). Let us rescale the x co-
ordinate in units of the penetration length, the order parameter in units of ψ0 and the
magnetic field in units of the critical field, as follows:

x̃ =
x

λL
, ψ̃ =

ψ

ψ0
, Ã =

A

BcλL
, B̃ =

B

Bc
=
dÃ

dx̃
≡ Ã′.

In these rescaled variables, the Gibb’s free energy becomes

σsn =
B2
cλL
2µ0

∫
dx

[
2ψ′2

κ2
+A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
. (13.69)

where for clarity, we have now dropped the tildes. The rescaled boundary conditions
are (ψ,A) → (1, 0) in the superconductor at x << 0, and (ψ,A) → (0, x) deep inside
the metal at x >> 0.

Taking variations with respect to to ψ gives

−ψ
′′

κ2
+

1

2
A2ψ + (ψ2 − 1)ψ = 0 (13.70)

while taking variations with respect to A gives the dimensionless London equation

Aψ2 −A′′ = 0 (13.71)

Integrating by parts to replace (ψ′)2 → −ψψ′′ in (13.69 ), we obtain

σsn =
B2
cλL
2µ0

∫
dx

[
−A2ψ2−2(ψ2−1)ψ2

︷ ︸︸ ︷
−2ψψ′′

κ2
+A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
(13.72)

where we have used (13.70) to elimiate ψ′′. Cancelling the A2ψ2 and ψ2 terms in (13.72),
we can then write the surface tension in the compact form

σsn =
B2
cλL
2µ0

∫ ∞

−∞
dx
[
(A′(x)− 1)2 − ψ(x)4

]
. (13.73)

Restoring x→ x
λL

, A′(x)→ B(x)
Bc

and ψ(x)→ ψ(x)
ψ0

, we obtain (13.64).
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Example 13.35: Show that the domain wall energy changes sign at κ = 1/
√

2.

Solution: Using equation (13.73), we see that in the special case where the surface
tension σsn = 0, is zero, it follows that

A′(x) = 1∓ ψ(x)2

where we select the upper choice of signs to give a physical solution where the field
is reduced inside the superconductor (A′ < 1). Taking the second derivative, gives
A′′ = −2ψψ′. But since A′′ = ψ2 A, it follows that ψ′ = − 1

2Aψ. Now we can derive
an alternative expression for ψ′ by integrating the second order equation (13.71). By
multiplying (13.70) by 4ψ̃′, using (13.71) we can rewrite (13.70) as a total derivative

d

dx

[
− 2

κ2
(ψ′)2 +A2ψ2 + (ψ2 − 1)2 −A′2

]
= 0

from which we deduce that

− 2

κ2
(ψ′)2 +A2ψ2 + (ψ2 − 1)2 −A′2 = constant = 0 (13.74)

is constant across the domain, where the value of the constant is obtained by placing
ψ = 1, A = A′ = 0 on the superconducting side of the domain. Substituting A′ =
(1− ψ2), the last two terms cancel. Finally, putting (ψ′)2 = 1

4 (Aψ)2, we obtain

(
1− 1

2κ2

)
(Aψ)2 = 0, (13.75)

showing that κc = 1/
√

2 is the critical value where the surface tension drops to zero.

13.5.4 Vortices, Flux quanta and type-II superconductors.

Once H > Hc1, type II superconductors support the formation of superconducing vortices.
In a neutral superfluid, a superconducting vortex is a line defect around which the the

phase of the order parameter precesses by 2π, or a multiple of 2π. In section (13.4.3), we
saw that this gave rise to a quantization of circulation. In a superconducting vortex, the
rotating electric currents give rise to a trapped magnetic flux, quantized in units of the
superconducting flux quantum

Φ0 =
h

e∗
≡ h

2e
.

This quantization of magnetic flux we predicted by London and Onsager[?, ?].
To understand flux quantization, it is instructive to contrast a neutral superfluid with

a superconducting vortex (see Fig. 13.9). In a neutral superfluid, the superfluid velocity
is uniquely dictated by the gradient of the phase, vs = h̄

M
~∇φ, so around a vortex, the

superfluid velocity decays as 1/r (vs = n × h
Mr ). Around a superconducting vortex, the

superfluid velocity contains an additional contribution from the vector potential

vs =
h̄

M
~∇φ− e∗

M
A.
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Figure 13.9: Contrasting (a) a vortex in a neutral superfluid with (b) a vortex in a super-
conductor, where each unit of quantized circulation binds one quanta of magnetic flux.

In the presence of a magnetic field, this term compensates for the phase gradient, lowering
the supercurrent velocity and reducing the overall kinetic energy of the vortex. On distances
larger than the penetration depth λL the vector potential and the phase gradient almost
completely cancel one-another, leading to a supercurrent that decays exponentially with
radius vsc ∝ e−r/λL .

If we integrate the circulation around a vortex, we find

ω =

∮
dx · vs =

h̄

M

∆φ=2πn︷ ︸︸ ︷∮
dx · ~∇φ− e

∗

M

Φ︷ ︸︸ ︷∮
dx ·A (13.76)

where we have identified
∮
dx · ~∇φ = 2π×n as the total change in phase around the vortex,

while
∮
dx ·A =

∫
B · dS = Φ is the magnetic flux contained within the loop, so that

ω = n
h

M
− e∗Φ

M
.

In this way, we see that the presence of bound magnetic flux reduces the total circulation.
At large distances, energetics favor a reduction of the circulation to zero, limR→∞ω = 0, so
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that around a large loop

0 = n
h

M
− e∗Φ

M
or

Φ = n

(
h

e∗

)
= nΦ0 (13.77)

where Φ0 = h
e∗ is the quantum of flux. In this way, each quantum of circulation generates a

bound quantum of magnetic flux. The lowest energy vortex contains a single flux, as illus-
trated in Fig. 13.9 A simple realization of this situation occurs in a hollow superconducting
cylinder (Fig. 13.10). In its lowest energy state, where no supercurrent flows around the
cylinder, the magnetic flux trapped inside the cylinder is quantized. If an external magnetic
field is is applied to the cylinder, and then later removed, the cylinder is found to trap flux
in units of the flux quantum Φ0 = h

2e , [?, ?], providing a direct confirmation of the charge
of the Cooper pair

In thermodynamic equilibrium, vortices penetrate a type II superconductor provided
the applied field H lies between the upper and lower critical fields Hc2 and Hc1 respectively.
In an extreme type II superconductor, Hc2 and Hc1 differ from Hc by a factor of κ = λL

ξ :

Hc1 ∼ Hc lnκ√
2κ

(κ >> 1) (13.78)

Hc2 =
√

2κHc. (13.79)

Below Hc1 and above Hc2 the system is uniformly superconducting and normal respec-
tively. In between, fluxoids self-organize themselves into an ordered triangular lattice, called
the Abrikosov Flux Lattice. Thus Hc1 is the first field at which it becomes energetically
advantageous to add a vortex to the uniform super conductor, whereas Hc2 is the largest
field at which a non-uniform superconducting solution is still stable.

For an extreme type II superconductor, Hc1 can be made calculating the field at which
the Gibb’s Free energy of a vortex

∆GV = ǫV L−H ·
∫
d3xB(x)

= ǫV L−HΦ0L, (13.80)

becomes negative. Here L is the length of the vortex and ǫV is the vortex energy per unit
length. For an extreme type II superconductor, this energy is roughly equal to the lost
condensation energy of the core. Assuming the core to have a radius ξ, this is

ǫV ∼
r2

2u
× πξ2 =

B2
c

2µ0
πξ2.

Vortices will start to enter the condensate when ∆GV < 0, i.e when

Hc1Φ0 ∼
B2
c

2µ0
× πξ2.
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∆φ = 2πn =
2e

h̄

∮
d~x · ~A

Φ =

∮
d~x · ~A = n

h

2e

Figure 13.10: Flux quantization inside a cylinder. In the lowest energy configuration,
with no supercurrent in the cylinder walls, the ∆φ = 2πn twist in the phase of the order
parameter around the cylinder is compensated by a quantized circulation of the vector
potential, giving rise to a quantized flux. The inset shows quantized flux measured in
reference [?].

Putting Hc1 = Bc1/µ0, and estimating the area over which the magnetic field is spread to
be πλ2

L, so that the total flux, Φ0 = Bc1 × πλ2
L, we obtain

Hc1

Hc
∼ 1

κ

so that Hc1 << Hc for an extreme type II superconductor. A more detailed calculation
gives the answer quoted in (13.78).

To calculate Hc2, consider a metal in which the applied field is gradually reduced from
a high field. Hc2 will be the field at which the first non-uniform superconducting solution
becomes possible. Non uniform solutions of the order parameter satisfy the non-linear
Schroedinger equation (13.54),

h̄2

2M
(−i∇− e∗

h̄
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (13.81)
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Since the developing superconducting instability will have a very small amplitude, we can
ignore the cubic term. Choosing A = (0, 0, Bx), let us now seek solutions of ψ that depend
only on x, so that

− h̄2

2M
ψ′′ +

1

2
mω2

cψ = −rψ(x). (13.82)

where ωc = e∗B
M . This as the time-independent Schroedinger equation for a harmonic

oscillator with energy E = −r. Since the smallest energy eigenvalue is E = 1
2 h̄ωc, it follows

that −r = 1
2 h̄ωc. Now according to (13.27), the coherence length is given by ξ2 = h̄2

2M |r| , so

that |r| = h̄2

2Mξ2
= h̄ e

∗Bc2
M , so that

2πBc2ξ
2 =

h

e∗
= Φ0 (13.83)

where Φ0 = h
e∗ is the superconducting flux quantum. At the uppercritical field, a tube of

radius ξ contains half a flux quanta, Φ0/2.

Using (13.83), the upper critical field is given by

Bc2 =
h̄

e∗ξ2
=

1

e∗ξ

√
2M |r|.

By contrast, using (13.61) and (13.49) the critical field Bc is given by

Bc =

√
µ0r2

u
=

1

e∗λL

√
M |r|

so that the ratio
Bc2
Bc

=
√

2
λL
ξ

=
√

2κ

Thus provided κ > 1√
2
, the condition for type II superconductivity, the upper-critical field

Bc2 exceeds the thermodynamic critical field, Bc2 > Bc.

13.6 Dynamical effects of broken symmetry: Anderson Higg’s

mechanism

One of the most dramatic effects of broken symmetry lies in its influence on gauge fields
that couple to the condensate. This effect, called the “Anderson Higg’s mechanism”. not
only lies behind the remarkable Meissner effect, but it is responsible for the short-range
character of the weak nuclear force. When a gauge field couples to the long-wavelength
phase modes of a charged order parameter, it absorbs the phase modes to become a massive
gauge field that mediates a short range (screened) force:

gauge field + phase −→ massive gauge field.
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Superconductivity is the simplest, and historically, the first working model of this mech-
anism, which today bears the name of Anderson, who first recognized its more general
significance for gauge theories, and Higg’s who showed how the mechanism works relativis-
tically. In this section, we provide an introduction to the Anderson Higg’s mechanism, using
a simple time-dependent extension of Ginzburg Landau theory.

13.6.1 Goldstone mode in neutral superfluids

In the ground-state, Ginzburg Landau theory can be thought of as describing the “potential
energy” V [ψ] ≡ FGL[ψ]|T=0 associated with a static and slowly varying configuration of the
order parameter. At scales much longer than the coherent length, amplitude fluctuations of
the order parameter can be neglected, and all the physics is contained in the phase of the
order parameter. For a neutral superfluid V = 1

2ρs(∇φ)2, where ρs is the superfluid stiffness,

given in Ginzburg Landau theory by ρs = h̄2ns
2M . But to determine the dynamics, we need the

Lagrangian L = T−V associated with slowly varying configurations of the order parameter,
where T is the “kinetic” energy associated with a time-dependent field configurations. The
kinetic energy can also be expanded to leading order in the time-derivatives of the phase
(see exercise 13.8), so that the action governing the slow phase dynamics is

S =
ρs
2

∫
dtd3x

“ −∇µφ∇µφ ”︷ ︸︸ ︷[
(φ̇/c∗)2 − (∇φ)2

]
(13.84)

In relativistic field theory, c∗ = c is the speed of light, and Lorentz invariance permits the
action to be simplified using a 4-vector notation −(∇lµφ)2as shown in the brackets above.
The relativistic action and the Ginzburg Landau free energy can be viewed as Minkowskii
and Euclidean versions of the same energy functional:

Minkowski︷ ︸︸ ︷
S = −ρs

2

∫
d4x(∇µφ)2 ←−−→

Euclidean︷ ︸︸ ︷
F =

ρs
2

∫
d3x(∇φ)2 (13.85)

However, in a non-relativistic superfluid, c∗ is a characteristic velocity of the condensate.
For example, in a paired fermionic superfluid, such as superfluid He− 3, c∗ =

√
3vF , where

vF is the Fermi velocity of the the underlying Fermi liquid. If we take variations with respect
to φ, (integrating by parts in space-time so that ∇δφ∇φ =→ −δφ∇2φ, and δφ̇φ̇→ −δφφ̈),
we see that φ satisfies the wave equation

∇2φ− 1

c∗2
∂2φ

∂t2
= 0 Boguilubov phase mode ω = c∗q

corresponding to a phase mode that propagates at a speed c∗. This mode, often called
a “Boguilubov mode” is actually a special example of a Goldstone mode. The infinite
wavelength limit of this mode corresponds to a simple uniform rotation of the phase, and is
an example of naturally gapless mode that appears when a continuous symmetry is broken
in a system governed by short-range forces.
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Example 13.36: If density fluctuations δns(x) = ns(x) − ns are included into the
Hamiltonian of a superfluid, the ground-state energy is given by

H =

∫
d3x

[
(ns(x)− ns)2

2χ
+
ρs
2

(∇φ)2
]

where χ = ∂N/∂µ is the charge susceptibility. From (see Ex. 13.5) we learned that
density and phase are conjugate variables, which in the continuum satisfy Hamiltons
equation that δH/δns(x) = µ(x) = −h̄φ̇(x). Using this result, show that that the
Lagrangian L =

∫
d3x δH

δns(x)δns(x)−H can be written in the form

L =
ρs
2

∫
d3x

[
(φ̇/c∗)2 − (∇φ)2

]

where (c∗)2 = ρs/(χh̄
2).

Solution: By varying the Hamiltonian with respect to the local density, we obtain the
local chemical potential of the condensate

µ(x) =
δH

δns(x)
= χ−1δns(x). (13.86)

By writing the condensate order parameter as ψ(x, t) = ψeiφ(x,t) = ψe−i
µ(x)

h̄ t, we may

identify µ(x)
h̄ = −φ̇ as the rate of change of phase, thus from (13.86), we obtain

h̄φ̇ = −χ−1δns(x)

so that (δns)
2/(2χ) = χ

2 (φ̇)2 and the Lagrangian takes the form

L =

∫
d3x(−h̄φ̇δns)−H =

1

2

∫
d3x

[
χ(h̄φ̇/c∗)2 − ρs(∇φ)2

]

Replacing h̄2χ = ρs/c
∗2, we obtain the result.

13.6.2 Anderson Higgs mechanism

The situation is subtlely different when we consider a charged superfluid. In this case,
changes in phase of the order parameter become coupled by the long-range electromagnetic
forces, and this has the effect of turning them into gapped “plasmon” modes of the superflow
and condensate charge density.

From Ginzburg Landau theory, we already learned that in a charge field, physical quan-
tities, such as the supercurrent and the Ginzburg Landau free energy , depend on the the
gauge invariant gradient of the phase ∇φ− e∗

h̄ A. Since the action involves time-dependent
phase configurations, it must be invariant under both space and time-dependent gauge
transformations(13.45),

φ→ φ+ α(x, t), A→ A +
h̄

e∗
∇α, ϕ→ ϕ− h̄

e∗
α̇. (13.87)
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which means that time derivatives of the phase must occur in the gauge-invariant combi-
nation φ̇ + e∗

h̄ ϕ, where ϕ is the electric potential. The action of a charged superluid now
involves two terms

S = Sψ + SEM

where

Sψ =

∫
dtd3x

ρs
2

[
1

c∗2

(
φ̇+

e∗

h̄
ϕ

)2

− (∇φ− e∗

h̄
A)2

]
(13.88)

is the gauged condensate contribution to the action and

SEM =
1

2µ0

∫
dtd3x

[(
E

c

)2

−B2

]
(13.89)

is the electromagnetic Lagrangian, where E = −∂A
∂t −∇φ and B = ∇×A are the electric

and magnetic field respectively.

The remarkable thing, is that since the scalar and vector potential always occur in the
same gauge invariant combination with the phase gradients, we can redefine the electro-
magnetic fields to completely absorb the phase gradients as follows:

A′ = A− h̄

e∗
∇φ, ϕ′ = ϕ+

h̄

e∗
φ̇, (Aµ → h̄

e∗
∇µϕ).

Notice that in (13.88), the vector potential, which we associate with transverse electromag-
netic waves, becomes coupled to gradients of the phase, which are longitudinal in character.
The sum of the phase gradient and the vector potential creates a field with both longitudinal
and transverse character. In terms of the new fields, the action becomes

S =

∫
dtd3x

{
1

2µ0λ2
L

[(
ϕ′

c∗

)2

−A′2
]

+
1

2µ0

[(
E

c

)2

−B2

]}
. (13.90)

where 1/(µ0λ
2
L) = (ρse

∗2)/(h̄2) == nse
∗2/M defines the London penetration depth. We

will drop the primes on ϕ and A in subsequent equations.

Amazingly, by absorbing the phase of the order parameter, we arrive at a purely electro-
magnetic action, but one in which the phase stiffness of the condensate Lψ imparts a new
quadratic term in the action of the electromagnetic field - a “mass term”. Like a python
that has swallowed its prey whole, the new gauge field is transformed into a much more
sluggish object: it is heavy and weak. To see this in detail, let us re-examine Maxwell’s in
the presence of the mass term. Taking variations with respect to the fields, we obtain

δSψ =

∫
dtd3x (δA(x) · j(x)− δϕ(x)ρ(x))

and

δSEM =
1

µ0

∫
dtd3x

[
δA ·

(
1

c2
Ė−∇×B

)
+ δϕ

1

c2
∇ ·E

]
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where

j = − 1

µ0λ2
L

A, ρ = − 1

µ0c∗2λ2
L

ϕ, (13.91)

denote the superfluid velocity and the voltage-induced change in charge density. Setting
δS = 0, we we recover Amperes and Gauss’ equation, ∇ × B = µ0j + 1

c2
∂E
∂t and ∇ · E =

ρ
ǫ0

, respectively. Since ∇ · (∇ × B) = 0, this also leads to a continuity equation for the
supercurrent

∇ · J +
∂ρ

∂t
= − 1

µ0λ2
L

(
∇ ·A +

1

c∗2
∂ϕ

∂t

)
= 0 (13.92)

excepting now, continuity also implies a gauge condition that ties φ to the longitudinal part
of A. For the relativistic case, this is the well-known Lorentz gauge condition (∇µAµ = 0).

If we now expand Amperes equations in terms of A, we obtain

∇×B = ∇(∇ ·A)−∇2A = − 1

λ2
L

A +
1

c2
∂

∂t

(
−∂A
∂t
−∇ϕ

)
, (13.93)

and using the continuity (13.92) to eliminate the potential term, we obtain

[
2

2 − 1

λ2
L

]
A =

[
1−

(
c∗

c

)2
]
∇(∇ ·A), (13.94)

where 2
2 = ∇2 − 1

c2
∂2

∂t2
. In a superconductor, where c∗ 6= c, the second term in (13.94) be-

comes active for longitudinal modes, where ∇·A 6= 0. If we substitute A = Aoe
i(p·x−Ept)/h̄ê

into (13.94) we find that the dispersion E(p) of the transverse and longitudinal photons are
given by

E(p) =





[(mAc
2)2 + (pc∗)2]1/2, (ê ⊥ p longitudinal)

[(mAc
2)2 + (pc)2]1/2, (ê ‖ p transverse)

Both photons share the same mass gap but they have widely differing velocities. The slower
longitudinal mode couples to potential (phase) fluctuations and corresponds to the plasmon
excitation of the superconductor. For a relativistic case, the right-hand side of (13.95 )
simply vanishes and the longitudinal and transverse photons merge into a single massive
photon, described by the “Klein Gordon” equation

[
2

2 −
(
mAc

h̄

)2
]
A = 0 (13.95)

for a vector field of mass mA = h̄/(λLc). The generation of a finite mass in a gauge field
through the absorption of the phase degrees of freedom of an order parameter into a gauge
field is the essence of the Anderson Higg’s mechanism.
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13.6.3 Electroweak theory

The standard model for electroweak theory, developed by Glashow, Weinberg and Salam[?,
?, 2] provides a beautiful example of how the idea of broken symmetry, developed for physics
in the laboratory, also provides insight into physics of the cosmos itself. This is not abstract
physics, for the sunshine we feel on our face is driven by the fusion of protons inside the
sun. The rate limiting process is the conversion of two protons to a deuteron according to
the reaction

p+ p→ (pn) + e+ + νe

where the νe is a neutrino. This process occurs very slowly, due to the Coulomb repulsion
between protons, and the weakness of the weak decay process that converts a proton into
a neutron. Were it not for the weakness of the weak force, fusion would burn too rapidly,
and the sun would have burnt out long before life could have formed on our planet. It is
remarkable that the physics that makes this possible, is the very same physics that gives
rise to the levitation of superconductors.

Electroweak theory posits that the electromagnetic and weak force derive from a com-
mon unified origin, in which part of the field is screened out of our universe through the
development of a broken symmetry, associated with two component complex order param-
eter or “Higg’s field”

Ψ =

(
ψ0

ψ1

)

that condenses in the early universe. The coupling of its phase gradients to gauge degrees
of freedom generates the massive vector bosons of the weak nuclear force via the Anderson-
Higg’s effect, miraculously leaving behind one decoupled gapless mode that is the photon.
Fluctuations in the amplitude of the Higg’s condensate are predicted to give rise to a massive
Higg’s particle.

The basic physics of the standard model can be derived using the techniques of Ginzburg
Landau theory, by examining the interaction of the Higg’s condensate with gauge fields. In
its simplest version, first written down by Weinberg [2], this is given by

SΨ = −
∫
d4x

[
1

2
| (∇µ − iAµ) Ψ|2 +

u

2

(
Ψ†Ψ− 1

)2
]
, (13.96)

where relativistic notation |∇µΨ|2 ≡ |∇Ψ|2 − |Ψ̇|2 is used in the gradient term. The gauge
field Aµ acting on a two component order parameter is a two dimensional matrix made up
of a U(1) gauge field Ba that couples to the charge of the Higg’s field and an SU (2) gauge
field ~Aµ,

Aµ = g ~Aµ · ~τ + g′Bµ

where ~τ are the Pauli matrices and ~Aµ = (A1
µ, A

2
µ, A

3
µ) is a triplet of three gauge fields that

couple to the isospin of the condensate. When the Anderson Higg’s effect is taken into
account, three components of the Gauge fields acquire a mass, giving rise to two charged
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W± with mass MW and one neutral Z boson of mass MZ that couples to neutral currents
of leptons and quarks.

Aµ −→
{
Z, W± neutral/charged vector bosons
A photon

When SΨ is split up into amplitude and phase modes of the order parameter, it divides up
into two parts (see example below) S = SH + SW , where

SH = −1

2

∫
d4x

[
(∇µφH)2 +m2

Hφ
2
H

]
(13.97)

describes the amplitude fluctuations of the order parameter associated with the Higg’s
boson, where m2

H = 4u defines its mass, while

SW = −1

2

∫
d4x

[
M2
W (W †µW

µ) +M2
Z(ZµZ

µ)
]

(13.98)

determines the masses of the vector bosons.

The ratio of masses determines the weak-mixing angle θW

cos(θW ) =
MW

MZ

Experimentally, MZ = 91.19 GeV/c2 and MW = 80.40 GeV/c2, corresponding to a Wein-
berg angle of θW ≈ 280. The Higg’s particle has not yet been observed, and estimates of its
mass vary widely, from values as low as 80GeV/c2, to values an order of magnitude higher.

From the perspective of superconductivity, these two numbers define two length scales:
a “penetration depth” for the screened weak fields of order

λW =
h̄

mW c
∼ 2× 10−18m

which defines the range of the weak force. At present, the “coherence length” of electroweak
theory. If one uses the estimated Higg’s mass, this is a length of order

ξW =
h̄

mHc
∼ 2× 10−18 − 2× 10−19m.

This very wide range of scales leaves open the possibility that the condensed Higg’s field is
either weakly type I, or strongly type II in character, an issue of importance to theories of
the early universe. The microscopic physics that develops below the coherence length ξW
is also an open mystery that is the subject of ongoing measurements at the Large Hadron
Collider.

Table II contrasts the physics of superconductivity with the electroweak physics.
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Superconductivity Electro-weak

Order parameter ψ

(
ψ0

ψ1

)

Pair condensate Higg’s condensate

Gauge field/Symmetry (φ,A) Aµ = g′Bµ + g( ~Aµ · ~τ)
U (1) U (1)×SU(2)

Penetration depth λL ∼ 10−7m λW ∼ 10−18m

Coherence length ξ = vF
∆ ∼ 10−9 − 10−7m ξEW ∼ 10−18 − 10−19m

Condensation mechanism pairing unknown

Screened field ~B W±, Z

Massless gauge field None Electromagnetism Aµ

Example 13.37:

(a) Suppose the Higg’s condensate is written Ψ(x) = (1 + φH(x))U(x)Ψ0, where φH
is a real field, describing small amplitude fluctuations of the condensate, U(x) is
a matrix describing the slow variations in orientation of the order parameter and
Ψ0 =

(
1
0

)
is just a unit spinor. Show that the the action splits into two terms,

S = SH + SW , where

SH = −1

2

∫
d4x

[
(∇µφH)2 +m2

Hφ
2
H

]
(13.99)

describes the amplitude fluctuations of the order parameter associated with the
Higg’s boson, where m2

H = 4u defines its mass, while

SW = −1

2

∫
d4x|A′

µΨ0|2. (13.100)

determines the masses of the vector bosons.

(b) By expanding out the quadratic term in (13.100), show that it is diagonalized in
terms of two gauge fields

SW = −1

2

∫
d4x

[
M2
W (W †

µW
µ) +M2

Z(ZµZ
µ)
]

and give the form of the fields and their corresponding masses in terms of the
original fields and coupling constants.
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Solution:

(a) Let us substitute
Ψ(x) = (1 + φH(x))U(x)Ψ0

where Ψ0 =
(

1
0

)
, into (13.96) Since Ψ†Ψ = (1 + φH)2Ψ0

†U†UΨ0 = (1 + φH)2, so
to quadratic order, the “potential” part of SΨ can be written as

u

2
(Ψ†Ψ− 1)2 =

u

2
(2φH + φ2

H)2 =
mH

2
φ2
H +O(φ3

H). (m2
H = 4u)

The derivatives in the gradient term can be expanded as

(∇µ − iAµ)Ψ(x) = (∇µ − iAµ)UΨ0 +∇µφH(UΨ0).

Since the derivative of a unit spinor is orthogonal to itself, the two terms in the
above expression are orthogonal so that when we take the modulus squared of the
above expression, we obtain

|(∇µ − iAµ)Ψ|2 = |(∇µ − iAµ)UΨ0|2 + (∇µφH)2

=|Ψ0|2=1︷ ︸︸ ︷
|UΨ0|2

= |U†(Aµ + i∇µ)UΨ0|2 +
(
∇µφH

)2
(13.101)

Here, we have introduced a pre-factor iU† into the first term, which does not
change its magnitude. Now the combination

A′
µ = U†(Aµ + i∇µ)U

is a gauge transformation of Aµ which leaves the physical fields ( Gµν = ∇µAν −
∇νAµ − i[Aµ,Aν ]) and the action associated with the gauge fields invariant. In
terms of this transformed field, the gradient terms of SΨ can be written simply as

|(∇µ − iAµ)Ψ|2 = |A′
µΨ0|2 + (∇µφH)2.

so that the sum of the gradient and potential terms yields

L = −1

2
| (∇µ − iAµ) Ψ|2 +

u

2

(
Ψ†Ψ− 1

)2

=

LW︷ ︸︸ ︷
−1

2
|A′

µΨ0|2−
1

2

[
(∇µφH)2 +m2

Hφ
2
H

]

︸ ︷︷ ︸
LH

(13.102)

which when integrated over space-time, gives the results (SH) and (vbosons).

(b) Written out explicitly, the gradient appearing in the gauge theory mass term is

A′
µΨ0 =

[
g′Bµ + g ~Aµ · ~τ

]
·Ψ0

=

[
g′
(
Bµ

Bµ

)
+ g

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)](
1
0

)

=

(
g′Bµ + gA3

µ

g(A1
µ + iA2

µ)

)
(13.103)
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so that the mass term of the gauge fields can be written

LW = −1

2
|AµΨ|2 = −1

2

[
(gA3

µ + g′Bµ)
2 + g2|A1

µ + iA2
µ|2
]

= −M
2
Z

2
Z2
µ −

M2
W

2
|Wµ|2 (13.104)

where

Wµ = A1
µ + iA2

µ,

Zµ =
1√

g2 + (g′)2

(
g′A(3)

µ + gBµ

)
(13.105)

are respectively, the charged W and neutral Z bosons which mediate the weak

force, MZ =
√
g2 + g′2 and MW = g = MZcos[θW ], where θW is the Weinberg

angle determined by

cos θW =
g√

g2 + g′2
.

13.7 Thermal Fluctuations and criticality

At temperatures that are far below, or far above a critical point, the behavior of the order
parameter resembles a tranquil ocean with no significant amount of thermal noise in its
fluctuations. But fluctuations become increasingly important near the critical point as
the correlation length diverges. At the second-order phase transition, infinitely long-range
“critical fluctuations” develop in the order parameter. The study of these fluctuations
requires that we go beyond mean field theory. Instead of using the Landau Ginzburg
functional as a variational Free energy, now we use it to determine the Boltzmann probability
distribution of the thermallly fluctuating order parameter, as follows

p[ψ] = Z−1e−βFGL[ψ] =
1

Z
exp

[
−β

∫
ddx

(
1

2

[
c(∇ψ)2 + r|ψ(x)|2

]
+ u|ψ(x)|4

)]

where Z =
∑
ψ e
−βFGL[ψ] is the normalizing partition function. This is the famous “φ4 field

theory” of statistical mechanics (where we use ψ in place of φ.)
The variational approach can be derived from the probability distribution function

p[{ψ}], by observing that the probabilitly of a given configuration is sharply peaked around
around the mean field solution, ψ = ψ0. If we make a Taylor expansion around around a
nominal mean-field configuration, writing ψ(x) = ψ0 + δψ(x), then

FGL[{ψ}] = Fmf +

∫

x
δψ(x)

=0︷ ︸︸ ︷
δFGL
δψ(x)

+
1

2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL
δψ(x)δψ(x′)

+ . . .

where the first derivative is zero because the Free energy is stationary for the mean-field
solution δF/δψ = 0, which implies

FGL[{ψ}] = Fmf [ψ0] +
1

2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL
δψ(x)δψ(x′)

+ . . .
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The first non-vanishing terms in the Free energy are second order terms, describing a Gaus-
sian distribution of the fluctuations of the order parameter about its average

δψ(x) = ψ(x)− ψ0

The amplitude of the fluctuations at long wavelengths becomes particularly intense near
a critical point. This point was first appreciated by Ornstein and Zernicke, who observed
in 1914 that light scatters strongly off the long-wavelength density fluctuations of a gas
near the critical point of the liquid-gas phase transition. We now follow Ornstein Zernicke’s
original treatment, and study study the behavior of order parameter fluctuations above the
phase transition.

To treat the fluctuations we Fourier transform the order parameter:

ψ(x) =
1√
V

∑

q

ψqe
iq·x, ψq =

1√
V

∫
ddxψ(x)e−iq·x. (13.106)

Here, we use periodic boundary conditions in a finite box of volume V = Ld, with discrete
wavevectors q = 2π

L (l1, l2, . . . ld). Note that ψ−q = ψ∗q, since ψ (or each of its n− compo-
nents) is real. Substituting 13.106 into 13.15, noting that (−s∇2 + r) → (sq2 + r) inside
the Fourier transform, we obtain

F =
1

2

∑

q

|ψq|2
(
sq2 + r

)
+ u

∫
ddx|ψ(x)|4. (13.107)

so that the quadratic term is diagonal in the momentum-space representation. Notice
how we can rewrite the GL energy in terms of the (bare) susceptibility χq = (sq2 + r)−1

encountered in (13.19), as

F =
1

2

∑

q

|ψq|2χ−1
q + u

∫
ddx|ψ(x)|4. (13.108)

so the quadratic coefficient of the GL free energy is the inverse susceptibilty.
Suppose r > 0 and the deviations from equilibrium ψ = 0 are small enough to ignore

the interaction, permitting us to temporarily set u = 0. In this case, F is a simple quadratic
function of )ψq and the probability distribution function is a simple Gaussian

p[ψ] = Z−1 exp

[
−β

2

∑

q

|ψq|2
(
sq2 + r

)]
≡ Z−1 exp

[
−
∑

q

|ψq|2
2Sq

]

where

Sq = 〈|ψq|2〉 =
kBT

sq2 + r
=

kBT/c

q2 + ξ−2
. (13.109)

is the variance of the fluctuations at wavevector q and ξ =
√
s/r is the correlation length.

This distribution function is known as the “Ornstein-Zernicke” form for the Gaussian vari-
ance of the order parameter. This quantity is the direct analog of the Green’s function in
many body physics. Note that
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• For q >> ξ−1, Sq ∝ 1/q2 is singular or “critical”.

• Using (13.19) we see that the fluctuations of the order parameter are directly related
to its static susceptibility. Sq = kBTχq. This is a consequence of the fluctuation
dissipation theorem in the classical limit.

• Sq resembles a Yukawa interaction associated with the virtual exchange of massive
particles : V (q) = 1/(q2 +m2). Indeed, short-range nuclear interactions are a result
of quantum fluctuations in a pion field with correlation length ξ ∼ m−1.

Next, let us Fourier transform this result to calculate the spatial correlations:

S(x− x′) = 〈δψ(x)δψ(x′)〉 =
1

V

∑

q,q′

Sqδq−q′︷ ︸︸ ︷
〈ψ−qψq′〉 ei(q

′·x′−q·x)

=

∫
ddq

(2π)d
kBT/c

q2 + ξ−2
eiq·(x

′−x) (13.110)

where we have taken the thermodynamic limit V → ∞. This is a Fourier transform that
we have encountered in conjunction with the screened Coulomb interaction, and in three
dimensions we obtain

S(x− x′) =
kBT

4πs

e−|x−x′|/ξ

|x− x′| , (d = 3)

Note that:

• The generalization of this result to d dimensions gives

S(x) ∼ e−x/ξ

xd−2+η

where Ginzburg Landau theory predicts η = 0.

• S(x) illustrates a very general property. On length scales below the correlation length,
the fluctuations are critical, with power-law correlations, but on longer length scales,
correlations are exponentially suppressed. (See Fig. 13.11).

• Ginzburg Landau theory predicts that the correlation length diverges as

ξ ∝ (T − Tc)−ν

where ν = 1/2. Remarkably, even though Ginzburg Landau theory neglects the non-
linear interactions of critical modes, these results are qualitatively correct. More pre-
cise treatments of critical phenomenon show that the exponents depart from Gaussian
theory in dimensions d < 4.
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Figure 13.11: Length-scales near a critical point. On length-scales ξ >> x >> ξ0, fluctu-
ations are critical, with universal power-law correlations. On length-scales larger than the
correlation length ξ, fluctuations are exponentially correlated. On length scales shorter than
the coherence length ξ0, the order parameter description must be replaced by a microscopic
description of the physics.

13.7.1 Limits of mean-field Theory: Ginzburg Criterion

What are the limits of mean-field theory? We studied the fluctuations at temperatures
T > Tc by assuming that the non-linear interaction term can be ignored. This is only
true provided the amplitude of fluctuations is sufficiently small. The precise formulation
of this criterion was first proposed by Levanyuk[4] and Ginzburg[?]. The key observation
here, is that mean-field theory is only affected by fluctuations on length-scales longer than
the correlation length x >> ξ. Fluctuations on wavelengths shorter than the correlation
length are absorbed into renormalized Landau parameters and do not produce departures
from mean-field theory. To filter out the irrelevant short-wavelength fluctuations, we need
to consider a coarse-grained average ψ̄ of the order parameter over a correlation volume ξd.
The Ginzburg criterion simply states that variance of the averaged order parameter must
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be small compared with the equilibrium value, i.e

δψ̄2 =
1

ξd

∫

|x|<ξ
ddx〈δψ(x)δψ(0)〉 << ψ2

0 (13.111)

Since correlations decay exponentially on length-scales longer than ξ, to get an an estimate
of this average, we can remove the constraint |x| < ξ on the volume integral, to obtain

δψ̄2 ∼ 1

ξd

∫
ddx〈δψ(x)δψ(0)〉 ∼ Sq=0

ξd
=

kBTc
s ξd−2

Now substituting ψ2
0 = |r|

4u ∼ s
u

1
ξ2

we obtain

δψ̄2

ψ2
0

∼ kBTc
ξd−4

u

s2
<< 1.

or

ξ4−d <<
c2

kBTc
.

Let us try to understand the meaning of the length-scale defined by this expression. Multi-
plying by this expression by ξd−4

0 , where ξ0 =
√
s/(aTc) is the coherence length, we obtain

the dimensionless criterion

(
ξ

ξ0

)4−d
<< ξd0

(aTc)2︷ ︸︸ ︷
s2ξ−4

0

ukBTc
= ξd

a2Tc
ukB

Now from (13.11 ) we recognize the combination a2Tc
u = 8∆CV as the jump in the specific

heat, so that the Ginzburg criterion can be written in the form

(
ξ

ξ0

)4−d
<<

SG
kB

, SG = ∆CV ξ
d
0 Ginzburg Criterion, (13.112)

where we have dropped the factor of 8. The quantity SG = ∆CV ξ
d
0 , has the dimensions of

entropy, and can be loosely interpreted as the entropy reduction per coherence volume ξd0
associated with the development of order, so that SG/kB = lnW is a logarithmic measure
number of degrees of freedom W associated with the fully-developed order parameter.

For models with d > 4, the Ginzburg criterion implies that large correlation lengths
are good and in this situation, as the correlation length diverges close to the critical point,
mean-field theory becomes essentially exact. The dimension dU = 4 is called the upper
critical dimension. In a realistic situation, where d < dU = 4 d < 4, ξ4−d diverges as the
critical point is approached, so for d < dU = 4, the Ginzburg criterion sets an upper bound
on the correlation length and lower bound on the distance from the phase transition. If
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we rewrite ξ/ξ0 = |∆T/Tc|−1/2, the temperature deviation from Tc, ∆T must satisfy the
requirement

|∆T |
Tc

>> (SG/kB)−(4−d)2 (13.113)

for mean-field theory to be reliable.
From the above discussion, it is clear that systems with a large coherence length will

deviate from mean-field theory only over a very narrow temperature window. Examples of
systems with large coherence lengths are superconductors, superfluidHe−3 and spin density
waves, where the ratio between the transition temperature and the Fermi temperature of
the fluid kBTc/ǫF << 1. For example, in a superconductor, the entropy of fondensation
per unit cell is of order kB(ǫ/∆), where ∆ ∼ 3.5kBTc is the gap, while the coherence length
is of order vF /∆ ∼ a(ǫF /∆), where vF ∼ ǫFa is the Fermi velocity, so that the entropy of
condensation per coherence length is of order

∆SG/kB ∼ (∆/ǫF )× (ǫF /∆)3 ∼ (ǫF /∆)2

and the Ginburg criterion is
|∆T |
Tc

>> (∆/ǫF )4

in three dimensions. Similar arguments may be applied to charge and spin density wave
materials. For a typical superconductor with Tc ∼ 10K, ∆ ∼ 30K, ǫF ∼ 105K, this
gives |∆T |Tc

∼ (10−5)4 ∼ 10−20, far beyond the realm of observation. By contrast, in an
insulating magnet the coherence length is of order the lattice spacing, a and the “Ginzburg
entropy” is of order unity so ∆T/Tc ∼ 1. These discussions are in accord with observations.
Superconductors and charge density wave systems display perfect mean-field transitions, yet
insulating magnets and superfluid He− 3 display the classic λ-shaped specific heat curves
that are a hall-mark of a non-trivial specific-heat exponent α.

13.8 Fluctuations and renormalization

(1) fluctuations get large in low dimensions. Some alusions to scaling theory.
(2) quantum fluctuations Order parameters

13.9 Exercises for chapter 13

1. Show that the action of U(φ)eiφN̂ on a coherent state, |φ〉 = U†(φ)|ψ〉 uniformly shifts the
phase of the order parameter by φ, i.e.

ψ̂(x)|φ〉 = ψ(x)eiφ|φ〉

so that

−i d
dφ
|φ〉 = N̂ |φ〉
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Solution:

(a) Let us begin by showing that U(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x). Since ψ̂† adds a particle to
a state, it follows that

ψ̂†(x)|α,N〉 = |β,N + 1〉.
where |α,N〉 and |β,N + 1〉 are states with N and N + 1 particles, respectively. But
then

eiφN̂

e−iφN |β,N+1〉︷ ︸︸ ︷
ψ̂†(x)e−iφN̂ |α,N〉 = eiφ(N+1)ψ̂†(x)e−iφN |α,N〉 = eiφψ̂†(x)|α,N〉

Since this holds for all states |α,N〉, it follows that

U(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x)

(b) Let us write out |φ〉 = U(φ)|ψ〉 explicitly:

U(φ)|ψ〉 = U(φ) exp

[∫
ddxψ(x)ψ̂†(x)

]
U†(φ)|0〉

where we have sneaked in a U†(φ) just before the vacuum, since U†(φ)|0〉 = |0〉. Using

the identity UeAU† = eUAU
†

, we can move the unitary operators inside the exponential

U(φ)|ψ〉 = exp



∫
ddxψ(x)

eiφψ̂†(x)︷ ︸︸ ︷
U(φ)ψ̂†(x)U†(φ)


 |0〉

= exp

[∫
ddx(ψ(x)eiφ)ψ̂†(x)

]
|0〉 (13.114)

corresponding to a coherent state where ψ(x) → ψ(x)eiφ has picked up an additional
uniform phase.

(c) Since |φ〉 = eiφN̂ |ψ〉, differentiating both sides with respect to φ, we obtain

−i d
dφ
|φ〉 = −i

iN̂eiφN̂

︷ ︸︸ ︷
d

dφ

[
eiφN̂

]
|ψ〉 = N̂ |φ〉.

Since this holds for all such coherent states, it follows that N̂ = −i ddφ .

2. Consider the most general form of a two component Landau theory

f [ψ] =
r

2
(ψ2

1 + ψ2
2) +

s

2
(ψ2

1 − ψ2
2) + u(ψ2

1 + ψ2
2)2 + u2(ψ

4
1 − ψ4

2) + u3ψ
2
1ψ

2
2

(a) Rewrite the free energy in terms of the amplitude and phase of the order parameter to
demonstrating that if s, u2 or u3 are finite, the free energy is no longer gauge invariant.

(b) Rewrite the free energy as a function of ψ and ψ∗.

(c) If s > 0, what symmmetry is broken when r < 0?

(d) Write down the mean field equations for s = 0, r < 0.
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(e) Sketch the phase diagram in the (u2, u3) plane.

3. Consider the more general class of Landau theory where the interaction u can be negative:

f [ψ] =
1

V
F [ψ] =

r

2
ψ2 + u4ψ

4 + u6ψ
6 − hψ

(a) Show that for h = 0, u < 0, r > 0 the free energy contains three local minima, one at
ψ = 0 and two others at ψ = ±ψ0, where

ψ2
0 = − u

3u6
±
√(

u

3u6

)2

− r

6u6
.

(b) Show that for r < rc, the solution at ψ = 0 becomes metastable, giving rise to a first
order phase transition at

rc = − u2

2u6

(Hint: Calculate the critical value of r by imposing the second condition f [ψII ] = 0.
Solve the equation f [ψ] = 0 simultaneously with f ′[ψ0] = 0 from the last part. )

(c) Sketch the (T, u) phase diagram for h = 0.

(d) For r = 0 but h 6= 0 show that there are three lines of critical points where f ′[ψ] =
f ′′[ψ] = 0 converging at the single point r = u = h = 0. This point is said to be a
“tricritical point”.

(e) Sketch the (h, u) phase diagram for r = 0.

4. We can construct a state of bosons in which the bosonic field operator has a definite expecta-
tion value using a coherent state as follows

|ψ〉 = exp

[∫
d3xψψ̂†(x)

]
|0〉.

The Hermitian conjugate of this state is 〈ψ̄| = 〈0|e
∫
d3xψ̂(x)ψ∗

.

(a) Show that this coherent state is an eigenstate of the field destruction operator: ψ̂(x)|ψ〉 =
ψ|ψ〉.

(b) Show that overlap of the coherent state with itself is given by 〈ψ̄|ψ〉 = eN , where
N = V |ψ|2 is the number of particles in the condensate.

(c) If

H =

∫
d3x

[
ψ̂†(x)

(
− h̄2

2m
∇2 − µ

)
ψ(x) + U : (ψ†(x)ψ(x))2 :

]

is the (normal ordered) energy density, show that the energy density f = 1
V 〈H〉, where

〈H〉 =
〈ψ̄|H|ψ〉
〈ψ̄|ψ〉

is given by
f = −µ|ψ|2 + U |ψ|4.

providing a direct realization of the Landau Free energy functional.
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5. (Systematic derivation of the Ginzburg criterion).

(a) Show that the Ginzburg Landau free energy (13.108) can be written in the form

F =
1

2

∫
ddx′ddxψ(x′)χ−1

0 (x′ − x)ψ(x′) + u

∫
ddxψ(x)4. (13.115)

where

χ−1
0 (x′ − x) = δd(x− x′)

[
−s∇2 + r

]

is inverse of the susceptibility. The subscript “0” has been added to χ−1 denoting that
is the “bare” susceptibilty, calculated for u = 0.

(b) By identifying the renormalized susceptibility with the second derivative of the free
energy, show that when interactions are taken into account

χ−1
0 (x′ − x) ≈ 〈 δ2F

δψ(x)δψ(x′)
〉 = δd(x′ − x)

[
−s∇2 + r + 12u〈ψ2〉

]

(Hint: differentiate (13.17) with respect to ψ(x) and take the expectation value of the
resulting expression), so that in momentum space

χq = sq2 + r + 12u〈ψ2〉T

where 〈ψ2〉T = S(x−x′)|x=x′ is the variance of the order parameter at a single point in
space, evaluated at temperature T .

(c) Show that the effects of fluctuations suppress Tc, and that at the new suppressed tran-
sition temperature T ∗

c

r = r0 = a(T ∗
c − Tc) = −12u〈ψ2〉T∗

c
= −12u

∫
ddq

(2π)d
kBT

∗
c /c

q2
.

so that

χ−1
q = sq2 + (r − r0) + 12u

[
〈ψ2〉 − 〈ψ2〉T∗

c

]

Notice how the subtraction of the fluctuations at T = T ∗
c renormalizes r → r − r0 =

a(T − T ∗
c ). What is the renormalized correlation length?

(d) Finally, calculate the Ginzburg criterion by requiring that |r−r0| > 12u
[
〈ψ2〉 − 〈ψ2〉T∗

c

]
,

to obtain
|r − r0|

4u
< 3

∫
ddq

(2π)d
kBT

∗
c

q2

[
ξ−2

q2 + ξ−2

]
(13.116)

The term inside the square brackets on the right hand side results from the renormal-
ization of r → r − r0. Notice how this term only involves fluctuations with q <˜ ξ

−1, i.e

the long-wavelength fluctuations of wavelength greater than ξ. What has happened to
the short wavelength fluctuations

(e) By approximately evaluating the integral on the right-hand side of (13.116) obtain the
Ginzburg criterion:

|r − r0|
u

<<
kBT

∗
c

s

1

ξd−2
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6. Properties of a coherent state.

Show that a coherent state |α〉 = eαa
† |0〉 can be expanded as a sum of Harmonic oscillator

states |n〉 = 1√
n!

(a†)n|0〉, as follows

|a〉 = |0〉+ α|1〉+ . . .
αn√
n!
|n〉

(a)(b) Show that 〈α∗|α〉 = e|a|
2

, so that a normalized coherent state is given by

|α〉N = e−|α|2/2eαâ
† |a〉

(c) Show that the probabilty of being in a state with n particles is a Poisson distribution

p(n) =
(λ)n

n!
e−|λ|, λ = |α|2

Note that a Poission distribution has equal mean and variance : 〈N̂〉 = 〈δN̂2〉 = λ

(d) Show that when α =
√
Ns,

δN2

N2 = 1
Ns

.

(e) Show that when the superconducting order parameter is written in terms of its amplitude
and phase, ψ = |ψ|eiφ, that the Ginzburg Landau free energy of a superconductor
separates into a phase and an amplitude component.

∣∣∣
(
∇− i q

h̄
A
)
ψ
∣∣∣
2

=
∣∣∣eiφ

[
∇|ψ|+ i

(
∇φ− q

h̄
A
)]∣∣∣

2

= (∇|ψ|)2 + |ψ|2
(
∇φ− q

h̄
A
)2

(13.117)

Use this expression to rederive an expression for the current in terms of the phase gradient
of the order parameter.
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Chapter 14

Path Integrals and Phase
transitions

14.1 Introduction: Broken symmetry, coherent states and

path integrals.

In this chapter, we begin our effort to understand the concept of “Broken Symmetry”.
This concept represents one of the monumental achievements of the 20th century. In 1937,
Landau[?] formulated the concept of broken symmetry- proposing that phase transitions
take place via the process of symmetry reduction, which he described in terms of his order
parameter concept. Landau introduced the idea of a an order parameter ψ, in terms of
which the Free energy can be written

F [ψ] = −a(Tc − T )|ψ|2 + b|ψ|4

When the temperature T drops below T = Tc, the quadratic term in this function becomes
negative, and the minimum of the Free energy moves from ψ = 0 to ψ = ±√ρ, where
ρ = ψ|2 = a

2b(Tc−T ), thereby forming a state that breaks the ψ → −ψ invariance symmetry
of F .

One can not understate the huge impact that order parameter and symmetry reduction
concept, epitomized by Landau’s almost trivial polynomial Free energy function, has had on
physics today. The Landau Ginzburg generalization of this function, which includes gradient
terms, provides the foundation to our understanding of phase transitions, superconductivity,
the Meissner effect, and through it the so-called “Anderson Higg’s” mechanism by which
a gauge boson can acquire a mass as a result of symmetry breaking. This one concept
explains at a stroke, the exclusion of magnetic fields from superconductors, and the weak
force of radioactive β decay. Furthermore, the Landau concept provides the foundation for
our understanding of criticality, and the concept of the renormalization group. It is only
today, at the dawn of the 21st century that we are beginning to understand the important
ways in which the Landau Ginzburg approach may break down.
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cT < T

cT = T critical

normal

Broken Symmetry
>0ψ

F[   ]ψ

ψ

cT > T

Figure 14.1: Illustrating the Landau free energy functional F [ψ].

In this chapter, we should like to relate the order parameter concept to many body
quantum physics. One of the key ideas that we will need here, is the concept of “off-diagonal
long range order”. This extension of Landau’s broken symmetry idea was first developed
by Onsager and Penrose in the early 1950’s. They were interested in the microscopic
nature of the order parameter in superfluid, which is really a Bose Einstein condensate
in an interacting bosonic fluid. Penrose and Onsager proposed that a superfluid could be
understood as a state of matter in which the two-particle density matrix

ρ(x, x′) = 〈ψ†(x′)ψ(x)〉

could be factorized as
ρ(x, x′) = ψ∗(x′)ψ(x) + small terms

where
ψ(x) =

√
ρ)se

iφ = 〈N − 1|ψ̂(x)|N〉
is the order parameter of the superfluid. ρs is the superfluid density and φ the phase of the
condensate. In this way, Onsager and Penrose were able to link Landau’s phenomenological
order parameter with a microscopic matrix element of the particle field. This concept of
“off-diagonal long-range order” (ODLRO) was subsequently generalized to Fermi systems
as part of the BCS theory of superconductivity, where the off-diagonal order parameter

F (x− x′) = 〈N − 2|ψ̂↓(x)ψ̂↑(x′)|N〉

defines the wavefunction of the Cooper pair.
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One of the remarkable spin-offs of superconductivity, was that it led to an understanding
of how a gauge boson can acquire a mass as a result of symmetry breaking. This idea was
first discussed by Anderson in 1959[?], and in more detail in 1964[?, ?], but the concept
evolved further and spread from Bell Laboratories to the particle physics community, ulti-
mately re-appearing as the Higg’s mechanism for spontaneous symmetry breaking in a Yang
Mills theory. The Anderson-Higgs mechanism is a beautiful example of how the study of
cryogenics led to a fundamentally new way of viewing the universe, providing a mechanism
for the symmetry breaking between the electrical and weak forces in nature.

Another consequence of broken symmetry concept is the notion of “generalized rigidity”[?],
a concept which has its origins in London’s early model of superconductivity and the two-
fluid models of superfluidity proposed independently by Tisza , according to which, if the
phase of a boson or Cooper pair develops a rigidity, then it costs a phase bending energy

U(x) ∼ 1

2
ρs(∇φ(x))2, (14.1)

from which we derive that the “superflow” of particles is directly proportional to the amount
of phase bending, or the gradient of the phase

js = ρs∇φ. (14.2)

Anderson noted that we can generalize this concept to a wide variety of broken symmetries,
each with their own type of superflow (see table 1). Thus broken translation symmetry
leads to the superflow of momentum, or sheer stress, broken spin symmetry leads to the
superflow of spin or spin superflow. There are undoubtedly new classes of broken symmetry
yet to be discovered.

Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigidity/Supercurrent

Crystal Translation Symmetry Momentum superflow
(Sheer stress)

Superfluid Gauge symmetry Matter superflow

Superconductivity E.M. Gauge symmetry Charge superflow

Antiferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)

? Time Translation Symmetry Energy superflow ?
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But to relate these various threads, we shall need some new tools. In particular, we
shall need to introduce the concept of the “coherent state”. Coherent states are simply
eigenstates of the field operators. For example, the coherent state for a single boson is
given by

|α〉 = eb̂
†α|0〉

We recall that since [b, b†] = 1, [b, (b†)n] = n(b†)n−1 and [b, eαb
†
] = αbeαb

†
, it follows that

b|α〉 =

0︷ ︸︸ ︷
eαb̂
†
b|0〉+

αeαb
†

︷ ︸︸ ︷
[b, eαb̂

†
] |0〉 = α|α〉

is an eigenstate of the field operator. By taking α =
√
Neiθ, where N >> 1 is the total

number of particles in the condenstate, one arrives at the coherence state wavefunction for
a “Bose-Einstein” or superfluid condensate in which

〈b〉 =
√
Neiθ

and N is the number of particles in the condensate. In a bosonic superfluid or Bose Einstein
condensate,

b ≡ 1√
V

∫
d3xψ(x)

is actually the zero momentum component of the field operator.

When we come to consider broken symmetry states involving fermions, the correspond-
ing boson b̂ is made up out of bilinears of fermions, for example the ground-sate of a
Bardeen-Cooper-Schrieffer (BCS) wavefunction for a superconductor, for a Cooper pair,
and

b̂† →
∑

k

αkc
†
k↑c
†
−k↓

becomes the creation operator for a Cooper pair, and the corresponding coherent state is
written

|α〉 = e
∑

k
αkc
†
k↑c
†
−k↓ |0〉. (14.3)

We can expand this product

|α〉 =
∏

k

(1+αkc
†
k↑c
†
−k↓)︷ ︸︸ ︷

eαkc
†
k↑c
†
−k↓ |0〉 =

∏

k

(1 + αkc
†
k↑c
†
−k↓)|0〉 (14.4)

where the last step is made possible by Taylor expanding the exponential and noting that
(c†k↑c†−k↓)n = 0 for n > 1. This last form for a coherent state is the BCS wavefunction,
whose discovery led to a revolution in many body physics. To develop an understanding of
these remarkable states of matter, we need to take a step back and develop the quantum
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physics of coherent states. This leads us naturally to the path integral formulation of many
body physics.

There are two key ideas behind the path integration technique: (i) the Feynman concept
of summing over quantum histories,

Z =
∑

path

exp

[
−Spath

]
(14.5)

where Spath is the “action” associated with the particular configuration of fields and (ii)
the concept of “coherent states”, whereby one works with eigenstates of the microscopic
quantum fields. We define

|ψ(x)〉 = exp

[
−
∫
d3xψ(x)ψ̂†(x)

]
|0〉 (14.6)

to be the coherent state of the field ψ. This state is the eigenvector of the microscopic
quantum field, in that

ψ̂(x)|ψ〉 = ψ(x)|ψ〉 (14.7)

where ψ(x) is a “c-number”, not an operator. We shall be able to do this for both bosons
and fermions, by generalizing our concept of “c-numbers” to include anticommuting grass-
man numbers. Coherent states have several marvelous properties. In particular, we can
immediately write down the matrix elements of the Hamiltonian in this basis, simply by
replacing the field operators by their expectation values. More importantly, each set of
functions ψ(x, t) now defines a “history”, or path over which the system evolves at each
point in space. The action associated with each path is given simply by

SPATH =

∫ β

0
dτL[ψ̄, ψ] (14.8)

xψ(   , τ)

where

L[ψ̄, ψ] =

∫
d3x[ψ̄(x, τ)∂τψ(x, τ)] +H[ψ̄, ψ] (14.9)
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is the Lagrangian density, and H is the Hamiltonian, with field operators replaced by the
c-numbers ψ, and their conjugates ψ̄. It turns out that we can do the corresponding path
integral for all non-interacting problems. This is already a major achievement. It is made
still more powerful, by the fact that many broken symmetry problems can be transformed,
by the method of “Hubbard Stratonovich”, into a problem of “free” particles moving in
a fluctuating effective field. This provides the formal back-bone for the study of broken
symmetry phase transitions.

Zinteracting −→
∑

{∆}

[
path integral of fermions moving in field ∆

]
(14.10)

where {∆} denotes a given configuration of the symmetry breaking field ∆. In these notes I
will show you how this works for the case of fermions. Fermions are more problematic than
bosons, because the numbers ψ(x) appearing in the coherent states must anticommute with
each-other. They are thus a new kind of number, which requires some new algebraic tricks.

14.2 Coherent states and Grassman mathematics

To illustrate the basic approach, we shall consider the simpler problem, of a single fermionic
field ĉ†. The coherent state for this field is

|c〉 = eĉ
†c|0〉

and its conjugate is given by
〈c̄| = 〈0|ec̄ĉ

We use c̄, rather than a dagger, because we shall need to consider c and c̄ to be independent
variables. Fermionic coherent states are a little tricky. On the one hand, the quantities c
and c̄ must behave as “c-numbers”, in so far as they commute with all observables Ô

cÔ = Ôc

On the other hand, in order that the numbers c and c̄ correctly represent the anticommuting
algebra of the original Fermi fields, they must anticommute amongst themselves, and with
other Fermi operators, so that

cc̄+ c̄c = 0, (14.11)

cψ̂ + ψ̂c = 0, (14.12)

But c must also anticommute with itself, which means that

c2 = c̄2 = 0,

But how can we possibly deal with numbers which when squared, give zero? At first sight
this task might seem doomed to failure or triviality. Actually, this proves not to be the
case, and the concept of anticommuting or “Grassman” numbers can be developed into a
fully consistent calculus. Indeed, the leap to this new type of number is no worst than the
jump from real, to complex numbers.
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Table. 1. Grassman Calculus .

Algebra
c1c2 = −c2c1 anticommute with Fermions and other

Grassman numbers

cb̂ = b̂c, cψ̂ = −ψ̂c commute with bosons, anticommute with
Fermi operators.

Functions f [c̄, c] = fo + c̄f1 + f̃1c+ f12c̄c
Since c2 = 0, truncate at linear order in
each variable.

Calculus

∂f = −f̃1 − f12c̄
Differentiation

∂̄f = f1 + f12c

∫
dc ≡ ∂c

∫
dc1 = ∂c1 = 0

∫
dcc = ∂cc = 1

Completeness

〈c|c〉 = ec̄c Over-complete basis.
∫
dc̄dce−c̄c|c〉〈c̄| = 1 Completeness relation.

Tr[Â] = −
∫
dc̄dcec̄c〈c̄|Â|c〉 Trace Formula.

Change of
variable

J

(
c1 . . . cr
ξ1 . . . ξr

)
=

∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣
−1

Jacobian - inverse of Bosonic Jacobian.

Gaussian
Integrals

∫ ∏

j

dc̄jdcje
−[c̄·A·c̄−j̄·c−c̄·j] = detA× e[j̄·A−1·j]

The main effect of the anticommuting properties of Grassmans is to drastically reduce the
set of possible functions and the set of possible linear operations one can carry out on such
functions. For example, the Taylor series expansion of Grassman functions has to truncate
at first order in any particular variable. Thus a function of two variables, f(c̄, c)

f [c̄, c] = fo + c̄f1 + f̃1c+ f12c̄c

only has four terms! The coherent state (14.2) also truncates, so that

|c〉 = |0〉+ ĉ†c|0〉
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= |0〉+ |1〉c (14.13)

so that the overlap between the “n” fermion state (n = 0, 1) and the coherent state is given
by

〈n|c〉 = cn, (n = 0, 1)

To develop a path integral representation for fermions one needs to know how to carry out
Grassman calculus. The key properties of Grassman algebra are summarized in table 1. A
more detailed discussion of these properties is given in the appendix at the end of these
notes.

14.2.1 Completeness and matrix elements

Coherent states are over-complete: you can see that

〈c̄|c〉 = 〈0|(1 + c̄ĉ)(1 + ĉ†c)|0〉 = 1 + c̄c = ec̄c (14.14)

and we need to cancel out this term in the measure for summing over coherent states. If
we start with the identity

∫
dc̄dce−c̄ccnc̄m = δnm, (n,m = 0, 1)

we see that the overlap between the eigenstates |n〉 of definite particle number is given by

〈n|m〉 =

∫
dc̄dce−c̄c

〈n|c〉︷︸︸︷
cn

〈c̄|m〉︷︸︸︷
c̄m

δnm =

∫
dc̄dce−c̄c〈n|c〉〈c̄|m〉 (14.15)

and since the basis {|n〉} = {|0〉, |1〉} is complete, the only way this can hold true for all
state |n〉, |m〉 ∫

dc̄dc|c〉〈c̄|e−c̄c = |0〉〈0|+ |1〉〈1| ≡ 1 (14.16)

is the identity. This is the completeness relation for coherent states. |1〉 = ĉ†|0〉 is the state
with one particle in it. The exponential may be loosely regarded as a normalizing factor
which takes account of the over-completeness:

e−c̄c|c〉〈c̄| ∼ |c〉〈c̄|〈c̄|c〉 .

We can regard the combination

∑

c̄, c

≡
∫
dc̄dc|c〉〈c̄|e−c̄c (14.17)
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as the measure for fermionic coherent states, With this understanding, the completeness
relation can be written simply as ∑

c̄,c

|c〉〈c̄| = 1

Matrix elements between coherent states are easy to evaluate. If an operator A[ĉ†, ĉ] is
normal ordered, then since the coherent states are eigenvectors of the quantum fields, it
follows that

〈c̄|Â|c〉 = 〈c̄|c〉A[c̄, c] = ec̄cA[c̄, c], (14.18)

i.e
〈c̄|Â|c〉 = ec̄c × c-number formed by replacing (ĉ, ĉ†)→ (c, c̄).

It is this wonderful feature that makes coherent states so very special, for at a swoop, we
can convert normal-ordered operators into C-numbers.

The last result we need is the trace of A. We might guess that the appropriate expression
is

Tr[Â] =
∑

c̄,c

〈c̄|Â|c〉

actually - this is almost right, but infact, it turns out that the anticommuting properties of
the Grassmann’s force us to introduce a minus sign into this expression

Tr[Â] =
∑

c̄,c

〈−c̄|Â|c〉 =

∫
dc̄dce−c̄c〈−c̄|Â|c〉 (14.19)

which we shall shortly see, gives rise to the antisymmetric boundary conditions of fermionic
fields. To prove the above result, write A in the basis of definite occupation,

Â =
∑

n,m=0,1

|n〉Anm〈m|

and insert it into the above expression. This gives
∫
dc̄dce−c̄c〈−c̄|Â|c〉 =

∑

n,m

∫
dc̄dce−c̄c〈−c̄|n〉Anm〈m|c〉

=
∑

n,m

Anm

∫
dc̄dce−c̄c(−c̄)ncm

=
∑

n,m

Anm

δmn︷ ︸︸ ︷∫
dc̄dce−c̄ccm(c̄)n

=
∑

n=0,1

Ann = Tr[Â] (14.20)

where the all-important minus sign is absorbed after the second line, when we anticommute
cm and c̄n. We shall make extensive use of the completeness and trace formulae (14.16)
and (14.19) in developing the path integral. Both expressions are simply generalized to
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many fields cj by making the appropriate change in the measure and by replacing c̄c in the
exponent, by the dot product,

dc̄dc ≡
∏

j

dc̄jdcj , (14.21)

c̄c =
∑

j

c̄jcj .

14.3 Path integral for the partition function

To begin with, we consider a single fermion, with Hamiltonian

H = ǫĉ†ĉ (14.22)

Using the trace formula (14.19), the partition function

Z = Tre−βH

can be re-written in terms of coherent states as

Z = −
∫
dc̄Ndc1e

c̄N c1〈c̄N |e−βH |c1〉, (14.23)

where the labeling anticipates the next step. Now we expand the exponential into a sequence
of time-slices

e−βH =

(
e−∆τH

)N
, ∆τ = β/N.

Between each time slice we introduce the completeness relation
∫
dc̄jdcj+1|cj+1〉〈c̄j |e−c̄jcj+1 = 1

so that

Z = −
∫
dc̄Ndc1e

c̄N c1
N−1∏

j=1

dc̄jdcj+1e
−c̄jcj+1

N∏

j=1

〈c̄j |e−H∆τ |cj〉 (14.24)

where the first integral is associated with the trace and the subsequent integrals with the
N − 1 completeness relations. Now if we define

cN+1 = −c1, c̄0 = −cN (14.25)

we are able to identify the N +1 st time slice with the 1st time slice and the 0 th time slice
with the N the time-slice. In this way, the integral associated with the trace

−
∫
dc̄Ndc1e

c̄N c1〈c̄N | . . . |c1〉 =

∫
dc̄NdcN+1e

−c̄N cN+1〈c̄N | . . . | − cN+1〉

=

∫
dc̄0dc1e

−c̄0c1〈−c̄0| . . . |c1〉 (14.26)
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can be absorbed into the other N − 1 integrals, and furthermore, we notice that the fields
entering into the discrete path integral are antiperiodic.

With this observation,

Z = −
∫ N∏

j=1

dc̄jdcj+1e
−c̄jcj+1

N∏

j=1

〈c̄j |e−H∆τ |cj〉 (14.27)

Provided each time-slice is of sufficiently brief duration, we can replace e−∆τH by its normal
ordered form, so that

〈c̄j |e−H∆τ |cj〉 = ec̄j c̄je−H[c̄jcj ]∆τ +O(∆τ2),

where H[c̄, c] = ǫc̄c is the normal-ordered Hamiltonian, with Grassman numbers replacing
operators.

1= dcdc e−cc
|c><c|

τ=β

τ=0

∆τ

c j cj−(1+ε ∆τ)
e

Fig. 2 Division of time evolution into “time-slices”.

Combining (14.23) and (14.24) we can write

Z = LtN→∞ZN

ZN =

∫ N∏

j=1

dc̄jdcj exp

[
−S

]

S =
N∑

j=1

[
c̄j(cj+1 − cj)/∆τ + ǫc̄j , cj

]
∆τ, (14.28)

Let us pause to reflect on what this means. This path integral represents a sum over all
possible values “histories” of the fields:

c(τj) ≡ {c1, c2 . . . cN}, (14.29)

c̄(τj) ≡ {c̄1, c̄2 . . . c̄N} (14.30)

as illustrated in Fig. 2. This kind of integral is also called a “functional integral”, because it
involves integrating over all possible values of the functions c(τ) and c̄(τ). When we take the
thickness of the time slices to zero, the discrete functions c(τ) and c̄(τ) become functions of
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continuous time. The boundary condition (14.25) implies that the set of complete functions
which we sum over must satisfy anti-periodic boundary conditions

c(τ + β) = −c(τ), c̄(τ + β) = −c̄(τ)

In the continuum limit, N →∞, we now replace

c̄j(cj − cj−1)/∆τ → c̄∂τc,
∑

j

∆τ →
∫ β

0
dτ. (14.31)

These cavalier replacements require some thought, for we are certainly not dealing with
smooth functions - if such a notion is even valid for Grassman functions! The sense in
which cj becomes “close” to cj+1 needs to be carefully understood. Suppose we rewrite the
antiperiodic cj in terms of their frequency components as

cj =
1√
β

∑

|n|≤N/2
c(iωn)e

−iωnτj ,

then in this new basis,

∑

j

c̄j(cj+1 − cj) =
∑

|n|≤N/2
c̄(iωn)

[
e−iωn∆τ − 1

∆τ

]
c(iωn)

In practice, the path-integral is dominated by functions cj with a maximum characteristic
temporal frequency max(|ωn|) ∼ ǫ, so that as ∆τ → 0, we can replace

[
e−iωn∆τ − 1

∆τ

]
→ −iωn

which is the Fourier transform of ∂τ .

With these provisos, the continuum limit of the action and path integral are then

S =

∫ ∞

0
dτ

[
c̄(∂τ + ǫ)c

]
,

Z =

∫
D[c̄, c] exp

[
−S

]
(14.32)

where we use the notation

D[c̄, c] =
∏

τl

dc̄(τl)dc(τl)

At first sight, it might seem a horrendous task to carry out the integral over all possible
functions c(τ). How can we possibly do this in a controlled fashion? The clue to this
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problem lies in the observation that the set of functions c(τ) (and its conjugate, c̄(τ) ) are
spanned by a discrete but complete set of anti-periodic functions, as follows

c(τ) =
1√
β

∑

n

cne
−iωnτ ,

We can integrate over all possible functions c(τ) by integrating over all possible values of
the coefficients cn and since the transformation which links these two bases is unitary, the
Jacobian which links the two bases is unity, i.e.

D[c̄, c] ≡
∏

n

dc̄ndcn

It is much easier to visualize and work with a discrete basis. We can transform to this basis,
by replacing ∂τ → −iωn in the action, rewriting it as

S =
∑

n

c̄n(−iωn + ǫ)cn

Now the path integral is just a discrete Gaussian integral

Z =

∫ ∏

n

dc̄ndcn exp

[∑

n

c̄n(−iωn + ǫ)cn

]
=
∏

n

(−iωn + ǫ)

so that the Free energy is given by

F = −T lnZ = −T
∑

n

ln(ǫ− iωn)eiωn0+

Here we have added a small convergence factor eiωn0+
because the time-evolution from τ = 0

to τ = β is equivalent to time evolution from τ = 0 to τ = 0−.
We can show that this reverts to the standard expression for one-particle free energy by

replacing the Matsubara sum with a contour integral:

F = T

∮
dz

2πi
f(z)ln[ǫλ − z]ez0

+
(14.33)

where the contour integral passes counter-clockwise around the poles of the Fermi function
at z = iωn, and the choice of f(z) is dictated by the convergence factor. We take the
logarithm to have a branch cut which extends from z = ǫλ to infinity. By deforming the
integral around this branch cut we obtain

F = −
∫ ∞

ǫ

dω

2πi
f(ω)

[
ln(ǫ− ω − iδ)− (c.c.)

]

=

∫ ∞

ǫ
dωf(ω)

= −T ln[1 + e−βǫ] (14.34)

which is the well-known Free energy of a single fermion.
Of course, here we have used a sledge-hammer to crack a walnut, but the virtue of the

method is the ease with which it can be generalized to much more complex problems. Three
important points need to be made about this result:
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• This result can easily be generalized to an arbitrary number of Fermi-fields. In this
case,

S =

∫ ∞

0
dτ

[∑

λ

c̄λ∂τcλ +H[c̄, c]

]
,

and the measure for the path integral becomes

D[c̄, c] =
∏

τl,r

dc̄λ(τl)dcλ(τl)

• The derivation did not depend on any details of H, and can thus be simply general-
ized to interacting Hamiltonians. In both cases, the conversion of the normal-order
Hamiltonian occurs by simply replacing operators with the appropriate Grassman
variables.

: H[c†, c] :→ H[c̄, c]

• Because the Jacobian for a unitary transformation is unity, we can change basis inside
the path integral. For example, if we start with the action for a gas of fermions

S =

∫ β

0
dτ
∑

k

c̄k(∂τ + ǫk)ck,

where ǫk = (k2/2m)− µ, we can transform to a completely discrete basis by Fourier
transforming in time,

ck =
1√
β

∑

n

ckne
iωnτ ,

∂τ → −iωn

D[c̄, c] →
∏

k,n

dc̄kndckn. (14.35)

In the this discrete basis, the action becomes

S =
∑

k,n

(ǫk − iωn)c̄knckn

This basis usually proves very useful for practical calculations. We can also transform
to a continuum real-space basis, as follows

ck =
1√
V

∫
d3xψ(x)e−ik·x,

ǫk → −∇
2

2m
− µ

D[c̄, c] → D[ψ̄, ψ]. (14.36)
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In the new basis, the the action becomes

S =

∫ β

0
dτ

∫
d3xψ̄(x)

[
∂τ −

∇2

2m
− µ

]
ψ(x).

As in the case of a single field, the discrete and continuous measures, (14.35) and
(14.36) are equivalent ∏

k,n

dc̄kndckn ≡ D[ψ̄, ψ].

because the space of continuous functions ψ(x) is spanned by a complete, but discrete
set of basis functions.

ψ(x, τ) =
1√
βV

∑

k,n

ckne
i(k·x−ωnτ),

We can integrate over all possible functions ψ(x, τ) by integrating over all values of
the discrete vector ckn.

14.4 General evaluation of Path Integral for non-interacting
Fermions

For non-interacting fermions the action only involves bilinears of the Fermi fields, so the
path integral is of Gaussian form and can always be evaluated. To discuss the most general
case, we shall include “source terms” in the original Hamiltonian, writing

H(τ) =
∑

λ

[ǫλc
†
λcλ − j̄λ(τ)cλ − c†λjλ(τ)]

where c†λ creates a fermion in the eigenstate with energy ǫλ. With source terms, the
partition function becomes a “generating functional”

Z[j̄, j] = Tr

[
Texp{−

∫ β

0
dτH(τ)}

]
.

Derivatives of the generating functional generate the irreducible Green’s functions of the
fermions, for instance,

δlnZ[j̄, j]

δj̄(1)
= 〈c(1)〉 (14.37)

δ2lnZ[j̄, j]

δj̄(2)δj(1)
= 〈T [c(1)c†(2)]〉 − 〈c(2)〉〈c†(1)〉 (14.38)

where

〈. . .〉 =
1

Z[j̄, j]
Tr

[
Texp{−

∫ β

0
dτH(τ)} . . .

]
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Transforming to a path integral representation, now

Z[j̄, j] =

∫
D[c̄, c]e−S (14.39)

S =

∫
dτ

[
c̄(τ)(∂τ + h)c(τ)− j̄(τ)c(τ)− c̄(τ)j(τ)

]
(14.40)

where hαβ = ǫαδαβ is the one-particle Hamiltonian. One can carry out functional derivatives
on this integral without actually evaluating it. For example, we find that

〈c(1)〉 =
1

Z[j̄, j]

∫
D[c̄, c]c(1)e−S (14.41)

〈T [c(1)c†(2)]〉 =
1

Z[j̄, j]

∫
D[c̄, c]c(1)c̄(2)e−S (14.42)

Notice how the path integral automatically furnishes us with time-ordered expectation
values.

Fortunately, the path integral is Gaussian, allowing us to use the general result obtained
in Appendix C,

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ + j̄ · ξ + ξ̄ · j] = detA exp[j̄ ·A−1 · j].

In the case considered here, A = ∂τ + h, so we can do the integral, to obtain

Z[j̄, j] = det[∂τ + h] exp

[
−
∫
dτdτ ′j̄(τ)G[τ − τ ′]j(τ ′)

]
(14.43)

where

−(∂τ + h)−1 = G[τ − τ ′] (14.44)

By differentiating (14.43) with respect to j and j̄, we are able to identify

δ2 lnZ

δj̄(τ)δj(τ ′)
= 〈c(τ)c†(τ ′)〉 = −G[τ − τ ′], (14.45)

so the inverse of the Gaussian coefficient in the action −[∂τ + h]−1 directly determines the
imaginary time Green-function of these non-interacting fermions.

From the partition function in (14.43), the Free energy is then given by

F = −T lnZ = −T lndet[∂τ + h] = −TTrln[∂τ + h] = TTrln[−G−1]

where we have used the result lndet[A] = Trln[∂τ + h].
To explicitly compute the Free energy it is useful to transform to Fourier components,

cλ(τ) =
1√
β

∑

n

cλne
−iωnτ ,
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jλ(τ) =
1√
β

∑

n

jλne
−iωnτ , (14.46)

In this basis,

(∂τ + ǫλ) −→ (−iωn + ǫλ)
G = −(∂τ + ǫλ)

−1 −→ (iωn − ǫλ)−1 (14.47)

so that

S =
∑

λ,n

[
[−iωn + ǫλ]c̄λncλn − j̄λncλn − c̄λnjλn

]
(14.48)

whereupon,

det[∂τ + h] = =
∏

λ,n

(−iωn + ǫλ)

Z[j̄, j] =
∏

λ,n

(−iωn + ǫλ) exp

[∑

λ,n

(−iωn + ǫλ)
−1j̄λnjλn

]
(14.49)

If we set j = 0 in Z we obtain the Free energy in terms of the Fermionic Green function.

F = −T
∑

λ,n

ln[−iωn + ǫλ]

As in the case of a single field, by replacing the Matsubara sum with a contour integral we
obtain

F = T
∑

λ

∮
dz

2πi
f(z)ln[ǫλ − z] (14.50)

= −T
∑

λ

ln[1 + e−βǫλ ] (14.51)

If we differentiate Z with respect to its source terms, we obtain the Green’s function:

− δ2lnZ

δj̄λnδjλ′n′
= [G]λn,λ′n′ = δλλ′δnn′

1

iωn − ǫλ

14.5 Hubbard Stratonovich transformation

The “Hubbard Stratonovich” transformation maps certain classes of interacting fermion
problem, onto non-interacting electrons moving through an effective field. Let us suppose
that the interaction part of the Hamiltonian involves the product of two fermion bilinears,
H = Ho +HI , where

HI = −g
∫
d3xA†(x)A(x),
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in the continuum, or on a lattice,

HI = −g
∑

j

A†jAj ,

Examples of such bilinears might be the pair density

A(x) = ψ↓(x)ψ↑(x), A†(x) = ψ↑
†(x)ψ†↓(x),

in a superconductor, or the spin-raising and lowering operators in a magnetism problem.

A(x) ≡ S−(x) = ψ†↓(x)ψ↑(x), A†(x) ≡ S+(x) = ψ†↑(x)ψ↓(x),

The Hubbard Stratonovich transformation replaces the combination −gA(x) by an effective
field −gA(x)→ ∆(x), in the following way

−gA†(x)A(x)→ A†(x)∆(x) + ∆̄(x)A(x) +
∆̄(x)∆(x)

g

A similar type of replacement occurs in the mean-field treatment of interactions, where ∆ is
taken to be a static field By elevating ∆ to the status of a field, this transformation becomes
exact. You may think of ∆ as the exchange boson which mediates the original interaction.

Let us begin by reminding ourselves about Gaussian integrals. Suppose ∆ = ∆1 − i∆2

and ∆̄ = ∆1 + i∆2 then since

∫
d∆1d∆2e

−(∆2
1+∆2

1)/g = πg,

by writing d∆d∆̄ = 2id∆1d∆2 , we obtain

∫
d∆d∆̄

2πig
e−∆̄∆/g = 1. (14.52)

Now suppose that ∆(x, τ) is a function of space and time, defined on a grid in space time
that can be made infinitely fine. We can naturally generalize (14.52) as follows

∫
D[∆̄,∆] exp

[
−
∫
d3x

∫ β

0
dτ

∆̄(x)∆(x)

g

]
= 1, (14.53)

where

D[∆̄,∆] ≡
∏

τ,j

d∆̄(xj , τ)d∆(xj , τ)

N

Here N = 2πig/(∆x3∆τ) is a normalization and we have taken the continuum limit,
(δx,∆τ) → 0, replacing the discrete sum over the grid

∑
xj ,τj ∆̄(xj)∆(xj) by a continu-

ous integral
∫
d3x

∫ β
0 dτ∆̄(x)∆(x).
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Now consider the following path integral

Z =

∫
D[c̄, c]e

−
∫ β
0
dτ

[
c̄(∂τ+h)c+HI

]

By introducing the unit identity (14.53) into the fermionic path integral, we obtain

Z =

∫
D[c̄, c]

∫
D[∆̄,∆]e

−
∫ β
0
dτ

[
c̄(∂τ+h)c+H′I

]

(14.54)

where

H ′I =

∫
d3x

{
∆̄(x)∆(x)

g
− gĀ(x)A(x)

}
(14.55)

Now if we shift the ∆ field as follows

∆(x) → ∆(x) + gA(x),
∆̄(x) → ∆̄(x) + gĀ(x),

the measure is unchanged. Making this substitution in (14.55), we obtain

H ′I =

∫
d3x

{
Ā(x)∆(x) + ∆̄(x)A(x) +

∆̄(x)∆(x)

g

}
. (14.56)

In other words, we have absorbed the interaction, replacing it by an effective field which
couples to the fermion bilinear A. If we now invert the order of integration inside the path
integral (14.54), we now obtain

Z =

∫
D[∆̄,∆]e

−
∫
d3dτ

∆̄(x)∆(x)
g

∫
D[c̄, c]e−S̃

S̃ =

∫ β

0
dτ c̄∂τc+Heff [∆̄,∆] (14.57)

where

Heff [∆̄,∆] = Ho +

∫
d3x

{
Ā(x)∆(x) + ∆̄(x)A(x)

}

represents the action for electrons moving in the fluctuating field ∆(x). The weight function

e
−
∫
d3xdτ

∆̄(x)∆(x)
g

is a Gaussian distribution function for a white noise field with correlation function 1

〈∆(x)∆(x′)〉 = gδ(4)(x− x′).
1To show this, it is helpful to consider the generating functional

Λ[j̄, j] =

∫
D[∆̄,∆] exp

[
−

∫
d3x

∫ β

0

dτ

(
∆̄(x)∆(x)

g
− j̄(x)∆(x) − ∆̄(x)j(x)

)]
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It is these white noise fluctuations that mediate the interaction between the fermions, much
as an exchange boson mediates interactions in particle physics. More schematically,

Z =
∑

{∆}
e
−
∫
d4x
|∆|2

g [ Path integral of fermions moving in field ∆ ]

where the summation represents a sum over all possible configurations {∆} of the auxiliary
field ∆. Of course, the coupling of the auxiliary field to the fermions modifies its distribution
function. Since the fermionic action inside the path integral is actually Gaussian, we can
formerly integrate out the fermions as follows

e−Sψ [∆̄,∆] =

∫
D[c̄, c]e−S̃ = det[∂τ + heff [∆̄,∆]] (14.58)

where heff is the matrix representation of Heff . The Full path integral may thus be written

Z =

∫
D[∆̄,∆]e−Seff [∆̄,∆]

where

Seff [∆̄,∆] =

∫
d3xdτ

∆̄(x)∆(x)

g
− ln det[∂τ + heff [∆̄,∆]]

=

∫
d3xdτ

∆̄(x)∆(x)

g
− Trln[∂τ + heff [∆̄,∆]] (14.59)

where we have made the replacement ln det→ Tr det. This quantity is called the “effective
action” of the field ∆. The additional fermionic contribution to this action can profoundly
change the distribution of the field ∆. For example, if Seff develops a minima away around
∆ = ∆o 6= 0, the ∆ = −A/g will acquire a “vacuum expectation value”. This makes the
Hubbard Stratonovich transformation an invaluable tool for studying the development of
broken symmetry in interacting Fermi systems.

By changing variables, ∆(x) → ∆(x) + gj(x), we can absorb the terms linear in j, to obtain

Λ[j̄, j] = exp

[∫
d3x

∫ β

0

dτgj̄(x)j(x)

]

Differentiating this with respect to j(x), we find that

∂2lnΛ[j, j̄]

∂j̄(x)∂j(x′)

∣∣∣∣
j,j̄=0

= 〈∆(x)∆̄(x′)〉 = gd(4)(x− x′)
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14.6 Appendix: Grassman Calculus

14.6.1 Differentiation and Integration

Differentiation is defined to have the normal linear properties of the differential operator.
We denote

∂ ≡ ∂

∂c
, ∂̄ ≡ ∂

∂c̄
(14.60)

so that

∂c = ∂̄c̄ = 1. (14.61)

If we have a function
f(c̄, c) = f0 + f̄1c+ c̄f1 + f12c̄c (14.62)

then differentiation from the left-hand side gives

∂f = f̃1 − f12c̄
∂̄f = f1 + f12c (14.63)

where the minus sign in the first expression occurs because the ∂̄ operator must anticom-
mute with c. But how do we define integration? This proves to be much easier for Grass-
man variables, than for regular c-numbers. The great sparseness of the space of functions
dramatically restricts the number of linear operations we can apply to functions, forcing
differentiation and integration to become the same operation :

∫
dc ≡ ∂,

∫
dc̄ ≡ ∂̄ (14.64)

In other words, ∫
dc̄c̄ = 1,

∫
dcc = 1,

∫
dc̄ =

∫
dc = 0

14.6.2 Change of variable

Suppose we change variables, writing

(
c
c̄

)
= A

(
ξ
ξ̄

)

where A is c-number matrix. If we make this substitution in the polynomial f, we form a
new polynomial

g(ξ, ξ̄) = f(c, c̄).

Equating each term in the function, we have

f12cc̄ = g12ξξ̄ = (f12detA)ξξ̄.
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Now we would like to know the Jacobian for this transformation, which is defined so that

dc̄dc = J

(
c̄, c

ξ̄, ξ

)
dξ̄dξ

Now ∫
dc̄dcf(c, c̄) = f12 = g12(detA)−1,

∫
dξ̄dξg(ξ, ξ̄) = g12

For a linear transformation the Jacobian should be just a number, so by comparing the
above, we see that

J

(
c̄, c

ξ̄, ξ

)
= (detA)−1

This result can be easily generalized to a large number of variables, so that

J

(
c1 . . . cr
ξ1 . . . ξr

)
=

∣∣∣∣
∂c1 . . . cr
∂ξ1 . . . ξr

∣∣∣∣
−1

which is precisely the inverse of the bosonic Jacobian. This has important implications
for super-symmetric field theories, where the Jacobian of the bosons and fermions pre-
cisely cancels. For our purposes however, the most important point, is that for a Unitary
transformation, the Jacobian is unity.

14.6.3 Gaussian Integrals

The basic Gaussian integral is simply

∫
dc̄dce−ac̄c =

∫
dc̄dc(1− ac̄c) = a

If now we introduce a set of N variables, then

∫ ∏

j

dc̄jdcj exp−[
∑

j

aj c̄jcj ] =
∏

j

aj

Suppose now, we carry out a unitary transformation, for which the Jacobian is unity, then
since

c = Uξ, c̄ = ξ̄U †,

the integral then becomes

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ] =
∏

j

aj

where Aij =
∑
l U
†
ilalUlj is the matrix with eigenvalues al. It follows that

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ] = detA

448



c©2009 Piers Coleman Chapter 14.

Finally, by shifting the variables ξ → ξ−A−1j, where j is an arbitrary vector, we find that

Z[j] =

∫ ∏

j

dξ̄jdξj exp[−ξ̄ ·A · ξ + j̄ · ξ + ξ̄ · j] = detA exp[j̄ ·A−1 · j]

This is the basic Gaussian integral for Grassman variables. Notice that using the result
lndet[A] = Trln[A], it is possible to take the logarithm of both sides to obtain

S[j] = −lnZ[j] = −Trln[A]− j̄ ·A−1 · j.

The main use of this integral, is for evaluating the Path integral for free field theories. In
this case, the matrix A → −G−1 becomes the inverse propagator for the fermions, and
ξn → ψ(iωn) is the Fourier component of the Fermi field at Matsubara frequency iωn.
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Exercises

1. Repeat the calculation of section 3. without taking the continuum limit. Show that
the path integral for a single fermion with a large, but finite number of time slices is
given by

ZN =
∏

−N/2≤n<N/2
(ǫ− iωnJo(ωn∆τ/2))

where Jo(x) = sinx/x, so that in the limit ∆τ → 0, the partition function reverts to
the form obtained from the continuum action.

2. Using path integrals, calculate the partition function for an electron in a magnetic
field, with the action

S =

∫
dτ f̄α

(
δαβ∂τ + ~σαβ · ~B

)
fβ

Why is your answer not the same as the partition function of a spin 1/2 in a magnetic
field?

3. Suppose

M = e
1
2

∑
i,j
Aijc

†
ic
†
j

where Aij is an N × N antisymmetric matrix, and the c†j are a set of N canonical
Fermi creation operators. Using coherent states, calculate

Tr[MM†]

where the trace is over the 2N dimensional Hilbert space of fermions. (Hint: notice
that MM† is already normal ordered, so that by using the trace formula, you can
rewrite this in terms of a simple Grassman integral.)

4. Calculate, to Gaussian order, the change in the BCS effective action for a fluctuation
in the gap function of the following form

∆(τ) = ∆0 +
1√
β

∑

n

δ∆ne
−iνnτ

where νn = 2πTn is the Bose Matsubara frequency and ∆0 is a value of ∆ which
minimizes the effective action. Use your result to confirm that the BCS Free energy
per unit volume is accurate to O(1/V ), where V is the volume.

5. Re-derive table 1. for the case of bosonic coherent states.

|b〉 = ebb̂
† |0〉

where the Grassman variable is now replaced by a conventional c-number b.
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14.7 Exercises for chapter 14

1. (a) Suppose H = ǫc†c represents a single fermion state. Consider the approximation to the
partition function obtained by dividing up the period τ ∈ [0, β] into N equal time-slices,

ZN = Tr[(e−∆τH)N ] (14.65)

where ∆τ = β/N . By using coherent states |c〉 = eĉ
†c|0〉, and approximating the matrix

element from time τj to time τj+1, where τj = j∆τ by

〈c̄j+1|e−∆τH |cj〉 = eαc̄j+1cj +O(∆τ2) (14.66)

where α = (1−∆τǫ), (Fig. 1.)

0ττ3 2 1β=τ
(14.67)

show that Z3 can be written as a “toy functional integral”,

Z3 =

∫
dc̄3dc3dc̄2dc2dc̄1dc1 exp



−(c̄3, c̄2, c̄1)




1 −α 0
0 1 −α
α 0 1





c3
c2
c1





 (14.68)

(b) Evaluate Z3.

(c) Generalize the result to N time slices and obtain an expression for ZN . What is the
limiting value of your result as N →∞?

2. Derive the completeness and trace formulae for a set of bosonic coherent states,

|α〉 = eb
†α| (14.69)

You may assume the basic result

δnm =

∫
db̄db

2πi
e−b̄bbnb̄m

In particular

(a) Show that the completeness relation is given by
∑

|b〉, |b̄〉
|b〉〈b̄| = 1

∑

|b〉, |b̄〉
=

∫
db̄db

2πi
e−b̄b (14.70)

(b) Show that the trace formula is given by

Tr[Â] =
∑

|b〉, |b̄〉
〈b̄|Â|b〉

(c) What is the key difference between the derivation of the Bosonic and the Fermionic path
integrals?
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3. The one dimensional electron gas is prone to the development of charge-density wave insta-
bilities. The treatment of these instabilities bears close resemblance to the BCS theory of
superconductivity. Suppose we have a one-dimensional conductor, described by the Hamilto-
nian

H − µN = Ho +HI ,

Ho = −t
∑

j, σ

(
ψ†

j+1 σψj σ + ψ†
j σψj+1 σ

)
,

HI = −g
∑

j

nj↑nj↓ (14.71)

where g > 0 and ψ†
jσ creates an electron with spin σ = ± 1

2 at site j. The separation between
sites is taken to be unity and the chemical potential has been chosen to be zero, giving a
half-filled band.

(a) Show that Ho can be diagonalized in the form

Ho = −
∑

k σ

(2t cos k)c†kσckσ, (14.72)

where ckσ = 1√
N

∑
j ψjσe

−ikj , k = 2π
N (0, 1, . . . N − 1) . Please note that the band is exactly

half-filled, so that the Fermi surfaces are separated by a distance π in momentum space and
the average electron density is 1 per site.

(b) Suppose a staggered potential Vj = −(−1)jΦ is applied to the conductor. This will induce
a staggered charge density to the sample

〈njσ〉 =
1

2
+ (−1)j∆j/g (14.73)

At low temperatures, the staggered order will remain even after the applied potential is re-
moved. Why? If the RMS fluctuations in the staggered charge density can be ignored, show
that the interaction Hamiltonian can be recast in the form

HI →
∑

j

(
(−1)j∆j n̂j +

∆2
j

g

)
+O(δn̂2

j ). (14.74)

(c) How can the above transformation be elevated to the status of an exact result using a
path integral? (Note that the order parameter is no longer complex- does this change your
discussion?)

(d) Calculate the excitation spectrum in the presence of the uniformly staggered order pa-
rameter ∆j = ∆. (Hint: write the mean field Hamiltonian in momentum space and treat the
terms that scatter from one-side of the Fermi surface in an analogous fashion to the pairing

terms in superconductivity. You may find it useful to work with the spinor Ψkσ =

(
ckσ
ck+πσ

)
.)

(e) Calculate the Free energy F [∆] and sketch your result as a function of temperature. Write
down the gap equation for the value of ∆(T ) that develops spontaneously at low temperatures.
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Chapter 15

Superconductivity and BCS theory

15.1 Introduction: Superconductivity pre-history

As a specific illustration of the above approach, we shall now develop the BCS theory of
superconductivity using the path integral method.

Before we start, a brief diversion about the history of superconductivity. Supercon-
ductivity - the phenomenon whereby the resistance of metal spontaneously drops to zero
upon cooling below its critical temperature, was discovered by Kamerlingh Onnes in 1906.
However, it took more than 50 years to fully develop the conceptual framework required
to understand this collective phenomenon. During this time, many great physicists, in-
cluding Bohr, Pauli and Feynman tried, yet failed to develop a microscopic theory of the
phenomenon.

Some highlights in the development of the theory of superconductivity were

• Discovery of the Meissner effect in 1933 by Meissner and Ochsenfeld. When a super-
conductor is cooled in a small magnetic field, the flux is spontaneously excluded as it
becomes superconducting. The Meissner effect demonstrates that a superconductor
is, in essence a perfect diamagnet.

• London’s observation in 1937, that perfect diamagnetism develops if the wavefunction
develops a rigidity which prevents the paramagnetic component of the current evolving
to screen out the diamagnetic current. (See earlier discussions) Using this reasoning,
London deduced the famous relationship

~j = −nse
2

m
~A, (~∇ ·A = 0).

• Development of the Landau Ginzburg theory in 1951. Landau and Ginzburg extended
the Landau theory of phase transitions, proposing that superconductivity involves a
complex order parameter Ψ(x). Using arguments of gauge invariance, LG reasoned
that the Free energy must contain a gradient term of the form

f =

∫
d3x

1

2m∗
|(−ih̄~∇− e∗ ~A)ψ(x)|2
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Although we now know that e∗ = 2e, in the original version of the theory, Landau
erroneously convinced Ginzburg that he had an argument based on gauge invariance,
that proves e∗ = e. The vitally important aspect of this free energy function is that
once ψ 6= 0, the electromagnetic field develops a mass giving rise to a super-current

~j = − δf

δ ~A(x)
= −(e∗)2

m∗
|ψ|2 ~A(x)

The BCS Hamiltonian is one of the earliest examples of “model Hamiltonians”. By the
early fifties, the observation of the isotope effect by Bernie Serin at Rutgers University,
had lead to the realization that the mechanism of superconductivity in conventional metals
was driven by the electron phonon interaction. Frohlich had proposed his Hamiltonian for
the electron phonon interaction, and had discovered that these interactions can give rise to
sliding charge density waves. Frohlich’s theoretical prediction of charge density waves was
twenty five years ahead of its time, but it also misled him into thinking that charge density
waves could provide the explanation of the Meissner effect. Frohlich’s error was to neglect
the effect of pining, which in any disordered materials, prevents incommensurate charge
density waves from sliding freely.

In the early fifties, Bardeen and Pine’s recognized that to make progress with the theory
of superconductivity, it would be necessary to simplify the Hamiltonian by carrying out a
canonical transformation that eliminates the phonon degrees of freedom, giving rise to an
effective electron-electron interaction. The Bardeen Pine Hamiltonian is the immediate
predecessor of the BCS model

15.2 The BCS Hamiltonian

We start with the BCS Hamiltonian

H =
∑

kσ

ǫkσc
†
kσckσ −

g0
V
A†A

where
A =

∑

k,|ǫk|<ωD
c−k↓ck↑, A† =

∑

k

c†k↑c
†
−k↓,

are the operators that annihilate or create a uniform pair density. Note how the interaction
between electrons is limited to within an energy ωD of the Fermi energy. This “simplified”
pairing Hamiltonian is the one originally used by BCS. Notice how the interaction

HI = −g0
V

∑

k,k′

c†k↑c
†
−k↓c−k′↓ck′↑,

involves pairs of infinite spatial extent (all momenta summed over). This feature enhances
the mean-field properties of the model to the point where mean-field theory actually gives
the exact solution.
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(i) Decoupled
from Fermions

∆

Seff

0

δ∆
S =

∫
d4x
|∆|2
g

white noise

(ii) Coupled to
Fermions: δ∆

∆

∆ο

Seff

0

Seff =

∫
d4x
|∆|2
g
−Trln(∂τ +heff [∆̄,∆])

∆o 6= 0

Fig. 3 Effective action for auxilliary field.

The volume normalizing factor 1/V is required so that this term grows linearly, rather than
quadratically with volume V . We shall redefine g = g0/V to simplify our maniupations,
re-instating the volume at the end of the calculation.

The appearance of just one A and A† in the Hamiltonian makes it particularly easy to
apply the methods introduced in the last section. We begin by writing the problem as a
path integral

Z =

∫
D[c̄, c]e−S

where

S =

∫ β

0

∑

kσ

c̄kσ(∂τ + ǫk)ckσ − gĀA
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Next we introduce the identity

∫
D[∆̄,∆] exp

[
1

g

∫ β

0
dτ∆̄(τ)∆(τ)

]
= 1 (15.1)

into the path integral. By shifting the variables ∆→ ∆ + gA, ∆̄→ ∆̄ + gĀ, we obtain

Z =

∫
D[∆̄,∆, c̄, c]e−S

S =

∫ β

0
dτ

{
∑

kσ

c̄kσ(∂τ + ǫk)ckσ + ∆A+ Ā∆ +
1

g
∆̄∆

}
(15.2)

where ∆(τ) is a function of time only. In a Nambu notation, this can be re-written

S =

∫ β

0
dτ

{
∑

k

ψ̄k(∂τ + hk)ψk +
1

g
∆̄∆

}
(15.3)

where

ψk =

(
ck↑
c̄−k.↓

)
(15.4)

defines the Nambu spinor and

hk =

[
ǫk ∆(τ)

∆̄(τ) −ǫk

]
= ǫkτ3 + ∆1τ1 + ∆2τ2 (15.5)

is the matrix Hamiltonian, where ∆ = ∆1 − i∆2, ∆̄ = ∆1 + i∆2, and (τ1, τ2, τ3) are the
three Pauli matrices. ( By convention the symbol τ is used to denote an “isospin” from a
conventional spin.) Notice that the action is now quadratic in the Fermi fields, so we can
formally carry out the Gaussian integral of the Fermi fields, “integrating out” the Fermions
to obtain

e−Seff [∆̄,∆] =
∏

k

det[∂τ + hk(τ)]e
−
∫ β
0
dτ ∆̄∆

g

for the effective action, where we have separated the fermionic determinant into a product
over each decoupled momentum. Thus

Seff [∆̄,∆] =

∫ β

0
dτ

∆̄∆

g
+
∑

k

Trln(∂τ + hk).

where we have replaced lndet → Trln. Except for certain uniform, or almost uniform
configurations of ∆, we can not calculate Seff explicitly. It turns out however, that these
configurations dominate the path integral in the limit V → ∞. To see this consider the
path integral

Z =

∫
D[∆̄,∆]e−Seff [∆̄,∆]

The effective action is actually extensive in the volume, V , so that as V → ∞, S/V is a
constant. This means that when we find the configuration of ∆ = ∆o which minimizes
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Seff , the cost of fluctuations δ∆ around this configuration will also be of order O(V ), i.e.
the amplitude for a small fluctuation is given by

e−S = e−So+O(V )×|δ∆|2

The appearance of V in the coefficient of this Gaussian distribution implies the variance
of small fluctuations around the minimum will be of order O(1/V), so that to a good
approximation,

Z = e−Seff [∆̄o,∆o]+O(1)

This is why the mean-field approximation to the path integral is essentially exact for the
BCS model.

Since the original problem is translationally invariant, we expect the configurations that
minimize the action to also be uniform. The mean-field approximation to the path integral
is made by replacing the integral over the ∆ field by its uniform “saddle-point” value,
obtained by replacing ∆(τ) with a uniform field ∆(τ) = ∆1− i∆2. In this case, we can use
momentum and frequency eigenstates for the Nambu fields

ψk(τ) =
1√
β

∑

n

ψkne
−iωnτ

In this basis,
∂τ + h→ [−iωn + hk]

so that the determinant

det[∂τ + hk] =
∏

n

det[−iωn + hk] =
∏

n

[ω2
n + ǫ2k + |∆|2]

and the effective action for a uniform field is

Feff =
Seff
β

= −T
∑

kn

ln[ω2
n + ǫ2k + |∆|2] +

|∆|2
g

We see that this is nothing more than the mean-field free-energy for the BCS model. Min-
imizing Feff w.r.t ∆ gives us the gap equations

∂Feff
∂∆̄

= −
∑

kn

∆

ω2
n + E2

k

+ V
∆

g0
= 0 (15.6)

or

1

g0
=

1

βV

∑

kn

1

ω2
n + E2

k

BCS Gap equation (15.7)

where
Ek =

√
ǫ2k + |∆|2
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is the quasiparticle energy and we have re-instated g0 = g/V . This is the BCS gap equation.
Actually, for most of our purposes, it proves easier to manipulate the Free energy in its

discrete, Matsubara form. We can in fact carry out the Matsubara sum at any stage in the
above manipulation. Using the contour integration method,

Feff = −
∑

k

∮
dz

2πi
f(z)ln[z2 − E2

k] + V
|∆|2
g0

where the integral runs anti-clockwise around the poles of the Fermi function. The logarithm
inside the integral can be split up into two terms

ln[z2 − E2
k]→ ln[Ek − z] + ln[−Ek − z]

which we immediately recognize as the contributions from fermions with energies ±Ek, so
that the result of carrying out the contour integral, is

Feff = −TV
∫

d3k

(2π)3

[
ln[1 + e−βEk ] + ln[1 + eβEk ]

]
+ V
|∆|2
g0

= −2TV

∫

|ǫk|<ωD

d3k

(2π)3

[
ln[2 cosh(βEk/2)]

]
+ V
|∆|2
g0

(15.8)

Differentiating w.r.t. ∆̄ and setting ∂Feff/∂∆̄ = 0, then gives

1

g0
=

∫

|ǫk|<ωD

d3k

(2π)3

[
tanh(βEk/2)

2Ek

]
(15.9)

If we approximate the density of states by a constant N(0) per spin over the narrow shell of
states around the Fermi surface, we may replace the momentum sum by an energy integral

1

g0
= N(0)

∫ ωD

0
dǫ

[
tanh(β

√
ǫ2 + ∆2/2)√

ǫ2 + ∆2

]
. (15.10)

15.3 Computing Tc

To compute Tc we shall take the Matsubara form of the gap equation (15.7), which we
rewrite replacing the sum over momenta by an integral near the Fermi energy, replacing
1
V

∑
k → N(0)

∫
dǫ we get

1

g0
= TN(0)

∑

n

∫ ∞

−∞
dǫ

1

ω2
n + ǫ2k + ∆2

= πTN(0)
∑

|ωn|<ωD

1√
ω2
n + ∆2

where we have extended the limits of integration over energy to infinity. By carrying out the
integral over energy first, we are forced to impose the cut-off on the Matsubara frequencies.
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If we now take T → 0 in this expression, we may replace

T
∑

ωn

= T
∑ ∆ωn

2πT
→
∫
dω

2π
(15.11)

so that at zero temperature and set T = 0, we obtain

1 = gN(0)

∫ ωD

0

dǫ√
ǫ2 + ∆2

= gN(0)

[
sinh−1

(
ωD
∆

)]
≈ gN(0) ln

(
2ωD
∆

)

where we have assumed gN(0) is small, so that ωD/∆ >> 1. We may now solve for the
zero temperature gap, to obtain

∆ = 2ωDe
− 1
gN(0) (15.12)

To calculate the transition temperature, we note that just below the transition temperature,
the gap becomes infinitesimally small, so that ∆(T−c ) = 0. Substituting this into (15.11),
we obtain

1

gN(0)
= πTc

∑

|ωn|<ωD

1

|ωn|
= 2πTc

∞∑

n=0

(
1

ωn
− 1

ωn + ωD

)

where we have imposed the limit on ωn by subtracting off an identical term, with ωn →
ωn + ωD. Simplifying this expression gives

1

gN(0)
=
∞∑

n=0

(
1

n+ 1
2

− 1

ωn + 1
2 + ωD

2πTc

)

At this point we can use an extremely useful identity of the digamma function ψ(z) =
d
dz ln Γ(z),

ψ(z) = −C −
∞∑

n=0

(
1

z + n
− 1

1 + n

)

where C = 0.577 is the Euler constant, so that

1

gN(0)
=

≈ln(ωD/(2πTc))︷ ︸︸ ︷
ψ(

1

2
+

ωD
2πTc

)−ψ(
1

2
) = ln

(
ωDe

−ψ( 1
2
)

2πTc

)
,

We we have approximated ψ(z) ≈ ln(z) for large |z|. Thus,

Tc =

≈1.13︷ ︸︸ ︷(
e−ψ(1/2)

2π

)
ωDe

− 1
g0N(0) (15.13)
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Notice that the details of the way we introduced the cut-off into the sums affects both the
gap ∆ in (15.12) and the transition temperature in (15.13). However, the ratio of twice the
gap to TC ,

2∆

Tc
= 8πeψ( 1

2
) ≈ 3.53

is universal for BCS superconductors, because the details of the cut-off cancel out of this
ratio. Experiments confirm that this ratio of gap to transition is indeed observed in phonon
mediated superconductors.

15.4 BCS Wavefunction and Boguilubov quasiparticles

Below the transition temperature, the finite pairing field ∆ modifies the motion of the
electrons. Let us examine the Hamiltonian which appears in (15.5). If restore the Grassman
variables to full-fledged operators, we see that

H =
∑

k

: ψ†khkψk :

=
∑

k

: (c†k↑, c−k↓)
[
ǫk ∆
∆̄ −ǫk

](
ck↑
c̄−k.↓

)
:

=
∑

kσ

ǫkc
†
kσckσ +

∑

k

[
∆̄c−k↓ck↑ + ∆c†k↑c

†
−k↓

]
(15.14)

Notice how the off-diagonal terms associated with the pair condensate cause electrons to
interconvert into holes with the same momentum and spin. This kind of scattering is
sometimes referred to as “Andreev scattering”1. In making this transformation, charge 2e
is transferred into the electron condensate.

One of the interesting aspects of superconductivity, is that it can be regarded as closely
analogous to a magnetic ordering process. Magnetism involves an ordering or condensation
of spins. Superconductivity takes place in charge rather than spin space, and we may regard
the Nambu isospin operators ~τ as a direct analog of the Pauli spin operators, operating in
charge or “isospin” space.

It is very convenient to introduce the unit vector, defined by

n̂k =

(
∆1

Ek

,
∆2

Ek

,
ǫk
Ek

)

where as before, Ek =
√
ǫ2k + |∆|2 is the energy of the paired electrons. Notice that n̂2 = 1

is a unit vector. For the discussion here, we shall choose the phase of ∆ so that ∆2 = 0. In
terms of this vector,

hk = ǫkτ3 + ∆1τ1 + ∆2τ2 = Ekn̂k · ~τ
1Andreev noticed that although the momentum of the hole is the same as the incoming electron, its group

velocity ∇k(−ǫ−k) = ∇k(−ǫk) = −∇kǫk, is reversed. Andreev reasoned that such scattering at the interface
of a superconductor leads to non-specular reflection of electrons, which scatter back as holes movign in the
opposite direction to incoming electrons.
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where ~τ = (τ1, τ2, τ3). The vector n̂ points “upwards” above the Fermi surface, and “down-
wards” beneath it. In a normal metal, the n̂ vector abruptly reverses at the Fermi surface
forming a sharp domain wall. In a superconductor, the n̂ vector is aligned at an angle θ to
the ẑ axis, where

cos θ =
ǫk
Ek

,

and the domain wall is now spread out over a kinetic energy range of order ∆, as shown
in figure (15.1). From this perspective, ~Bk = −Ekn̂k is a kind of “Weiss field” acting

θ

∆

FS

ε<0

εk

εk

εk

(b)

(a) 

FS
ε>0

Figure 15.1: Showing the reversal of the isospin direction n̂ around the Fermi momentum
for (a) a normal metal and (b) a superconductor.

in isopsin space. This is the basis of Anderson’s “pseudo-spin” interpretation of the BCS
ground-state. According to this picture, one expects the isospin at each momentum k to
align itself parallel to this field, i.e

〈ψ†k~τψk〉 = −n̂k = −(sin θk, 0, cos θk)

In a normal metal, the “z” component of the isospin is given by

ψ†kτ3ψk = nk↑ + nk↓ − 1 =

{
−1 (k > kF )

1 (k < kF )
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but in a superconductor, this becomes

2nk − 1 = − ǫk
ǫ2k + ∆2

so the occupancy becomes smeared around the Fermi surface.

Let us begin by constructing the BCS ground-state wavefunction. We wish to construct
a state where the isospin at each k vector is rotated to be antiparallel to the effective field
~Bk = −Ekn̂k. At each k vector, we shall identify the empty state and doubly occupied
state as “down” and “up” states respectively:

| ⇓k〉 ≡ |nk = 0〉
| ⇑k〉 ≡ |nk = 2〉 = c†k↑c

†
−k↓|0〉. (15.15)

To produce the state where the isospin is rotated through an angle θk about the y axis, we
act on the vacuum with the isospin rotation operator as follows

|θk〉 = e−i
θk
2
ψ†kτyψk | ⇓k〉 =

(
cos

θk
2
− i sin θk

2
ψ†kτyψk

)
| ⇓k〉

= cos
θk
2
| ⇓k〉 − sin

θk
2
| ⇑k〉

=

(
cos

θk
2
− sin

θk
2
c†k↑c

†
−k↓

)
| ⇓k〉 (15.16)

The ground-state will then be a product of these isospin states

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
cos

θk
2
− sin

θk
2
c†k↑c

†
−k↓

)
|0〉 (15.17)

By convention, the coefficients cos
(
θk
2

)
and sin

(
θk
2

)
are labelled uk and vk respectively,

where, writing

u2
k ≡ cos2

(
θk
2

)
=

1

2

[
1 +

ǫk
Ek︷ ︸︸ ︷

cos θk

]
=

1

2

[
1 +

ǫk
Ek

]

v2
k ≡ sin2

(
θk
2

)
=

1

2

[
1− cos θk

]
=

1

2

[
1− ǫk

Ek

]
(15.18)

By convention, the normalization of this state is dropped, and the BCS wavefunction is
written

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
1 + γkc

†
−k↓c

†
k↑
)
|0〉, (γk =

vk
uk

) (15.19)

Remarks
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• Since (c†−k↓c†k↑)2 = 1, (1+ γkc
†−k↓c†k↑) = Exp(γkc

†−k↓c†k↑), the BCS wavefunction
can be re-written as an explicit coherent state

|BCS〉 = eb
† |0〉

where

b† =
∑

k

γkc
†
−k↓c

†
k↑

is the bosonic pair operator that condenses.

• The BCS ground-state has an indefinite number of particles and can be written as a
linear combination of states of definite numbers of particles

|BCS〉 =
∑ 1

n!
|n〉

where |n〉 = (b†)n|0〉 is a state of n electron pairs. Since the pair operator has con-
densed, it costs no energy to add a pair, and in the thermodynamic limit, each of
these states has the same free energy per unit volume.

• If the phase of the electron operator is changed c†kσ → eiθc†kσ, the pair order parame-
ter ∆ = −g∑k〈c−k↓ck↑〉, until now assumed to be real, acquires a phase ∆→ e−2iθ∆,
and the BCS wavefunction becomes

|θ〉 =
∏

k

|θk〉 =
∏

k

(
1 + ei2θγkc

†
−k↓c

†
k↑
)
|0〉 =

∑ 1

n!
ei2nθ|n〉 (15.20)

The action of the number operator N̂ on this state may be represented as a differential
with respect to phase,

N̂ |θ〉 =
∑ 1

n!
2nei2nθ|n〉 = −i d

dθ
|θ〉.

so that

N̂ ≡ −i d
dθ
.

In other words, the phase of the order parameter is conjugate to the number operator,
and like position and momentum, or energy and time, the two variables therefore obey
an uncertainty principle

∆θ∆N >
˜

1.

so that a state of matter with a precise phase, has an ill-defined particle number.

• The electron pair operator b† can also be rewritten as a real-space operator

b† =

∫
d3r

∫
d3r′γ(~r − ~r′)ψ†↓(~r)ψ†↑(~r′)
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where γ(~r)is the Fourier transform of γk. In this way, we see that b† creates a single
Cooper pair with a spatial wavefunction given by γ(~x− ~x′). The spatial extent of the
Cooper pair is governed by the region of momentum space where uk and vk deviate
significantly from unity or zero - i.e the area within a momentum ∆kF of the Fermi
surface, where vF∆k <˜∆. The corresponding spatial extent of the Cooper pair is

then

ξ ∼ 1

∆k
=
vF
∆

This length is known as the “coherence length” of a superconductor. Notice how the
larger the gap, the smaller the coherence length. Conventional superconductors have
coherence lengths of several hundreds of Angstroms, but high temperature supercon-
ductors, which have very large gaps, and in heavy electron superconductors, which
have very small Fermi velocities, the coherence length can drop to a size comparable
with the lattice constant.

Let us now construct the quasiparticle operators that diagonalize the mean-field Hamil-
tonian for the paired superconductor. In a superconductor, the Andreev scattering mixes
particle and holes to produce the gapped spectrum illustrated in Fig. 15.2. We accordingly
expect that the quasiparticle operators are linear combinations of electron and hole states.

Figure 15.2: In a superconductor, the presence of the pair condensate Andreev scatters
particles into holes, producing a gap in the quasiparticle excitation spectrum

Let us first recall that for any one-particle HamiltonianH = ψ†αhαβψβ, we can construct
“quasiparticle” operators a†λ = ψ†β〈β|λ〉 which transform H into the diagonal form H =∑
λEλa

†
λaλ. Now the matrix element between the original one particle state |α〉 = ψ†α|0〉

and the quasiparticle state |λ〉 = a†λ|0〉 is 〈α|Ĥ|λ〉 = hαβ〈β|λ〉 == Eλ〈α|λ〉, in other
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words, 〈β|λ〉 is an eigenvector of hαβ . Now in BCS theory, the ψ†α ≡ (c†k↑, c−k↓) are the
components of the Nambu spinor, whose first and second components respectively create a
particle and and a hole. Remarkably then, the procedure of diagonalizing the one-particle
Hamiltonian must mix particle and hole.

To construct the quasiparticles, we note that the Nambu Hamiltonian,

hk = Ekn̂ · ~τ

has two eigenvalues, ±Ek with eigenvectors

(
uk

vk

)
and

(−vk
uk

)
which describe isospins that

are parallel and antiparallel to n̂, respectively. These satisfy

n̂ · ~τ
(
uk

vk

)
=

(
uk

vk

)
, n̂ · ~τ

(−vk
uk

)
= −

(−vk
uk

)

It follows that the appropriate quasiparticle operators for the BCS Hamiltonian are

α†k↑ = ψ†k

(
uk

vk

)
= c†k↑uk + c−k↓vk Boguilubov quasiparticles

α−k↓ = ψ†k

(−vk
uk

)
= c−k↓uk − c†k↑vk (15.21)

which respectively create a spin up quasiparticle and quasihole with momentum k. The
transformation that mixes particle and hole in this way is called a Boguilubov transforma-
tion. Boguilubov originally studied this kind of transformation for interacting bosons inside
a Bose-Einstein condensate.

We can combine these two quasiparticle operators into a single Nambu spinor α†k as
follows

α†k = (α†k↑, α−k↓) = ψ†k

=Uk︷ ︸︸ ︷(
uk −vk
vk uk

)
= ψ†kUk

where Uk is a unitary matrix whose columns are the eigenvectors of hk. Taking the Hermi-
tian conjugate, αk = U †kψk and since UU † = 1, it follows that ψk = Ukαk. Now since Uk

contains the eigenvectors of hk,

hkψk =

UkEkτ3︷ ︸︸ ︷
hkUk αk = UkEkτ3αk

so that
H =

∑

k

ψ†khkψk =
∑

k

α†kEkτ3αk

is diagonal in the quasiparticle basis. Written out explicitly,

H =
∑

k

Ek(α†k↑αk↑ − α−k↓α
†
−k↓)
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=
∑

kσ

Ek(α†kσαkσ)−
∑

k

Ek (15.22)

from which we see that the ground-state energy is given by

Eg = −
∑

k

Ek

Let us now explicitly check our results by verifying that the destruction operators αkσ

annihilate the BCS ground-state, αkσ|BCS〉 = 0 To see this, first note that αk↑ commutes
with (uk′ + vk′c

†−k′↓c†k′↑) unless k′ = k, and in this case,

αk↑(uk + vkc
†
−k↓c

†
k↑) = (uk + vkc

†
−k↑c

†
k↑)αk↑ + vk

−ukc
†
−k↑︷ ︸︸ ︷

[αk↑, c
†
−k↑c

†
k↑]

= uk(uk + vkc
†
−k↑c

†
k↑)ck↑ (15.23)

so that

αk↑|BCS〉 = αk↑
∏

k′

(uk′ + vk′c
†
−k′↓c

†
k′↑)|0〉 = uk

∏

k′

(uk′ + vk′c
†
−k′↓c

†
k′↑)ck↑|0〉 = 0

The down-spin case can be proved in a similar fashion.

15.5 The Nambu Greens function

To describe the propagation of electrons and this interconversion between electron and hole,
we require a matrix Greens function, often called the Nambu Greens function, which is just
the Greens function formed from two Nambu spinors:

Gαβ(k, τ) = −〈Tψkα(τ)ψ†kβ(0)〉 (15.24)

which may be written out more explicitly as

G(k, τ) = −
〈
T

(
ck↑(τ)
c̄−k↓(τ)

)
⊗ (c†k↑(0), c−k↓(0))

〉

= −
[ 〈Tck↑(τ)c†k↑(0)〉 〈Tck↑(τ)c−k↓(0)〉
〈Tc†−k↓(τ)c†k↑(0)〉 〈Tc†−k↓(τ)c−k↓(0)〉

]
(15.25)

The off-diagonal elements of this propagator result from the Andreev reflection. These
anomalous parts of the propagator were first discussed by Gorkov, and are written as

F (k, τ) = −〈Tck↑(τ)c−k↓(0)〉, F̄ (k, τ) = −〈Tc†−k↓(τ)ck↑(0)〉, (15.26)

From our general path integral result (14.43), we note that just as in the normal metal,

1

iωn − ǫk
= −

∫ β

0
dτeiωnτ 〈Tckσ(τ)c†kσ〉, (15.27)
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in the matrix generalization,

[iωn − hk]−1 =

∫ β

0
dτeiωnτG(k, τ) (15.28)

is the Nambu propagator in Fourier space. From (15.5), we have hk = ǫkτ3 + ∆1τ1 + ∆2τ2.
For simplicity, lets assume that ∆ is real, so that ∆2 = 0, then

G(k) =
1

iωn − ǫkτ3 + ∆τ1
=
iωn + ǫkτ3 + ∆τ1

(iωn)2 − E2
k

(15.29)

Written out explicitly, this is

G(k, iωn) =
1

(iωn)2 − E2
k

[
iωn + ǫk ∆

∆ iωn − ǫk

]
(15.30)

where Ek =
√
ǫ2k + ∆2 is the quasiparticle energy. (One can restore a complex ∆ by

replacing ∆→ ∆̄ in the lower-left component of G(k)).
Let us now examine how to obtain the same results diagrammatically. The Andreev

scattering converts a particle into a hole, so we we may associate scattering vertices with
the Andreev reflection events as follows:

∆̄c−k↓ck↑ ≡
∆k −k

∆̄

∆c†k↑c
†
−k↓ ≡

∆−k k
∆ (15.31)

The “bare” propagators for the electron and hole are the diagonal components of the bare
Nambu propagator

G0(k) =
1

iωn − ǫkτ3
=

[ 1
iωn−ǫk

1
iωn+ǫk

]
. (15.32)

We denote these two components by the diagrams

k
≡ G0(k) =

1

iωn − ǫk−k
≡ −G0(−k) =

1

iωn + ǫk
(15.33)

(The minus sign in the second term is because we have commuted creation and annihilation
operators to construct the hole propagator. ) The Feynman diagrams for the conventional
propagator are given by

= ...k −kk k k −k −kk k
(15.34)

Notice how the electron Andreev scatters an even number of times. This enables us to
identify a “self-energy” term that takes the form

k

Σ = Σ(k) =
−k

=
|∆|2

iωn + ǫk
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Inserting this into the propagator, yields

G(k) = ...ΣΣΣ

=
1

iωn − ǫk − Σ(iωn)
=

1

iωn − ǫk − |∆|2
iωn+ǫk

=
iωn + ǫk

(iωn)2 − E2
k

. (15.35)

In a similar way, the anomalous propagator is given by

= ...−k k k−k k −k

=
−k k

(15.36)

so that

F (k) =
∆

iωn + ǫk

1

iωn − ǫk − |∆|2
iωn+ǫk

=
∆

(iωn)2 − E2
k

Finally, note that we can also see the quasiparticle structure in the Nambu propagators.
The operators

P+(k) =
1

2
(1 + n̂ · ~τ), P−(k) =

1

2
(1− n̂ · ~τ),

satisfy P 2
+ = P+, P 2

− = P− and P+ + P− = 1, and furthermore,

P+(k)(n̂k · ~τ) = P+(k), P−(k)(n̂k · ~τ) = −P−(k),

so that these operators conveniently project the isospin onto the directions ±nk.
We can use the projectors P±(k) to project the Nambu propagator as follows

G = (P+ + P−)
1

iωn − Ekn̂ · ~τ
= P+

1

iωn − Ekn̂ · τ̂
+ P−

1

iωn − Ekn̂ · τ̂
= P+

1

iωn − Ek

+ P−
1

iωn + Ek

(15.37)

we can interpret these two terms as the “quasiparticle” and “quasi-hole” parts of the Nambu
propagator. If we explicitly expand out this expression, using

P± =
1

2
±
[

ǫk
Ek

∆
2Ek

∆
2Ek

− ǫk
2Ek

]

we find that the diagonal part of the Green’s function is given by

G(k) =
u2
k

iωn − Ek

+
v2
k

iωn + Ek

.

confirming that uk and vk determin the overlap between the electron and the quasiparticle
and quasihole, respectively.
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Example 15.38:

(a) Starting with the equation of motion of the Boguilubov quasiparticle, If the Bogu-
ilubov quasiparticle α†

k↑ = c†k↑uk + c−k↓vkα−k↓,

[H,α†
k↑] =

∂α†
k↑

∂τ
= Ekα

†
k↑ (15.38)

where Ek is the quasiparticle energy, explicitly show that

(
uk

vk

)
must be an

eigenvector of hk that satisfies

hk

(
uk

vk

)
=

(
ǫk ∆
∆ −ǫk

)(
uk

vk

)
= Ek

(
uk

vk

)

(b) By solving the eigenvalue problem assuming the gap is real, show explicitly that

u2
k =

1

2

[
1 +

ǫk√
ǫ2k + ∆2

]

v2
k =

1

2

[
1− ǫk√

ǫ2k + ∆2

]
(15.39)

Solution:

(a) We begin by writing

αk↑ = ψ†
k ·
(
uk

vk

)

where ψ†
k = (c†k↑, c−k↓) is the Nambu spinor. Now since [H, ψ†

k] = ψ†
k hk, it

follows that

[H,α†
k↑] = ψ†

k hk

(
uk

vk

)
(15.40)

Comparing (15.38) and (15.40), we see that the spinor

(
uk

vk

)
is an eigenvector of

hk,

hk

(
uk

vk

)
=

(
ǫk ∆
∆ −ǫk

)(
uk

vk

)
= Ek

(
uk

vk

)
(15.41)

(b) Taking the determinant of the eigenvalue equation, det[hk−Ek1] = E2
k−ǫ2k−∆2=0,

and imposing the condition that Ek > 0, we obtain obtain Ek =
√
ǫ2k + ∆2.

Expanding the eigenvalue equation (15.41) we obtain

(Ek − ǫk)uk = ∆vk
∆uk = (Ek + ǫk)vk (15.42)

Multiplying these two equations, we obtain (Ek− ǫk)u2
k = (Ek + ǫk)v2

k, or ǫk(u2
k +

v2
k) = ǫk = Ek(u2

k − v2
k), since u2

k + v2
k = 1 . It follows that u2

k − v2
k = ǫk/Ek.

Combining this with u2
k + v2

k = 1, we obtain the results given in ( 15.39 ).
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15.6 Twisting the phase: the superfluid stiffness

One of the key features in a superconductor is the appearance of a complex order parameter,
with a phase. It is the rigidity of this phase that endows the superconductor with its ability
to sustain a superflow of electrons. This feature is held in common between superfluids
and superconductors - and indeed, the liquid He− 3 undergoes a pairing instability around
3mK, involving a condensation of triplet Cooper pairs.

The feature of superconductors that makes them stand apart from their neutral coun-
terparts, is our ability to couple to the phase of the condensate with the electromagnetic
field. The important point here, is that the phase of the order parameter, and the vector
potential are linked by gauge invariance. To see this, consider that the the microscopic
Kinetic energy term

T =

∫
d3x

1

2m
ψ†σ(x)(−ih̄~∇− e ~A(x))2ψσ(x))

is invariant under the gauge transformations

ψσ(x) → eiα(x)ψσ(x)

~A(x) → ~A(x) +
h̄

e
~∇α(x) (15.43)

If we now consider the order parameter

Ψ(x) = 〈ψ↓(x)ψ↑(x)〉

we see that under a gauge transform, Ψ(x)→ ei2α(x)Ψ(x), in other words, the phase of the
order parameter Ψ(x) = |Ψ(x)|eiφ(x), transforms as

φ(x)→ φ(x) + 2α(x)

Now if the phase becomes “rigid” beneath Tc, then the overall energy of the superconductor
must acquire a phase stiffness term of the form

F ∼
∫

x

ρs
2

(∇φ)2 (15.44)

However, such a coupling term is not gauge invariant under the combined transformation

φ → φ+ 2α,

~A → ~A+
h̄

e
~∇α(x) (15.45)

Indeed, in order that the Free energy gauge invariant, the phase stiffness must take the form

F ∼
∫

x

ρs
2

(
~∇φ(x)− 2e

h̄
~A(x)

)2

+ Fem[A]
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=

∫

x

Q

2

(
~A(x)− h̄

2e
~∇φ(x)

)2

+ Fem[A] (15.46)

where Fem[A] is the Free energy of the electromagnetic field and we have substituted

Q =
(2e)2

h̄2 ρs

Since Fem is invariant under gauge transformations, it becomes possible to redefine the
vector potential

A(x)→ ~A(x)− h̄

2e
~∇φ(x)

to “absorb” the phase of the order parameter. Once the phase of the order parameter is
absorbed into the electromagnetic field,

F ∼
∫

x

4e2ρs

2h̄2
~A(x)2 + Fem[A], (15.47)

and the vector potential has acquired a mass. This phenomenon whereby the gauge field,
“eats up” the phase of a condensate, losing manifest gauge invariance by acquiring a mass
is called the “Anderson-Higgs” mechanism. This is the root mechanism by which gauge
fields acquire a mass in particle physics.

Shortly after the importance of this mechanism for relativistic Yang Mills theories was
noted by Higgs and Anderson, Weinberg and Salem independently applied the idea to de-
velop the theory of “electro-weak” interactions. According to this picture, the universe we
live is a kind of cosmological Meissner phase, formed in the early universe, which excludes
the weak force by making the vector bosons which carry it, become massive. It is a re-
markable thought that the very same mechanism that causes superconductors to levitate
lies at the heart of the weak nuclear force responsible for nuclear fusion inside stars. In
trying to discover the Higg’s particle, physicists are in effect trying to probe the cosmic
superconductor above its gap energy scale.

If we now look back at (15.46), we see that the electrical current carried by the conden-
sate is

~j = − δF
δ ~A(x)

= −Q
(
~A(x)− h̄

2e
~∇φ(x)

)
.

This permits us to identify Q with the “London Kernel” introduced earlier in the study of
electron transport. What is different here, is that this quantity is now finite in the DC,
zero frequency limit. Thus, once a charged order parameter develops a rigidity, the matter
becomes a perfect diamagnet, developing superconductivity.

Let us now continue to calculate the phase stiffness or “superfluid density” of a BCS
superconductor. Formally, to twist the phase of the order parameter, we need to allow the
order parameter to become a function of position, so that now the interaction that gives
rise to superconductivity can not be infinitely long-ranged. In the simplest case, we can
simply consider a local interaction

HI = −g
∫
d3xψ†↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)
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Under the Hubbard Stratonovich transformation, this becomes

HI →
∫
d3x

[
∆̄(x)ψ↓(x)ψ↑(x) + ψ†↑(x)ψ

†
↓(x)∆(x) +

∆̄(x)∆(x)

g

]

so that now, the phase of the order parameter can develop a non-uniform configuration.
We’ll imagine a superconductor on a torus in which the phase of the order parameter is
twisted, so that ∆(L) = ei∆φ∆(0). Let us consider a uniform twist, so that

∆(x) = ei~a·~x∆0,

where ~a = ∆φ
L x̂. Now by gauge invariance, this twist of the order parameter can be removed

by a gauge transformation,

∆(x) → e−i~a·~x∆(x) = ∆0

~A = ~A− h̄

2e
~a (15.48)

so a twist in the order parameter is gauge equivalent to a uniform vector potential ~A = h̄
2e~a,

and vice versa- a uniform vector potential is gauge equivalent to a twisted order parameter
field.

So to calculate the stiffness we need to compute the Free energy in the presence of a
uniform vector potential. On a taurus, this implies a threaded magnetic flux. Indeed, the
total change in the phase of the order paramter is given by

∆φ = αL =
2e

h̄
AL =

2e

h̄
Φ = 2π

(
Φ
h
2e

)

where Φ is the magnetic flux through the torus. The twist angle can by written

∆φ = 2π
Φ

Φ0
,

where

Φ0 =
h̄

2e

is known as the superconducting flux quantum. Each time the flux through the taurus
increases by Φ0, the superconducting order parameter is twisted by an additional 2π.

Introduction of vector potential ǫ~k → ǫ~k−e ~A, so inside hk

ǫ~kτ3 →
(
ǫ~k−e ~A

−ǫ−~k−e ~A

)
=

(
ǫ~k−e ~A

−ǫ~k+e ~A

)
≡ ǫ~k−e ~Aτ3 (15.49)

i.e ,

h~k → h~k−e ~Aτ3
= ǫ~k−e ~Aτ3τ + ∆τ1
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The Free energy in a field is then

F = −T
∑

k,iωn

Tr ln[ǫ~k−e ~Aτ3τ + ∆τ1 − iωn] +
∆2

g

We need to calculate

Qab = − 1

V

∂2F

∂Aa∂Ab

Taking the first derivative with respect to the vector potential gives us the steady-state
diamagnetic current

−〈Ja〉 =
1

V

∂F

∂Aa
=

1

βV

∑

k≡(k,iωn)

Tr
[
e∇aǫ~k−e ~Aτ3 G(k − eA)

]

where we have introduced the shorthand G(k−eA) = [iωn−h~k−e ~Aτ3
]−1 = [iωn−ǫ~k−e ~Aτ3τ3−

∆τ1]
−1.

Taking one more derivative,

Qab = − 1

V

∂2F

∂Aa∂Ab

∣∣∣∣∣
A=0

=
e2

βV

∑

k




diamagnetic part︷ ︸︸ ︷
∇2
abǫ~kTr [τ3G(k)] +

paramagnetic part︷ ︸︸ ︷
∇aǫ~k∇bǫ~kTr [G(k)G(k)]




where we first used the relation ∂
∂Ab

G(k − eA) = e∇bǫ~kG(k − eA)2 and then set A = 0.
We may identify the above expression as a sum of the diamagnetic, and paramagnetic
parts, respectively, of the superfluid stiffness. The diamagnetic part of the response can be
integrated by parts, to give

e2

βV

∑

k,n

∇2
abǫ~kTr [τ3G(k)] = − e2

βV

∑

k,n

∇aǫ~kTr [τ3∇bG(k)]

= − e2

βV

∑

k,n

∇aǫ~k∇bǫ~kTr [τ3G(k)τ3G(k)] (15.50)

Notice how this term is identical to the paramagnetic term, apart from the τ3 insertions.
We now add these two terms, to obtain

Qab = − e2

βV

∑

k

∇aǫ~k∇bǫ~k




diamagnetic part︷ ︸︸ ︷
Tr [τ3G(k)τ3G(k)]−

paramagnetic part︷ ︸︸ ︷
Tr [G(k)G(k)]


 .

Notice, that when pairing is absent, the τ3 commute with G(k), and the diamagnetic and
paramagnetic contributions exactly cancel. We can make this explicit, by writing

Qab = − e2

2βV

∑

k

∇aǫ~k∇bǫ~kTr
[
[τ3, G(k)]2

]
.
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Now

[τ3, G(k)] = 2i
∆τ2

(iωn)2 − E2
k

so

−Tr
[
[τ3, G(k)]2

]
= 8

∆2

[(ωn)2 + ǫ2k + ∆2]2
.

so that

Qab =
4e2

βV

∑

k

∇aǫ~k∇bǫ~k
∆2

[(ωn)2 + ǫ2k + ∆2]2
.. (15.51)

Remarkably, although the diamagnetic and paramagnetic parts of the superfluid stiffness in-
volve electrons far away from the Fermi surface, the difference between the two is dominated
by electrons near the Fermi surface. This enables us to replace

2

V

∑

k

∇aǫ~k∇bǫ~k {. . .} = N(0)

∫ ∞

−∞
dǫ

∫
1
3
v2F δab︷ ︸︸ ︷

dΩ
k̂

4π
vavb {. . .} =

δab
3
N(0)v2

F

∫ ∞

−∞
dǫ {. . .} .

Note that the factor of two is absorbed into the total density of states of up and down
electrons. We have taken advantage of the rapid convergence of the integrand to extend the
limits of the integral over energy to infinity. Replacing 1

3N(0)v2
F = n

m , we can now write
Qab = Qδab, where

Q(T ) =
ne2

m
T
∑

n

∫ ∞

−∞
dǫ

2∆2

(ǫ2 + ω2
n + ∆2)2

=

(
ne2

m

)
πT

∑

n

∆2

(ω2
n + ∆2)

3
2

Now at absolute zero, we can replace T
∑
n →

∫ dω
2π , so that

Q(0) ≡ Q0 =

(
ne2

m

)
=1︷ ︸︸ ︷∫ ∞

−∞

dω

2

∆2

(ω2 + ∆2)
3
2

=

(
ne2

m

)
.

In other words, all of the electrons have condensed to form a perfect diamagnet. The finite
temperature stiffness can then be written

Q(T )

Q0
= πT

∑

n

∆2

(ω2
n + ∆2)

3
2
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