Impulse Response of Second-Order Systems

INTRODUCTION

This document discusses the response of a second-order system, like the mass-spring-dashpot system shown in Fig. 1, to an impulse.

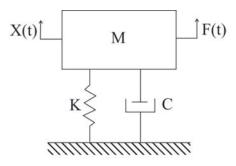


Fig. 1. Second-order mass-spring-dashpot system.

IMPULSE

An impulse is a large force applied over a very short period of time. In practice, an example of an impulse would be a hammer striking a surface. Mathematically, a unit impulse is referred to as a Dirac delta function, denoted by $\delta(t)$. It is called a unit impulse because its area is 1. As shown in Fig. 2, the force is applied over the time from 0 to t_1 . Therefore, as t_1 approaches zero, in order for the area to remain equal to 1 the height must approach infinity.

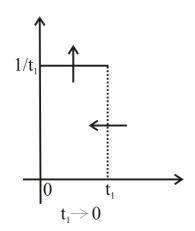


Fig. 2. Dirac delta function.

A general non-unit impulse function can be represented as $A\delta(t)$, where A is its area.

EQUATIONS DESCRIBING SYSTEM RESPONSE

The equation of motion describing the behavior of a second-order mass-spring-dashpot system with a unit impulse input is

$$\ddot{\mathbf{x}} + 2\zeta \omega_{n} \dot{\mathbf{x}} + \omega_{n}^{2} \mathbf{x} = \delta(\mathbf{t}). \tag{1}$$

The form of the system response will depend on whether the system is under-damped, critically damped, or over-damped. The most straightforward way to solve this differential equation and determine the system response is to use the Laplace transform. The Laplace transform of a Dirac delta function is

$$L\{\delta(t)\} = 1.$$

Under-Damped

For an under-damped system (ζ <1), assuming zero initial conditions, the form of the response is

$$x(t) = \frac{1}{\omega_d} e^{-\zeta \omega_n t} \sin \omega_d t.$$
(3)

Critically Damped

For a critically damped system (ζ =1), and again assuming zero initial conditions, the response is given by

$$\mathbf{x}(\mathbf{t}) = \mathbf{t} \mathbf{e}^{-\omega_n \mathbf{t}} \,. \tag{4}$$

Over-Damped

For an over-damped system (ζ >1), with zero initial conditions, the response is

$$\mathbf{x}(t) = \frac{1}{2\omega_{n}\sqrt{\zeta^{2} - 1}} \left[e^{-\omega_{n}\left(\zeta - \sqrt{\zeta^{2} - 1}\right)t} - e^{-\omega_{n}\left(\zeta + \sqrt{\zeta^{2} - 1}\right)t} \right].$$
 (5)

FORM OF SYSTEM RESPONSE

The response of a system to an impulse looks identical to its response to an initial velocity. The impulse acts over such a short period of time that it essentially serves to give the system an initial velocity.

Fig. 3 shows the impulse response of three systems: under-damped, critically damped, and over-damped.

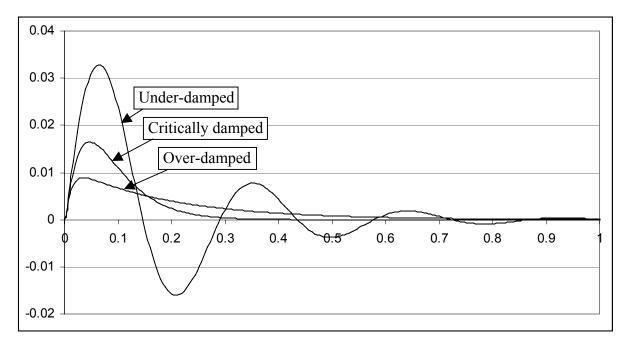


Fig. 3. Impulse response of under-damped, critically damped, and over-damped systems. Table 1 lists the damping ratios of the three systems whose response is shown in Fig. 3.

System type	Damping ratio (ζ)
Under-damped	0.22
Critically damped	1.0
Over-damped	2.2

Table 1. Damping ratios for three example systems.

