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Abstract

In the last three decades the quality of interactive computer graphics has increased
drastically and there is still a demand for higher quality. However the standard
method of computing images, called rasterization, does not allow for advanced effects
such as reflections and shadows. For this reason we look at an alternative method
which does allow this, called ray-tracing, and investigate if it can replace
rasterization. To answer this we look at hardware and software support for ray
tracing. First we look at what kind of hardware we need and when this will be
available. Secondly we investigate software that can maintain acceleration structures
for ray tracing in moving scenes. When we have investigated those two critical topics
we speculate about the future of ray-tracing and rasterization.
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1. Introduction

In the last decade the quality of computer graphics has increased drastically. However there
is still a need for even higher quality interactive graphics. The computer game industry has grown to
a 7 billion dollar industry in the US[2] alone and demands higher quality graphics for more
atmosphere and realism in their games. Scientific data sets have grown to a size where it is
impossible for any human to analyse them without visualisation, thus there is a need for high quality
complex visualisation.

We need high quality interactive graphics effects such as shadows, reflections, bump
mapping and refraction. The implementation of these effects on modern graphics hardware is
complex and non-intuitive[ 18] and in many cases the implementation of such effects on modern
graphics hardware can only be an approximation due to the limits of the rendering method.

Therefore there is a need for a more flexible and higher quality rendering method for
interactive computer graphics. For non-interactive applications ray tracing has long been the
standard. Recent research has shown that ray tracing is also possible for interactive applications. In
this thesis we will investigate what is already available and what is still needed for ray tracing to be
an alternative to the current rendering method.

In chapter 2 we will briefly explain what ray tracing is and what its characteristics are. In
chapter 3 we will investigate what kind of hardware we need for interactive ray tracing and if this is
already available. In chapter 4 we will look how we can maintain an interactive (e.g. moving) scene
for interactive ray tracing. In chapter 5 we will summarise and conclude.
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2. What is ray-tracing?

In computer graphics, if we have a three dimensional scene we typically want to know how
our scene looks trough a virtual camera. The method for computing the image that such a virtual
camera produces is called the rendering method.

The current standard rendering method, know as rasterization, is a local illumination
rendering method. This means that only the light that comes directly from a light source is taken
into account. Light that does not come directly from a light source, such as light reflected by a
mirror, does not contribute to the image.

In contrast ray tracing is a global illumination rendering method. This means that light that is
reflected from other surfaces, for example a mirror, is also taken into account. This is essential for
advanced effects such as reflection and shadows. For example if we want to model a water surface
reflecting the scene correctly we need a global illumination rendering method. With a local
illumination rendering method the light from the water surface can only be determined by the light
directly on it, not the light from the rest of the scene and thus we will see no reflections.

An example of an image produced by a interactive ray tracing system[6] is shown on the
cover of this thesis. In this image we see reflections, refraction and shadows. These are advanced
visual effects which can only be delivered by a global illumination rendering method such as ray
tracing.

Ray tracing works by following the path of light. We follow the path of rays of light, i.e.
lines of light. For an example of such a path consider a ray of light from your bathroom light-bulb.
This particular ray of light hits your chin, some of it is absorbed, and the rest of the light is reflected
in the colour of your skin. The reflected ray is then reflected again by the mirror in your bathroom.
This ray then hits your retina, which is useful otherwise you would not see your self shaving. In
exactly this way a ray of light in the virtual camera gives the colour of one pixel.

Of all the rays of light that come from the light sources a lot of rays do not end up in our
virtual camera. We only want to know about the light on our virtual camera, for this reason we
follow the rays of light backwards. This means we start at the virtual camera and trace, i.e. follow
backwards, the ray that determines the colour of the pixel we want to know about. If we encounter
the point where the light is coming from we want to know the colour at that point. To compute this
colour we need to know what the incoming light at that point was. The incoming light consists of
the rays that fall on that point, so we recursively trace those rays. Because rays can originate from
both light sources and other surfaces ray tracing is a global illumination rendering method.

In contrast, rasterization works by calculating the on screen position of a triangle and then
drawing the pixels of that triangle(rasterizing the triangle). The colour of the triangle is only
determined by its texture and the positions and a few lights.

In ray tracing the main problem is to find the nearest intersection of the ray with an object.
Because there are often millions of objects in a scene simply checking the ray against each object is
very inefficient. Often a ray tracing algorithm cuts down on these intersection checks by using a
spatial index structure. Using such a structure we can check if a ray is in the vicinity of the object
before we check for an intersection. For example we can divide the space into a grid, and only check
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for intersections in areas of the grid the ray passes trough. In this

i : : Generate camera rays
way we can minimize the amount of intersection checks.

When using such a spatial index structure ray tracing

scales very well with the size of the scene. More precisely ray Traverse acceleration
tracing scales logarithmically with the size of the scene[ 18] structure
because adding a number of objects to a scene does not mean a \#

linear increase in the amount of intersection checks. This is
because objects are only checked when the ray passes trough its
area. With rasterization however the time would increase linearly
as we would simply draw extra primitives. Using a good spatial
index structure is very important for the performance of ray
tracing, we will explain more about them and how to keep them
up-to-date when the scene is changing in chapter 4.

Calculate intersections

Y

Calculate colour at
hit point

Generally the process of ray tracing can be seen as illustrated in the figure on the right, this
diagram is a simplified version of that of Purcell et al.[3]. First we generate rays originating from
the camera. We then follow (traverse) the ray trough an spatial index structure, such as a grid. For
each area the ray passes trough we calculate if the ray intersects with an object in that area. If there
are no intersections then we continue traversing the next area of the spatial index structure. If the ray
does hit something then we calculate the colour of that point. This is also known as the shading
computation. The shading computation may require that we trace more rays, this makes ray tracing
a global illumination rendering method as these rays can come from both light sources and other
surfaces.

This simple but flexible rendering method makes ray tracing a much more suitable
environment for advanced effects than rasterization[18]. With rasterization we need complex and
non-intuitive operations for such effects and often these effects are not possible at all because of the
limitations of a local illumination rendering method.

Although ray tracing is a far more suitable environment for advanced effects it is
traditionally known as being slow compared to rasterization rendering. The big difference between
ray tracing and rasterization is that they work the other way around: Rasterization takes a primitive
and draws it on screen, which is a very fast operation. With ray-tracing we look for each pixel which
primitive is under it. Suppose for example we would want to render a simple cube: With
rasterization we would simply draw 16 triangles. With ray tracing we would need more
computations as we would need to trace rays for each pixel on screen. This is why ray tracing is
traditionally known as being “slow” compared to rasterization rendering.

Ray tracing is not actually “slow”, the rendering time being logarithmic with the size of the
scene. It does however have a high initial cost. With a very complex scene with advanced effects, it
would be more efficient to use ray tracing than rasterization[15]. This is because the rasterization
approach would always draw all triangles and overwrite triangles which are further away. This
means a lot of redundant operations. Additionally if the advanced effects are at all possible they
would need multiple rendering passes. With ray tracing we would simply have no redundant
calculations and would not need multiple rendering passes.

With highly complex and high quality graphics the cost of rasterization rendering, with its
redundant calculations and ineffective advanced effects, is higher than the cost of ray tracing.
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Computer graphics are using increasingly complex scene and advanced visual effect and are nearing
the boundary where ray tracing becomes more efficient. This boundary has already been crossed by
state-of-the-art applications[18].
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3. Suitable hardware for ray tracing

3.1 Introduction

The first thing we need for interactive ray tracing is suitable hardware to run our ray tracer
on. Therefore in this section we will look at what suitable hardware for ray tracing is and if this is
already available. In this section we will introduce what the characteristics of suitable interactive ray
tracing hardware are and how we can make optimal use of the hardware. In the rest of this chapter
we will look at different types of hardware and how suitable they are for ray tracing.

Please note that the discussion below is about system which run ray tracing on simple triangles but
most of it also holds for bezier curves, volumetric data sets and other more complex types of
surfaces.

3.1.1 Requirements for suitable hardware
For hardware to be able to efficiently run ray tracing it needs[6]:
e Parallel calculations

Ray tracing is known is as being “embarrassingly parallel”. This is because rays do not
depend on each other. Because of this it would be very efficient if the hardware can trace
rays in parallel.

e Large amount of floating-point operations

The computation of the intersections of the rays and, when the rays hit an object, the
computation of the colour of the surface requires a lot of floating point operations.

e Complex flow control

When a ray hits an object other rays may be traced recursively and it is always uncertain how
many rays deep this will go and how many branches the calculation will have. This means
the hardware needs to be able to handle complex flow control like recursion.

e A lot of memory access

Every ray may intersect with any point in the scene and the appropriate data should be
fetched for computation. This means a lot of memory access.

Using these criteria we will see if hardware is suitable for ray tracing or not.

3.1.2 Mapping ray-tracing to hardware

While it is important that the hardware is suitable for ray tracing it is also important that the
ray tracing implementation is suitable for the hardware. To make a ray tracing implementation
suitable for hardware it needs to be optimized for the specific characteristics of the hardware.

An often used type of optimization that is effective on different kinds of hardware is tracing
coherent packets of rays[1]. A coherent packet of rays is a set of rays that are close to each other.
Often when we calculate a portion of 3x3 pixels of the screen the 9 rays that must be traced will be
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bundled in a packet, since they lie very close to each other.
If we trace a coherent packet of rays at once instead of a single ray we will have two benefits:

e Tracing coherent packets of rays can dramatically increase cache utilization because rays
from the same packet have a high chance of using the same data, making a cache hit more
likely. Additionally data that is needed for several of the rays in the packet at the same time
only needs to be fetched once, because we can merge the memory requests. This makes the
memory access less unstructured so we can optimally use caches and have less strain on
main memory.

e Tracing coherent packets of rays enables us to make use of the SIMD instructions available
on a lot of modern hardware. A Single Instruct on Multiple Data or SIMD instruction is an
instruction which executes a floating point operation in parallel on a number (often two or
four) of data values. We can use those instructions to operate on a whole packet of rays with
one instruction.

We will see that using such optimizations is necessary to make optimal use of the hardware.

3.2 Traditional PC

3.2.1 Description

Recently Wald et al.[1]have researched interactive ray tracing on a cluster of commodity
PCs. In their set-up they use a client-server model, with a single server and arbitrary number of
clients. The server gives tasks to compute a part of the screen to the clients. When the clients have
finished their task they give the result back to the server which composes all the results into a single
image. Because a network is relatively slow compared to main memory each client has a complete
copy of the scene data in its memory. This system was able to handle all of the functionality of ray
tracing, e.g. shadows, reflections.

Wald et al. have found trough measurements that a ray tracer on a CPU is mainly bound by
the bandwidth to main memory. To minimize the use of main memory they have tried to make
optimal use of caches by tracing coherent packets of rays as described in 3.1.2. They also used the
packets of rays with SIMD instructions. Together this gave a very significant speed-up but the ray
tracer was still bound by bandwidth to main memory.

This system running on five PC's (Pentium I1I-800Mhz) gave interactive frame rates of 7.7
frames per second on a static scene with 907k triangles.

3.2.2 Discussion

The fact that this implementation is largely bound by the memory bandwidth, even when
optimally using caches suggest that the memory bandwidth of a traditional PC is simply not enough
for ray tracing.

Although we can increase the performance drastically by tracing packets of rays, the need for
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a cluster of PCs suggest that PCs do not have enough floating point computing power and lack
parallelism themselves. In fact the sheer amount of hardware required to get acceptable frame rates
shows that a traditional PC is not efficient for ray tracing.

This suggests that a traditional CPU lacks three things needed for ray tracing: parallelism ,
floating point computing power and high memory bandwidth.

3.3 Programmable Graphics Processing Unit

3.3.1 Description

Graphics Processing Units (GPUs) traditionally can run a lot of floating point computations
in parallel and have relatively high memory bandwidth, which is beneficial for ray tracing. However
modern GPUs cannot handle the complex flow control required by ray tracing.

1. GPUs have recently become programmable to allow more complex visual effects. This is the
first step in a trend for GPUs to become more general purpose, i.e. more like a CPU. In the
near future their functionality will be general enough to run a full ray tracer. Purcell et al.[3]
have built such a ray tracer based on propositions for the next generation of APIs such as
OpenGL. They have researched how such a ray tracer would work and what its speed would
be.

Such a ray tracer would be running only in one part of the graphics pipeline (the fragment
shader for those who know the graphics pipeline). They would use that part of the pipeline for
different programs in different stadia of the rendering process. The scene data would be stored in
textures and the (intermediate) results in screen buffers.

Purcell et al. have researched two kinds of future GPU architectures: A multipass
architecture in which the complex loop control required by ray tracing has to be handled by multiple
passes and a branching architecture on which that complex loop control can directly be implemented
without multiple passes. The multipass architecture is derived from proposals for actual new
technology, where the branching architecture reflects the researchers view on future hardware but
there are no tangible plans to actually manufacture such an architecture. Both resulting systems have
been implemented on a simulator.

The multipass Architecture has shown to be memory-bound because of the large amount of
memory writes and reads needed for temporary data between the multiple passes. It ran about 2.5
times faster than a ray tracer on a single CPU as researched by Wald et Al. The Branching
Architecture has shown to be compute bound, and needs much less memory bandwidth than the
Multipass Architecture, because there is no need to store intermediate results in screen buffers. This
implementation ran at four times the speed of the multipass architecture.

3.3.2 Discussion

Modern GPUs lack the complex flow control needed for ray tracing. However as GPU
technology will become more general, ray tracing on it will become more efficient. In the next 5-10
however it is doubtful if ray tracing on programmable graphics units will become efficient enough
to be an alternative to triangle rasterization since the primary intended use of this hardware still is
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triangle rasterization. Once the architecture of a GPU becomes as general as the Branching
Architecture described above, ray tracing is very likely to be as efficient or more efficient than
triangle rasterization, especially on complex scenes.

It is likely that if nothing disrupts this trend of GPUs becoming more general interactive ray
tracing will gradually be used more in applications. At first it will be very handy that we can do ray
tracing for effects such as shadows real time on the GPU while keeping rasterization as the primary
method of rendering. While GPUs become even more general and the need for more complex scenes
continues there will come a time that ray tracing will be a good alternative to rasterization as a
primary rendering method. In this way there could be a slow transition from rasterization to ray
tracing[3].

3.4 Next generation processor

3.4.1 Description

It is increasingly difficult for CPU developers to get more performance out of putting more
transistors on a single chip. Additionally the amount of power used and the heat produced by CPUs
is an increasing problem. For these reasons CPU designers are looking for more performance in
parallelism instead of faster serial execution of code. GPUs are becoming more like CPUs and
CPUs are becoming more like GPUs. For these reasons there is a trend for processor chips to
become multi-processor systems on a single chip [4].

The first processor from this new trend is called the Cell processor. It contains a Power PC
core and eight “synergistic co-processor elements”
which are especially designed to work on streams
of data, sets of data on which the same operations
need to be performed. A simplified schematic[4] of
the set-up can be seen in the figure on the right. SPEO| |SPE1| m m m |[SPE 7
The SPEs are connected to each other , to the
memory and the power pc core trough a high

bandwidth bus. The intended use of the cell A A A
processor is to have each of the SPEs perform a \ A : )
piece of the calculation and send the result for L Elment Interconnecting Bus (300 GB/s) |

further calculation to next one over the high- ¢ <> 256 GB/s
bandwidth bus in pipeline fashion.

Benthin et al.[4] have implemented a ray Power PC Memory
tracer on the cell processor. They found that ray
tracing does not map to a pipeline system on the
cell very well. This is because of the complex flow
control of ray tracing, it is not known in advance how long a part in the process of ray tracing takes.
Once a part of the pipeline becomes a bottleneck it would starve the other SPEs. This could be
solved by buffering tasks for SPEs, but they have no memory of their own so this would have to be
done in main memory. This would be too much for an already heavily memory-intensive
application.
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Instead of a pipeline design they let each SPE run a full ray tracer. This design resembles the
PC cluster design of Purcell et al. The power pc core is like the server, it hands out task to the SPEs.
The SPEs trace packets of rays in parallel and use (self-maintained) caches. They show that a single
SPE of 2.4 GHz is up to par with a ray tracer of the same clock speed on a full x86 CPU. They also
show that performance increases linearly with the number of SPEs. Likewise with the number of
full cell processors, two cell processors is twice as fast.

3.4.2 Discussion

The fact that a ray tracer on the cell processor cannot be put into a pipeline model which the
cell is intended for suggests that this is not the ideal hardware for real time ray tracing. However the
memory bandwidth and parallel floating point computation power are quite beneficial for ray-
tracing. Thus the results shown by Purcell et al. are quite good and are much faster than
conventional CPU implementations.

Possible a first use of real time ray tracing could come from the use of the cell processor in
the upcoming Playstation 3 video game console, a platform where the demand for high quality
graphics 1s high. Purcell et al. note that on the Playstation 3 there exists a high-bandwidth
connection between the cell processor and the GPU. If that can be used so that intersection
calculations can be done on the cell processor and shading computations can be done on the GPU,
real time ray tracing might very well be a good alternative for rasterization on the Playstation 3[4].

When the trend of processors to become more suitable for parallel computations continues
ray tracing on such a next generation could be very efficient, especially if it has more support for
complex flow control than the cell processor. Additionally if there is a high bandwidth bus between
such a processor and the GPU we could combine the powers of both to do ray tracing.

3.5 Specialized Hardware

Standard PC's have too limited memory bandwidth for ray tracing. GPUs do not support the
complex flow control required by ray tracing. On a cell processor we can obtain good results but we
note that we cannot make use of the pipeline optimized design of the processor. All of this suggests
that it may be a good idea to make specialized hardware for ray tracing since the ideal hardware is
not available.

3.5.1 Fixed Function Architectures

Schmittler et al.[5] have proposed a design for a hardware architecture especially for
interactive ray tracing. Their custom chip is named the SaarCOR system (Saarbrucken's Coherence
Optimized Ray tracer). As the name suggests this system is designed to trace coherent packets of
rays, as described in section 3.1.2, to optimally use caches.

Their system is divided into three parts: ray generation and shading, the memory interface
and the ray tracing core. The ray generation and shading part generates new rays and does the
shading computation. In the ray tracing core the spatial index structure is traversed and intersections
are calculated. The memory interface has separate caches for several types, to optimize cache
utilization, and feeds data to the ray tracing cores and the ray generation and shading parts. The
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system is designed to be flexible, so while there are two ray tracing cores in the initial design more
can be added for extra performance. To hide memory latencies both the ray generation and shading
part and the ray tracing cores can continue operating on another ray while waiting for data.

The resulting system could theoretically be built at a cost comparable to the cost of current
rasterization chips. In their tests Schmittler et al. have shown that the system would also deliver
speed that does not differ much from the speed delivered by current rasterization chips, while at the
same time delivering all the benefits of ray tracing.

3.5.2 Programmable Hardware Architecture

With modern rasterization hardware certain parts of the pipeline have recently become
programmable. Instead of also making parts of the pipeline programmable in ray tracing hardware
Woop et al.[6] have proposed making a general
purpose processing unit optimized for tasks like ray
tracing. The intent of this system is to combine the
best features of CPUs, GPUs and custom hardware.
Their system is known as the RPU: A Programmable
Ray Processing Unit for Realtime Ray Tracing. The
system contains a number of SPUs( Shader
Processing Unit)s which have similar functionality as
modern GPU systems and are intended for general use.
The SPU design is optimized for vector operations and
differs from modern GPUs in that it allows recursion
and memory writes. Each of these SPUs runs a
hardware thread at a time and can switch threads when
it has to wait for data or when a thread is done. Each
of these threads deals with a coherent packet of rays.
Spatial index structure traversal on such a SPU would not be very efficient since this requires a
significant number of scalar floating point operations, while an SPU is optimized for vector
operations. For this reason a specialized Traversal Processing Unit is also present to do this task.
This Traversal Unit is called with a special instruction on the SPU, which then runs another thread
while waiting for the results.

This system has been optimized to make even more use of the coherence between rays. Each
time a number of threads are issued together, and they are executed by a number of SPUs
synchronously. Such a group of threads is called a chunk of threads. On the RPU a number of
chunks run asynchronously, while within these chunks all operations are run synchronously. This is
illustrated in the figure[6] above. When a chunk does a memory request the chances are high that
they issue a request for the same data since the packets that were issued to the SPUs were close to
each other. These requests can then be combined to drastically cut down on memory usage.

This system was implemented using FPGA(Field Programmable Gate Array, a type of
programmable hardware). While such a system is not very efficient compared to true hardware
implementation a system running at a mere 66Mhz provided the same ray tracing performance as a
modern CPU implementation. The programmable design does have its price tough: this system
gives 20% till 50% of the frame rate delivered by the fixed function SaarCOR design, although it is
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hard to compare the two systems because of the different set-up in terms of memory and the
traversal algorithm used.

3.5.3 Discussion

Clearly specialized hardware implementations have proven to be more efficient than other
implementations. However it is questionable how soon this technology will be widely available for
desktop PCs. This largely depends on whether commercial hardware manufacturers will make such
a board.

3.6 Conclusions

As we have seen the hardware that is currently available is not optimal for real time ray
tracing. CPUs cannot run enough floating computations, lack parallelism and have too limited
memory bandwidth. GPUs do have enough parallelism and floating point computing power but
cannot handle the complex flow control required by ray tracing. The first in the next generation of
processors, the cell processor, already gives great results but ray tracing does not map into the
pipeline model the cell was intended for. Specialized hardware yields great results on paper but this
hardware is not available since there is no hardware manufacturer selling such hardware.

The hardware that we need is like a CPU in terms of generality and like a GPU in terms
parallel computations and massive floating point computations. Luckily there is a trend in CPU
design towards more parallelism and there is a trend for the massively parallel GPUs to become
more general. The lines between a CPU and a GPU are blurring.

On one side GPU manufacturers have announced plans to gradually make more general
GPUs. This development allows for a gradual transition from rasterization to ray tracing. This is
because when rasterization as well as ray tracing can be done in real time on a GPU, both can be
combined and used where it is most efficient.

On the other side all of the major CPU manufacturers have announced multi-core
architectures such as the cell processor. Analysing the road maps of the CPU manufacturers we can
safely say that hardware on which ray tracing will be very efficient will be available in the next 5 to
10 years[4].

A hybrid scheme where the CPU calculates intersections and the GPU does the shading
computations might also be possible depending on the bandwidth of the bus between the GPU and
the CPU. Designs for the upcoming playstation 3 video game console already have a bus that has
adequate bandwidth for this.

Another possibility is not waiting for CPUs or GPUs to come to a point where ray tracing is
efficient but to make such hardware now, as it is already possible. Such an architecture is proposed
by Woop et al. They have designed a general stream processor that is in functionality somewhere
between a CPU in terms of generality and a GPU in parallelism. It has been shown that such a
design can be made using current technology.

As CPUs and GPUs grow towards each other both types of hardware will become
increasingly suitable for real time ray tracing, because the optimal hardware for ray tracing is
somewhere in between. Additionally if a high bandwidth bus between the CPU and the GPU exists
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we can also use both to do ray tracing. If a major manufacturer starts manufacturing a board for real
time ray tracing like that of Woop et al. we could have very suitable hardware for real time ray
tracing even sooner. With all these developments hardware will be increasingly suitable for real-
time ray tracing, and we speculate that consumer hardware will be adequate for interactive ray
tracing before long.
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4 Support for Interactive Scenes

4.1 Introduction

When we have suitable hardware for ray tracing we also need software to support ray tracing.
Critical software for speeding up a ray tracer is about building and updating acceleration structures
called spatial index structures.

A spatial index structure is a structure that divides the space into areas. When tracing a ray
or a packet of rays we use this information to check for intersections with objects only in the areas
visited by the ray. For example we can use a three-dimensional grid to divide the space and only
check for intersections with objects in areas of the grid the rays actually pass trough instead of
checking for intersections with all objects. In this way we can really cut down on the amount of
intersection checks and speed up ray tracing.

Depending on the type of structure generating a structure can take a very long time. There
exist a lot of the types of spatial index structures and a lot of research has gone into them. Havran et
al.[7] have performed a statical comparison of spatial index structures and have concluded that
building a more efficient spatial index structure takes more time, but this pays off when the amount
of rays to be traversed trough the structure is large enough.

For static scenes this spatial index structure can be computed in advance. We would then use
that same structure for each frame. In this way the performance increase by the spatial index
structure comes “for free” because the building cost does not effect the frame rate. However this
approach does not allow scenes to be truly inferactive because the user can walk or fly trough a
scene but cannot interact with the environment. It is impossible to move an object or have
animations in the scene without also changing the spatial index structure.

For this reason we will look at how to keep such spatial index structures up to date for
moving scenes in this chapter. This support for interactive scenes in interactive ray tracing is
essential because otherwise real time ray tracing will be confined to simple walk-troughs, which
does not make it much of an alternative to rasterization.

In this section we will look at what types of motion that can occur in a scene and the
difference between updating and rebuilding the structure. In the rest of this chapter we will look at
different spatial index structures and how they handle the different types of motion.

4.1.1 Types of motion

Different strategies for keeping the spatial index structure up to date perform differently on
different types of motion. To be able to analyse and compare the spatial index structures we divide
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the animation in a scene into four categories|15,16]: Static, Hierarchical motion, Continuous
Dynamic motion and Unstructured motion.

Static is for all objects that remain static at all times.

Hierarchical motion is when a set of primitives undergo the same transformation. These
transformations are normally stored in a tree called the scene tree, hence the name hierarchical
motion. For example when we move a whole object such as a teapot trough a scene.

Continuous Dynamic motion is when the triangles of an object itself are transformed. For example if
we have a bending finger.

Unstructured motion is when a set of primitives move in an unstructured way, without relation to
each other. For example triangles animated by a particle system.

4.1.3 Rebuilding or Updating

When keeping a spatial index structure up-to-date in a dynamic scene we have two ways to do this:
rebuilding the structure for each frame or updating the structure for each frame.

e Rebuilding: When we rebuild the structure for each frame we impose no restrictions on the
kind of motion that is supported. This is because no matter what kind of motion there is in
the scene the whole index structure is built from scratch each time. Although this method is
very general and supports all kinds of motion, rebuilding the spatial index structure can take
a lot of time, especially for efficient spatial index structures.

e Updating: If we update the spatial index structure each time instead of rebuilding it, it can
be useful to know what kind of motion occurs where in advance. When we have this
information we can build our structure around it and keep it updated more efficiently. If we
did not have this information it would be harder to keep the spatial index structure up-to-date
because the motion would seem completely random.

Rebuilding the structure is more general but requires more time while updating the structure
is more specialized and needs information about the scene in advance.

4.2 Scene Partitioning Tree

4.2.1 Description

A common type of spatial index structures are scene partitioning trees. Such a tree divides the space
at each node and the leaves contain the primitives of the scene.

As an example consider a BSP-tree, or Binary Space Partitioning Tree. A BSP-tree is a
binary tree where at the root node the space is split in two by an arbitrary plane trough the space.
The left and right subtree then cover the left or right part of the space respectively. Recursively the
root node of the right and left subtree divide their space by a plane. The leaves of tree contain the
objects in the scene. An example of a BSP-tree is given above[17], if for example there were any
primitives in F they would be the children of that node.
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Such a scene partitioning tree can 1. 4.

then be used to speed up ray tracing by
using it to only check for intersections in

. . F
the areas the ray visits. For example a @

whole subtree can be discarded if it is @
determined that the ray does not enter that (&) (a) G
< CERCIEESOSS
subtree. We can visit the nodes of the tree
) G @
of the scene in the same order that the ray
traverses trough the scene. For this reason we can stop when we have found the first intersection,
since it is the intersection closest to the camera.

The reason that most current real time ray tracing implementations use such scene
partitioning trees is that the speed-up gained from them is excellent. The downside is that building
an efficient scene partitioning tree is quite expensive. An efficient scene partitioning tree is a
balanced tree with about an efficient depth and efficient number of leaves per node. The procedure
for building a scene partitioning tree is reasonably complex because it is hard to decide where to
place the splitting plane at each node to obtain an efficient tree. The complexity of this procedure is
O(N log N)[8], where N is the number of objects in the scene.

Because building a scene partitioning tree typically takes so long it is often infeasible to
rebuild the tree every frame to support animation. It is also not possible to update the location of
objects in the tree, because after an update an object may intersect with a splitting plane and the
object would have to be present in two areas at once which is impossible in a scene partitioning tree.

Most current interactive ray tracing systems, such as the ones presented in chapter two, use a
spatial index structure called a kd-tree (k dimensional tree although we will always use three
dimensions). A kd-tree is simply a BSP-tree but with the extra requirement that all splitting planes
must be perpendicular to the coordinate system axes. The complexity of constructing a kd-tree is
also O(N log N), where N is the number of objects in the scene. The advantage of a kd-tree over a
BSP-tree is that the check if the ray is on one side of the splitting plane is very fast because the
plane is perpendicular to the coordinate systems axes.

4.2.2 Two level scheme

The only use of space partitioning trees for dynamic scenes is given by Wald et al. [12].
They propose a scheme for using BSP-trees in dynamic environments. Their approach is based on
the observation that there are typically groups of primitives undergoing the same motion in a scene.
Each group has his own BSP-tree, defined in a local coordinate system. Additionally there is a top-
level BSP-tree of which the leaves are the groups. When traversing a ray trough two-level structure
we only has to transform the ray into the local coordinate system when switching from the top-level
BSP-tree to the local BSP-tree of one of the groups.

When groups undergo any kind of hierarchical animation (as defined above) we only need to
update the coordinates of the group and rebuild the top-level BSP-tree. Rebuilding the top-level
BSP-tree is not as costly as it might seem because the top-level BSP-tree does not have thousands of
arbitrary primitives as leaves but instead has the axis-aligned bounding boxes of the groups as
leaves. Because of the simple shape and alignment of axis-aligned bounding boxes and the relatively
small number of groups a top-level BSP-tree can be built very fast. It is therefore not a problem that
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this structure is likely to be rebuilt for each frame.

When there 1s any kind of Continuous Dynamic motion or Unstructured motion in a group
the local BSP-tree needs to be rebuilt. Since optimal BSP-tree construction is very costly it is not
feasible to do this for every frame. Instead Wald et al. propose to quickly create a less optimized tree
to overcome this problem. Off course this leads to less efficient ray tracing but the speed is still
acceptable. This scheme allows for the interactive ray tracing of scenes with an arbitrary number of
hierarchical animations and a limited number of Continuous Dynamic motion or Unstructured
motion.

4.2.3 Discussion

Although scene partitioning trees give a very good speed-up on a static scene it is very hard to use
them with dynamic scenes. This is largely due to the amount of time it takes to construct such a tree
for a scene and the fact that updating a scene partitioning tree is impossible. Typically building a
tree takes more time than it takes to render a single image. This makes rebuilding the structure for a
whole scene infeasible.

Wald et al. have developed a scheme that uses a scene partitioning tree that shows great
results for hierarchical motion and a small number of object undergoing continuous dynamic motion
or unstructured motion, which is adequate for a large number of applications. However there are
also a large number of applications that have a lot of continuous dynamic motion or unstructured
motion. Games for example often use continuous dynamic motion to portray characters and other
organisms, for example plants in the wind. Unstructured motion is for example found in particle
systems. For these types of applications Wald et. al's approach is not enough.

It is doubtful if scene partitioning trees can ever be used for such purposes, as this would
require costly rebuilding large trees often.

4.3 Grid-based approaches

4.3.1 Description

Because the cost of building a spatial index structure matters when ray tracing animated
scenes it would be logical to minimize that cost. A type of spatial index structure that takes
relatively little time to generate are grid-based structures. A standard grid partitions the space into n
x m x [ equally sized cells. Because of this simplicity any kind of grid-based spatial index structure
can be built in O(N) where N is the number of objects in the scene. Ray tracing is then accelerated
by simply visiting the cells a ray passes trough and checking for intersections in those cells.
Because we can traverse a grid in the same order a ray moves trough space we can simply stop when
we've found the first intersection.

Because building a grid takes little time it is feasible to rebuild the whole grid for each
frame. Because we can rebuild the grid each time it does not matter what kind of motion was
present in the scene thus grids perform the same on all kinds of motion.

On static scenes kd-trees are much quicker than simple grids. This is because grids lack any
kind of balance when the distribution of primitives in a scene varies. For example take the classic
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“teapot in a stadium” problem. Suppose that for some large undetailed object (i.e. the stadium) the
amount of primitives per cell is pretty efficient. The small, detailed object (i.e. the teapot) is so
small that it occupies only one cell, but it has a large number of primitives. When rays do not enter
the cell where the teapot this scheme would be reasonably efficient, but when a ray enters the cell
with the teapot we have to be check collisions with all the primitives of the teapot. The problem is
that because all the cells of a grid are equally-sized often the amount of primitives in the cells varies
greatly. This lack of balance makes grids slower than scene partitioning trees because it will result
in more intersection checks.

There exist several types of grids that have a varying resolution to overcome this lack of
balance, such as multi-level grids, recursive grids and hierarchical grids. For example a recursive
grid is a grid where a cell exist of another grid when the granularity at that cell is high. A cell of
such a grid in a grid may then recursively be another grid. In this way the resolution of the grid
varies with the granularity of object in the scene. The downside of these approaches is that they
have a higher building cost than simple grids although it is still much cheaper than building a scene
partitioning tree. However for highly complex scenes even these approaches are too limited because
the cells of a grid at a certain level are all of the same size. In general scene partitioning trees
partition the space much more tight around objects and are much more balanced than varying
resolution grids.

Wald et al.[14] have obtained reasonable results for any kind of motion using a two level grid
hierarchy scheme. Reinhadt et al. [9] have implemented both a grid and a hierarchical grid and have
shown a recursive grid is worth the effort on scenes with varying granularity and that this can be
used on interactive scenes. For hierarchical motion those implementations are not as fast as
specialized acceleration schemes as the two level kd-tree.

4.3.2 Discussion

Grid based approaches are the most general when it comes to supporting different kinds of
animations. Grids can be built very fast and there is no difference between static, hierarchical
animation ,continuous dynamic motion or unstructured motion. There is a cost for this generality
however: Because grids do not partition the space tight around object and there is little balance in
the amount of primitives in a cell the speed-up gained from grid is far less than other approaches.

An advantage of a grid based approaches is that it can be handled very well by stream
processors such as modern or future GPUs or next-generation processors such a the Cell, this is
because the construction of a grid does not require complex flow control.

4.4 Bounding Volume Hierarchies

4.4.1 Description

A different kind of spatial index structures are bounding volume hierarchies. In a bounding volume
hierarchy every node has a bounding volume. A bounding volume is a volume, for example a box or
a sphere, around the contents of the subtree of the node. At the leafs the bounding volume is around
a single object. As we walk up trough the tree each node has a bounding volume around the whole
subtree of that node. Ray tracing can then be accelerated by recursively checking if the ray intersects
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with the bounding volume and if it does not the whole subtree can be discarded.

Building an efficient bounding volume hierarchy is similar to the construction of a kd-tree:
the efficiency depends on how objects are placed into groups. The complexity of constructing a
bounding volume hierarchy is also O(N log N)[10], where N is the number of objects in scene.

A large difference with other kinds of spatial index structures (i.e. grids, space partitioning
trees) is that a bounding volume hierarchy does not partition the space into distinct areas. With
bounding volume hierarchies the volume (area) of any two nodes may overlap. When two or more
bounding volumes overlap we need to check for intersections in all of them and then pick the nearest
intersection. This is a disadvantage of bounding volume hierarchies because it does not always allow
us to visit areas of the scene from in the order the ray visits them, which is possible with kd-trees or
grids. However it has been show[10] that bounding volume hierarchies can compete with kd-trees
in terms of performance when using optimized traversal schemes and optimized tree builds.

An advantage of bounding volume hierarchies not partitioning the space into distinct areas is
that it is possible to update the bounding volume hierarchy structure when an object moves. When
an object moves in a bounding volume hierarchy we need to update the bounding volume of the
object and the bounding volume of all its supernodes.

4.4.2 Updating the volumes

Wald and Boulos[10] have researched the performance of using a bounding volume hierarchy in ray
tracing. Their approach was to simply generate an optimal bounding volume hierarchy before
beginning the animation and then refitting the bounding volumes each frame. This way the
bounding volumes change but the topology of the hierarchy does not.

A downside of this approach is that, since the topology of the hierarchy does not change, no
objects can deleted or added. This means the scene always consists of the same primitives.

Another downside of this approach is that the quality (efficiency) of the bounding volume
hierarchy can quickly degrade. For example suppose two objects are children of the same node were
originally very close to each other but are now on opposite sides of the scene then the bounding box
of the parent node of those two objects is now as wide as the scene. Because the bounding box of
the parent node is no longer “tight” around the objects there is a much larger chance that rays that
pass trough the box do not intersect with one of the children at all, although they will be checked for
that. This increases the amount of ray intersection checks and thus brings down performance.

It is very unpredictable when this method is efficient. This depends on the tree that was
generated by the algorithm at the beginning and how much it corresponds to what is going to
happen in the scene. This works well if for example the characters are at a rest-pose at the
beginning, however if a character is grabbing his head at the beginning it would fail since the
algorithm would not distinguish the arms from the head[10]. If the algorithm for constructing the
tree had more information about what was going to happen in the scene it could make a tree
reflecting the scene every time.

However Wald and Boulos have shown that for a large fraction of the applications the
performance of this strategy is quite adequate. The method fails when rendering unstructured
motion scenes because after a while the the hierarchy no longer reflects the structure of the scene.
With optimized traversal and hierarchy builds their method yielded results about 2.5 times as fast as
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the grid scheme of Wald[14]. For static scenes this method yield about half the frame rate of a
highly optimized implementation for static interactive ray tracing.

4.4.3 Rebuilding the Hierarchy

The above scheme is limited to scenes without unstructured motion because the bounding
volume hierarchy becomes inefficient over time due to that the topology of the hierarchy no longer
reflects the structure of the scene. Lauterbach et al.[13] have proposed to rebuild the hierarchy once
in a while to overcome this problem.

The bounding volume hierarchy is rebuilt when the quality of the bounding volume
hierarchy has degraded. The criteria for this is if a bounding box has grown a certain amount while
the objects within that box have not grown. This implies that the objects in the bounding volume
have move further apart. To make a quick rebuild possible they used a faster but less optimal
algorithm to generate the hierarchy than Wald and Boulos.

This approaches makes unstructured motion faster than when not using rebuilds but for
scenes without unstructured motion this method is slower than Wald and Boulos' because the
original hierarchy was less efficient.

4.4.4 Discussion

It has been shown[10] that bounding volume hierarchies are competitive with the most efficient
spatial index structure, kd-trees. In contrast to kd-trees bounding volume hierarchies can be updated
to keep track of animations in the scene. The restriction is that the amount of primitives in the scene
cannot change in time, although it may be possible to invent an algorithms to insert and remove
primitives for a scene.

Wald and Boulous have shown that simply updating the bounding boxes gives good results
on a large fraction of the applications (namely those with only static, hierarchical and continuous
dynamics motion). The method fails when the hierarchy no longer reflects the structure of the scene,
which is mostly caused by unstructured motion.

Lauterbach et al. have shown that bounding volume hierarchies can also be rebuilt when the
hierarchy becomes to ineffective, which allows unstructured motion. However this support comes
with a big performance hit so if there is a lot of unstructured motion a grid-based approach would
be faster.

4.5 Conclusions

Spatial index structures are very important for interactive ray tracing: the speed of a ray
tracer greatly depends on it. Most current ray tracers are limited to simple “fly-troughs” because the
spatial index structure is generated once as a preprocessing step before the actual rendering. In this
way the spatial index structure cannot change and thus neither can the scene. To support animations
and user-interactivity in the scene we need to either periodically rebuild the spatial index structure
or update it. There exist several types of spatial index structures and they respond differently to the
different kinds of motion: static, hierarchical, continuous dynamics and unstructured.
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Scene partitioning trees perform very well for static scenes, and using a two level scheme
they can also be used very well for hierarchical motion. When there is continuous dynamics or
unstructured motion (part of) the tree needs be rebuilt. This is a very costly operation which makes
scene partitioning trees not very suitable for continuous dynamics or unstructured motion.

Grid based approaches are a very general approach and support all types of motion. They do
however have problems with scenes with a varying number of primitives per cell, known as the
“teapot in the stadium problem”. This can be overcome to a certain extent with hierarchical grids.
Although grids have a very fast build time they are not that fast in accelerating ray tracing. The
simplicity of their design makes them very suitable for streaming processors such as a GPU.

Bounding volume hierarchies can compete with scene partitioning trees in terms of
performance. They also behave well on hierarchical and continuous dynamics motion. This is
because they can be updated, and do not have to be rebuilt. The downside of this is that no objects
can be added or deleted in the scene. Another downside is that we have to know what the structure
of the scene is for an efficient bounding volume hierarchy because there is a large chance that the
algorithm does not correctly find this structure. Having unstructured motion in the scene degrades
the bounding volume hierarchy and is a severe impact on performance. Rebuilding the bounding
volume hierarchy can be done between frames but is a severe impact on performance.

Overall scene partitioning trees seem to be the best solution for static objects. Although well
build bounding volume hierarchies can compete with scene partitioning, scene partitioning trees are
much cleaner and simpler because of their strict partitioning of the space. They can also be used for
hierarchical motion but any other kind of motion requires very costly rebuilds.

For hierarchical motion and continuous dynamic motion bounding volume hierarchies
perform best although this method breaks if there is too much unstructured motion.

For unstructured motion grid based approaches work best because they can very quickly be
rebuilt, they are however far slower than bounding volume hierarchies for hierarchical and
continuous dynamic motion and for static objects their performance is but a fraction of that of scene
partitioning trees.

There is currently no scheme that handles all kinds of motion adequately. Because each type
of spatial index structure has type(s) of motion on which it performs best it would be logical to try
to combine those structures in one scheme. In such a scheme the application programmer would
have to specify which kind of motion occurs where. For example a kd-tree could be used for static
objects, a bounding volume hierarchy for hierarchical and continuous dynamic motion and a grid for
unstructured motion. A ray would then need to be checked for collisions in all acceleration
structures and the nearest intersection should be used. At the time of writing there was no research
published on combining acceleration structures yet but because of the active research in this field
we feel certain that this will happen in the near future.

Because there is not a scheme that handles all kinds of motion effectively yet, interactive ray
tracing is not much of an alternative for dynamic scenes yet. Rasterization does not need a spatial
index structure and handles all kinds of motions equally. Advanced applications do use spatial index
structures for static content but with rasterization this can very easily be combined with moving
objects. Interactive ray tracing still needs an effective scheme for dynamic scenes to be an
alternative to rasterization for dynamic scenes.
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5 Conclusion

We have seen in the second chapter that computer graphics applications use increasingly
complex scenes and advanced visual effects and there is a demand for even more advanced effects .
For these reasons computer graphics applications will cross the boundary where ray-tracing
becomes more efficient than rasterization in the near future.

In chapter three we have seen that current hardware is suboptimal for ray-tracing. Optimal
hardware for ray tracing would be combination of the generality of a CPU and the parallelism of a
GPU. There is a trend for CPUs to become more like GPUs and vice versa. For this reason hardware
will be increasingly suitable for ray tracing. It has also been shown that optimal hardware for ray
tracing can already be made with current technology. For these reasons we believe that suitable
hardware for ray tracing will be available before long.

In chapter four we have looked at how to keep spatial index structures updated to accelerate
ray tracing. We have seen that spatial index structures respond differently to different types of
motion. We have seen that each structure performs well on certain types of motion but that no
structure performs adequately for all types of motion. A scheme that performs well on all kinds of
motion is the biggest open topic in interactive ray tracing. Research to resolve this, by for example
combining structures, is actively being pursued. Because of the large progress in this topic in the
last years we speculate that this will be resolved before long.

Because there is currently no optimal hardware for ray tracing and no scheme to accelerate
all kinds of motion adequately ray tracing is not much of an alternative to rasterization yet. However
we have seen three developments that will ray tracing make a better alternative to rasterization:

e Graphics applications are crossing the boundary where ray-tracing becomes more efficient
than rasterization

e Hardware is increasingly suitable for ray tracing
e Research on how to support interactive scenes is actively being pursued

When these three development are completed ray tracing will not only be an alternative to
ray tracing but will perform better than rasterization. This is because ray tracing would be able to
provide superior image quality, use new technology and be more efficient than rasterization. For
these reasons we believe that ray-tracing will eventually completely replace rasterization.
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