
Tuesday 3 March 2009

Advanced Operating Systems (263-3800-00L)

Caches and TLBs

Timothy Roscoe & Andrew Baumann

Based on slides by K Elphinstone & G Heiser (UNSW)

© Systems Group | Department of Computer Science | ETH Zürich Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Overview

 Review of caches
 Assume you know: direct mapping, associativity, …

 Cache addressing schemes
 Synonyms and Homonyms
 Cache management in Operating Systems
 Translation Lookaside Buffers

 Coverage

 ARM cache/MMU architecture

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Caching (review)

 Cache: something that remembers previous
results
 ⇒ can sometimes give the answer faster
 E.g. memory caches, TLBs, etc.

 Work by locality:
 Temporal locality: if I needed x recently, I’m likely to

need it again soon.
 Spatial locality: if I needed x recently, I’m likely to

need something close by.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Memory caching (review)

 Fast memory between registers & slow RAM
 1-5 vs. 10-100 cycles

 Holds recently used data and/or instructions
 Compensates for slow RAM if hit rate high (~90%)
 Hardware: (mostly) transparent to software
 Size: few kB – several MB
 Typically hierarchy (2-5 levels)

 on- & off- chip

Registers Cache Main
memory

Disk

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache organization

 Transfer units
 registers ↔ L1 cache <= 1 word (1-16 bytes)
 cache ↔ RAM (or cache) 16-32 bytes, or more
 Cache line: also unit of storage allocation in cache

 Cache line associated information:
 Valid bit
 Modified bit
 Tag

 Improves memory access by:
 Absorbs reads (increases b/w, reduces latency)
 Make writes asynchronous (hides latency)
 Clusters reads & writes (hides latency)

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache access

 Virtually indexed:
 Lookup by virtual address
 Concurrent with address translation

 Physically indexed:
 Lookup by physical address

CPU

MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data DataData

Virtual
Address

Physical
Address

Physical
Address

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache indexing

tag set # byte
Address

line

t0

t1

t2

set

tag data

byte #

set #

tag

Tag: distinguishes lines of a set
…address bits not used for
indexing

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache addressing

 Address hashed ⇒ index of line set
 Associative looking of within set using tag
 n lines/set: n-way set-associative cache

 n=1: direct mapped
 n=∞: fully associative
 Usually n=1-4, occasionally 32-64

 Hashing must be simple ⇒
 Use least-significant bits of address

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache mapping

 Different memory locations map to same cache line

 Locations mapping to set i are said to be of colour I
 n-way assoc. caches hold n lines of the same colour

 Cache miss types:
 Compulsory miss: data cannot be in cache
 Capacity miss: all cache entries in use by other data
 Conflict miss: set mapped to address is full

- Can’t happen in fully-associative cache
 Coherence miss: forced by hardware coherence protocol

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1…

0 1 … n-1

RAM

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache write policy

 Write back: store only updates cache
 Memory updated when dirty line replaced (flushed)

- Clusters writes
- Memory inconsistent with cache
- Hard for multiprocessors

 Write through: store updates cache & memory
- Memory always consistent with cache
- Increased memory/bus traffic

 Store to line not currently in cache:
 Write allocate: allocate new cache line & store
 No allocate: store to memory & bypass cache

 Typical combinations:
 Write-back & write-allocate
 Write-through & no-allocate

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache addressing schemes

 So far, assumed cache only sees a virtual or
physical address

 But indexing and tagging can use different
addresses
 Virtually-indexed, virtually tagged (VV)
 Virtually-indexed, physically-tagged (VP)
 Physically-indexed, virtually tagged (PV)
 Physically-indexed, physically-tagged (PP)

Complex &
rare

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually indexed, virtually tagged

 Also called:
 virtually-addressed

 Also (misleadingly!)
 Virtual cache
 Virtual address cache

 Only uses virtual
addresses
 Operates concurrently

with MMU

 Often used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually indexed, physically tagged

 Virtual addr ⇒ line
 Physical addr ⇒ tag
 Address translation

required to retrieve
data

 Index concurrently with
MMU

 Use MMU output for
check

 Typically used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26)byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Physically indexed, physically tagged

 Only uses physical
addresses

 Translation must complete
before cache access can
start

 Typically used off-core
 Note: page offset invariant

under virtual address
translation
 Index bits ⊆ offset
 Cache accessed without

translation
 Can be used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Physically indexed, physically tagged

 Only uses physical
addresses

 Translation must complete
before cache access can
start

 Typically used off-core
 Note: page offset invariant

under virtual address
translation
 Index bits ⊆ offset
 Cache accessed without

translation
 Can be used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Page offsets

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Tag(26) byte(4)index(2)h

CPU

page index

offset

See page translation later…

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache issues

 Caches are hardware, transparent to software
 So, why worry about them in the OS?
 Well…

 Performance
 Synonyms
 Homonyms

 And pretty much essential for multiprocessors
 Can't really scale without them
 A later lecture will cover MP/OS cache issues

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache performance really matters.

Access Cycles

L1 cache 2 1

L2 cache 15 7.5

L3 cache 75 37.5

Other L1/2/3 130 65

Memory ~300 ~150

1-hop cache 190 95 60

2-hop cache 260 130 70

Normalized
to L1

Per-hop
cost

Hardware:

32-core AMD
“Barcelona”,
2.8GHz.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

 Homonyms: same names for different
data

 VA used for indexing is context
dependent
 Same VA refers to different PAs
 Tag does not uniquely identify data
 Wrong data is accessed!
 OS must prevent this!

 Homonym prevention:
 Flush cache on context switch
 Force non-overlapping address-space

layout
 Tag VA with address-space ID (ASID)
 Use physical tags

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

 Synonyms (aliases): multiple names for
same data

 Several VA map to the same PA
 Frames shared between processes
 Multiple mappings of frame within AS

 May access stale data:
 Same data cached in several lines
 On write, one synonym updated
 Read on other synonym returns old value
 Physical tags don’t help!
 ASIDs don’t help!

 Are synonyms a problem?
 Depends on page and cache size
 No problem for r/o data
 Or i-caches

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

 ASID-tagged, on-chip L1 VP cache
 16kB cache, 32B lines, 2-way set associative
 4kB (base) page size
 Set size = 16kB/2 = 8kB > page size
 Overlap of tag & index bits, but from different addresses!

 Remember, location of data in cache determined by index
 Tag only confirms whether it’s a hit
 Synonym problem iff VA12 ≠ VA’12

 Similar issues on other processors, e.g. ARM11 (set size 16kB, page size 4kB)

Example: MIPS R4x00 synonyms

bs
051339

bs
051239

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address mismatch problems:
Aliasing

 Page aliased in different address spaces
 AS1: VA12 = 1, AS2: VA12 = 0

 One alias gets modified
 In a write-back cache, other alias sees stale data
 Lost-update problem

Address space 1
Page 0x00181000

Address space 1
Page 0x00181000

Physical memory

write

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address mismatch problems:
Remapping

 Unmap page with dirty cache line
 Re-use (remap) frame to a different page (in same or different AS)
 Write to a new page

 Without mismatch, new write overwrites old (hits same cache line)
 With mismatch, order can be reversed: “cache bomb”

Address space 1
Page 0x00181000

Address space 1
Page 0x00181000

Physical memory

write

Cache

write

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

DMA consistency problem

 DMA (normally) uses physical addresses and bypasses cache
 CPU access inconsistent with device access
 Need to flush cache before device write
 Need to invalidate cache before device read

Physical memory

Cache

DMA

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Avoiding synonym problems

 Hardware synonym detection
 Flush cache on context switch

 Doesn’t help for aliasing within address space
 Detect synonyms and ensure

 All read-only, OR
 Only one synonym mapped at a time

 Restrict VM mapping so synonyms map to same
cache set
 E.g. on R4x00, ensure that VA12=PA12

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches

 Fastest: don’t rely on TLB for retrieving data
 Still need TLB lookup for protection
 Or other mechanism to provide protection

 Suffer from synonyms and homonyms
 Requires flush on context switch

- Makes context switches expensive
- May even be required on kernel ⇒ user switch

 … or guarantee of no synonyms or homonyms
 Require TLB lookup for write-back!
 Used on i860, ARM7/ARM9/StrongARM/XScale
 Used for i-cache on many architectures

 Alpha, Pentium-4, etc.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches with keys

 Add address space identifier (ASID) part of tag
 On access compare with CPU’s ASID register
 Removes homonyms, creates synonyms

 Potentially better context switching performance
 ASID recycling still requires a cache flush

 Doesn’t solve synonym problem
 (but that’s less serious)

 Doesn’t solve write-back problem!

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

VP caches

 Medium speed
 Lookup in parallel with address space translation
 Tag comparison after address translation

 No homonym problem
 Potential synonym problem
 Bigger tags (can’t leave off set-number bits)

 Increases area, latency, power consumption

 Used on most modern L1 data caches

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

PP caches

 Slowest
 Requires result of address translation before lookup starts

 No synonym problem
 No homonym problem
 Easy to manage
 If small or highly associative (all index bits come from page offset),

indexing can be in parallel with address translation
 Potentially useful for L1 cache, e.g. Itanium

 Cache can use bus snooping to receive/supply DMA data
 Usable as off-chip cache with any architecture

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Write buffers

 Store operations take long to complete
 E.g. if cache line must be read or allocated

 Can avoid stalling CPU by buffering writes
 Write buffer is FIFO queue of incomplete stores

 also called store buffer or write-behind buffer
 Can also read intermediate values out of buffer

 To service load of a value that is still in the write
buffer

 Avoids unnecessary stalls of load operations
 Implies that memory contents are temporarily

stale
 On a multiprocessor, CPUs see different order of

writes
 “weak store order”, to be revisiting in SMP context!

CPU

Cache

…
Store A

…
Store B

..
Store A

…

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary

 The OS has to manage caches if it is to provide:
 Correctness
 Performance

 Interactions between caches and memory
translation are complex and subtle

 OSes typically try to hide these from the user

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Translations Lookaside Buffer (TLB)

 TLB is a (VV) cache
for page table entries

 TLB can be
 Hardware loaded, transparent to

OS, or
 Software loaded, maintained by

OS
 TLB can be:

 Split, instruction and data TLBs, or
 Unified

 Modern, high-performance
architectures use a hierarchy of
TLBs:
 Top-level TLB is hardware-loaded

from lower levels
 Transparent to OS

PFN flags

ASID VPN PFN flags

ASID VPN

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB issues: Associativity

 First TLB (VAX-11/780) was 2-way associative
 Most modern architectures have fully associative TLBs
 Exceptions:

 i486, Pentium, P6, … (4-way)
 IBM RS/6000 (2-way)

 Reasons:
 Modern architectures tend to support multiple page sizes

(superpages)
- Better utilizes TLB entries

 TLB lookup done without knowing page’s base address
 Set-associativity loses speed advantage
 Hence superpage TLBs are fully-associative

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB Size (i-TLB + d-TLB)

4kB-4GB64+96Itanium

4kB-64MB96+96PA-8000

512kB - …4kB+16MB128Power4/G5

128+512kB4kB32+128RS/6000

256kB - …8kB-4MB32-128+128Alpha

512kB - …8kB-4MB64SPARC

384kB - …4kB-16MB96-128MIPS

128-128+256kB4kB+4MB32-32+64ia32 / x86 (typical)

32-128kB512B64-256VAX

TLB CoveragePage SizeTLB SizeArchitecture

Not grown much in 20 years!

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB Coverage:

 Memory sizes are increasing
 # TLB entries more-or-less constant
 Pages sizes are growing very slowly

 Total RAM mapped by TLB is not changing much
 Fraction of RAM mapped by TLB is shrinking lots

 Modern architectures have very low TLB coverage
 Also, many modern architectures have software-loaded

TLBs
 General increase in TLB miss penalty (handling cost)

 The TLB is becoming a performance bottleneck

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address space usage vs. TLB coverage

 Each TLB entry maps 1 virtual page
 On TLB miss, reloaded from page table (PT), which is in memory

 Some TLB entries needed to map page tables
 Eg. 32-bit page table entries, 4kB pages.
 One PT page maps 4MB

 Traditional UNIX process has 2 regions of allocated virtual address
space
 Low end: text, data, heap
 High end: stack
 2-3 PT pages are sufficient to map most address spaces

 Superpages can be used to extend TLB coverage
 But difficult to manage in the OS

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Concrete example: ARM

 Typical features of ARM MMU cores:
 Virtually-indexed L1 split caches
 No L2 cache
 No address-space tags (ASIDs) in TLB or caches

 Warning:
 Under some circumstances, L4 does not flush caches

on a context switch.
 Instead, uses domain bits

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM cache architecture

CPU

Memory

TLB

I-Cache

D-Cache

VA PA

Data

Perm

• Virtually-indexed caches:
• flush caches on context switch
• direct cost: 1k-18k cycles
• indirect cost: up to 54k cycles

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM TLB format

 TLB has no PID tag
 Must flush TLB on

context switches
 Direct cost: 1 cycle
 Indirect cost: 3k cycles
 TLB flush ⇒ cache flush

 Windows CE avoids flushing by
 No protection!
 Max 32 processes

 Better: use domains
 Impose additional access restrictions
 Simulate address space tags
 Flush TLB lazily on collisions

Physical AddressPermsDomainCache

attrs

20 bits8 bits4 bits2 bits

DACR

PA
perms

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM domains

 Every PTE is in a domain.
 There are 16 in total.

 Each domain has a 2-bit field in the DACR specifying
access
 Access rights to many pages can be changed at once
 Access faults ⇒ trap to kernel

 Exercise: (!)
 Work out how to use this to share page tables between

processes, and avoid most cache/TLB flushes on context switch

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary

 OS Management of the TLB is critical for
 Correctness
 Performance

 Hardware is diverse
 Many processors/MMUs have unusual features
 Effective use of these requires thought and ingenuity
 And isn’t portable

 Next week: more on page table structures

