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ABSTRACT

The Reduced Instruction Set Computer (RISC) is an architec-
ture particularly well suited for implementation as a single-chip
VLSI computer. It demonstrates that by a judicious choice of a
small set of instructions and the design of a corresponding micro-
architecture, one can obtain a machine with high throughput. The
limited number of instructions and addressing modes leads to a
small control section and to a short machine cycle time. Such a
machine also requires a much smaller layout effort and thus leads
to a shorter design cycle.

Such a RISC architecture has been implemented at
U.C.Berkeley as part of a four quarter sequence of graduate
courses in which students propose and evaluate architectural
ideas, design LSI components, integrate these components into a
VLSI chip, and finally test the actual chip. The CAD and testing
environment in which this chip was created is also described.

Proc. Aduvanced Course on VLSI Architeclure
University of Bristol, Fngland, July 19-30, 1982.
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1. INTRODUCTION

Advances in VLSI technology make it possible to realize the minicomputers
of yesteryear on a single chip of silicon. However, this new implementation
presents constraints that are quite different from those of main-frame technol-
ogy. For along time to come, a single chip of silicon represents a rather limited
resource in terms of the number of transistors it can accommodate and the
amount of power dissipation it can handleP2tt80b Furthermore, because of the
scaling laws of MOS technology, the active devices on the chip will get ever
smaller and faster, so that the wiring between the devices will soon become the
dominant problem. Intra-chip communication must thus be carefully
addressed; random logic and long-distance connections need to be minimized. A
clean floor plan relying on regular arrays with high device density is very desir-
able since it also simplifies the layout task.

To build an effective single-chip computer, one must thus not simply map
the architecture of a successful minicomputer onto the surface of a silicon cry-
stal. The architecture must first be redesigned with the above constraints in
mind. Because of the relative delay and power penalty of sending signals from
one chip to another, systems partitioning has to be addressed very carefully,
and the right combination of elements must be grouped together on a single
chip. The limited number of transistors need to be allocated judiciously to the
processor, main memory, communication ports, and other desired functions.

In this context, we found that a judicious restriction to a small set of often
used instructions, combined with an architecture tailored to fast execution of all
the instructions in this set, can result in a machine of surprisingly high effective
throughput. Such a Reduced Instruction Set Computer (RISC)PattBl, PattBe can
be realized with a small control section and a comparatively short machine
cycle. In addition to being a more suitable match for VLSI, this approach
dramatically reduces the long design times and the high incidence of architec-
tural design flaws and inconsistencies, both typically associated with the first
prototypes of computers of traditional design.

Students taking part in a multi-term course sequence designed a complete
32-bit NMOS microprocessor called RISC 1 Fitz81 This first design, previously also
referred to as the " Gold’ chip, was finished in June 1881 and in the meantime
has been implemented by MOSIS (DARPA's MOS Implementation Service at the
University of Southern California’s Information Sciences Institute)Cohe® and
tested and evaluatedFode82 In parallel, Katevenis and Sherburne started from
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the basic organization of RISC I and introduced a more compact register file,
which required, however, a more sophisticated timing scheme. This more ambi-
tious design, called RISC II or the "Flue'’ chip, has almost twice the local
memory capacity, but still fits onto a smaller chip than RISC 1. It will be submit-
ted for fabrication in Fall 1982.

Similar experiments are being carried out in other places. Particularly
noteworthy are IBM's 801 project initiated by John Cocke in the mid 1970's and
led by G. RadinRadiB2 a5 well as the MIPS project at StanfordHenn81, Henn82

2. DESIGN GOALS FOR RISCI

The RISC project started with an intensive six-month study phase during
which the basic concept was evaluated. RISC I was designed with particular
attention to the needs of high-level language programming. The selection of
languages for consideration in RISC I was influenced by our environment; we
chose C and Pascal since there is a large user community and considerable local
expertise. Given the limited number of transistors that can be integrated at
present onto a single chip, most of the pieces of a RISC I system are in software,
with hardware support for only the most time-consuming events. To the user it
should not matter whether a high-level language computer system is imple-
mented mostly by hardware or mostly by software, provided the system is
efficient and hides any lower levels from the programmer?2tt80a This approach
requires an efficient compiler and HLL debugging tools that give all error mes-
sages in the context of the source code. Given this framework, the role of the
architect is to build a cost-effective system by deciding which pieces of the sys-
tern should be in hardware and which in software.

Because of the bandwidth bottleneck at the chip periphery, the emphasis in
a VLSI chip must be on self-contained action. Most of the RISC I instructions are
thus ‘‘register-to-register” and take place entirely inside the chip. Data
memory access is restricted to the LOAD and STORE instructions. The instruc-
tions are kept simple so that they can be executed in a single, short machine
cycle; and they are each one word (32-bits) long to avoid the hardware complex-
ity associated with variable-length instructions. Less frequent operations are
implemented with instruction sequences or subroutinesfstt81, Patté2c

The relative dynamic frequencies of high-level language statements show
which constructs are used most often, but they are a poor measure of the actual
effort of the computer devoted to particular classes of statements. To deter-
mine which statements use the most time in the execution of typical programs,
one must look at the code produced by typical versions of each of these state-
ments and multiply the frequency of occurrence of each statement with the
corresponding number of machine instructions or memory references. This
gives a better estimate of the relative ““cost’ of each staternent type (Table 1).

The data in this table indicate that the procedure call/return is the most
time-consuming operation in typical high-level language programs. RISC I pro-
grams potentially have an even larger number of calls since some of the com-
plex instructions found in traditional architectures are implemented as subrou-
tines. Thus the procedure call must be as fast as possible. Other statistics
taken on the occurrence of various operands show the importance of local
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Table 1.
Relative Frequency of HLL Statemendts.
(ordered by memory references)
statements HLL WEIGHTED WEIGHTED
(# occurrence) (# instr.) (# mem. ref.)
HLL P C P C P C
call/return 1211 12+5 303 33+14 | 43:4 45+19
loops 40 3+1 | 4043 32£8 | 32+2 26+5
assign 36+5 38+15 12+2 13+5 1412 15+6
if 247 43+17 113 21+8 7+2 135
begin 20+1 - 5+0 - 2+0 -
with 4zx1 - 1+0 - 1+0 -
case 1+1 <1+l 11 11 1+1 1£1
goto - 3+1 - 0+0 - 00 |

variables and constants: more than 80 % of all dynamic scalar references are to
local variables. RISC 1 & Il support these constructs with especially large regis-
ter files. Arrays or structures, on the other hand, are typically shared global
variables and are kept in main memory.

3. OVERLAPPING REGISTER BANKS

The use of procedures involves two groups of time-consuming operations:
saving or restoring registers on each call or return, and passing parameters and
results between procedures. This overhead can be reduced if the processor is
equipped with multiple banks of registersfite79, Bask78 The frequency of local
scalar variables justifies architectural support by placing locals in registers.

uiey | !
Re6
Re5
LOCAL
R16
LOW R15
R10
Re
CLOBAL
RO

Figure 1. Naming within one Virtual RISC II Register Window.

In RISC I the chip area saved by the simplicity of the control circuitry was
devoted to an extra large set of 32-bit registers. The processor allocates a new
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Physical Registers Logical Registers
Proc A Proc B Proc C
137 R31,
HIGH,
132 R28,
131 R25,
LOCAL,
122 R16,
121 R15, R31,
Lo WA/HIGHI9
116 Ri0 N Rz2s '8
115 R25B
LOCAL
106 Ri6,
105 Ri5, R31,
LOW,/HIGH,
100 R10, R26,,
99 R25,
LOCAL,
90 RIS,
89 Ri15,
LoW,
84 R10,
g R9, Ry, R9,
GLOBAL
0 RO, Ro, RO,

Figure 2. Usage of Overlapped Register Windows (RISC II).

bank of registers for each procedure call by simply changing a hardware
pointer, thus avoiding the overhead of saving registers in memory. The return
instruction resets the register bank pointer to the previous value, which
restores the old set of register values. There are also ten global registers, thus
giving every procedure access to a total of 32 registers as shown in Figure 1.
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Registers 26 through 31 (HIGH) contain parameters passed from *‘above™
the current procedure, i.e., the calling procedure. Registers 18 through 25
(LOCAL) are used for the local scalar storage. Registers 10 through 15 (LOW) are
used for local storage and parameters passed to the procedure ‘‘below” the
current procedure, i.e., the called procedure.

In addition, ‘‘neighboring’’ register banks used by calling and called pro-
cedures physically overlap, so that parameters may be passed to a procedure
without moving any data. On each procedure call a new set of registers, named
10-31, is allocated. However, the LOW registers of the ‘“caller” become the HIGH
registers of the ‘“"callee’” since they are physically the same. Thus, without mov-
ing information, parameters in registers 10-15 appear in registers 25-31 in the
called frame. Figure 2 illustrates this approach for the case where procedure A
calls procedure B which calls procedure C. Overall, this scheme dramatically
reduces the number of accesses to data memory.

Nesting Depth

6—4

54

4—1

iy B

T 2 3 4 5 0 7 6 O 1011 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 20 29
Subsequent Calls and Returns

Mne 3. Procedure Nesting Depth and Optimal Usage of a Register File
with Three Banks.

In many programs the nesting depth of procedure calls will exceed the
number of register windows provided on the processor. A mechanism must be
provided to free up some of the register banks by moving their contents to main
memory. We have studied the sequences of procedure call/returns in several
programslami82 A typical behavior of the resulting Procedure Nesting Depth for
a small recursive program is shown in Figure 3. For this illustration it was
assumed that the register file contains three banks. Each dashed frame in Fig-
ure 3 indicates the range in the nesting depth that can be handled without
overflow/underflow. When the nesting depth goes outside the logical sets of
registers currently contained in the physical register file, a hardware trap will
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start an interrupt handler which moves a number of registers to/from main
memory. A separate register overflow stack is kept in a dedicated area in
memory. Overflows and underflows will also adjust a pointer to the top of this
stack. The effectiveness of this procedure call/return support depends on the
rarity of the occurrences of such overflows/underflows. Since the register file
will always contain the top few procedure activation records, the
overflow/underflow frequency is based on the local variations in the depth of the
stack rather than on the absolute depth. Our studies indicate that with eight
register banks overflows/underflows will occur. in less than 1% of all
calls/returns.

In order to make the variables in the registers also accessible via pointers,
they need to be given addresses. For this purpose, all registers in the RISC
architecture are also mapped into the regular memory address space. A single
address comparison and an 8-input AND gate can determine whether an address
points to a register bank currently on chip or to a location in memory. This
addressing technique also solves the “‘up-level addressing’ problem. Pascal and
other languages allow nested procedure declarations, thereby creating a class of
variables that are neither global variables nor local to a single procedure. Com-
pilers keep track of each procedure environment using static and dynamic links
or displays. A RISC compiler could use the memory addresses of the windows
for this purpose. However, this scheme has not actually been implemented in
the first versions of the RISC I & RISC II chips.

4. RISC1 ARCHITECTURE

The main goal with RISC I was to obtain as much performance for as little
complexity as possible. Most modern microprocessors have far more complex-
ity built into the chip than can be warranted by the resulting performance. A
Turing machine, on the other hand, while having conceptually the minimal com-
plexity required of a general-purpose computer, obviously has an unacceptably
low performance. In RISC 1 the complexity and the performance benefits of all
features were carefully evaluated. The added complexity of the multiple over-
lapped register banks was introduced since it simplifies address calculations and
reduces the traffic between the processor and the (off-chip) memory — a major
bottleneck in most computer systems.

In the final instruction set there are no big surprises. It has 31 instructions
in a few very similar formats, all 32 bits long. (Actually, a few more meaningful
instructions fell out almost for free near the end of the design of RISC I, but
they were not part of the original design and the compiler and assembler do not
know about them.) RISC I & II support 32-bit addresses and 8-, 18-, and 32-bit
data. As shown in Table 2, the instructions can be grouped into four categories:
arithmetic-logical, memory access, branch and miscellaneous. All the arith-
metic, logical, and shift instructions operate between registers. The execution
time of a RISC I eycle is given by the time it takes to read a register, perform an
ALU operation, and store the result back into a register. This execution cycle is
overlapped with the prefetch and decoding of the next instruction.

Load and store instructions move data between registers and memory.
These instructions use two CPU cycles. We decided to make an exception to our
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Table 2.
Assembly Language Definition for RISC I
Instr. Operands Comments

ADD Rs, 52, Kd Rd « Rs + §¢2 integer add
ADDC Rs,S52,Rd Rd « Rs + 52 + carry add with carry
SUFB Rs,S2,Rd Rd « Rs - S2 integer subtract
SUBC Ks,S2,Rd Rd « Rs - SZ2-carry subtract with carry
SUBR Rs,S2,Rd Rd «~ S2-Rs integer subtract
SUBCE Rs,S2,Rd Rd « S2- Rs -carry subtract with carry
AND Rs,S2,Rd Rd « Rs & S2 logical AND
OR Rs,S52,Rd Rd « Rs| S2 logical OR
XOR Rs,S2,Rd Rd « Rs zor S2 logical EXCLUSIVE OR
SLL Rs,S2,Rd Rd « Rs shifted by S2 shift left
SRL Rs,S52,Rd Rd + Rs shifted by S2 shift right logical
SRA Rs,S2,Rd Rd « Rs shifted by S2 shift might arithmetic
LDL (Rz)S2,Rd Rd « M[Rz+52] load long
LDSU (Rz)S2,Rd Rd « M[Rz+5Z2] load short unsigned
LDSS (Rz)S2,Rd Rd « M[Rz+S2] load short signed
LDBU (Rz)S2, Rd Rd « M[Rz+S52] load byte unsigned
LDBS (Rz)S2 Rd Rd + M{Rz+S52] load byte signed
STL (Rz)S2,Fm M[Rz+S2] « Fm. store long
STS (Rz)S2,Rm M[Rz+SZ]) « Rm store short
STB (Rz)S2,Rm M[Rz+S52] « Rm store byte
JMP CON,S2(Rz) | pc « Rz+S2 conditional jump
JMPR CON,Y pc+pc+Y conditional relative
CALL S2(Rz),Rd CWP--; Rd « pc, next call reg.~indezxed

pc « Rz+S2 and change window
CALLR Y,Rd CWP--; Rd « pc, next call relative

pc+pc+Y and change window
RET (Rz)S2 pc + Rz+S2, next CWP++ return, change window
RETINT (Rz)S2 pc « Rz+S52; next CWP++ also enable interrupts
CALLINT Rd CWP--; Rd « last pc also disable interrupts
LDHI Y, Rd Rd<31:13>«Y; Rd<12:0>+0 load immediate high
GTLPC Rd Rd « last pe to restart delayed jump
GETPSW | Rd Rd « PSW read status word
PUTPSHW | Rm PSW « BRm set status word

original constraint of single cycle execution, rather than to extend the general
cycle to permit a complete memory access in a single cycle. There are eight
variations of memory access instructions to accormmodate sign-extended or
zero-filled 8-bit, 16-bit, and 32-bit data. Although there appears to be only one
addressing mode, “index plus displacement”, ‘‘absolute” and ‘“register
indirect”’ addressing can be synthesized by using register O which contains a
hard-wired zero.

Branch instructions include call, return, conditional and unconditional
jump. The conditional instructions are the standard set used originally in the
PDP-11 and found in most 16-bit microprocessors today. The innovative features
of RISC I associated with the call and return instructions have already been dis-
cussed in the previous section.
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Table 3.
Basic Instruction Format for RISCT
e ——— ———
OPCODE<7> SCCLI> DEST<5> SORC1<5> IMF<1> SORC2<5>
OPCODEL 7> SCC<L1> DEST<5> SORCI<5> IMF<1> IMM.OPRD.<13>
OPCODEL 7> SCC<1> DESTL5> IMMEDIATE OPERAND < 19>

Table 3 shows the 32-bit format used by register-to-register instructions,
memory access instructions, and branch instructions. For register-to-register
instructions DEST selects one of the 32 registers as the destination of the result
of the operation which itself is performed on the registers specified by SORC1
and SORC2. If IMF=0, the low order five bits of SORCZ specify a register; if
IMF=1, the second operand is a sign-extended 13-bit constant. Because of the
frequency of occurrence of integer constants in high-level language programs,
the immediate field has been made an option in every instruction. SCC deter-
mines whether the condition codes will be set. Memory access instructions use
SORC1 to specify the index register and SORC2 to specify the offset; data is
exchanged with the register specified by DEST. One other format, which com-
bines the last three fields to form a 19-bit PC-relative address, is used primarily
by the branch instructions.

Another very worthwhile complication resulting in substantial performance
gain is overlapping instruction fetch and execution. Difficulties arise with
branches in the control flow. If the wrong instruction has been prefetched, the
two-stage pipeline must be flushed. Several high-end machines have elaborate
techniques to prefetch the appropriate instruction after the branchMorr?® put
these techniques are too complicated for a single-chip RISC. Our solution was to
redefine jumps so that they do not take effect until after the following instruc-
tion; we refer to this as the delayed jump.

The delayed jump permits RISC I to always prefetch the next instruction
during the execution of the current instruction. The machine language code is
suitably arranged so that the desired results are obtained. The RISC I compiler
includes an optimizerC2mp8! that tries to rearrange the sequence of instructions
to do something useful in the instruction after the jump; if that is not possible, a
NOP (ADD 0,0,0) is inserted, and the jump will thus take effectively two instruc-
tions. A simple optimization that looks for a suitable instruction in the code sec-
tion before the branch point can remove about 90% of the NOFPs after uncondi-
tional jumps but can remove only about 20% of the NOF's associated with condi-
tional branches. Better results can be obtained if the instruction at the target
of the jump is also considered. This technique can be applied to conditicnal
branches if the target instruction modifies temporary resources; e.g. an instruc-
tion that only modifies the condition codes. In a benchmark run of quicksort
this technique removed all NOP's except for those that follow return instruc-
tions. In this case the number of '‘useless™ instructions was reduced to less
than ten percent of the original number. This delayed-jump mechanism and
optimization is completely hidden from the user of RISC 1. who programs
directly in high-level languages.
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5. MICRO-ARCHITECTURE

The simplicity and regularity of RISC I & 2 permits most instruction execu-
tions to follow the same basic pattern: (1) read two registers, (2) perform an
operation on them, and (3) store the result back into a register. Jump, call, and
return instructions add a register (possibly PC) and an offset and store the
result into the appropriate PC latch. The load and store instructions violate the
original constraints: in order to allow enough time for access of the main
memory, they add the index register and immediate offset during the first cycle,
and perform the memory access during an additional cycle. The micro-
architectures of the two implementations are determined by these characteris-
ties.

The CPU can be subdivided naturally into the following functional blocks:
the register-file, the ALU, the shifter, a set of program counter (PC) registers,
the data 1/0 latches, the program status word (PSW) register, and control, which
contains the instruction register, instruction decoder, and clock-gating circuits.
Since two operands are required simultaneously, the register file needs at least
two independent busses and a two-port cell design. For speed, the registers are
read from dynamically precharged bit lines. This requires the following basic
timing sequence: (1) register read, (2) arithmetic / logic / shift operations, (3)
register write, and (4) bus precharge for the next read. The cycle time is deter-
mined by this sequence of operations. For the price of a third bus, (3) and (4)
can be overlapped and phase (4) can be eliminated: while the result is written
back into the register file by this extra bus, the two read busses are precharged
for the following read phase. This 3-phase scheme has been adopted in the RISC
I processor. The basic organization with two read-only busses (A,B) and one
write-only bus (C) is shown in Figure 4.

TO/FROM MEMORY FROM MEMORY (INSTR.)
[ para nvour | TMMEDIATE
N
1 ]
R [sn
pul v
busA 'Y o A K S
" < ADDRESSES
REGISTER <« L [*3 [0 MEMORY
FILE X
3 busL Ly PC's
busB (-| "1 SHIPTER L _—l [

busC

Figure 4. The Data-Path of the RISCI Chip.
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During the evolution of the RISC I design, it became apparent that a three-
bus register cell incurred a significant area penalty. Since a large fraction of
the chip area-is devoted to the register file, more attention was focused on the
design of a smaller bit cell. The classic six-transistor static RAM cell was chosen
for its compactness in the second, more ambitious RISC II chip designSher82
Reading is accomplished by selectively discharging one of the two precharged
bit line busses, one of which carries data in complemented form. Contrary to
commercially available static RAMs, no sense amplifiers are used. This yields a
speed penalty, since the bit cell must discharge a high capacitance bus, but in
its place it provides a two-port reading capability. Writing is accomplished by
putting both the data and its complement onto the two busses, as for a typical
static RAM. The RISC II design (Figure 5) was based on this two-bus, two-port
register cell.

FROM *u:'uom
[ param, noen. |
>
Bl B T~
d busD b L33
busA 'Y ¥ A
G A P
REGISTER D Y <y =
FILE e L—>ch oRESSES
’ AD
busB Uy 2 u S | aND pATA_
Y ¢ 1A Y
_(T u s> |~ Ly TO MEMORY

Figure 5. The Data-Path of the RISC II Chip.

The smaller register cell leads to a considerable reduction in chip size.
There is also performance improvement due to the shorter RC delay in the poly-
silicon control lines running across the data path. Further improvements were
made by allowing register writing to occur in parallel with the execution of the
following instruction. The result of an operation is kept in a temporary latch
and is only written into the register file during the subsequent arithmetic /
logic/ shift operation phase. If the result is needed immediately in the next
instruction, a register-file bypass transmits this value directly to the
ALU/shifter (“internal forwarding”). In effect, each instruction now stretches
over three (shorter) machine cycles: (I) Instruction fetch and decode; (II)
register read, operate, and temporary latching of result; (II) write result back
into the register file. In the RISC Il design, these three operations are over-
lapped so that a new instruction begins every machine cycle (except for LOAD
and STORE instructions) as in RISC L.
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Besides these changes in implementation, RISC II also incorporates an
important architectural change: It was made compatible with instruction caches
equipped with an *'Instruction-Format Expander’”. As was mentioned above, an
important part of RISC I's simplicity is due to the constant-length instruction-
format of 32 bits. However, this approach is rather wasteful of code space. Stu-
dies by Garrison and VanDyke showed that the introduction of one additional
instruction format of 16-bit length could lead to savings of 30 % in overall code
sizePattB22 These short instructions utilize some of the previously unused op-
codes, and their effects are each equivalent to the original 32-bit instructions.
The RISC 1I CPU offers to the computer-system designer the option of improving
code density for the price of an “Instruction-Format Expander;’ i.e. a circuit
placed in the instruction-fetch path that recognizes all short instructions and
translates {‘‘expands”) them into their 32-bit equivalent. Such an expander
may conveniently be placed in an instruction cache. An instruction cache with a
“Predictive-Program-Counter” scheme has just been designed at U.C. Berkeley,
and an expander will soon be added to itFatt82a

The RISC II CPU always receives 32-bit instructions, either directly from
memory, or through the expander. However, in the latter case the program-
counter must be incremented sometimes by 2 and sometimes by 4 in order to
follow the real memory addresses of subsequent instructions and to generate
correct PC-relative addresses. In the RISC II CPU there are two incrementers
for the PC, one that computes PC+2, and one that computes PC+4. At the
moment when a new instruction comes into the CPU, a bit that tells its original
length comes in along with it. This bit selects either PC+2 or PC+4 to be sent
out immediately, to start the next instruction-fetch right away.

8. THE DESIGN ENVIRONMENT

RISC 1 was designed with the use of a set of simple tools that performed
graphic editing, check-plotting, design rule checking, layout rule checking,
architectural simulation, and switch-level simulationfitz81 These tools work with
the CIF 2.0 geometry descriptionSPro80 of the chip. They all run in our UNIX
environment on a VAX 11/780 and are thus readily available to the designers.
This reduces the psychological overhead that often stands in the way of the
usage of such tools. While many of the individual tools are still rather rudimen-
tary, the collection of all of them together and their integration and ready avai-
lability add up to a good design environment. This environment was further
enhanced by other UNIX utilities that permit eflfective cooperation in multi-
designer teams. One such program was the Source Code Control System
(SCCS)MImB1 which keeps track of all incremental changes to a program or
specification file, and which prevents different people from editing the same file
simultaneously. In addition, the extensive use of electronic mail between the
designers helped to overcome difficulties from incompatible schedules and
different work habits. A special electronic bulletin board was also introduced for
the RISC project to keep everybody informed about the latest developments.

The regular parts of the chip, i.e. the datapath and the register file, were
generated directly at the geometry level from hand-sketched stick diagrams of
the iteratively used cells. For the creation of the layout geometry we used the
very eflective graphics editor Caesar, which was developed by John
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OusterhoutOust8! in very close interaction with the users of this tool. Both chips
were designed using only ‘‘Manhattan' features (all edges parallel toxor y axes)
and the simple and scalable A-based design ruleslyon81 This allowed us to sim-
plify several of the CAD tools used and thus to increase their efficiency. The lay-
out geometry was checked with the design rule checking program DRC produced
by C. Baker at M.L.T.BekeBOa, BakeBOb Since this program did not catch certain
types of errors, e.g. too little extension of the poly-silicon gate beyond the thin-
oxide channel, we counted on visual inspection to eliminate such errors.

For the control section, direct layout from the architectural description
proved inadequate, and a tool was created to tie the high-level architectural
description to the bit-level implementation on the chip. A multi-level descrip-
tion language and the corresponding simulator, SLANG, were developed by J.
Foderaro and later refined by K. Van DykefodeBl, VanD82 S/ANG allowed the
description of the whole chip at mixed levels. The random logic circuitry of the
control section was described at the logic gate level. The various PLA's and
decoders were described at the symbolic or boolean equation level. The data-
path itself was described at the register transfer level, treating 32-bit wide data
or address vectors as single entities. It was assumed that the corresponding
functional blocks, such as the adder and the shifter, were implemented
correctly and checked previously. The whole chip thus resulted in a SLANG
description with less than 300 nodes, -- a number that could readily be managed
by the designers. The SLANG description was debugged by running a dozen
small diagnostic programs through the SLANG simulator and comparing the
effect of each instruction with the ISP descriptionBell70 of the architecture.

After the chip layout was completed, a detailed circuit description was
obtained by running a circuit extraction program over the mask description in
CIF2.0 format. A new version of a circuit extraction program, MEXTRA, limited
to manhattan geometry and designed for high efficiency was created by D.
FitzpatrickFitz82 Through the use of a clever naming convention, this extraction
program already catches several types of wiring errors in the layout such as
shorts between global signals (clocks) and the power supply lines. Extraction of
the 44,500-transistor RISC I chip takes less than one CPU hour on the VAX
11/780.

This circuit description can then be used with circuit-level simulators to
verify proper operation at the lowest level. We used ESIM, a switch-level simula-
tor created by C. Terman at M.L.TBake80a, Term82 o test the functionality of the
whole chip. For that purpose SLANG and ESIM were coupled to run in lock-step
through the same diagnostic programs that had been used previously to verify
the SLANG description. SLANG compared its own results with the results of the
detailed switch-level simulation and reported any discrepancies. This coupled,
multi-level simulation found dozens of errors that would have prevented RISC I
from working.

Overall, RISC I provided a very useful forcing function for the improvement
of our design environment. Many tools, when first tried on the RISC I chip, broke
because of its size, or took much too long to digest this circuit with 44500
transistors. Often the designers of the RISC team themselves sat down and
improved or rewrote the tools they absolutely needed to get the job done. Since
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their emphasis was not on research into CAD tools per se, the tools may be less
sophisticated and less general than tools available else-where. However, the
most important aspect for our work on RISC I & II was the fact that the tools
were efficient, simple to use, readily available, and thus added up to a very
effective design environment.

With layout rules using a A of 2 um, the RISC I chip is about 8 by 10 mm.
The length of the chip is dominated by the data path and the register file. Only
78 instead of the desired 138 registers could be fit into the permissible length of
10 mm that was given by the size of the cavity of the selected package. These 78
registers were split into 6 windows of 14 registers each, overlapping by 4, plus 18
global registers.
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Figure 6. Photomicrograph of the RISC / Chip.

Control occupied only 8 % of the total chip area as compared to the more
than 50 % typical for present-day commercial microprocessorsFitz8l It fit nicely
into the upper right-hand corner left between the register file decoder and the
ALU section (see Fig. 8). While the actual instruction decoding PLA turned out to
be much smaller than expected, the wiring around this PLA got rather large and
very tight as the chip neared completion. About half the total layout effort was
associated with this small, tightly packed control section. It became evident
that an interactive routing and compaction tool, integrated with the graphics
layout editor, would be highly desirable for the design of the less regular sec-
tions of a chip.
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Overall the RISC I processor is very regular. If we use Lattin’s regularity
factorlatt8l defined as the total number of transistors on the chip divided by the
number of individually drawn devices, RISC I ends up with a regularity of 22,
which is 2 to 5 times higher than the value for other microprocessors.

More than a month was spent in functional simulation and debugging of the
layout after the chip was first *‘completed”. The chip was only submitted for
fabrication after functional simulations had been run flawlessly on all instruc-
tions and on several small benchmark programs.

All knowledge of the chip was kept on-line in program-understandable form
that superseded any written documentationfode82 Since the high-level SLANG
description was written before the layout was completed, we could write special
purpose programs to search this description to quickly find all the nodes that
should be connected to a particular signal. Using a notebook with logic
diagrams on paper as the official documentation would have been quite inade-
quate in our environment. The help of the computer was absolutely essential in
the presence of several designers making changes in parallel In this manner,
up-to-date documentation was kept electronically in a ‘‘centralized’ place, and
the computer could be used to compare and correlate the various representa-
tions of the emerging design.

7. IMPLEMENTATION

The layout of the RISC I chip began on January 6, 1981. Its layout and func-
tional simulation were completed on June 22, 1981, and the CIF description of
the chip was sent to the MOSIS Implementation Service at the Information Sci-
ences Institute associated with the University of Southern California®ehe82 The
description was also sent to A. Bell and L. Conway at Xerox Palo Alto Research
Center who had offered to include our chip on one of their own multi-project
chip fabrication runs.

The RISC Il design progressed at a much slower rate. It did not have the
deadlines associated with the RISC I class project, but was primarily the test
vehicle in the study of various trade-offs in VLSI single-chip architecture for two
PhD theses. Various crucial elements of RISC I obtained significantly more
attention, in particular the register file. Going to a two-bus design led to a much
smaller register cell which then permitted the full complement of 138 registers
to fit into the allowable chip length of 10 mm. It incorporated an additional
stage of pipelining and a more sophisticated timing scheme to permit the usage
of a register file with only two busses. The width of the data-path has also been
reduced and the height of this chip is less than 6 mm. Control takes about the
same absolute amount of space as in the first chip, but the layout was done in a
more structured and less cramped manner.

The fabrication of RISC 1 became a challenging test case for some of the
newly established implementation servicesFode82 A sequence of human errors,
bad luck, and administrative complications delayed successful implementation
of this chip by many months. Four separate restarts were required to obtain
working chips from the design submitted in June 1981. Wafers with good pro-
cessing finally arrived in Berkeley in May 1982 from two different manufactur-
ers. Both sets contained working chips.

14
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In November 1981, M. Arnold finished a new design rule checker, LYRAAno82
This more sophisticated, corner-based checking program found some non-fatal
overlap errors that had slipped through DRC and visual inspection. A corrected
geometry was included on a new multi-project mask set used in January 1982.
We obtained good wafers from this run in June 1982. Overall, significant pro-
gress was made during that year in the realization of an implementation service
that is separated from the design and layout activity.

8. DEBUGGING AND TESTING

Since both designs multiplex the address and data words through the same
32 1/0 pins, the actual processor does not use more than about 50 pins. The
first prototype runs are being mounted in square 84-pin packages. Many extra
pins have been devoted to debugging and testing. Important points of the chip
are wired up in a scan-in/scan-out mannerEich?8 to permit loading or examining
almost the complete machine state at will. To shorten the scan length through
all these flip-flops, five separate loops were used in the RISC I chip, with access
to them from the chip periphery.

While waiting for properly fabricated wafers to be returned to us, we built
up a debugging station for the chips. Most of the students working on the RISC I
project came from a computer science background and were thus more at home
with sophisticated software than with oscilloscope and logic-state analyzer. This
was taken into account when constructing our test set-up. The hardware con-
sists of a microprocessor box with an attached terminal and a special socket for
the chip to be tested. One RAM closely associated with the test socket forces
patterns onto the input pins of the chip under the control of a hardware clock
running at speeds up to 4 MHz. A second RAM receives the resulting bit patterns
at the output pins. The driving patterns are prepared in the UNIX environment
on the host computer (VAX 11/780) and are then down-loaded to the input RAM
through the interface box containing a Z8000 microprocessor. The result pat-
terns are uploaded from the output RAM through the microprocessor box to the
host where they can be manipulated and analyzed in the software environment
famniliar to most of the users of this special test facility.

The diagnostic programs previously used for the simulation of the RISC
design were used again to test the actual chips. This time SLANG was running in
parallel with the tester, comparing the results accumulated in the result RAM
with the patterns obtained from simulation.

The chip was equipped with scan-in/scan-out (SISO) hardware to allow
separate testing of each major block. There are 5 SISO loops in RISC I: one each
for the shifter, ALU input, ALU output, the program counters, and control. The
first set of chips had faulty processing, and no electrical measurements could be
made. The second set had a severe yield problem due to too narrow gaps
between the poly-silicon features, but a few working SISO loops were found.
However, the 80-bit long SISO loop through the control section never worked
completely. lts operation is required for complete control of the other SISO
loops. In hindsight it is clear that completely separate control pins for all five
SISO loops would have been a much more prudent approach.
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In the third batch of wafers no chip had all SISO loops operational, but two
chips showed '‘signs of live'” when tried with small test programs. Further test-
ing showed that in spite of yield flaws, these chips performed most low-level
functions as intended. A few bits of the data were stuck to O or 1, yet these
chips could execute many of the instructions. Once it was known that the design
was largely correct, the SISO loops were ignored and diagnostic programs were
run on the chip. Even when entire wafers needed to be screened to determine
which chips to mount (with the tester interfaced to the wafer prober), Foderaro
and VanDyke relied on diagnostics programs rather than on tests involving the
SISO loopsiiode82

Later Van Dyke designed and built a demonstration board for RISC I. It
included the necessary systems elements around the CPU to make a complete
computer, e.g. 1/0, memory and memory management. A chip with some of the
upper bits in the datapath stuck high successfully ran the first RISC ] program
on June 11, 1982, reading characters from a terminal, changing them according
to a simple key, and writing them back out.

At this point we created new and more sophisticated diagnostic programs, —
and we uncovered our first design error, associated with the optional setting of
condition codes on the load and shift instructions. Fortunately, by making a
suitable change in the RISC I assembler, we could “eliminate’ this error. From
the fourth batch of wafers we have tested about 40 chips and found four chips
without functional flaws. This is quite a satisfactory yield for a 10.2 by 7.75 mm
(408 x 305 mil) chip.

The fastest of these chips runs all diagnostics at a 1.5 MHz clock rate at
room témperature. corresponding to 2 usec per RISC I instruction. This is
rather disappointing since we had expected this latter figure to be near 400 ns.
Obvious critical paths (bus discharge, ALU carry chain, etc) were analyzed with
SPICE and our circuits refined to meet that goal. However, there was no guaran-
tee that we had looked at all possible critical paths. Indeed, some of our diag-
nostics can be run at a faster clock, indicating that many RISC I instructions are
faster than 2 usec, and that the problem may be very localized. Debugging of
these performance limitations is currently under way.

It becomes clear from this experience that a most urgently needed tool for
our design environment is a timing verifier. There are higher-level timing simu-
lators running at Berkeley, but they were not closely enough integrated into the
design environment readily familiar to the designers of RISC I. We need a pro-
gram that can take a whole chip description in the same format as used for the
functional or switch-level simulation and point out for all clock changes the
speed-limiting path.

Another insight gained was that SISO loops are only useful in debugging the
chip if the proper tests are prepared at design time. Had we written diagnostic
patterns involving the SISO loops, we would also have noticed how cumbersome
their usage is without separate control for each loop and might have changed
the design. The scan loops are still expected to be worth-while in production
testing to reduce the number of necessary tests.
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9. EVALUATION OF THE RISCI ARCHITECTURE

To evaluate the RISC concept and the specific architecture chosen, we com-
pared it to other computers, using a dozen C programs. The C compilers used
were very similar; the VAX and RISC compilers are both based on the UNIX Port-
able C Compilerjohn? and the one for the PDP-11 is based on the Ritchie C
compilerRite?5

Our most detailed studies were done on puzzle and gsort. Puzzle,
developed by Forest Baskett is a recursive bin-packing program that solves a
three-dimensional puzzle. It displays many features of typical programs, except
that it has relatively few procedure calls. Nevertheless, the nesting depth of the
procedures reaches 20. There is a relatively large number of loops. &sort is a
recursive quicksort program. In our test runs, this program sorts 2600 fixed
length character strings. The somewhat unusual feature of this program is that
it has a relatively high incidence of memory references. The execution of this
program results in 1713 multiplies and 1712 divides which are subroutines in
RISC L.

In a comparison of the static number of instructions and static size of pro-
grams we found that on the average RISC uses only two thirds more instructions
than the VAX and about two fifths more than the PDP-11, in spite of the fact that
RISC 1 has only very simple instructions and addressing modes. The most
surprising result was that the RISC programs were only about 50% larger than
the programs for the other machines even though code density optimization was
virtually ignored.

Our main goal for RISC I was to obtain good performance for high-level pro-
grams. The main performance comparison was based on the execution times of
these and other programs on various computers. While we could directly meas-
ure execution times on other machines, for RISC I we originally had to rely on
simulation. For these simulations the instruction set of Table 2 was used and a
machine cycle of 400 nanoseconds was assumed. This estimate is based on
extensive circuit simulation of the critical sections in our data path, which yield
about 100 nsec to read one of 138 registers, 200 nsec to perform a 32-bit addi-
tion, and 100 nsec to store the result back into the register file. Even though
the first layout of RISC I did not achieve this perforrmance because of some
rather long signal paths that were originally overlooked, the above numbers for
the cycle time must be considered quite conservative and can easily be met in a
carefully debugged design.

Table 4 shows the code size and execution time of six C programs on three
different computers. The VAX 11/780 is a 32-bit Schottky-TTL minicomputer
with a 200 ns microcycle time; and the Z8002 is a 16-bit NMOS microprocessor
with a microcycle time of 250 ns. In comparison with the 28002, which is using
only 16-bit addresses and data, RISC I programs are typically 10% larger but run
about four times faster. The byte-variable length of the VAX instructions
reduces program size by about a third; but, much to our surprise, for every C
program that we have run, the RISC I simulation has outperformed the VAX
11/780.

We can identify several contributing factors to this surprisingly high perfor-
mance of RISC I. A strong contribution is due to the overlapped banks of
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Table 4.
RISC I Program Sizes and Ezecution Times
Relative toa VAX 11/780 and a Z8000
Program Size (bytes) Ezecution Time (secs)
Neme RISC VAX RISC 78000 RISC RISC VAX RISC 78000 RISC

rel rel rel rel
acker 208 120 1.73 238 0.87 3.2 5.1 .83 8.8 .38
gsort 844 438 1.48 648 0.98 0.8 1.8 .44 4.7 .17
puzzle(sub) 2468 1868 1.48 1612 1.53 47 95 .49 19.2 .24
puzzle(ptr) 2480 1700 1.46 1856 150 | 3.2 40 .80 75 .43
sed 17388 14338 1.21 17500 0.89 5.1 57 .89 22.2 23
towers 132 100 132 242 0.55 6.8 122 .58 28.7 24
Average 3883 3080 1.5%2 3849 1.1 £3| 4.0 64 .B8x2 152 3 =1

registersPatt8l, PattB2¢ As indicated by the two benchmark programs used in
Table 5, the overlapped register banks have been effective in reducing the cost
of using procedures. The puzzle and quicksort programs discussed above span
quite a range in their percentage of procedure calls. While puzzle makes heavy
use of FOR-loops, quicksort is a very recursive program. Table 5 shows the max-
imum depth of recursion, the number of register window overflows and
underflows, and the total number of words transferred between memory and the
RISC I CPU as a result of the overflows and underflows. It also shows the memory
traffic due to saving and restoring registers in the VAX. For this simulation we
assumed that the processor has the desired set of eight register windows and
that half of the registers are saved on an overflow and half are restored on an
underflow. We find that for RISC on the average only 0.37 words are transferred
to memory per procedure invocation in the puzzle program, while this number is
0.07 for quicksort. On the VAX these numbers are 20.7 words and 12.6 words,
respectively. In other terms, note that half of the data memory references in
gsort are the result of the call/return overhead of the VAX.

The multiple register banks in RISC I have allowed the allocation of local
variables in registers. The static frequencies of RISC | instructions for nine typi-
cal C programs show that less than 20% of the instructions are loads and stores
while more than 50% of the instructions are register-to-register. In traditional
machines, generally 30 to 50% of the instructions access data memory, and less
than 20% of the instructions are of the register-to-register typeAlex?5 This indi-
cates that RISC I requires a lower number of the slower off-chip memory
accesses. It also indicates that complex addressing modes are not necessary to
obtain an eflective machinePatt® The reduced number of off-chip memory
accesses, is also responsible for the improved performance of RISC.
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Table 5.
Memory Traffic Due to Call /Return
Calls + Maximum RISCI Data Memory Traflic
Returns Nesting overflows+ RISC1 VAX
% instrs Depth underflows # words # words
puzzie(ptr) 43k 20 124 8k 444k
0.77% 0.8% 28.0%
. 111k 10 684 4k 696k
quksort B.0% 1.07 50.07%

Another reason why RISC is outperforming the VAX is that the existing C
compilers for the VAX are not able to exploit the existing architecture
effectively. It appears that the complexity of the hardware of most modern
computers has outpaced the abilities of present-day compilers. The RISC I
architecture, on the other hand, is so simple that even a straightforward com-
piler is effective. Comparisons of hand-optimized assembler-level programs with
the corresponding HLL ones show indeed that on the VAX a lot can be gained by
going to assembler code, whereas for RISC the corresponding gain is quite small.

RISC I does not support floating point instructions. Since not every applica-
tion needs them, it appears an unnecessary burden for a single-chip general-
purpose CPU to provide these instructions. The proper approach seems to be
the one now followed by many manufacturers of microprocessors: to add co-
processors for all such special functions.

10. RELATED MACHINES AND CONCEPTS

There are a few machines which share features of RISC I's overlapped regis-
ter window scheme. The BBN C/70, a recent machine, allocates a new set of
registers on every procedure call, but it does not overlap register sets. A popu-
lar architecture that is close to the RISC concept is represented by the Texas
Instruments 990-9900 family. These machines allocate their general registers in
memory, with a single register pointing to this work space. Adding the contents
of one register to another results in three memory accesses. The latest genera-
tion of this family, the TI 99000, includes on-chip main memory, but the first
models appear to still have slow register access. Orla8l The machine that came
closest to having overlapped register windows is the Bell Labs MAC-8. The state
of the NMOS technology in 1975 precluded having a rich instruction set and a
register file on the same chip; the MAC-8 architects chose the rich instruction
set. The main difference between the MAC-8 and TI 990 is that the Bell archi-
tects realized that overlapping the registers could improve the performance of
the procedure call and provided instructions to specifically overlap the register
windows in memory. It is our understanding that some C compilers used this
feature. This machine was never implemented with on-chip registers, and the
logical successor to this machine, the BELLMAC-32, has abandoned this
approach.
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Most modern machines support procedure calls by having instructions that
manage a portion of main memory as a stack on which parameters are passed
and locals are allocated. Thus, as an alternative we have considered a memory-
to-memory architecture enhanced with a sizable cache. However, a cache is not
only harder to implement, but also slower.

First, with a cache a full address calculation (stack pointer plus offset) is
required for every register access. The virtual address translation and decoding
would also be slower than a direct register access. Further, a cache is
ineffective if it is too small. An effective data cache would require a much larger
area than the RISC I register file, especially if it must provide multiple ports to
each location. A bigger memory structure will also have longer and slower
address lines and data busses. Finally, the more complicated cache control
would have extended the design phase of RISC L.

11. CONCLUSIONS

From our experience with two designs and the simulation of several small
programs, we are convinced that Reduced Instruction Set Computers show a
promising way of processor design in general and a very good match to VLSI
implementation. We have taken out most of the complexity of modern comput-
ers with only a moderate loss in code density and even a gain in performance.
These simplifications have not reduced the functionality of RISC I & II; the
chosen subset of instructions is sufficient to compile high-level language pro-
grams into code that will execute them correctly and efficiently.

While RISC I has substantially reduced the number of data accesses in all
programs, the number of instruction accesses has increased. This is due in part
to the number of NOP's introduced, and in part due to the inefficient, fixed-size
encoding of the instructions. It is clear that successors to RISC I will have to
address the issue of code density.

The overlapped register banks make a significant contribution towards the
performance of RISC I & II. They effectively provide the function of a cache to
alleviate the impact of the speed mismatch of the internal on-chip circuitry in
the processor and the cycle times of external memory parts. For the same rea-
son, the RISC I architecture also requires an instruction cache to work with full
efficiency.

The dramatically reduced size of the control section of RISC 1 increases
overall regularity of the chip and thus reduces the amount of time spent on lay-
out. RISC's will thus have a significantly shorter development cycle and are
more likely to emerge without design flaws.
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