

PS2 Programming Optimisations

George Bain SCEE Technology Group

Topics Covered

- Performance Analyser
- DMA Transfers
- Vector Units
- Graphics Synthesizer
- EE Core: CPU
- File loading

Performance Analyser

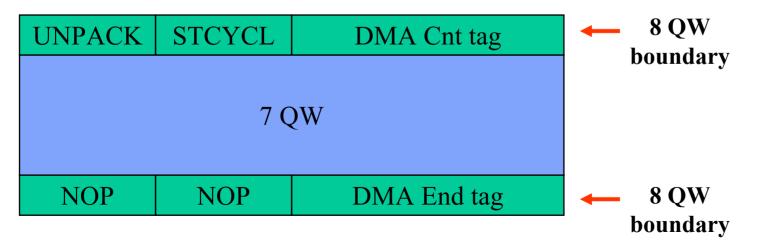
- Capture snapshot of

 EE (Core, Bus, Vu0, and Vu1)
 GIF and GS
- 7 frames of bus activity
- Identify bottlenecks!
- Also used as a Dev Kit

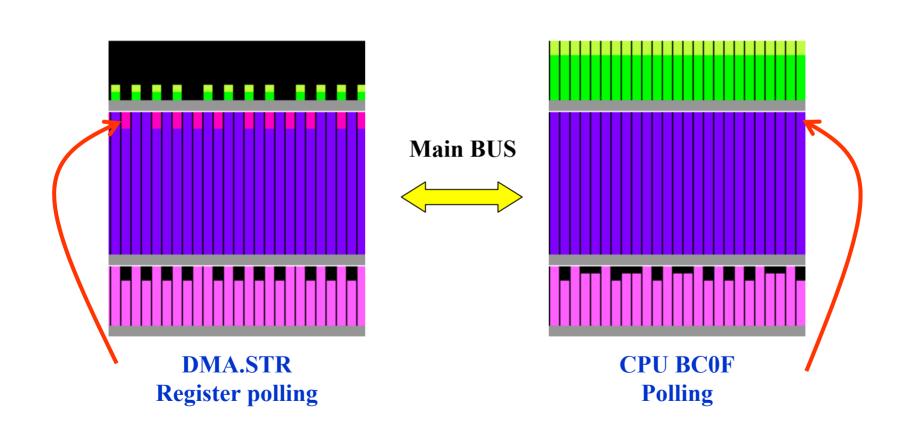
AGDC 2002

PS2 Memory

	8K Data	201 (D
CPU	16K Instruction	32MB RDRAM
	16K Scratchpad	


Graphics Synthesizer	8K Frame	4MB Embedded
	8K Texture	4WID EIIIDedded

Vector Unit 0	4K Data	
	4K Instruction	
Vector Unit 1	16K Data	N/A
	16K Instruction	


©2002 Sony Computer Entertainment Europe

DMA Bus Bandwidth

- EE RDRAM to Device = 2.4 GB/Sec
- DMAC Transfers in 8QW slices
- Align DMA Reference data on 8QW Boundary
 - Increase DMA transfer speed 30-40%
- Limit DMA tags
- Tag alignment

Checking DMA completion



George Bain - PS2 Programming Optimisations

©2002 Sony Computer Entertainment Europe AGDC 2002

Cycle Stealing

- Cycle Stealing ON or OFF?
 - release is time between two DMA slices
 - allow more time for CPU to access the main bus
 - slows down overall DMA transfer


AGDC 2002

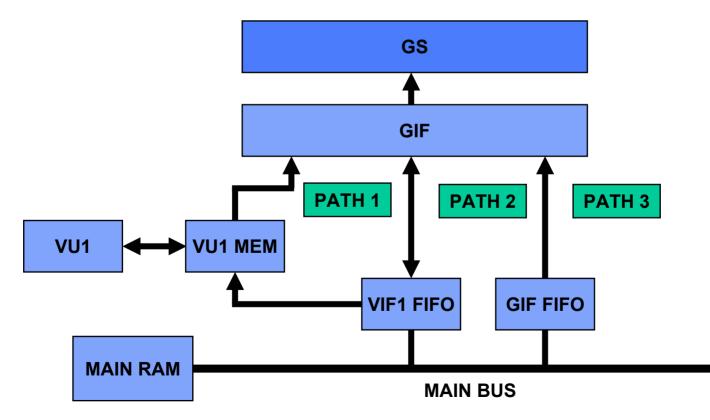
Memory FIFO

- What are the advantages?
 - MFIFO can buffer DMA packets if stall occurs on Drain DMA channel
 - When VU1 or GS becomes the bottleneck
 - Avoid Data Cache and perform memory writes to 16K scratchpad memory
 - Scratchpad DMA provides maximum DMA transfer speed to Memory FIFO

GS FIFO

- What can cause the GS FIFO to become full?
 - Large primitives such as a full screen sprite
 - Multiple texture passes

AGDC 2002

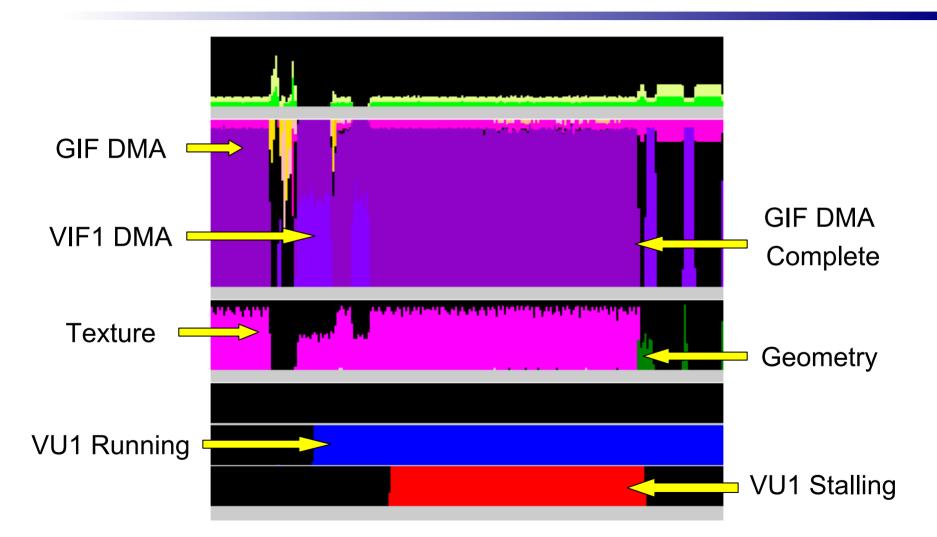

Draining MFIFO with VIF1

- What can cause the MFIFO to become full?
 - 1. If GS FIFO is full, GIF doesn't request any data
 - 2. XGKICK instruction will stall VU1
 - 3. VIF1 stalls on sync related instructions such as MSCNT and FLUSHA

$$\mathsf{SPR} \longrightarrow \mathsf{MFIFO} \longrightarrow \mathsf{VIF1} \longrightarrow \mathsf{VU1} \longrightarrow \mathsf{GIF} \longrightarrow \mathsf{GS}$$

Geometry and Texture Syncing

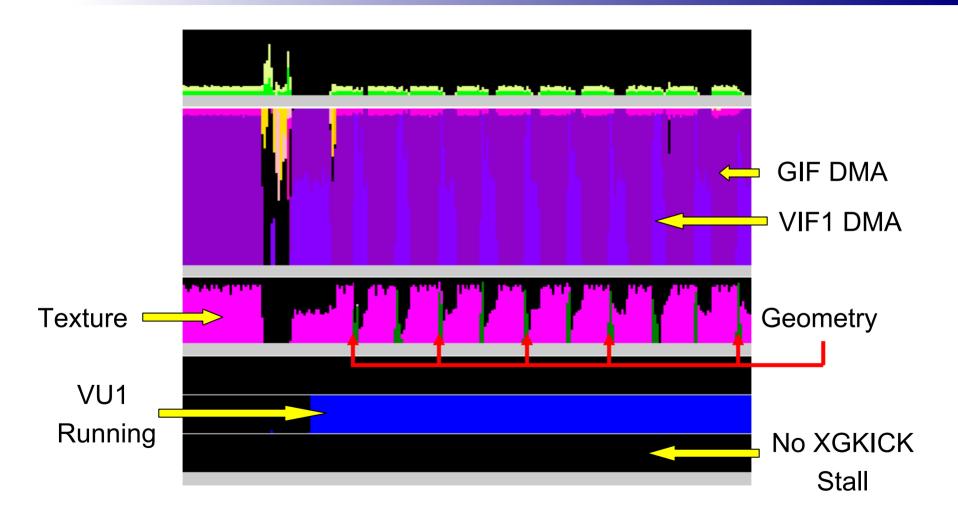
- 1.2 GB/Sec Bandwidth to GS
- PATH1 for Geometry and PATH3 for Textures


Texture Transfer Paths

- PATH2
 - Advantages
 - Easy to transfer textures and set other GS registers
 - No geometry and texture data sync problems
 - Disadvantages
 - PATH1 will stall if PATH2 is still in progress
- PATH3
 - Advantages
 - Parallel DMA transfers through VIF1 and GIF channels
 - GIF can operate in 2 different modes when using IMAGE mode
 - Avoids PATH1 stalls when operating GIF in IMT mode
 - Disadvantages
 - Sometimes difficult to synchronize geometry and texture data

GIF in Intermittent Mode

- What are the benefits?
 - Allows texture transfers via the GIF while VIF1 and VU1 continue to process data
- What are some things I should consider?
 - IMT Mode is good when loading large texture blocks
 - If GIF is constantly being occupied by PATH1 then texture transfer via PATH3 is reduced
 - Can't draw and transfer textures at same time!
 - Batch textures together to limit overhead!


GIF IMT Mode OFF

George Bain - PS2 Programming Optimisations

©2002 Sony Computer Entertainment Europe AGDC 2002

GIF IMT Mode ON

George Bain - PS2 Programming Optimisations

©2002 Sony Computer Entertainment Europe AGDC 2002

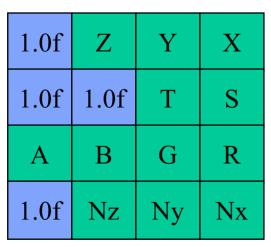
Packing Texture Data

- Pack 4-Bit and 8-Bit texture data
 - 32-Bit textures provide maximum transfer speed
 - 4/8-Bit textures must be converted by the GS
- Consider the transfer speed and block layouts
 - 16 and 32-Bit pixel modes have very similar speeds

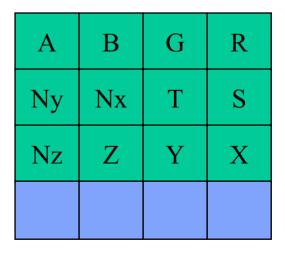
Format	Size W	Size H	PATH2 MB/S	PATH3 MB/S
32-Bit	256	256	1090	1070
16-Bit	256	256	1075	1050
8-Bit	256	256	800	785
4-Bit	256	256	385	380

VCL Tool

- Application that simplifies Vu1 Programming
- Available for Linux and Windows
- Generates VSM source code
- Handles many tasks
 - Dual Pipeline processing
 - Loop unrolling
 - Register allocation
 - Instruction scheduling


Vu0 Usage

- Transferring Data to Vu0
 - Cop2 connection you can transfer 1QW in 2Cycles
 - DMA transfer you can transfer 1QW in 4Cycles
- Processing Data with Vu0
 - Vu0 running Micro code
 - Triple Buffer Scratchpad memory
 - Transfer data to Block A
 - Process Block A and Transfer Block B
 - Drain Block A, Process B, Transfer C


Geometry Data Transfer

Reduce memory consumption and bandwidth
 – Remember Vector Unit register VF00.w = 1.0

4QW Per Vertex

3QW Per Vertex

Compress Geometry Data

- use the VIF to convert integer to float
- use the VU to convert integer to float

Compress 4 QW to 1.25 QW

Vector	Unpack Mode	VU Instruction
X,Y,Z	16 Bit	ITOF0
S,T	16 Bit	ITOF12
RGBA	8 Bit	ITOF0
Nx,Ny,Nz	16 Bit	ITOF15


GS Frame Buffers

- Total of 4 MB of Embedded DRAM
- Draw, Display, Z and Texture Buffers
- What are some recommended buffer sizes?
 PAL (512 x 512), NTSC (512 x 448)
 Progressive scan support with full height buffers
- 2-Circuits of the GS to reduce interlace flicker
 alpha blend odd/even fields at no cost

GS Capabilities

- Bandwidth
 - Massive total of 48 GB/Sec
 - Frame Buffer 38.4 GB/Sec
 - Texture Buffer 9.6 GB/Sec
- Drawing Speed
 - 16 Pixel for non-textured (2.4 Gpixels/Sec)
 - 75M Flat shaded Triangles/Sec
 - 8 Pixel for textured (1.2 Gpixels/Sec)
 - 37.5M Textured and Gouraud shaded Triangles/Sec

GS Pipeline

George Bain - PS2 Programming Optimisations

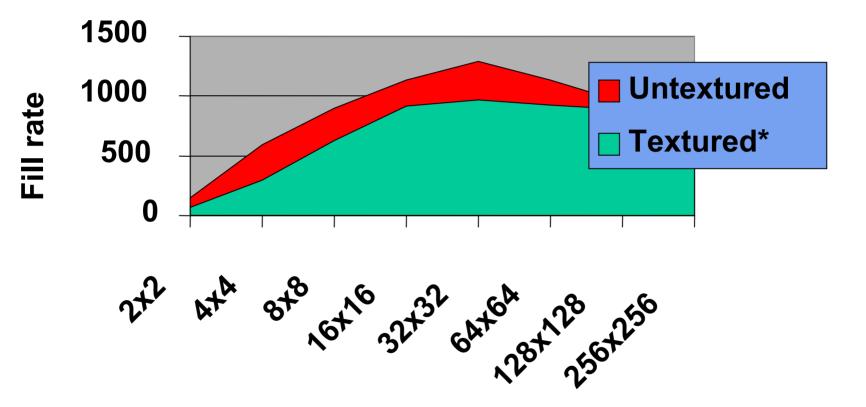
©2002 Sony Computer Entertainment Europe AGDC 2002

GS Frame/Z Cache

- Quick Page refills!
 - 8192bits per cycle
 - 8K page buffer refilled in 8 GS cycles

4K	4K
Frame	Z
32x32	32x32

Reducing Frame Page Misses


- Fill rate is roughly constant if varying height
- Wide Primitives will cause page misses

 Use 32 Pixel wide strips to reduce page misses
- Rarely drop below 1Gpixel/Sec if miss occurs
- Primitives using textures greater than a page size are usually more of a problem
- 8Bit texture page is 128x64

Texture Fill Rates

- Texture Page misses have biggest effect
 - Subdivide large texture co-ordinate ranges
 - Keep mip-maps in the same page
- Texture reduction reduces the fill rate
 - 32 pixel wide strips won't increase performance
 - Texel read becomes bottleneck
- Texture expansion doesn't affect fill rate

Fill Rate VS Triangle Size

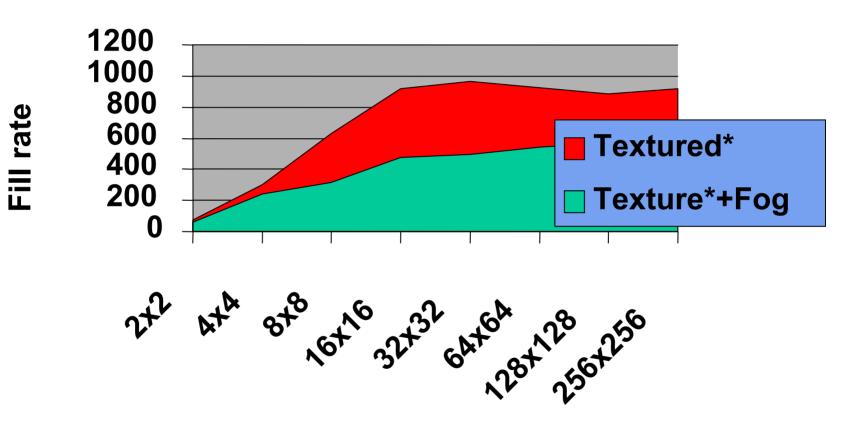
*Texture is on cache without reducing size

George Bain - PS2 Programming Optimisations

©2002 Sony Computer Entertainment Europe

27

AGDC 2002


Level Of Detail

- Make better use of LOD!
 - 5000 polygon model may result in just 50 visible pixels once projected onto the screen
 - there's also no point having detailed textures that are going to be shrunk so much
- Mip Mapping
 - Improve visual quality
 - Mip maps in different pages can cause multiple texture cache reloads

Multi-Pass Rendering

- GS Alpha Blend operation is free!
- Maximum textured fill rate is 1.2G Pixels/Sec
 Limit number of passes (4 passes = 300M P/S)
- Fur rendering
 - Reduce passes when object in distance
- Bump-mapping is possible
 - Technique requires full screen passes
- Back face cull to reduce GS stalls

GS Fogging

*Texture is on cache without reducing size

George Bain - PS2 Programming Optimisations

©2002 Sony Computer Entertainment Europe AGDC 2002

Alternative Fogging

- Technique 1
 - 1st pass draw a textured polygon
 - 2nd pass alpha blend gouraud shaded polygon
- Technique 2
 - Post-process and perspective correct fogging
 - Move bits 8-15 of Z-Buffer into Alpha of Draw Buffer
 - Alpha blend full screen gouraud shaded polygon onto Draw Buffer

CPU Optimisations

- Emotion Engine Core
 - FPU (Coprocessor 1)
 - Vu0 (Coprocessor 2)
 - 16K Instruction Cache
 - 8K Data Cache
 - 16K Scratch-Pad Memory
- Instruction Set
 - 64Bit MIPS III and some MIPS IV
 - 128Bit Multi-Media

Multi-Media Instructions

- 128-Bit Multi-Media Instructions
- Parallel Processing
 - 64 bits x2, 32 bits x4, 16 bits x8, 8 bits x16
- Image format conversions
- Sound decompressing
- Pack DMA packets
 - Convert PACKED mode to REGLIST mode
 - Smaller data, faster DMA transfers!

Use of Data Cache

- Data Suitable for the Data Cache
 - Data that is frequently read or written repeatedly
 - Data with a high degree of locality
- Don't use Data Cache for
 - Data that gets used only once
 - Big chunks of data larger than 8K

Reduce Cache Misses

- Prefetch instruction to load data beforehand
- Reduce the size of your code for I\$
- Use Uncached memory for data r/w only once
- Performance Counter Lib to measure misses

Scratchpad Memory

- 16K of high-speed memory (access directly)
- 2 dedicated DMA Channels (toSPR/fromSPR)
- SPR DMA provides best throughput
 - 100% Occupy and 85% Send
- Data Suitable for the SPR
 - Frequently used data where speed is a priority
 - Big chunks of data can be Double Buffered on SPR memory

CD/DVD Optimisations

- Align destination buffer on 64 Bytes
 - Increase performance by 25%!
- Combine files into a PAK file to reduce files
- Avoid seeking when you could be reading
- Load the most data you can per read
 - Combine IOP modules and load into EE

Summary

- PA will push developers to the limit!
- Parallel Texture and Geometry Transfer
- DMA is flexible and very powerful!
- Take into consideration GS page sizes
- Vector Unit 0 and Scratchpad memory
- Check assembler output of generated code

Further Information

- Contact Information
 - SCEE Booth Exhibition Stand #9