
Implementation and Evaluation of a Background Music
Reactive Game

Khalid Aallouche
Tampere University of Technology

khalid.aallouche@insa-lyon.fr

Juha Arrasvuori

Nokia Research Center
P.O. Box 1000

FIN-33721 Tampere, Finland

+358 (0)50 486 7978

juha.arrasvuori@nokia.com

Homam Albeiriss
Tampere University of Technology

homam.albeiriss@gmail.com

Antti Eronen

Nokia Research Center
P.O. Box 1000

FIN-33721 Tampere, Finland

+358 (0)50 482 1942

antti.eronen@nokia.com

Redouane Zarghoune
Tampere University of Technology

redouane.z@gmail.com

Jukka Holm

Nokia Research Center
P.O. Box 1000

FIN-33721 Tampere, Finland

+358 (0)50 596 9177

jukka.a.holm@nokia.com

ABSTRACT
This paper discusses further work on the authors’ “background

music reactive games” concept, where background music is

used to modify video game parameters and thus actions on the

screen. Each song selected by the player makes the game look

different and behave variedly. The concept is explored by

modifying an open-source game called Briquolo, which is

based on the well-known arcade game Breakout. Several audio

signal features such as magnitude, energy, centroid, and

spectral flux are calculated from the background music MP3

file and mapped to relevant game parameters. In order to verify

how well the features work in practice, a user study with 20

participants was arranged. The results suggest strongly that

people appreciate the concept of background music reactive

games. The selected analysis algorithms and mapping worked

nicely, and 90% of participants felt that the music truly affected

the game. In addition, 90% of participants also felt that the

modified version was more entertaining than the original.

Keywords

Games, music, background music reactive games, musically

controlled games, MP3, music signal analysis, Breakout,

Briquolo, AudioAsteroids.

1. INTRODUCTION
Music contributes to creating an immersive atmosphere for

gaming, and can effectively emphasize the actions on the

screen. It is common in contemporary video games that the

background music is adaptive, meaning that it changes

according to game events and between different parts of the

game. However, the development of an adaptive music

soundtrack takes a lot of effort. Due to this, many games simply

loop the same relatively short musical material over and over.

Repetition has its cost in the overall experience of the game:

The gamer may become bored with the non-adaptive

soundtrack and turn it off after a while. The study conducted by

Cassidy et al. [13] suggests that the best player experience

emerges when a player can choose a game’s background music

to something that he or she prefers. However, the scope of that

study was limited to driving games.

Since the 1990’s, in parallel with the introduction of

multimedia computers and powerful video game consoles, we

have seen the emergence of musically oriented games. As

Blaine points out in [15], the majority of these are so called

“rhythm games” that prompt a single player or a group of

players to perform rhythmic actions in time with a

predetermined musical sequence. This game genre has also led

to the development of new low-cost musical interfaces such as

drum and guitar controllers that make the games more

enjoyable to play. The “Guitar Hero” [6] series has been a

recent success in this game and accessory genre. Many rhythm

games suffer from the same problem as non-adaptive game

soundtracks: As the number of music files is limited, the games

may have quite short lifecycles. To improve the situation (and

sell sequels and extension packs), some developers have started

offering game upgrades such as catalogues of popular songs.

This paper describes an alternative way to use music in video

games. Instead of relying on adaptive background music that

reacts to the game events, the authors propose the concept of

games that react to their background music. Throughout this

paper, these games are referred to as “background music

reactive games.” In [11] and [14], the authors have also used

the term “musically controlled games.”

The contents of this paper are as follows: Chapter 2 discusses

some relevant related work and Chapter 3 presents an overview

of the basic concept. Chapter 4 discusses in detail the

implementation of a background music reactive Briquolo game,

various sound analysis and processing related issues, as well as

mapping music to game parameters. Results of the arranged

user study are iterated in Chapter 5. Finally, Chapter 6 draws

some conclusions and Chapter 7 suggests directions for future

work.

2. RELATED WORK
Background music reactive games are such a new phenomenon,

that so far only a handful of such games have been

implemented.

One of the pioneering game titles of this type was the

PlayStation game “Vib-Ribbon” (NanaOn-Sha 1999) [8]. It is

best described as an obstacle track game, in which the

background music (any song chosen by the gamer) affects in

some way the appearance of obstacles, the points in time when

these obstacles appear, and the spawning of certain additional

objects. Player’s character seems to walk along the stylized

waveform. One issue with Vib-Ribbon is that the

correspondences between characteristics of music and obstacle

track are not that obvious for casual players. The obstacle track

just appears a bit different with different pieces of music.

“Dance Factory” [7] (Codemasters 2006) for PlayStation 2 is a

dancing game that is intended to be played with a dance mat

controller. The game can be played with any piece of music

provided by the gamer, as the game allegedly can match the

dance steps to the beat of the music. Dance Factory has

received criticism because it does not always synchronize the

dance steps precisely enough to the beat.

Kuju’s music-puzzle game “Traxion” is a background music

reactive game that was planned for PlayStation Portable. The

idea of the game was that players could use their own MP3 files

as the basis for more than 20 minigames. Unfortunately, the

development was ceased in the beginning of 2007. [16]

In [11], [12], and [14], the authors have described their

previous experiments with a background music reactive game

called “AudioAsteroids.” In the game, the player controls with

the keyboard a spaceship that must avoid colliding with

asteroids and other objects flying around. The player must

attempt to shoot dangerous objects such as asteroids and enemy

ships, and collect some bonus objects in order to get more

points, lives, etc. Two versions of the game were implemented:

the first one was based on MIDI music and the second one on

Wave files. The players were able to define the connections

between musical control parameters and game events by

themselves. A generic mapping, which was as illustrative as

possible for several types of background music, was also

provided with the game.

In the case of MIDI, the music analysis was done in real-time.

The authors learned that the most important and easily

noticeable mapping was connecting song’s tempo to modify

game speed. Another very perceivable connection was mapping

a certain drum being played to generate a specific game object.

In the case of digital audio, the files were analyzed beforehand

and the results stored to a file that was then used as an input to

the game engine. The tempo of used Wave files was calculated

using a simple beat-tracking algorithm. It was mapped to

game’s speed and seemed to work almost as nicely as in the

case of MIDI files. Other low-level signal features (see Section

4.1) such as energies at various frequency bands, energy

changes, spectral centroid, and so forth were used to spawn

different objects to the screen. Most modern music is

compressed really hard so it was difficult to find useful

differences between musical styles. The goal with this

experiment was to find such mapping that e.g. heavy metal

would be more difficult to play than 70’s disco, and this was

achieved to some degree. However, it was concluded that a

general problem when implementing background music reactive

games using sampled audio input is that high-level musical

features cannot be analyzed robustly using current methods.

Compared to MIDI files, one must use rather low-level signal

features that describe the characteristics of the signal rather than

musically meaningful attributes. A challenge therefore is to find

suitable mappings and post-processing steps for the low-level

features in order to create meaningful changes in the game. In

this paper, the authors present an example where the use of

low-level features and suitable post-processing steps creates

exciting variations to the Briquolo game.

3. OVERVIEW OF BACKGROUND

MUSIC REACTIVE GAMES
As the name implies, “background music reactive game” refers

to games that somehow react to their background music.

Starting this kind of game, see Figure 1, differs somewhat from

traditional video games. In the beginning, the player must first

select a music file or collection of files to be used in the game.

The selected music is analyzed for relevant musical or audio

signal features either in real time, in larger buffers, or the whole

song can be processed before the game starts. The resulting

control data is then sent to the game engine in a suitable format,

and mapped to selected game parameters. Depending on the

implementation, the mapping can be either a fixed set of

connections delivered with the game, or a new set specified by

the player. When a mapping has been defined, the player can

start the game and try to play through as many music files as

possible. Depending on the game type and implementation,

each music file may be considered as one unique game level.

When music is analyzed to produce control data for the game,

novel game ideas can be found. Even a very trivial game can be

made interesting if the player can affect the difficulty level by

changing the background music to his or her favorite tune. As

shown in this paper, musical control can also bring new life to

existing game implementations. The concept offers also many

imaginative possibilities for the game designers. Numerous

actions that would usually be controlled by a random generator

or artificial intelligence (AI) can now depend on the selected

background music, meaning that the actions do not appear

random but seem to happen in synchrony with the music.

Figure 1. Starting a background music reactive game.

Examples of background music reactive game elements and

characteristics include e.g.

• Speed and difficulty level of the game;

• Location of game objects (enemies, ammo, guns,

bonus objects, obstacles, balls, bats, etc.);

• Number, size, type, color, and shape of objects;

• Timing and frequency of appearance of new objects;

• Movement (e.g. speed, direction, rhythm, starting

point, trajectory) of objects;

• Properties of avatars (e.g. skills and endurance);

• Properties of gameworld (e.g. location of game

objects, time of day); and

• Camera angle to gameworld.

The set of suitable musical and audio signal features depends

largely on the used sound format (MIDI, digital audio, or

compressed digital audio), gaming platform, game type and

design, available processing power, memory, and so on.

Interesting alternatives include at least e.g.

• Tempo;

• Signal magnitude and energy;

• Occurrence of certain instruments and pitches;

• Intervals and harmonies;

• Spectral content (perceived as e.g. brightness); and

• Polyphony.

For the purposes of background music reactive games, these

features and the control data calculated based on them can be

divided into three principal groups: “Event” (musical or signal

features that occur occasionally and last for a brief time),

“state” (features that stay more or less the same for a longer

time), and “transition” (significant changes from one value to

another). These groups are discussed in more detail in earlier

papers ([11], [12], and [14]) by the authors.

3.1 Mapping
Mappings between musical control data and game parameters

are most effective when players immediately understand the

relationship between what they hear and what they see. If a

player knows a certain piece of music well and understands the

mapping used in the game, he can anticipate some of the actions

that will occur in the game. Thus, the game can be enjoyed in a

novel way.

In order to support a large number of players having different

musical tastes, the mapping should not be tailored to a single

musical genre. There are undoubtedly interesting differences

between musical styles, but in most cases the game designer

should aim at a generic mapping that works nicely with any

genre. It is beneficial if distinct musical genres produce distinct

game experiences, but this should not be done at the cost of the

overall playing experience.

While most musical parameters affect how the music sounds

like, some of them may not be easily observable. Parameters

that are heard by most players should usually be connected to

major foreground events in the game, while the less obvious

ones can be used to modify less important things like

background graphics and so on.

4. IMPLEMENTATION
The implemented background music reactive game is based on

an open source game called “Briquolo” [1], which is an

enhanced, 3D version of the well-known arcade game

“Breakout” [9]. Briquolo works on both Windows and Linux

platforms, and is written using C++ programming language.

The game was selected because it is simple and intuitive, has

been released under the GNU/GPL license [4], and includes

several parameters that can be made to react to musical

parameters. In the game, the player controls a paddle with the

computer keyboard’s arrow keys or with a mouse. A ball travels

across the screen and destroys the bricks that it hits. The goal is

to destroy all the bricks on the screen. The paddle is used to

avoid the ball falling to the bottom of the screen. The player has

a limited number of lives, and every time the player misses a

ball, a life is lost.

The original Briquolo game was modified to support the

selection, playback, and analysis of MP3 files. Sound

processing was done using Maaate open source library [2], and

MP3 files were handled using irrKlang [3]. Some changes to

the game’s GUI were also made, as players had to be able to

select the music and make mappings between selected game and

music parameters.

Figure 2. Screenshot from the Briquolo game [1].

When the player launches the game, the main window appears

and the player can see the following menu items: ‘Play’, ‘Level

Editor’, ‘Settings’, and ‘Quit’.

If the player selects Play, he can choose either the original

Briquolo game or its modified background music reactive

version. He can also select which MP3 file to use as

background music in the game and one of several game levels.

The selected MP3 file is analyzed for those signal features that

have been chosen in the Settings menu.

Using the Level Editor, the player can create new game levels

e.g. by determining the number and location of blocks.

In the Settings menu, the player can configure the original game

parameters or make connections between selected game

parameters and implemented signal features (see Section 4.1.1).

In order to save processing time, only those features that are

mapped to some game parameter are analyzed from the selected

MP3 file. The analysis results are saved to a file so the analysis

has to be done only once before the first play.

4.1 Sound Processing
After the background music MP3 file and used mapping have

been selected, the game starts to analyze the file by extracting

information which will then be applied during the game. In the

following, this sound processing step is discussed in more

detail.

An MP3 file is made of multiple frames composed by a header

and data. The header consists on a sync word used to identify

the beginning of a valid frame. It is followed by a bit indicating

that the MPEG standard [18] is being used, and then two bits

indicating that layer 3 is being used, hence MPEG-1 Audio

Layer 3 or MP3.

During the sound processing step, the selected MP3 file is

decoded and its frames are extracted. For each extracted frame,

a number of audio analysis features selected according to

player’s own settings are calculated. The equations for the used

features are described in the following.

4.1.1 Description of low-level features

Signal energy is calculated as

)()(
1

)(
1

0

1

0

2
mhmMts

MI
tE

I

i

M

m

i ⋅+
⋅

= ∑ ∑
−

=

−

=

, (1)

where si(n) is the value of the subband i of the MPEG-1 Audio

Layer 3 polyphase filterbank at time instant n, I is the number

of subbands, M is the size of the analysis window in samples, t

is the index of the analysis window, and h(m) is the Bartlett

window function.

Signal magnitude is an approximation of the perceived

loudness of the file, and is calculated using the equation

)()(
1

)(
1

0

1

0

mhmMts
MI

t
I

i

M

m

i ⋅+
⋅

=Μ ∑ ∑
−

=

−

=

. (2)

Spectral centroid is the balancing point of the subband energy

distribution. It gives a rough measure of the perceived

brightness of sounds: the higher the centroid, the brighter

sounding the signal is. The centroid is calculated as:

∑

∑
−

=

−

=
+

=
1

0

1

0

)(

)()1(
)(

I

i i

I

i i

tr

tri
tC . (3)

where ri(n) is the root-mean-square (RMS) energy of subband i

at time instant t.

Rolloff point R determines the frequency point where 85% of

the window's energy is achieved. It measures the “skewness” of

the spectral shape, and is calculated as:

 ∑∑
−

==
⋅=

1

00
)(85.0)(

I

i i

R

i i trtr . (4)

Spectral flux measures the variation of the spectral energy

distribution between two successive windows:

 ∑
−

=
+′−′=+∆

1

0

2
)1()()1,(

I

i ii trtrtt , (5)

where)(tri′ is the RMS energy of subband i normalized with

the maximum value:

:)(max(/)()(trtrtr jii =′)10 −≤≤ Ij .

Thus, in music with lots of rapid onsets the spectral flux will be

large, whereas in music with long sustained sounds the flux will

be small.

Drum track: the intent of this parameter is to detect energy

peaks, such as drum hits, from the music file. The signal energy

is first calculated as described in Equation 1, and then values

smaller than a threshold are truncated by setting them equal to

the threshold. The threshold was selected to be)/(1 MI ⋅ .

The values higher than this threshold are further compressed by

taking a logarithm.

Silence: the game is able to detect silences in the music and

stops the game as long as the silence lasts. A threshold of one

percent of the average signal loudness is used as a threshold for

silence. In Maaate, loudness measurement is done by summing

the subband scale factors.

4.1.2 Postprocessing of low-level features

Once the low-level signal features have been extracted, a couple

of post-processing steps are implemented to create smooth and

controlled changes into the game. As the values of the low-level

features may change rapidly and in an uncontrolled manner,

mapping them directly into game parameters would cause too

strong and noisy effects making the game unplayable.

After the analysis stage, each signal frame is represented by a

value for each feature. The values of each feature are then

filtered using a user adjustable sensitivity threshold. The

threshold controls how large an absolute change must two

adjacent feature values have in order to trigger a change in the

game. If the user sets the sensitivity threshold high, it means

that there will have to be a large absolute change between the

feature values of two adjacent frames in order for a change to

occur in the game. Correspondingly, setting the sensitivity

threshold low allows even small changes in feature values to

modify the game parameter. The sensitivity parameter also

controls the rate of the changes: as setting the sensitivity

threshold low allows even small changes of the feature value to

vary the game, it is likely that changes will happen more

frequently than with a high sensitivity threshold.

The sensitivity threshold is applied to detect significant level

changes in the feature values. This is done according to the

method below:

// sensitivity_user::sensitivity chosen by the user(percentage)

// delta: difference between the minimum and maximum value of

the feature in the signal

// value: tabulated values of the feature over the whole signal

delta = max(value)-min(value);

sensitivity = sensitivity_user * delta;

lastValue = value[0]; //first parameter value

for i ← 1 to TABLE_SIZE-1

if abs(value[i]-lastValue) ≥ sensitivity

 // lastValue is set to the new level

then lastValue= value[i];

 else

 // force the previous level value to be used

 value[i]= lastValue;

Then, a mean filter is used to smooth the variations in the array

‘value’. The longer the window, the more the values are

smoothed, and rapid variations are removed. A length of 15 for

the mean filter was found to work well. Finally, the results are

normalized between 0 and 1, and sent to the communication

interface.

Genre extraction

Compressed digital audio files may contain various type of

metadata, including title of the song, name of artist, album,

composer, genre, production year, and so on. In MP3 format,

there are two kinds of tags:

• ID3v1, which occupies 128 bits and is placed at the

end of the file; and

• ID3v2; which occupies variable size and usually

occurs at the beginning of the file.

In addition to the low-level signal features presented in Section

4.1.1, a software module which extracts the musical genre

directly from an MP3 file tag was implemented. MP3 ID3 meta-

data [5] specifies over 100 different musical genres. As it would

have been impractical to support them all in the game, the

genres were divided into six main groups: “Classical”,

“Electronic music”, “Folklore”, “Rock”, “Metal”, “Rap, funk,

and jazz”, and “Country and folk.” The division was based on

[19]. These six genres were mapped to water color as explained

in the next section.

4.2 Mapping Music to Game Parameters
The connections between game parameters and supported

signal features are defined in Settings menu’s CoMuGame

submenu, see Figure 3.

Each of ‘Paddle size’, ‘Ball size’, and ‘Ball speed’ parameters

can be associated with signal features such as ‘Signal

magnitude’, ‘Drum track’, ‘Signal energy’, ‘Centroid’,

‘Rolloff’, or ‘Spectral flux’. The corresponding equations for

each feature were given in Section 4.1. If the player does not

want to connect some game parameter to any audio signal

feature, he can select ‘No interaction’ for that parameter value.

The player can also adjust the ‘Sensitivity’ parameter, which

has an effect on all the active parameters.

Figure 3. Defining connections between game and music

parameters.

Other game related parameters include ‘Water color’ and

‘Pause game’. Pause game is a very intuitive parameter when it

is associated with signal feature ‘Silence.’ If the water color is

connected to ‘Genre’, the background color of the gameworld

will change according to the musical genre of the selected MP3

file. The mapping from genres to colors is depicted in Table 1,

and cannot be reconfigured by the player.

Table 1. Mapping colors to genres.

Color Genre

Blue Used if water color is

connected to ‘No interaction’

Grey No genre found

White Classical

Cyan Electronic music

Yellow Folklore

Red Rock

Dark red Metal

Orange-red Rap, funk, and jazz

Green Country and folk

Although the player can design his or her own mapping before

starting the game, this can be an iterative and very time-

consuming process. Therefore, a representative set of

connections (which would be as illustrative as possible for

several types of background music) was defined and listed in

project’s web page [17] for the test users. The following generic

mapping was defined:

• Paddle size = Spectral centroid;

• Ball size = Drum track;

• Ball speed = Signal magnitude;

• Water color = Genre;

• Pause game = Silence; and

• Sensitivity = 0.

5. USER STUDY
In order to test how well the game works in practice, a user

study with twenty participants was arranged. The purpose of the

study was to find out if the players felt that the game truly

reacted to its background music, what were the most intuitive

musical parameters, and what kinds of mappings the players

created themselves.

Participants were recruited by sending e-mail invitations. 90%

of the participants were young adults (20-30 years old), while

the rest were younger. Out of the 20 participants, only four

were female. None of the participants had any prior experience

in sound processing, so they may have not understood all terms

used in the Settings menu. All participants had already played

some version of the Breakout game, and 20% of them had not

liked it.

The participants downloaded the game from project’s web

pages, and were able to play it for one week after which they

filled in an online questionnaire. In the first part of the test, all

users played with the same song and the same default mapping.

In the second part of the test, they were free to choose their own

mappings and songs.

The results of the questionnaire were really positive. 90% of

participants felt that the music truly affected the game. 80%

found the background music reactive version of the game more

challenging than the original one. However, 90% of them felt

that the modified version was more entertaining than the

original. One participant even commented that “It is the best

game I have ever played.” The game concept was appreciated

by the test users: “This musically controlled game is very funny,

I did not expect that. It was a good surprise and I enjoyed it”,

“Good idea! I like it!”, and “I think that it is a very inventive

game.”

In the case of generic mapping, 75% of the participants felt that

music affected the paddle size and speed of the ball. 70% felt

that ball size varied according to the background music.

35% of the participants also tried their own mapping instead of

the default one. Most of them associated the signal magnitude

feature with paddle size and kept the drum track connected to

ball size. None of the participants left the signal magnitude

connected to ball speed. Several other parameters were tried,

but none of them was dominant.

According to our experiences, the background music reactive

version of Briquolo had superior performance compared to our

earlier game AudioAsteroids (see Section 2), which has never

been tested in a formal user study. Even if Briquolo does not

directly support tempo detection like AudioAsteroids, the

selected audio analysis algorithms created a sensation that the

game reacted to the tempo of background music. The study also

proves that the addition of background music responsiveness

can bring new life to an old and simple video game idea.

6. CONCLUSION
This paper elaborated on the authors’ research on “background

music reactive games”, where a video game’s background

music is used to affect game parameters and thus actions on the

screen. Each song generates a new game level with varying

characteristics and difficulty.

An open-source game called Briquolo was modified to support

the testing of various audio analysis algorithms and

experimenting with different mappings. A generic mapping was

defined to test the game behavior with several types of music.

All selected algorithms worked nicely with the game, and

together with the default mapping they created a feeling of

music affecting the game. Even if beat detection was not

directly supported, the selected algorithms created a sensation

that the game reacted to the tempo of background music. In

fact, modifying game’s speed with the perceived musical tempo

seemed to be the most noticeable feature of the game. This is in

line with our earlier findings from the AudioAsteroids game.

One new feature that seemed to work particularly well was to

make the game pause whenever there was a silent moment in

the music.

In order to verify how well the implemented ideas worked in

practice, a user study with 20 participants was arranged. The

results suggest strongly that people appreciate the concept of

background music reactive games. 90% of participants felt that

the music truly affected the game, and considered this version

more entertaining than the original. The concept seems to

introduce a new dimension into the experiences of gameplay

when players realize how game content and behavior changes in

response to certain characteristics of the background music.

7. FUTURE WORK
The obvious future step for the background music reactive

Briquolo would be the addition of new music signal analysis

methods, and testing different connections between the

resulting control parameters and the game. For example,

methods introduced for instrumental and vocal music detection

could be used to create more event-like changes to the game.

Changes like these could be used to introduce major changes to

the game when the background music switches from a vocal to

an instrumental part, and vice versa. Other potential candidates

include e.g. beat and pitch detection algorithms as well as

controlling the game based on microphone input. The audio

signal analysis parameters should be substituted with more

intuitively understandable terms. For evaluating the new

features, another user study would be needed.

The game would also benefit from several minor new features

and bug corrections. Examples include playing through

playlists of songs, selecting and placing background elements

based on the music, implementing better genre groupings and

color associations, varying the color of other game elements

than water color, and so on. The authors are planning to

distribute the game and its source code [17] to selected

developer forums, and see what kind of ideas other people

come up with. Another exciting direction in future development

would be to combine the activities of playing a game with those

of making music with musical controllers. As an example, one

player could control the hero in the game, while the musical

performance of others would create obstacles for the hero.

8. REFERENCES
[1] Briquolo. http://briquolo.free.fr, 30.3.2007.

[2] Maaate. http://www.cmis.csiro.au/maaate/, 30.3.2007.

[3] irrKlang. http://www.ambiera.com/irrklang/, 30.3.2007.

[4] GNU/GPL License. http://www.gnu.org/copyleft/gpl.html,

30.3.2007.

[5] ID3 v2.3.0 Specification. http://www.id3.org/id3v2.3.0,

30.3.2007.

[6] Guitar Hero. http://www.guitarherogame.com, 10.4.2007.

[7] Dance Factory.

http://www.codemasters.co.uk/games/?gameid=1832,

10.4.2007.

[8] Vib-Ribbon. http://www.vib-ribbon.com/, 25.1.2006.

[9] Breakout. http://en.wikipedia.org/wiki/Breakout,

10.4.2007.

[10] Blaine, T., and Fels, S. Design Issues for Collaborative

Musical Interfaces and Experiences. In Proceedings of

New Interfaces for Musical Expression (NIME)

Conference, Montreal, Canada, May 22-24, 2003.

[11] Holm, J., Havukainen, K., and Arrasvuori, J. Novel Ways

to Use Audio in Games. In Proceedings of Game

Developers Conference (GDC), San Francisco, USA,

March 7-11, 2005.

[12] Holm, J., Havukainen, K., Arrasvuori, J. Personalizing

Game Content Using Audio-Visual Media. In Proceedings

of Advances in Computer Entertainment (ACE)

Conference, Valencia, Spain, June 15-17, 2005.

[13] Cassidy, G., MacDonald, R., and Sykes, J. The Effects of

Aggressive and Relaxing Popular Music on Driving Game

Performance and Evaluation. Abstract in

http://www.gamesconference.org/digra2005/viewabstract.p

hp?id=94, 2.4.2006.

[14] Holm, J., Havukainen, K., and Arrasvuori, J. Using MIDI

to Modify Game Content. In Proceedings of New

Interfaces for Musical Expression (NIME´06) Conference,

Paris, France, June 4-8, 2006.

[15] Blaine, T. The Convergence of Alternate Controllers and

Musical Interfaces in Interactive Entertainment. In

Proceedings of New Interfaces for Musical Expression

(NIME) Conference, Vancouver, Canada, May 26-28,

2005.

[16] Boyes, E. Traxion Loses Traction.

http://www.gamespot.com/psp/puzzle/traxion/news.html?s

id=6163839&om_act=convert&om_clk=newlyadded,

13.4.2007.

[17] Background Music Reactive Briquolo Game.

http://cmg.redouane.info/, 27.4.2007.

[18] The MPEG Home Page.

http://www.chiariglione.org/mpeg/, 27.4.2007.

[19] ACIM Organization Home Page. http://www.acim.asso.fr/,

2.4.2007.

