
Hitting the Memory Wall: Implications of the Obvious 

Win. A. Wulf  

Sally A. McKee 

Department  of Computer  Science 
Universi ty of  Virginia 

{ wulf  i mckee }@ virginia.edu 

December  1994 

This brief note points out something obvious m something the authors "knew"  without 
real ly understanding. With apologies to those who did understand, we offer it to those 
others who, like us, missed the point. 

We all know that the rate of  improvement  in microprocessor  speed exceeds the rate of  
improvement  in D R A M  memory speed, each is improving exponentially,  but the 
exponent  for microprocessors is substantially larger than that for  DRAMs.  The difference 
between diverging exponentials also grows exponential ly;  so, al though the disparity 
between processor and memory speed is already an issue, downst ream someplace it will  be 
a much bigger one. How big and how soon? The answers to these questions are what  the 
authors had failed to appreciate. 

To get a handle on the answers, consider an old friend the equat ion for the average time 
to access memory, where t c and t m a r e  t h e  cache and D R A M  access times a n d p  is the 
probabil i ty of  a cache hit: 

t = p x t  + ( l - p )  x t  
a v g  c m 

We want to look at how the average access time changes with technology, so we ' l l  make 
some conservative assumptions; as you ' l l  see, the specific values won ' t  change the basic 
conclusion of  this note, namely  that we arc going to hit a wall  in the improvement  of  system 
perfo~uiance unless something b a s i c  changes. 

First let 's assume that the cache speed matches that of  the processor, and specifically that it 
scales with the processor speed. This is certainly true for on-chip cache, and allows us to 
easily normalize all our results in terms of  instruction cycle times (essentially saying t c = 1 

cpu cycle). Second, assume that the cache is perfect. That  is, the cache never has a conflict 
or capacity miss; the only misses are the compulsory ones. Thus ( 1 - p )  is just  the 
probabili ty of  accessing a location that has never been referenced before (one can quibble 
and adjust this for line size, but this won ' t  affect the conclusion, so we won ' t  make the 
argument more complicated than necessary). 

Now, although ( 1 - p )  is small, it i sn ' t  zero_ Therefore as t c and t m diverge, t a v g  will grow 
and system performance will degrade. In fact, it will hit a wall. 

m 2 0 m  



In most programs, 20-40% of the instructions reference memory [Hen90]. For the sake of 
argument let's take the lower number, 20%. That means that, on average, during execution 
every 5th instruction references memory. We will hit the wall when tavg exceeds 5 
instruction times. At that point system performance is totally detcrminedby memory speed; 
making the processor faster won' t  affect the wall-clock time to complete an application. 

Alas, there is no easy way out of this. We have already assumed a perfect cache, so a bigger/ 
smarter one won ' t  help.We're already using the full bandwidth of the memory, so 
prefetching or other related schemes won' t  help either. We can consider other things that 
might be done, but first let's speculate on when we might hit the wall. 

Assume the compulsory miss rate is 1% or less [Hen90] and that the next level of the 
memory hierarchy is currently four times slower than cache. If  we assume that DRAM 
speeds increase by 7% per year [Hen90] and use Baskett's estimate that microprocessor 
performance is increasing at the rate of 80% per year [Bas91], the average number of cycles 
per memory access will be 1.52 in 2000, 8.25 in 2005, and 98.8 in 2010. Under these 
assumptions, the wall is less than a decade away. 

Figures 1-3 explore various possibilities, showing projected trends for a set of perfect or 
near-perfect caches. All our graphs assume that DRAM performance continues to increase 
at an annual rate of 7%. The horizontal axis is various cpu/DRAM performance ratios, and 
the lines at the top indicate the dates these ratios occur ff microprocessor performance (I J-) 
increases at rates of  50% and 100% respectively. Figure 1 assumes that cache misses are 
currently 4 times slower than hits; Figure l(a) considers compulsory cache miss rates of 
less than 1% while Figure l(b) shows the same trends for caches with more realistic miss 
rates of 2-10%. Figures 2 is a counterpart of Figure 1, but assumes that the current cost of 
a cache miss is 16 times that of a hit. 

Figure 3 provides a closer look at the expected impact on average memory access time for 
one particular value of ~t, Baskett's estimated 80%. Even if  we assume a cache hit rate of 
99.8% and use the more conservative cache miss cost of 4 cycles as our starting point, 
performance hits the 5-cycles-per-access wall in 11-12 years. At a hit rate of 99% we hit 
the same wall within the decade, and at 90%, within 5 years. 

Note that changing the starting point the "currant" miss/hit cost ratio m and the cache 
miss rates don't change the trends: if  the microprocessor/memory perfotL~,ance gap 
continues to grow at a similar rate, in 10-15 years each memory access will cost, on 
average, tens or even hundreds of  processor cycles. Under each scenario, system speed is 
dominated by memory performance. 

Over the past thirty years there have been several predictions of the eminent cessation of 
the rate of improvement in computer performance. Every such prediction was wrong. They 
were wrong because they hinged on unstated assumptions that were overturned by 
subsequent events. So, for example, the failure to foresee the move from discrete 
components to integrated circuits led to a prediction that the speed of light would limit 
computer speeds to several orders of magnitude slower than they are now. 

m 2 1  m 



Our  predic t ion  of  the m e m o r y  wal l  is p robab ly  wrong  too but it suggests  that we have  
to start th inking "out  of  the box".  All  the techniques  that the authors  are aware  of, inc lud ing  
ones we  have  proposed  [McK94,  McK94a] ,  provide  one- t ime boosts  to e i ther  bandwid th  
or latency.  W h i l e  these de lay  the date of  impact ,  they d o n ' t  change  the fundamenta l s .  

The  mos t  " conven i en t "  resolut ion to the p rob lem would  be the d i scovery  of  a cool ,  dense  
m e m o r y  t echno logy  whose  speed scales wi th  that of  processors .  W e  ax~ not aware  o f  any  
such t echno logy  and could  not affect its deve lopmen t  in any  case; the on ly  cont r ibu t ion  we 
can m a k e  is to look  for  architectural  solutions.  These  are p robab ly  all bogus ,  but  the 
d iscuss ion  must  start somewhere :  

Can  we drive the number  of  compu l so ry  misses  to zero? I f  w e  c a n ' t  fix t m ,  then 
the on ly  way  to make  caches  work  is to dr ive  p to 100% - -  wh ich  means  
c l i rn inadng  the compu l so ry  misses .  I f  all data  were  in i t i a l ized  dynamica l ly ,  for  
example ,  poss ib ly  the compi le r  could  generate  specia l  "f irst  wr i te"  ins t ruct ions .  
I t  is harder  for  us to imag ine  h o w  to dr ive the c o m p u l s o r y  misses  for  code  to 
zero. 

Is it t ime to forgo the mode l  that access t ime is un i fo rm  to all parts  o f  the address  
space? It is false for D S M  and other  scalable  mul t ip rocesso r  schemes ,  so w h y  
not  for  s ingle  processors  as wel l?  I f  wc  do this, can  the compi l e r  exp l ic i t ly  
m a n a g e  a smal ler  amoun t  o f  h igher  speed m e m o r y ?  

Arc  there any  new ideas for  h o w  to trade computa t ion  for s torage?  
Al ternat ively ,  can wc  trade space for  speed?  D R A M  keeps  g iv ing  us p len ty  o f  
the former. 

Anc ien t  mach ines  l ike the I B M  650 and Bur roughs  205 used  magne t i c  d r u m  as 
pr imaxy m e m o r y  and had c lever  schemes  for  r educ ing  rota t ional  l a tency  to 
essen t ia l ly  zero m can we borrow a page  f rom e i ther  o f  those books7 

As noted  above,  the r ight  solut ion to the p rob lem o f  the m e m o r y  wal l  is p robab ly  some th ing  
that  we  h a v e n ' t  thought  of  m but wc would  l ike to see the d i scuss ion  engaged .  It w o u l d  
appear  that  we  do not  have  a great deal  o f  dine. 

m 2 2 .  m 



tOO 

s ::,C 

; • 

. l l  / "  • . "  
/ / .. p = 99.8~ f ~ / / . . . ' - e l  .......... p = 96.0~ 

• • . 

10 

/ / / ' ~ tO0 

. / / '  ..'" 
I /  

.. • . '" ez 1 0  
/ t . .  

/ / o" 
• "~  o 

. ~ s  .o 

cache  miss /hi t  cost ratio 

/ I  
.- • oo 

/ 1  
, t  ." 

/ I  " ; /  
I I  ," 

/ /  o." 

_ _~_.'~.!'""~-" 
I I I I I I I I I , I I I I I I I 

cache  miss /hi t  cost ratio 

(a) Co) 

Figure I Trends for a Current Cache Miss/Hit Cost Ratio of 4 

IOOOO 

IOOO- 
el  

b 
L 

I 0 0 -  

b 
i I 0 -  

i : ° _ ~ I t -  .50q5 1000(1 /'~/~'/~=, 5095 

; I  ." 

: p -- 99.0qG 

• p = 94.0~1,  

/ /  . p  = 9 9 . 8 ~  ." , ' - ~ - - - - p  = 9 8 . 0 ~  

• / "" 10 . ~ "  ." 
o/ ' / /  o," 

j /  ." 
j I  

/ I  ." 
.. • o. I I  

r w • f" 
, / !  

o./  ." / !  •" 

w f  J r .  ~ 

' I I I I I , I I I I I I I I 1 I 

cache  miss /hi t  cost ratio 

l O 0 -  

10- 

if" • . °"  
w 

/ l  p 
,w • i 

/ • / 
r w • • 

/ I  , '  

/ /  
. f ~ /  °" wl w 

cache miss/hit  cost ratio 

(a) (b) 

Figure 2 Trends for a Current Cache Miss/Hit Cost Ratio of 16 

m 2 3 - -  



! 0 -  

6 -  

e l  

I 
: I ; 

I I • 

. .................. J ............... ./-- p -- 9 0 . 0 %  
i I 

! I ~ ; p :  9 9 . 0 %  

: I ,,~4-- p = 9 9 . 9 %  
I I 

I / ," 
" I "° 

I I ." 
/ / ,"  

• • 
i i ° 

"° ~ S j "  • j . "  

I I It I I I I I I I I I I 

y e a r  

Figure 3 Average Access Cost for 80% Annual Increase in Processor Performance 

References 

[Bas91] 

[Hen90] 

[MeK94] 

[McK94a] 

E Baskett, Keynote address. International Symposium on Shared. Memory 
Multiprocessing, April 1991. 

J.L. Hennessy and D.A. Patterson, Computer Architecture: a Quantitative 
Approach, Morgan-Kaufrnan, San Mateo, CA, 1990. 

S.A. McKc¢, et. al., "Experimental Implementation of Dynamic Access 
Ordering", Pro¢. 27th Hawaii International Conference on System Sciences, 
Maul, HI, January 1994. 

S.A. McKe¢, et. al., "Increasing Memory Bandwidth for Vector 
Computations", Pro¢. Conference on Programming Languages and System 
Architecture, Zurich, March 1994. 

m 2 4  


