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Preface 
 
Abstract 

 
The Nintendo Entertainment System (NES) was the world’s most widely used videogames 
console during the 1980s. From its initial release in 1983 until it was discontinued in 1995 the 
console brought gaming into more homes than ever before and paved the way for the 
videogame industry as it stands today. 
 
Although technology has improved dramatically since the NES, many excellent games were 
only released on that format and so are unplayable on more modern systems. However 
these games have been able to survive and continue to be played thanks to emulation, which 
simulates the workings of one system in order to allow software created for it to be used on a 
modern system. 
 
This document describes both the hardware in the NES and some of the devices used with it. 
It also briefly discusses emulation and issues relating to this. Much of the contents of this 
document appeared earlier in [1]. 
 
The document makes use of the hexadecimal and binary numbering systems. The reader is 
assumed to have some knowledge of these numbering systems but a brief explanation of 
some issues is presented in Appendix A. 
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1 - Introduction 
 

1.1 Nintendo Entertainment System History 
 
In 1889, Fusajiro Yamauchi founded Nintendo Koppai and began manufacturing Japanese 
playing cards, hanafuda, in Kyoto [10]. By 1950, when Hiroshi Yamauchi became president, 
Nintendo was a successful manufacturer of both western and Japanese playing cards. In 
1963, after several name changes, the company settled on Nintendo Co. Ltd. (NCL). By 
1970, the company was producing electronic games and in 1973 they introduced a laser clay 
shooting system which they hoped would replace bowling as a major pastime [11]. 
 
Nolan Bushnell was a student at the University of Utah when he first had the idea of a coin 
operated computer game. Pong, which was released in 1972, quickly became a hit and 
inspired the release of a wave of arcade games. Bushnell’s company, Atari, wanted to 
replicate this success by releasing a system to play games in homes. By 1976 several 
companies had tried, and failed, to release a successful console. Bushnell was aware that 
Atari lacked the capital to produce a console and sold the company to Warner 
Communications, retaining the position of chairman [12]. 
 
In 1977, Atari released the Atari Video Computer System (VCS), an 8-bit console which 
succeeded in opening up the home console market, aided by the home version of Space 
Invaders, released in 1980. Bushnell disagreed with the direction Warner were taking and left 
the company in 1978. 
 
In 1979, Nintendo made their first attempt to break into the arcade game market but by 1981 
their success had been limited. Hiroshi Yamauchi asked Nintendo graphic artist, Shigeru 
Miyamoto, to design a new game. The result was Donkey Kong in which players controlled a 
carpenter called Jumpman and tried to rescue a captive girl from Donkey Kong, a large ape. 
Jumpman was renamed Mario after the landlord of Nintendo’s newly created American 
subsidiary, later to be called Nintendo of America Inc. (NOA), run by Yamauchi’s son in law, 
Minoru Arakawa. 
 
By 1982, third party development had led to several sub-standard games being released for 
Atari’s VCS and competition with other consoles was leading to saturation of the market. By 
1984 the industry was suffering enormous losses and most product lines were discontinued. 
 
Nintendo, meanwhile, had enjoyed success in the arcade market and in the home market 
with the Colour TV Game 6. The Japanese console market was still doing well and Yamauchi 
felt that Nintendo could become the market leaders through a combination of quality games 
and improved hardware sold at a lower price than competitors (profit would be made on the 
games). 
 

 
Figure 1-1. The Nintendo Entertainment System and the Famicom [13]. 
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The Famicom (Family Computer) became an enormous success in Japan and in 1983, 
Minoru Arakawa offered Atari the chance to produce the system in America. When it became 
clear that Atari did not have the resources to proceed the deal fell through. Atari was divided 
up and sold by Warner while Nintendo decided to produce and market the Famicom in 
America themselves under the name Nintendo Entertainment System (NES). The console 
was also redesigned to appeal to western children as shown in figure 1-1. 
 
Despite early resistance from retailers fearing further losses after the industry crash the 
previous year, the NES became available in America in 1985. As a result of strict quality 
controls on third party software, combined with Nintendo’s own games (including Super 
Mario Bros., The Legend of Zelda and Metroid) the console became a huge success. 
 
In 1987, the NES became the top selling toy in America, while The Legend of Zelda became 
the first NES game to achieve sales of one million units. In America alone, revenues for 
Super Mario Bros. 3 were in excess of $500 million with over 7 million units sold and 4 million 
in Japan [14]. In 1991, Nintendo earned about $1.5 million for each of its 5,000 employees. 
The company’s profit in the early 1990s exceeded that of the American film industry. Such 
was Nintendo’s effect on American culture that a 1990 survey showed that Mario was more 
recognized by children than Mickey Mouse. 
 
Sega released the 16-bit Genesis (Mega Drive in Europe) in 1989 and, due to the success of 
Sonic the Hedgehog, the console became very popular. That same year, Nintendo were 
busy with the release of their handheld console, the Game Boy but would enter the 16-bit 
market with the Super Famicom in 1990. The console was released in America in 1991 as 
the Super Nintendo Entertainment System (SNES) and due to incompatibility with the NES 
hardware, signalled a move away from the old system. 
 

 
 

Figure 1-2. Redesigned NES 
released in 1993 [15]. 

 
In 1993, Nintendo released a redesigned version of the NES (as shown in figure 1-2) but the 
last NES game, Wario’s Woods was released in late 1994 and the system was officially 
discontinued in 1995 [16]. By this time over 60 million NES consoles and 500 million games 
had been sold worldwide. 
 
The SNES featured a 65816 processor which was largely compatible with the NES’ 6502 
processor. However the graphics and sound on the new system were incompatible [5]. This 
made it impossible for games created for the old system to run on its successor. As a result 
the software created for the NES could no longer be used by people who did not already 
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have a NES, preventing many people from using the software. In addition, all hardware has a 
limited lifespan and eventually there will be no working NES consoles to still play the games 
on. The games themselves often featured battery backed RAM to enable progress to be 
saved and Nintendo only predicted the battery life as five years. There are multiple options 
which allow the continued use of NES games and these are described here. 
 
1.2 Conversion 
 
Although the exact implementations of computer systems is different, many of the principles 
are the same. A PC cannot execute the instructions written for the NES because it does not 
understand them. However, it is likely that comparable instructions do exist for the PC. 
Therefore, it is possible to rewrite the software for a different system and to replicate the 
graphics and sound of the original. Converting the software in this way is essentially 
simulation [17]. The software appears to behave the same as the original but the 
implementation may be quite different. 
 
Converting the software has the advantage that the resulting software will perform well, since 
it is produced for the target architecture. However, the process is time consuming and needs 
to be done for each game individually. 
 
1.3 Emulation 
 
Emulation is the process of simulating hardware to enable the software developed for it to be 
used on an otherwise incompatible system. The following definition is by the British 
Computer Society and is taken from [18]: 
 

“Emulation is a very precise form of simulation which should mimic exactly the 
behaviour of the circumstances that it is simulating. An emulator may enable 
one type of computer to operate as if it were a different type of computer.“ 
 

Emulation is often used by the videogame industry to allow developers to begin writing 
software for a new system before it is released. However, it can also be used to allow the 
continuing use of old systems. 
 
Hardware emulation involves producing a system with hardware compatible with the original. 
In the case of the NES it would be possible to produce a system using a compatible 
processor and to allow it to play the original game cartridges. This technique can also 
provide good performance, provided compatibility is ensured, but few people have the skills 
and resources required to construct the system. 
 
Using hardware simulation software it is possible to half implement this technique. Software 
is available which allows simulation of a detailed hardware design and this can be used to 
recreate the system from a design without having to produce a real implementation. Such a 
system is described in [19]. 
 
Software emulation requires producing software which will emulate the functions of a given 
system. There are three approaches to software emulation [17]: 
 
•  Interpretation involves reading in the next instruction for the system being emulated, 

translating it to an instruction (or a number of instructions) for the target architecture and 
executing it. Though this is accurate, due to translating during execution the process can 
lead to noticeable degradation of performance compared to the original system if the 
speed of the target system is low. 
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•  Static translation involves reading in the whole of the source program and translating it 
for the target system, producing a program that is executable on that system. However it 
is not always possible to determine how a program will execute from a static analysis of 
it. Branch instructions, for example, often depend on the contents of memory locations 
which can only be determined at run-time [20]. 

 
•  Dynamic translation works in much the same way as static translation but occurs while 

executing the program. This allows it to account for branch and jump instructions and to 
produce accurate code [20]. 

 
The NES is perhaps the most widely emulated console with a number of emulators already 
available of varying quality. Writing a NES emulator remains a very challenging project, 
requiring a detailed understanding of how the system works. A fairly comprehensive list of 
available NES emulators can be found at [21] although many of these have been 
discontinued. The basics of writing an emulator are described by [17] and [22], both of which 
focus specifically on the NES. 
 
1.4 Legal 
 
Emulation is considered to be something of a legal grey area. Emulators are not illegal, 
provided all the information used in the development is legally obtained and does not contain 
any proprietary code. However, it is illegal to run any software which you do not own a 
licence for. 
 
Copying NES games is possible with the correct hardware. Such copiers dump the contents 
of the game cartridges to a disk to enable access by a computer. There are a wide variety of 
copiers, which function in different ways. Figure 1-3 shows ChameleonNES which copies the 
contents of a cartridge to a PC via a USB port. Copyright law typically allows for a backup 
copy to be made, however this does not apply to games stored on permanent semiconductor 
chips such as those used by the NES. These copying devices are illegal. 
 

 
 

Figure 1-3. ChameleonNES cartridge copier [23]. 
 
Most emulator users download games from the Internet since they do not have access to the 
required copying hardware. These websites usually cover themselves with an agreement 
that you can only download a file if you own the original game or if you will delete it within 24 
hours. This may make the process look legal but, since the copies are illegal, it is clearly not. 
Even if the law allowed for making a backup copy of a NES game, copies can only be made 
and used by the original owner, so downloading files off the Internet would still be illegal. 
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This only applies to games which were originally made for the NES itself. Many developers 
have produced games since which have been released freely on the Internet. Downloading 
these is acceptable. As for original NES games, using them will remain illegal until either the 
developers grant permission for their use or the copyright expires, which is 75 years after 
they were made. 
 
Nintendo are very much against emulation. The company acted against the developers of 
UltraHLE [24], an emulator for their Nintendo 64 console, which they claimed violated 
copyright. Nintendo’s objection was understandable as the console was still in use when 
UltraHLE was released.  The presence of Nintendo 64 emulators represented a threat to 
Nintendo’s income however, many believe that the law should make an exception for 
systems which are no longer in production and from which Nintendo no longer make any 
money. Despite emulation’s ability to keep old games alive Nintendo refuse to release the 
copyright on old games so their use remains illegal. 
 
For more information on the legal issues of emulation, the reader is directed to Nintendo’s 
own FAQ on the subject [25]. This is highly biased and ignores the legal uses of emulation. 
For a detailed response and clarification on this, the reader should look at [26]. 
 
1.5 NES Hardware Overview 
  
Hiroshi Yamauchi’s instructions to 
design a console which would be 
cheaper than the competition resulted in 
Nintendo deciding to use an outdated 
Central Processing Unit (CPU). 
Although a 16-bit processor would have 
coped with ease, to keep the price low 
they decided to use a variant of the 8-bit 
6502 processor, developed by MOS 
technology in 1975. The chip would be 
sufficient to run the programs but would 
be unable to generate the graphics 
required so the company decided to use 
a second chip as a dedicated Picture 
Processing Unit (PPU), responsible for 
calculating and displaying the graphics. 
Figure 1-4 shows the top of the 
motherboard with the CPU and PPU 
indicated. 
 
Nintendo designed the basic features required from the chips but found it difficult to find a 
company willing to produce such highly customised chips for the low price they were looking 
for. Ricoh agreed to manufacture the chips after Nintendo guaranteed them a three-million 
chip order. By the end of 1986 Nintendo was Ricoh’s largest customer, accounting for 
between 60 and 70 percent of the company’s semiconductor sales [10]. The functionality of 
the CPU is discussed in Part 2, that of the PPU is discussed in Part 3. 
 
Both chips feature their own internal memory, in the form of RAM. Games were usually 
stored on ROM chips within the game cartridges, which could be accessed by the CPU when 
the cartridges where inserted into the system. The hardware used for games is discussed in 
Part 4. 
 
The NES used memory mapped I/O to allow the processor to communicate with the other 
components, the PPU and the input devices. Memory mapped I/O is a technique where data 

PPU CPU 

Figure 1-4. The NES motherboard [27]. 
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can be transferred to a device via a write to a specific location in memory. Input devices are 
discussed in Part 5, the function of the memory mapped I/O is discussed throughout the 
document and specifically in Appendix B. 
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2 - Central Processing Unit 
 
2.1 2A03 Overview 
 
Ricoh produced an NMOS processor based on the 6502, the 2A03. The chip differed from a 
standard 6502 in that it had the ability to handle sound, serving as pAPU (pseudo-Audio 
Processing Unit) as well as CPU, and that it lacked a Binary Coded Decimal (BCD) mode 
which allowed representing each digit using 4 bits. For the purposes of programming, the 
2A03 uses the same instruction set as the standard 6502 which is shown in figure 2-1. The 
6502 is a little endian processor which means that addresses are stored in memory least 
significant byte first, for example the address $1234 would be stored in memory as $34 at 
memory location x and $12 at memory location (x + 1). 
 

 
 

Figure 2-1. The 6502 processor [28]. 
 
2.2 CPU Memory Map 
 
Figure 2-2 shows how the CPU accesses memory using buses. The memory is divided into 
three parts, ROM inside the cartridges, the CPU’s RAM and the I/O registers. The address 
bus is used to set the address of the required location. The control bus is used to inform the 
components whether the request is a read or a write. The data bus is used to read or write 
the byte to the selected address. Note that ROM is read-only and is accessed via a MMC, to 
allow bank switching to occur. The I/O registers are used to communicate with the other 
components of the system, the PPU and the control devices. 
 

 
 

Figure 2-2. Processor diagram. 
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The 2A03 had a 16-bit address bus and as such could support 64 KB of memory with 
addresses from $0000-$FFFF. Figure 2-5 is the CPU memory map used by the NES, 
showing the layout of memory. The left hand map is a simplified version showing the major 
sections, while the map to the right divides these sections further. 
 
Zero Page refers to addresses in the range $0000-$00FF, that is the first page in memory 
and is used by certain addressing modes to allow quicker execution [4]. Memory locations 
$0000-$07FF are mirrored three times at $0800-$1FFF. This means that, for example, any 
data written to $0000 will also be written to $0800, $1000 and $1800. The memory mapped 
I/O registers are located at $2000-$401F. Locations $2000-$2007 are mirrored every 8 bytes 
in the region $2008-$3FFF and the remaining registers follow this mirroring. SRAM (WRAM) 
is the Save RAM, the addresses used to access RAM in the cartridges for storing save 
games. 
 
From $8000 onwards is the addresses allocated to cartridge PRG-ROM. Games with only 
one 16 KB bank of PRG-ROM will load it into both $8000 and $C000. This is to ensure that 
the vector table is located in the correct addresses. Games with two 16 KB PRG-ROM banks 
will load one into $8000 and the other into $C000. Games with more than two banks use 
memory mappers to determine which banks to load into memory. The memory mapper 
monitors memory writes for a specific address (or range of addresses) and when that 
address is written to, it performs a bank switch. The details vary between different memory 
mappers and more information can be found in Appendix D. 
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Figure 2-3. CPU memory map. 

 
2.3 Registers 
 
The 6502 has fewer registers than similar processors. There are three special purpose 
registers, the program counter, stack pointer and status register which each have a specific 
use. It also has three general purpose registers, the accumulator and the index registers, X 
and Y, which can be used to store data or control information temporarily. 
 
2.3.1 Program Counter (PC) 
 
The program counter is a 16-bit register which holds the address of the next instruction to be 
executed. As instructions are executed, the value of the program counter is updated, usually 
moving on to the next instruction in the sequence. The value can be affected by branch and 
jump instructions, procedure calls and interrupts. 
 
2.3.2 Stack Pointer (SP) 
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The stack is located at memory locations $0100-$01FF. The stack pointer is an 8-bit register 
which serves as an offset from $0100. The stack works top-down, so when a byte is pushed 
on to the stack, the stack pointer is decremented and when a byte is pulled from the stack, 
the stack pointer is incremented. There is no detection of stack overflow and the stack 
pointer will just wrap around from $00 to $FF. 
 
2.3.3 Accumulator (A) 
 
The accumulator is an 8-bit register which stores the results of arithmetic and logic 
operations. The accumulator can also be set to a value retrieved from memory. 
 
2.3.4 Index Register X (X) 
 
The X register is an 8-bit register typically used as a counter or an offset for certain 
addressing modes. The X register can be set to a value retrieved from memory and can be 
used to get or set the value of the stack pointer. 
 
2.2.5 Index Register Y (Y) 
 
The Y register is an 8-bit register which is used in the same way as the X register, as a 
counter or to store an offset. Unlike the X register, the Y register cannot affect the stack 
pointer. 
 
2.3.6 Processor Status (P) 
 
The status register contains a number of single bit flags which are set or cleared when 
instructions are executed. 
 
•  Carry Flag (C) - The carry flag is set if the last instruction resulted in an overflow from bit 

7 or an underflow from bit 0. For example performing 255 + 1 would result in an answer 
of 0 with the carry bit set. This allows the system to perform calculations on numbers 
longer than 8-bits by performing the calculation on the first byte, storing the carry and 
then using that carry when performing the calculation on the second byte. The carry flag 
can be set by the SEC (Set Carry Flag) instruction and cleared by the CLC (Clear Carry 
Flag) instruction. 

•  Zero Flag (Z) - The zero flag is set if the result of the last instruction was zero. So for 
example 128 - 127 does not set the zero flag, whereas 128 - 128 does. 

•  Interrupt Disable (I) - The interrupt disable flag can be used to prevent the system 
responding to IRQs. It is set by the SEI (Set Interrupt Disable) instruction and IRQs will 
then be ignored until execution of a CLI (Clear Interrupt Disable) instruction. 

•  Decimal Mode (D) - The decimal mode flag is used to switch the 6502 into BCD mode. 
However the 2A03 does not support BCD mode so although the flag can be set, its value 
will be ignored. This flag can be set SED (Set Decimal Flag) instruction and cleared by 
CLD (Clear Decimal Flag). 

•  Break Command (B) - The break command flag is used to indicate that a BRK (Break) 
instruction has been executed, causing an IRQ. 

•  Overflow Flag (V) - The overflow flag is set if an invalid two’s complement result was 
obtained by the previous instruction. This means that a negative result has been obtained 
when a positive one was expected or vice versa. For example, adding two positive 
numbers should give a positive answer. However 64 + 64 gives the result -128 due to the 
sign bit. Therefore the overflow flag would be set. The overflow flag is determined by 
taking the exclusive-or of the carry from between bits 6 and 7 and between bit 7 and the 
carry flag [29]. An explanation of two’s complement can be found in Appendix A. 
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•  Negative Flag (N) - Bit 7 of a byte represents the sign of that byte, with 0 being positive 
and 1 being negative. The negative flag (also known as the sign flag) is set if this sign bit 
is 1. 

 
The flags are arranged in the status register in the order shown in figure 2-3. Bit 5 of the 
status register is unused. 
 

 
 

Figure 2-4. Status register layout. 
 
2.4 Interrupts 
 
Interrupts prevent the standard sequential execution of code and cause the processor to 
attend to the interrupt. Interrupts are usually generated by hardware which requires attention, 
but can be triggered by software. The NES has three different types of interrupt, NMI, IRQ 
and reset. The addresses to jump to when an interrupt occurs are stored in a vector table in 
the program code at $FFFA-$FFFF. When an interrupt occurs the system performs the 
following actions [30]: 
 
1. Recognize interrupt request has occurred. 
2. Complete execution of the current instruction. 
3. Push the program counter and status register on to the stack. 
4. Set the interrupt disable flag to prevent further interrupts. 
5. Load the address of the interrupt handling routine from the vector table into the program 

counter. 
6. Execute the interrupt handling routine. 
7. After executing a RTI (Return From Interrupt) instruction, pull the program counter and 

status register values from the stack. 
8. Resume execution of the program. 
 
IRQs, or maskable interrupts, are generated by certain memory mappers. They are ignored 
by the processor if the interrupt disable flag is set. IRQs can be triggered by the software by 
use of the BRK (Break) instruction. When an IRQ occurs the system jumps to the address 
located at $FFFE and $FFFF. 
 
NMI (Non-Maskable Interrupt) is the type of interrupt generated by the PPU when V-Blank 
occurs at the end of each frame. NMIs are not affected by the interrupt disable bit in the 
status register, so execution is always interrupted when they occur [31]. However, triggering 
of a NMI can be prevented if bit 7 of PPU Control Register 1 ($2000) is clear. When a NMI 
occurs the system jumps to the address located at $FFFA and $FFFB. The handling of NMIs 
is shown in figure 2-4. 
 
Reset interrupts are triggered when the system first starts and when the user presses the 
reset button. When a reset occurs the system jumps to the address located at $FFFC and 
$FFFD. 
 
The system gives the highest priority to reset requests, followed by NMI and finally IRQ [7]. 
The NES has an interrupt latency of 7 cycles, which means it takes 7 CPU cycles to begin 
executing the interrupt handler. 
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Figure 2-5. NMI (Non-Maskable Interrupt) handling. 
 
2.5 Addressing Modes 
 
The 6502 has several different addressing modes, providing different ways to access 
memory locations. There are also addressing modes which operate on the contents of 
registers, rather than memory. In total there are 13 different addressing modes on the 6502. 
Some instructions can use more than one different addressing mode. Details on the available 
addressing modes can be found in Appendix E. 
 
2.6 Instructions 
 
The 6502 has 56 different instructions although some come in multiple variations using 
different addressing modes, making a total of 151 valid opcodes (operation codes) out of a 
possible 256. A detailed explanation of the complete instruction set can be found in [2], [29] 
and [32]. Instructions are either one, two or three bytes long, depending on the addressing 
mode. The first byte is the opcode and the remaining bytes are the operands. Instructions fit 
into several functional groups [3]: 
 
•  Load / Store Operations - Load a register from memory or stores the contents of a 

register to memory. 
•  Register Transfer Operations - Copy contents of X or Y register to the accumulator or 

copy contents of accumulator to X or Y register. 
•  Stack Operations - Push or pull the stack or manipulate stack pointer using X register. 
•  Logical Operations - Perform logical operations on the accumulator and a value stored in 

memory. 
•  Arithmetic Operations - Perform arithmetic operations on registers and memory. 
•  Increments / Decrements - Increment or decrement the X or Y registers or a value stored 

in memory. 
•  Shifts - Shift the bits of either the accumulator or a memory location one bit to the left or 

right. 
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•  Jumps / Calls - Break sequential execution sequence, resuming from a specified 
address. 

•  Branches - Break sequential execution sequence, resuming from a specified address, if a 
condition is met. The condition involves examining a specific bit in the status register. 

•  Status Register Operations - Set or clear a flag in the status register. 
•  System Functions - Perform rarely used functions. 
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3 - Picture Processing Unit 
 
3.1 2C02 Overview 
 
Ricoh also supplied the 2C02 to serve as PPU. The PPU’s registers are mostly located in the 
I/O registers section of CPU memory at $2000-$2007 and $4014 as described in Appendix 
B. In addition, there are some special registers used for screen scrolling. 
 
3.2 PPU Memory Map  
 
The PPU has its own memory, known as VRAM (Video RAM). Like the CPU, the PPU can 
also address 64 KB of memory although it only has 16 KB of physical RAM. The PPU’s 
memory map is shown in figure 3-1. Again, the left hand map shows a simplified version 
which is elaborated on by the right hand map. Due to the difference between physical and 
logical address spaces, any address above $3FFF is wrapped around, making the logical 
memory locations $4000-$FFFF effectively a mirror of locations $0000-$3FFF. 
 
Reading from and writing to PPU memory can be done by using the I/O registers $2006 and 
$2007 in CPU memory. This is usually done during V-Blank at the end of a frame, as it 
affects addresses used while drawing the screen and can therefore corrupt what is 
displayed. However, this effect can be used to produce split screen effects. 
 
Since PPU memory uses 16-bit addresses but I/O registers are only 8-bit, two writes to 
$2006 are required to set the address required. Data can then be read from or written to 
$2007. After each write to $2007, the address is incremented by either 1 or 32 as dictated by 
bit 2 of $2000. The first read from $2007 is invalid and the data will actually be buffered and 
returned on the next read. This does not apply to colour palettes. 
 
The PPU also has a separate 256 byte area of memory, SPR-RAM (Sprite RAM), to store 
the sprite attributes. The sprites themselves can be found in the pattern tables. 
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$0000

$2000

$3F00

$4000

$10000

Pattern Table 0

Pattern Table 1

Mirrors
$3F00-$3F1F

Sprite Palette

Image Palette

Mirrors
$2000-$2EFF

Attribute Table 3

Name Table 3

Attribute Table 2

Name Table 2

Mirrors
$0000-$3FFF

Attribute Table 1

Name Table 1

Attribute Table 0

Name Table 0

$0000

$1000

$2000

$23C0

$2400

$27C0

$2800

$2BC0

$2C00

$2FC0

$3000

$3F00

$3F10

$3F20

$4000

$10000

Name Tables

Palettes

Mirrors
$0000-$3FFF

Pattern Tables

 
Figure 3-1. PPU memory map. 

 
3.3 PPU Registers 
 
Communication between the CPU and other devices takes place via memory mapped I/O 
registers. The registers used by the PPU are located in main memory at $2000-$2007 with 
an additional register used for Direct Memory Access at $4014. Remember that locations 
$2000-$2007 are mirrored every 8 bytes in the region $2008-$3FFF. A summary of all I/O 
registers can be found in Appendix B. 
 
The actions of the PPU can be controlled by the CPU by writing to $2000 and $2001, known 
as PPU Control Register 1 and PPU Control Register 2 respectively. Both registers should 
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only be written to. Bit 7 of £2000 can be used to disable NMIs. Remember that this type of 
interrupt is generated whenever a V-Blank occurs and is unaffected by the interrupt disable 
flag of the status register. Clearing this bit will prevent an NMI from occurring on V-Blank. 
Since the NES supports both 8x8 and 8x16 sprites, setting bit 5 of $2000 will switch to 8x16 
sprites. The next address in PPU memory to read or write from will be incremented after 
each I/O occurs. The value to increment by is adjusted by setting the value of bit 2 of $2000. 
If this is clear, the address is incremented by 1 (horizontal), otherwise the increment is 32 
(vertical). Using $2001, the background can be hidden by clearing bit 3 and, similarly, the 
sprites can be hidden by clearing bit 4. 
 
The PPU Status Register is located at $2002 and is read only. The register is used by the 
PPU to report its status to the CPU. The programs will frequently cause the CPU to read 
from this location in order to ascertain the PPU’s status. Bit 7 is set by the PPU to indicate 
that V-Blank is occurring. Bit 6 and bit 7 relate to sprites and are described later. Bit 4 
indicates whether the PPU is willing to accept writes to VRAM, if it clear then writes are 
ignored. When a read from $2002 occurs, bit 7 is reset to 0 as are $2005 and $2006. 
 
3.3.1 Direct Memory Access 
 
When transferring a large amount of data between devices it is inefficient to transfer this 
through the processor. To transfer data from CPU memory to sprite memory, for example, 
takes the following steps: 
 
1. Load required SPR-RAM address into CPU. 
2. Write required SPR-RAM address to $2003. 
3. Load byte into CPU. 
4. Write byte to $2004. 
 
When filling the contents of sprite memory, this technique would have to be repeated 256 
times. Direct Memory Access (DMA) is a technique which allows more efficient copying of 
data from CPU memory to sprite memory. Using DMA, the whole of sprite memory can be 
filled by using a single instruction, a write to $4014. The starting address in CPU memory is 
specified by the operand for the write multiplied by $100. The 256 bytes starting at this 
address are copied directly into sprite memory without the further involvement of the CPU. 
 
When the DMA is occurring, the memory bus is in use, preventing the CPU from accessing 
memory and, therefore, preventing it from accessing any more instructions. This is referred 
to as cycle stealing and the CPU has to wait until the DMA transfer is complete. On the NES, 
the DMA takes the equivalent of 512 cycles (about 4.5 scanlines worth) after which the CPU 
can resume. This is considerably less than would be required to copy manually through the 
CPU. 
 
3.4 Colour Palette 
 
The NES has a colour palette containing 52 colours although there is actually room for 64. 
However, not all of these can be displayed at a given time. The NES uses two palettes, each 
with 16 entries, the image palette ($3F00-$3F0F) and the sprite palette ($3F10-$3F1F). The 
image palette shows the colours currently available for background tiles. The sprite palette 
shows the colours currently available for sprites. These palettes do not store the actual 
colour values but rather the index of the colour in the system palette. Since only 64 unique 
values are needed, bits 6 and 7 can be ignored. 
 
The palette entry at $3F00 is the background colour and is used for transparency. Mirroring 
is used so that every four bytes in the palettes is a copy of $3F00. Therefore $3F04, $3F08, 
$3F0C, $3F10, $3F14, $3F18 and $3F1C are just copies of $3F00 and the total number of 
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colours in each palette is 13, not 16 [5]. The total number of colours onscreen at any time is 
therefore 25 out of 52. Both palettes are also mirrored to $3F20-$3FFF. The colour palette is 
shown in Appendix F. 
 
3.5 Pattern Tables 
 
The NES has two pattern tables at $0000 and $1000. The pattern tables store the 8x8 pixel 
tiles which can be drawn on the screen. Many games store the pattern tables in CHR-ROM 
on the cartridge, however, games without CHR-ROM will use RAM for the pattern tables and 
fill them during execution. The pattern tables store the least significant two bits of the 4-bit 
number needed to identify the image or sprite palette entry used by that pixel such that 00b 
is palette entry 0, 01b is 1, 10b is 2 and 11b is 3. 
 

 
 

Figure 3-2. Pattern tables. Adapted from [7]. 
 
Figure 3-2 shows how the pattern tables work. The character ‘A’ is the final result, shown at 
the bottom. The character is constructed pixel by pixel by taking one bit from the top left and 
one from the top right to make a 2-bit colour. The other two bits of the colour are taken from 
the attribute tables. The colours shown are not genuine NES colour palette values. 
 
3.6 Name Tables / Attribute Tables 
 
Name tables are essentially a matrix of tile numbers, pointing to the tiles stored in the pattern 
tables. The name tables are 32x30 tiles and since each tile is 8x8 pixels, the entire name 
table is 256x240 pixels. 
 
Each name table has an associated attribute table. Attribute tables hold the upper two bits of 
the colours for the tiles. Each byte in the attribute table represents a 4x4 group of tiles, so an 
attribute table is an 8x8 table of these groups. Each 4x4 group is further divided into four 2x2 
squares as shown in figure 3-3 [9]. The 8x8 tiles are numbered $0-$F. The layout of the byte 
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is 33221100 where every two bits specifies the most significant two colour bits for the 
specified square. 
 

Square 0

$0 $1

$2 $3

Square 1

$4 $5

$6 $7

Square 2

$8 $9

$A $B

Square 3

$C $D

$E $F

 
 

Figure 3-3. 4x4 tile group layout. Adapted from [20]. 
 
The NES only has 2 KB to store name tables and attribute tables, allowing it to store two of 
each. However it can address up to four of each. Mirroring is used to allow it to do this. There 
are four types of mirroring which are described below, using abbreviations for logical name 
tables (those that can be addressed), L1 at $2000, L2 at $2400, L3 at $2800 and L4 at 
$2C00: 
 
•  Horizontal mirroring maps L1 and L2 to the first physical name table and L3 and L4 to the 

second as shown in figure 3-4. 
 

1 1
2 2

 
 

Figure 3-4. Horizontal mirroring. 
 
•  Vertical mirroring maps L1 and L3 to the first physical name table and L2 and L4 to the 

second as shown in figure 3-5. 
 

1 2
1 2

 
 

Figure 3-5. Vertical mirroring. 
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•  Single-screen mirroring points all four logical name tables to the same physical name 
table as shown in figure 3-6. 

 

1 1
1 1

 
 

Figure 3-6. Single-screen mirroring. 
 
•  Four-screen mirroring uses an additional 2 KB of RAM in the cartridge itself to allow 

logical name tables to each map to separate physical name tables as shown in figure 3-7. 
 

1 2
3 4

 
 

Figure 3-7. Four-screen mirroring.  
 
3.7 Sprites 
 
Sprites are the characters to draw on the screen. Sprites can be either 8x8 pixels or 8x16 
pixels. Most characters are composed of multiple sprites. The sprite data is stored in the 
pattern tables while the sprite attributes are stored in SPR-RAM. There are a maximum of 64 
sprites, each of which uses four bytes in SPR-RAM. The bytes work as follows: 
 
•  Byte 0 - Stores the y-coordinate of the top left of the sprite minus 1. 
•  Byte 1 - Index number of the sprite in the pattern tables. 
•  Byte 2 - Stores the attributes of the sprite. 

•  Bits 0-1 - Most significant two bits of the colour. 
•  Bit 5 - Indicates whether this sprite has priority over the background. 
•  Bit 6 - Indicates whether to flip the sprite horizontally. 
•  Bit 7 - Indicates whether to flip the sprite vertically. 

 
8x16 sprites use different pattern tables based on their index number. If the index number is 
even the sprite data is in the first pattern table at $0000, otherwise it is in the second pattern 
table at $1000. 
 
Sprites can be read or written one at a time by first writing the required address to $2003 and 
then reading or writing $2004. Alternatively the whole of SPR-RAM can be written in one 
DMA operation by writing to $4014. 
 
Sprites are given priority based on their position in SPR-RAM. The first sprite is known as 
sprite 0 and has higher priority. On each line the system calculates which sprites are on that 
line and draws them, lowest priority first, to ensure high priority sprites are drawn on top. 
Only eight sprites are allowed per scanline, and the system indicates when this number has 
been reached by setting bit 5 of I/O register $2002. 
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A common technique used for scrolling involves determining whether sprite 0 is overlapping 
a non-transparent background pixel. If the system is drawing sprite 0, and any non-
transparent pixel in it is in the same position as a non-transparent background pixel, the 
system sets the sprite 0 hit flag in bit 6 of $2002. Therefore if the background tile contains 
only transparent pixels the sprite 0 hit flag will not be set. Figure 19 shows sprite 0 detection. 
The left image shows the background, the centre image shows the sprite and the right image 
shows the composite of the two. Colour 0 represents transparency and the circled pixel 
indicates where the sprite 0 hit flag is set. Figure 3-8 is adapted from [20], however the 
original incorrectly indicated where the hit flag was set. 
 

 
 

Figure 3-8. Sprite 0 detection. Adapted from [7]. 
 
Characters are generally larger than a single sprite and so are constructed by combining 
multiple sprites. For example figure 3-9 shows how the Mario character is constructed of 
eight separate 8x8 sprites. 
 

 
 

Figure 3-9. Character construction. Adapted from [33]. 
 
3.8 Scrolling 
 
The background can be scrolled horizontally or vertically. Scrolling makes use of the 
separate name tables. At any given time background on the screen is either taken straight 
from one of the name tables or will be a combination of two name tables. This is shown in 
figures 3-10 and 3-11. Figure 3-10 shows the contents of two of the name tables (the other 
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two are, of course, mirrors) and figure 3-11 shows the composite image displayed on the 
screen, including sprites. 
 

 
 

Figure 3-10. Horizontal scrolling in Super Mario Bros. 
 

 
 

Figure 3-11. Composite image. 
 

The final image starts on the first name table and stretches across to the second. The 
division between the two name tables is shown on figure 3-10 by the grey line. The two blue 
lines indicate the area which is shown on the screen. To the left of the on-screen portion is 
the section which has already been displayed, and which has now scrolled off the screen. To 
the right of the on-screen portion is where the system is currently filling the name table with 
what lies ahead and will be displayed on the screen as Mario continues to move along. As 
demonstrated by the cloud which is cut in half, not all of this area has yet been filled by the 
system. Some games only allow movement in one direction while others allow scrolling in 
both directions. This is described by Nintendo as follows [33]: 
 

“The PPU may display only 960 characters at a time, but it actually stores 
twice that amount. In a one way scroll, new characters constantly replace old 
characters behind the scroll. This is why in games like Super Mario Bros. the 
screen can scroll only one way. In Metroid, however, scrolling occurs in two 
directions and new characters are continually added in the direction of the 
scroll.” 
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It is clear that the status bar area of the screen is not scrolled in the same way as the rest 
and is fully resident on the first name table. This is typical of status information and is 
handled in Super Mario Bros. by using the sprite 0 hit flag and in Super Mario Bros. 3 by 
generating an IRQ. 
 
The general picture of horizontal and vertical scrolling is shown in figure 3-12. The name 
table shown here as A is specified by bits 0-1 of $2000 and B is the name table after (which 
depends on the mirroring technique). This does not apply to games which allow 
simultaneous horizontal and vertical scrolling [7]. The background image will span across the 
name tables as shown in figure 3-13. 
 

 
 

Figure 3-12. Horizontal and vertical scrolling. Adapted from [7]. 
 

Name Table 0 
($2000)

Name Table 2 
($2800)

Name Table 1 
($2400)

Name Table 3 
($2C00)

 
 

Figure 3-13. Name tables used for background. Adapted from [7]. 
 
The way scrolling works is described in [8] and is summarised here. The system maintains a 
16-bit VRAM address register, the value of which is set by $2006. The layout of this register 
is as follows: 
 

•  Bits 0-11 - Stores the address in the name table as an offset from $2000. Bits 0-4 are 
the x-scroll and is incremented as the line is drawn. As this is incremented from 31, it 
wraps to 0 and bit 10 is switched. Bits 5-9 are the y-scroll and are incremented at the 
end of a line. When incremented from 29, it wraps to 0 and bit 11 is switched. If the 
value is set above 29 by a write to $2007, then it will wrap to 0 when it reaches 31, 
but bit 11 is not affected. 

•  Bits 12-14 are the tile y-offset. 
 
Since the x-scroll and the y-scroll indicate tile numbers, this allows 32 tiles across the screen 
(256 pixels) and 30 tiles down the screen (240 pixels), for a total of 960 tiles. 
 
There is a second, temporary VRAM address register which is also 16-bits long. Finally there 
is a 3-bit tile x-offset. These are updated by writes to registers and as the frame is drawn. 
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3.9 Television Standards 
 
The NES connects to a television to display the game to user. As a result different versions 
of the system were created for the two television formats, NTSC and PAL. NTSC (National 
Television Standards Committee) is the standard used in North America, most of South 
America and parts of Asia [34]. PAL (Phase Alternating Line) is the standard used in Europe, 
much of Asia, Africa and Australasia [35]. Table 3-1 shows the differences between NTSC 
and PAL versions of the NES. 
 
 NTSC PAL 
Frames per second 60 50 
Time per frame (milliseconds) 16.67 20 
Scanlines per frame (of which is V-Blank) 262 (20) 312 (70) 
CPU cycles per scanline 113.33 106.56 
Resolution 256 x 224 256 x 240 
CPU speed 1.79 MHz 1.66 MHz 
 

Table 3-1. Comparison of NTSC and PAL NES systems. 
 
Images are displayed on a television screen by a stream of high speed electrons which 
moves across the screen, from left to right, drawing each pixel. A single line of pixels is 
referred to as a scanline. At the end of a scanline the electron beam must move to the next 
line and return to the left before it can proceed. The time it takes to do this is known as the 
Horizontal Blank period (H-Blank). 
 
After drawing the screen once, the electron beam must return to the top left corner, ready to 
start the next frame. The time it takes to do this is known as the Vertical Blank period (V-
Blank). When entering the V-Blank period, the PPU indicates this by setting bit 7 of I/O 
register $2002. This bit is reset when the CPU next reads from $2002. 
 
On an NTSC version of the NES, there are 240 scanlines on the screen (although the top 
and bottom eight lines are cut off) and it takes an additional 3 scanlines worth of CPU cycles 
to enter V-Blank. The V-Blank period takes a further 20 scanlines worth before the next 
frame can be drawn.  
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4 - Game Hardware 
 
4.1 Cartridges 
 
NES games came on cartridges known as a Game Pak. The game itself was stored on ROM 
chips inside the cartridge. Some cartridges also featured RAM, powered by a battery, in 
order to allow games to be saved. 
 

 
 

Figure 4-1. Ys cartridge for the Famicom compared to 
Super Mario Bros. / Duck Hunt cartridge for the NES [28]. 

 
Figure 4-1 shows the difference 
between cartridges for the Famicom 
and NES. Nintendo designed a basic 
cartridge for the Famicom, as shown 
top in figure 4-1, but other developers 
designed their own cartridges with a 
variety of shapes, sizes and colours. 
With the NES, Nintendo produced the 
cartridges to a standard design, which 
is shown bottom in figure 4-1. Although 
the NES cartridge is bigger, much of it 
is just wasted space. Famicom 
cartridges had a 60-pin connection 
while NES cartridges had a 72-pin 
connection, making the two formats 
incompatible without an adapter [28]. 
Figure 4-2 shows the inside of a NES, 
looking at the bottom of the 
motherboard. The red line indicates the 72-pin connector to which cartridges connect. 
 
Figure 4-3 shows a cartridge being used with the original, front-loading, version of the NES. 
Figure 4-4 shows the inside of a NES cartridge. The chip on the left is the CHR-ROM and 
contains the pattern tables, the graphics data for the game. The chip on the right is the PRG-
ROM and contains the program code for the game. 
 

Figure 4-2. Inside the NES, the 72-pin connector
is indicated by the red line [36]. 



 

 27

4.1.1 Memory Mappers 
 
The NES’ limited memory was sufficient for early games, however as they became more 
complex, games became larger and the memory was insufficient. To allow cartridges to 
contain more ROM, the NES had to be able to swap the data in and out of memory when it 
was needed. Since the NES could not address beyond $FFFF, switching hardware in the 
cartridges themselves was used. This hardware was known as a memory mapper or MMC 
(Memory Management Chip). 
 
The basic idea of memory mapping is that when the system requires access to data on a 
ROM bank that is not currently loaded in memory, the software indicates the need to switch 
banks and the selected bank is loaded into a page in memory, replacing the existing 
contents. The use of memory mappers was one of the factors in the NES’ longevity, allowing 
it to survive technological deficiencies. 
 
Several memory mappers were used by the NES and a comprehensive list can be found in 
Appendix C. Some of the more common memory mappers are described below and detailed 
explanations of how they work can be found in Appendix D. 
 
•  UNROM switches were the first chips to allow bank switching of NES games. UNROM 

only allowed switching of PRG-ROM banks. It provided no support for CHR-ROM. The 
maximum number of 16 KB PRG-ROM banks using UNROM is 8 [39]. 

•  CNROM switches allowed swapping of CHR-ROM banks but not PRG-ROM. Therefore 
the size of the program code was no larger than with games using no memory mapper, 
but more sophisticated graphics were possible. 

•  MMC1 allowed switching of both PRG-ROM and CHR-ROM banks. The chip also 
allowed changes to name table mirroring and had support for saving to a RAM chip. The 
maximum number of 16 KB PRG-ROM banks using MMC1 is 8. MMC1 was the most 
used memory mapper, being used by a variety of games including Metroid and The 
Legend of Zelda [27]. 

•  MMC3 allowed switching of both PRG-ROM and CHR-ROM banks. The chip also 
allowed for selective screen scrolling, that is allowing part of the screen to move while 
part remains stationary, and was capable of generating IRQs. The maximum number of 
16 KB PRG-ROM banks using MMC3 is 32 [27]. MMC3 was the second most used chip, 
used by games including Super Mario Bros. 2 and Super Mario Bros. 3. 

 
4.1.2 Cartridge File Formats 
 

Figure 4-4. Inside a NES cartridge [38].Figure 4-3. Cartridge inserted into NES [37].
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The software that can be run using an emulator is usually referred to as a ROM image in 
reference to the original ROM chips used to store it. A simple dump of the contents of the 
cartridge is unlikely to be sufficient as it leaves no way to identify what each part of the file 
means. Two different file formats have emerged to provide this information. 
 
The iNES file format was originally defined by Marat Fayzullin for use in his iNES emulator. 
The format has since been used by most emulators and is the most common format for ROM 
images. INES format files should have the file extension *.nes. The format provides a 16 byte 
header at the start of the file which contains important information. The format as described 
in [9] is as shown in table 4-1: 
 
Starting Byte Length (Bytes) Contents 
0 3 Should contain the string ‘NES’ to identify the file as an 

iNES file. 
3 1 Should contain the value $1A, also used to identify file 

format. 
4 1 Number of 16 KB PRG-ROM banks. The PRG-ROM 

(Program ROM) is the area of ROM used to store the 
program code. 

5 1 Number of 8 KB CHR-ROM / VROM banks. The names 
CHR-ROM (Character ROM) and VROM are used 
synonymously to refer to the area of ROM used to store 
graphics information, the pattern tables. 

6 1 ROM Control Byte 1: 
 
•  Bit 0 - Indicates the type of mirroring used by the game 

where 0 indicates horizontal mirroring, 1 indicates 
vertical mirroring. 

•  Bit 1 - Indicates the presence of battery-backed RAM at 
memory locations $6000-$7FFF. 

•  Bit 2 - Indicates the presence of a 512-byte trainer at 
memory locations $7000-$71FF. 

•  Bit 3 - If this bit is set it overrides bit 0 to indicate four-
screen mirroring should be used. 

•  Bits 4-7 - Four lower bits of the mapper number. 
7 1 ROM Control Byte 2: 

 
•  Bits 0-3 - Reserved for future usage and should all be 0. 
•  Bits 4-7 - Four upper bits of the mapper number. 

8 1 Number of 8 KB RAM banks. For compatibility with previous 
versions of the iNES format, assume 1 page of RAM when 
this is 0. 

9 7 Reserved for future usage and should all be 0. 
 

Table 4-1. iNES header information. 
 
Following the header is the 512-byte trainer, if one is present, otherwise the ROM banks 
begin here, starting with PRG-ROM then CHR-ROM. The format allows for up to 256 
different memory mappers. Each mapper is assigned a specific number and the mapper 
number can be obtained by shifting bits 4-7 of control byte 2 to the left by 4 bits and then 
adding the bits 4-7 of control byte 1. A complete list of mappers and their official iNES 
mapper numbers can be found in Appendix C. 
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The iNES format suffers from many problems. It is often misused, with people inserting their 
names in the header, for example. Marat Fayzullin’s involvement in NES development seems 
to have decreased recently and, in the absence of any official updates to the format, many 
developers have specified their own alterations, others have also been devising their own 
mapper numbers. This has led to the format becoming increasingly inaccurate and the 
development of UNIF (Universal NES Interchange Format) [40]. 
 
UNIF format files generally have the extension *.unf and contain a header which identifies 
the format and the revision number, followed by a series of chunks. Each chunk consists of 
an ID string to identify the purpose of the chunk, the length of the block in bytes and the data. 
The format is quite similar to XML, although chunks are not closed, whereas tags are closed 
in XML. 
 
The UNIF format identifies each mapper from the name of the board used, rather than via a 
number. This ensures that only genuine boards can be used. Although the UNIF format 
improves greatly on the iNES format, it is currently supported by fewer emulators and less 
ROM files are available in the format. The iNES format should be gradually replaces by UNIF 
within the next few years. 
 
4.2 Famicom Disk System 
 
Partially in response to rising chip 
prices and partially as part of an effort 
to make the Famicom more like a 
computer, Nintendo released the 
Famicom Disk System in early 1986 
[28]. The system allowed the Famicom 
to run games stored on 2.5” magnetic 
disks with 32 KB of RAM and 8 KB of 
VRAM, rather than the traditional 
cartridges [9]. The Famicom Disk 
System is shown attached to the 
Famicom in figure 4-5 and the Mario 
Golf disk is shown in figure 4-6. 
Nintendo hoped that the system would 
allow for larger games, due to larger 
capacities, and would also offer 
cheaper prices to the consumer. The 
disks were also reusable, allowing 
gamers to replace a game with a new 
one at special kiosks, paying a small fee rather than having to pay for a new disk [10]. Almost 
2 million Disk Systems sold in 1986. However, the system was not popular with licensees 
who had to decide which format to release games for, and Nintendo’s strict licensing for Disk 
System games also made the format unpopular. When semiconductor prices dropped, 
cartridges could have a higher capacity than disks for the same price. Although over 4 million 
Disk Systems were sold by 1990, the cartridge remained the main method of storing games 
and the Famicom Disk System was never released outside Asia. More information on how 
the Famicom Disk System worked can be found in [9]. 
 

Figure 4-5. Famicom attached to 
Famicom Disk System [28]. 
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Figure 4-6. Mario Golf disk [41]. 
 
4.3 Game Genie 
 
The Game Genie was a device that allowed 
gamers to cheat by adjusting the way the code 
is executed. The Game Genie was designed 
by Codemasters and distributed by Galoob 
Toys [14]. Other cheat devices worked by 
locking the value of a given memory location. 
For example if the game stores the number of 
lives remaining in location $1000, then locking 
this to 5 would give the gamer an infinite 
number of lives. The Game Genie, however, 
works on ROM rather than RAM. It monitors 
the address bus of the cartridge port and if it 
detects a given address writes the required 
value to the data bus [5]. 
 

Figure 4-7. Game Genie [42]. 
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5 - Input Devices 
 
5.1 Control Pad 
 
The 6502 used memory mapped I/O (input/output). This means that the same instructions 
and bus are used to communicate with I/O devices as with memory, that writing to a specific 
memory location writes to the appropriate device. In the NES, the I/O ports for input devices 
were $4016 and $4017 (see Appendix B). 
 
The original NES used a rectangular control pad as shown in figure 5-1. The pad featured 
four buttons, A, B, Start and Select as well as a four-directional cross used to control 
movement. Although many variations were released, often with additional features such as 
slow motion and turbo fire, the original design was by far the most commonly used. 
 

 
 

Figure 5-1. Original NES control pad [43]. 
 

The system reads multiple times from the I/O port to get all information about the controller. 
Each of the first eight reads indicates the status of one button on the standard controller in 
the order A, B, Select, Start, Up, Down, Left, Right. The first controller is attached to port 
$4016, the second to $4017. Using a four-player adapter it was possible to connect four 
controllers to the system, although this was rare. In this case controllers 1 and 3 were 
attached to $4016 and 2 and 4 to $4017. The next eight reads would get the status of the 
second controller on the port, otherwise they are ignored. 
 
Reads 17-20 retrieve the signatures which identify whether a device is connected and if so, 
what type of device [7]. If a joypad is connected to $4016 the returned value is 01b, if one is 
connected to $4017 the returned value is 10b. There are four more reads which are not 
required before the cycle starts again. 
 
The process of reading from an I/O device can be reset by use of a strobing method. When a 
reset is required, it is indicated by first writing a 1 to the port, followed by a 0. 
 
5.2 Zapper 
 
When the NES first launched in America, Nintendo included a light-gun known as the 
Zapper. Figure 5-2 shows the original version of the Zapper, although the colour was later 
changed to orange. By aiming using the sight, the gamer could produce quite accurate 
results. Several games featured Zapper support including Duck Hunt, Gumshoe and Wild 
Gunman [44]. 
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Figure 5-2. Original NES Zapper light-gun [45]. 
 

“The Zapper works by receiving the light from the screen. The contrast and 
brightness controls of the TV must be adjusted properly or the shots may not 
register. (The characters should be as bright as possible while the background 
areas should be as dark as possible.)” 

 
The above description of how the Zapper works is taken from the light-guns manual as 
quoted in [44]. Essentially, the Zapper works by measuring the intensity of the light at the 
point it is aimed at. When the system detects the trigger is pulled, it draws a white box 
around the sprites on the screen. The Zapper can then check the colour intensity and 
determine if it is pointed at a white area, which is a sprite, or a dark area, which belongs to 
the background. 
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Appendix A 
Arithmetic And Logic 

 
A.1 Numbering Systems 
 
The hexadecimal number system uses base 16 with digits 0-9 and A-F, where A represents 
10 and F represents 15. The hexadecimal system is used frequently throughout this 
document and any numbers written in this format will be indicated by use of the prefixes $ 
and 0x (used interchangeably). For example, $2F = (2 * 16) + 15 = 47. 
 
The binary number system uses base 2 with digits 0 and 1. This system is also frequently 
used and any numbers written in this format will be indicated by use of the suffix b. For 
example 101111b = 32 + 8 + 4 + 2 + 1 = 47. 
 
A.2 Binary Coded Decimal (BCD) 
 
Binary Coded Decimal represents each digit by a group of 4 bits. The technique is less 
efficient than traditional binary notation. As an example, 123 represented in binary is 
1111011b but the equivalent BCD representation is 000100100011b. 
 
A.3 Two’s Complement 
 
Two’s complement is a method for representing negative numbers in binary. The most 
significant bit is the sign, with 0 being positive, while 1 is negative. The range available in a 
single byte is therefore -128 to 127, rather than 0 to 255. 
 
A.4 Wraparound 
 
The maximum value of an unsigned byte is 255. Increasing the value causes it to wrap 
around to 0. Similarly, decrementing from 0 results in a value of 255. With a signed byte, the 
maximum positive value is 127, and incrementing beyond this will result in bit 7 being set and 
the value becoming -128. Around 0, the value changes smoothly between positive and 
negative numbers. Therefore with unsigned bytes, wraparound occurs between 255 and 0 
and with signed bytes, it occurs between 127 and -128. 
 

 
 

Figure A-1. Wraparound of both unsigned (left) and signed (right) 8-bit integers. 
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Appendix B 
NES I/O Registers 

 
The following information is based on [7]: 

 
Address Access Level Description 
$2000 Write PPU Control Register 1: 

 
•  Bits 0-1 - Name table address, changes between the four 

name tables at $2000 (0), $2400 (1), $2800 (2) and $2C00 
(3). 

•  Bit 2 - Specifies amount to increment address by, either 1 if 
this is 0 or 32 if this is 1. 

•  Bit 3 - Identifies which pattern table sprites are stored in, 
either $0000 (0) or $1000 (1). 

•  Bit 4 - Identifies which pattern table the background is 
stored in, either $0000 (0) or $1000 (1). 

•  Bit 5 - Specifies the size of sprites in pixels, 8x8 if this is 0, 
otherwise 8x16. 

•  Bit 6 - Changes PPU between master and slave modes. 
This is not used by the NES. 

•  Bit 7 - Indicates whether a NMI should occur upon V-Blank. 
$2001 Write PPU Control Register 2: 

 
•  Bit 0 - Indicates whether the system is in colour (0) or 

monochrome mode (1), 
•  Bit 1 - Specifies whether to clip the background, that is 

whether to hide the background in the left 8 pixels on 
screen (0) or to show them (1). 

•  Bit 2 - Specifies whether to clip the sprites, that is whether 
to hide sprites in the left 8 pixels on screen (0) or to show 
them (1). 

•  Bit 3 - If this is 0, the background should not be displayed. 
•  Bit 4 - If this is 0, sprites should not be displayed. 
•  Bits 5-7 - Indicates background colour in monochrome 

mode or colour intensity in colour mode. 
$2002 Read PPU Status Register: 

 
•  Bit 4 - If set, indicates that writes to VRAM should be 

ignored. 
•  Bit 5 - Scanline sprite count, if set, indicates more than 8 

sprites on the current scanline. 
•  Bit 6 - Sprite 0 hit flag, set when a non-transparent pixel of 

sprite 0 overlaps a non-transparent background pixel. 
•  Bit 7 - Indicates whether V-Blank is occurring. 

$2003 Write SPR-RAM Address Register: 
 
Holds the address in SPR-RAM to access on the next write to 
$2004. 

$2004 Write SPR-RAM I/O Register: 
 
Writes a byte to SPR-RAM at the address indicated by $2003. 

$2005 Write VRAM Address Register 1. 
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$2006 Write VRAM Address Register 2. 
$2007 Read / Write VRAM I/O Register: 

 
Reads or writes a byte from VRAM at the current address. 

$4000 Write pAPU Pulse 1 Control Register. 
$4001 Write pAPU Pulse 1 Ramp Control Register. 
$4002 Write pAPU Pulse 1 Fine Tune (FT) Register. 
$4003 Write pAPU Pulse 1 Coarse Tune (CT) Register. 
$4004 Write pAPU Pulse 2 Control Register. 
$4005 Write pAPU Pulse 2 Ramp Control Register. 
$4006 Write pAPU Pulse 2 Fine Tune Register. 
$4007 Write pAPU Pulse 2 Coarse Tune Register. 
$4008 Write pAPU Triangle Control Register 1. 
$4009 Write pAPU Triangle Control Register 2. 
$400A Write pAPU Triangle Frequency Register 1. 
$400B Write pAPU Triangle Frequency Register 2. 
$400C Write pAPU Noise Control Register 1. 
$400E Write pAPU Noise Frequency Register 1. 
$400F Write pAPU Noise Frequency Register 2. 
$4010 Write pAPU Delta Modulation Control Register. 
$4011 Write pAPU Delta Modulation D/A Register. 
$4012 Write pAPU Delta Modulation Address Register. 
$4013 Write pAPU Delta Modulation Data Length Register. 
$4014 Write Sprite DMA Register: 

 
Writes cause a DMA transfer to occur from CPU memory at 
address $100 x n, where n is the value written, to SPR-RAM. 

$4015 Read / Write pAPU Sound / Vertical Clock Signal Register. 
$4016 Read / Write Joypad 1: 

 
•  Bit 0 - Reads data from joypad or causes joypad strobe 

when writing. 
•  Bit 3 - Indicates whether Zapper is pointing at a sprite. 
•  Bit 4 - Cleared when Zapper trigger is released. 
 
Only bit 0 is involved in writing. 

$4017 Read / Write Joypad 2: 
 
When reading: 
 
•  Bit 0 - Reads data from joypad or causes joypad strobe 

when writing. 
•  Bit 3 - Indicates whether Zapper is pointing at a sprite. 
•  Bit 4 - Cleared when Zapper trigger is released. 
 
Only bit 0 is involved in writing. 
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Appendix C 
iNES Mapper Numbers 

 
The following mapper numbers are based on [9]: 

 
iNES Mapper Number Mapper Name 
0 NROM, no mapper 
1 Nintendo MMC1 
2 UNROM switch 
3 CNROM switch 
4 Nintendo MMC3 
5 Nintendo MMC5 
6 FFE F4xxx 
7 AOROM switch 
8 FFE F3xxx 
9 Nintendo MMC2 
10 Nintendo MMC4 
11 ColorDreams chip 
12 FFE F6xxx 
15 100-in-1 switch 
16 Bandai chip 
17 FFE F8xxx 
18 Jaleco SS8806 chip 
19 Namcot 106 chip 
20 Nintendo DiskSystem 
21 Konami VRC4a 
22 Konami VRC2a 
23 Konami VRC2a 
24 Konami VRC6 
25 Konami VRC4b 
32 Irem G-101 chip 
33 Taito TC0190/TC0350 
34 32 KB ROM switch 
64 Tengen RAMBO-1 chip 
65 Irem H-3001 chip 
66 GNROM switch 
67 SunSoft3 chip 
68 SunSoft4 chip 
69 SunSoft5 FME-7 chip 
71 Camerica chip 
78 Irem 74HC161/32-based 
91 Pirate HK-SF3 chip 
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Appendix D 
Memory Mapper Functions 

 
The information in this section is based on [6] with additional information about MMC1 from 
[46]. 

 
D.1 UNROM Switch 
 
Address Data 
$8000-$FFFF 16 KB PRG-ROM bank number to load into $8000. 
 
On reset, the first PRG-ROM bank is loaded into $8000 and the last PRG-ROM bank is 
loaded into $C000. Switching is only allowed for the bank at $8000, the one at $C000 is 
permanently assigned to that location. Since this mapper has no support for VROM, games 
using it have 8 KB of VRAM at $0000 in PPU memory. 
 
D.2 CNROM Switch 
 
Address Data 
$8000-$FFFF 8 KB CHR-ROM bank number to load into PPU memory at $0000. 
 
With this mapper, PRG-ROM functions the same as with NROM (no mapper), so games with 
only one 16 KB bank of PRG-ROM will load it into both $8000 and $C000, those with two will 
load one into $8000 and the other into $C000. On reset, the first 8 KB VROM bank is loaded 
into PPU $0000. 
 
D.3 MMC1 
 
Address Data 
$8000-$9FFF Register 0: 

 
•  Bit 0 - Selects mirroring between horizontal (0) and vertical (1). 
•  Bit 1 - Set to 0 to cause single screen mirroring. 
•  Bit 2 - If 0, PRG-ROM swapped at $C000. If 1, PRG-ROM swapped at 

$8000. 
•  Bit 3 - If 0, swap 32 KB of PRG-ROM at $8000. If 1, swap 16 KB at the 

address specified by bit 2. 
•  Bit 4 - If the cartridge has VROM, 0 indicates swapping 8 KB of VROM 

at PPU $0000, 1 indicates swapping two 4 KB VROM pages at PPU 
$0000 and $1000. On 1024 KB cartridges this bit specifies whether to 
use 256 KB selection register 1. 

•  Bit 7 - Set to 1 to reset register. 
$A000-$BFFF Register 1: 

 
•  Bits 0-3 - VROM bank number to load into PPU $0000. Based on bit 4 

of register 0, this will either be 8 KB bank n, or 4 KB banks n and (n + 
1) where n is the value of bits 0-3. 

•  Bit 4 - 256 KB selection register 0. Stores the low bit of 256 KB PRG-
ROM selection in 1024 KB cartridges with bit 4 of register 0 set, 
otherwise 0 indicates swapping from first 256 KB of PRG-ROM, 1 
indicates swapping from third 256 KB of PRG-ROM. In 512 KB 
cartridges, 0 indicates swapping from first 256 KB of PRG-ROM, 1 
indicates swapping from second 256 KB of PRG-ROM. 
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•  Bit 7 - Set to 1 to reset register. 
$C000-$DFFF Register 2: 

 
•  Bits 0-3 - VROM bank number to load into PPU $1000. If bit 4 of 

register 0 is set, this will be 4 KB banks n and (n + 1) where n is the 
value of bits 0-3, otherwise it is ignored. 

•  Bit 4 - 256 KB selection register 1. Stores the high bit of 256 KB PRG-
ROM selection in 1024 KB cartridges. 

•  Bit 7 - Set to 1 to reset register. 
$E000-$FFFF Register 3: 

 
•  Bits 0-3 - PRG-ROM bank number to load into memory. If bit 3 of 

register 0 is clear, swaps 32 KB at $8000, otherwise swaps a 16 KB 
bank at either $8000 or $C000 based on bit 2 of register 0. 

•  Bit 7 - Set to 1 to reset register. 
 
On reset, the first PRG-ROM bank is loaded into $8000 and the last PRG-ROM bank is 
loaded into $C000. Values are written to the registers in MMC1, one bit at a time until five 
bits have been written. By writing a value with bit 7 set, this buffering can be reset, causing 
the next write to be to bit 0 of the register. The buffering is also reset by writing to a different 
register. 256 KB swapping is not currently supported by the implementation of MMC1 in 
NES#. 
 
D.4 MMC3 
 
Address Data 
$8000 •  Bits 0-2 - Command number: 

•  0 - Swap two 1 KB VROM banks at PPU $0000. 
•  1 - Swap two 1 KB VROM banks at PPU $0800. 
•  2 - Swap one 1 KB VROM bank at PPU $1000. 
•  3 - Swap one 1 KB VROM bank at PPU $1400. 
•  4 - Swap one 1 KB VROM bank at PPU $1800. 
•  5 - Swap one 1 KB VROM bank at PPU $1C00. 
•  6 - Swap PRG-ROM bank at either $8000 or $A000 based on bit 6. 
•  7 - Swap PRG-ROM bank at either $A000 or $C000 based on bit 

6. 
•  Bit 6 - If 0, enables swapping at $8000 and $A000, otherwise enables 

swapping at $A000 and $C000. 
•  Bit 7 - If 1, causes addresses for commands 0-5 to be the exclusive-or 

of the address stated and $1000. 
$8001 Executes the command specified by $8000, using this as the page 

number. 
$A000 •  Bit 1 - Selects mirroring between horizontal (0) and vertical (1). 
$A001 •  Bit 7 - Set to enable save RAM at $6000-$7FFF. 
$C000 IRQ Counter Register used to countdown to an IRQ. 
$C001 IRQ Latch Register used to store a temporary value to be copied to the 

IRQ Counter Register later. 
$E000 IRQ Control Register 0 used to disable IRQ generation and copy the IRQ 

Latch Register to the IRQ Counter Register. 
$E001 IRQ Control Register 1 used to enable IRQ generation. 
 
On cartridges with VROM, the first 8 KB bank is swapped into PPU $0000 on reset. 
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Appendix E 
6502 Addressing Modes 

 
E.1 Zero Page 
 
Zero page addressing uses a single operand which serves as a pointer to an address in zero 
page ($0000-$00FF) where the data to be operated on can be found. By using zero page 
addressing, only one byte is needed for the operand, so the instruction is shorter and, 
therefore, faster to execute than with addressing modes which take two operands. An 
example of a zero page instruction is AND $12. 
 

 
 

Figure E-1. Zero page addressing.  
 
E.2 Indexed Zero Page 
 
Indexed zero page addressing takes a single operand and adds the value of a register to it to 
give an address in zero page ($0000-$00FF) where the data can be found. There are two 
forms of indexed zero page addressing: 
 
•  Zero Page, X - Add contents of X register to operand. This is the most common form of 

indexed zero page. An example of this addressing mode is AND $12,X. 
•  Zero Page, Y - Add contents of Y register to operand. This mode can only be used with 

LDX (Load X Register) and STX (Store X Register). An example of this addressing mode 
is LDX $12,Y. 

 
Wraparound is used when performing the addition so the address of the data will always be 
in zero page. For example, if the operand is $FF and the X register contains $01 the address 
of the data will be $0000, not $0100. 
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Figure E-2. Indexed zero page addressing. 
 
E.3 Absolute 
 
In absolute addressing, the address of the data to operate on is specified by the two 
operands supplied, least significant byte first. An example of an absolute instruction is AND 
$1234. 
 

 
 

Figure E-3. Absolute addressing. 
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E.4 Indexed Absolute 
 
Indexed absolute addressing takes two operands, forming a 16-bit address, least significant 
byte first, and adds the value of a register to it to give the address where the data can be 
found. For example, if the operands are bb and cc, the address of the data will be ccbb + X. 
There are two forms of indexed absolute addressing: 
 
•  Absolute, X - Add contents of X register to operand. An example of this addressing mode 

is AND $1234.X. 
•  Absolute, Y - Add contents of Y register to operand. An example of this addressing mode 

is AND $1234.Y. 
 

 
 

Figure E-4. Indexed absolute addressing. 
 
E.5 Indirect 
 
Indirect addressing takes two operands, forming a 16-bit address, which identifies the least 
significant byte of another address which is where the data can be found. For example if the 
operands are bb and cc, and ccbb contains xx and ccbb + 1 contains yy, then the real target 
address is yyxx. On the 6502, only JMP (Jump) uses this addressing mode and an example 
is JMP ($1234). The diagram shows the general form of indirect addressing. However, with 
the JMP instruction, instead of yyxx pointing to the data and the program counter being 
increased by three, the program counter is set to yyxx and execution resumes from that 
address. 
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Figure E-5. Indirect addressing. 
 
E.6 Implied 
 
Many instructions do not require access to operands stored in memory. Examples of implied 
instructions are CLD (Clear Decimal Mode) and NOP (No Operation). 
 
E.7 Accumulator 
 
Some instructions operate directly on the contents of the accumulator. The only instructions 
to use this addressing mode are the shift instructions, ASL (Arithmetic Shift Left), LSR 
(Logical Shift Right), ROL (Rotate Left) and ROR (Rotate Right). 
 
E.8 Immediate 
 
Instructions which use immediate addressing operate directly on a constant supplied as an 
operand to the instruction. Immediate instructions are indicated by prefacing the operand 
with #, for example AND #$12. 
 

 
 

Figure E-6. Immediate addressing. 
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E.9 Relative 
 
Relative addressing is used in branch instructions. This addressing mode causes the value 
of the program counter to change if a certain condition is met. The condition is dependant on 
the instruction. The program counter increments by two regardless of the outcome of the 
condition but if the condition is true the single operand is added to the program counter to 
give the new value. For this purpose, the operand is interpreted as a signed byte, that is in 
the range -128 to 127 to allow forward and backward branching. An example of this 
addressing mode is BCS *+5 where * represents the current value of the program counter. 
 

 
 

Figure E-7. Relative addressing. 
 
E.10 Indexed Indirect 
 
Indexed indirect (also known as pre-indexed) addressing takes a single byte as an operand 
and adds the value of the X register to it (with wraparound) to give the address of the least 
significant byte of the target address. For example, if the operand is bb, 00bb is xx and 00bb 
+ 1 is yy then the data can be found at yyxx. An example of this addressing mode is AND 
($12,X). 
 

 
 

Figure E-8. Indexed indirect addressing. 
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E.11 Indirect Indexed 
 
Indirect indexed (also known as post-indexed) addressing takes a single operand which 
gives the zero page address of the least significant byte of a 16-bit address which is then 
added to the Y register to give the target address. For example, if the operand is bb, 00bb is 
xx and 00bb + 1 is yy, then the data can be found at yyxx. An example of this addressing 
mode is AND ($12),Y. 
 

 
 

Figure E-19. Indirect indexed addressing. 
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Appendix F 
NES Colour Palette 

 
There are different interpretations of the NES colour palette. The palette as defined in [47] is 
shown below. Alternatives are presented in [5] and [48]. 
 

 
 

Figure F-1. NES colour palette. 
 

Palette 
Entry 

RGB Value Palette 
Entry 

RGB Value 

00 75, 75, 75 20 FF, FF, FF 
01 27, 1B, 8F 21 3F, BF, FF 
02 00, 00, AB 22 5F, 97, FF 
03 47, 00, 9F 23 A7, 8B, FD 
04 8F, 00, 77 24 F7, 7B, FF 
05 AB, 00, 13 25 FF, 77, B7 
06 A7, 00, 00 26 FF, 77, 63 
07 7F, 0B, 00 27 FF, 9B, 3B 
08 43, 2F, 00 28 F3, BF, 3F 
09 00, 47, 00 29 83, D3, 13 
0A 00, 51, 00 2A 4F, DF, 4B 
0B 00, 3F, 17 2B 58, F8, 98 
0C 1B, 3F, 5F 2C 00, EB, DB 
0D 00, 00, 00 2D 00, 00, 00 
0E 00, 00, 00 2E 00, 00, 00 
0F 00, 00, 00 2F 00, 00, 00 
10 BC, BC, BC 30 FF, FF, FF 
11 00, 73, EF 31 AB, E7, FF 
12 23, 3B, EF 32 C7, D7, FF 
13 83, 00, F3 33 D7, CB, FF 
14 BF, 00, BF 34 FF, C7, FF 
15 E7, 00, 5B 35 FF, C7, DB 
16 DB, 2B, 00 36 FF, BF, B3 
17 CB, 4F, 0F 37 FF, DB, AB 
18 8B, 73, 00 38 FF, E7, A3 
19 00, 97, 00 39 E3, FF, A3 
1A 00, AB, 00 3A AB, F3, BF 
1B 00, 93, 3B 3B B3, FF, CF 
1C 00, 83, 8B 3C 9F, FF, F3 
1D 00, 00, 00 3D 00, 00, 00 
1E 00, 00, 00 3E 00, 00, 00 
1F 00, 00, 00 3F 00, 00, 00 
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