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Abstract. The paper surveys a decade of R&D on coarse
grain reconfigurable hardware and related CAD, points out
why this emerging discipline is heading toward a dichotomy
of computing science, and adocates the introduction of a new
soft machine paradigm to replace CAD by compilation.

1. Introduction
Rapidly increasing attendance [1] of conferences on re-

configurable computing and the adoption of this topic area by
congresses like ASP-DAC, DAC, DATE, ISCAS, SPIE, and
others indicate, that reconfigurable platforms are heading from
niche to mainstream, bridging the gap between ASICs and
microprocessors (fig. 2). It’s time to revisit R&D results: the
goal of this paper. (On some projects mentioned we have only
incomplete or no information on the status of implementation.)
2. Coarse-Grained Reconfigurable
Architectures

Using FPGAs as accelerator platforms is not subject of this
paper. In contrast to FPGA use (fine grain reconfigurable) the
area of Reconfigurable Computing mostly stresses the use of
coarse grain reconfigurable arrays (RAs) with pathwidths greater
than 1 bit, because fine-grained architectures are much less
efficient because of a huge routing area overhead and poor
routability [2]. Since computational datapaths have regular
structure, full custom designs of reconfigurable datapath units
(rDPUs) can be drastically more area-efficient, than by
assembling the FPGA way from single-bit CLBs. Coarse-grained
architectures provide operator level CFBs, word level datapaths,
and powerful and very area-efficient datapath routing switches.  

A major benefit is the massive reduction of configuration
memory and configuration time, as well as drastic complexity
reduction of the P&R (placement and routing) problem. Several
architectures will be briefly outlined (also see figure 1). Some
of them introduce multi-granular solutions, where more
coarse granularity can be achieved by bundling of resources,
such as e. g. 4 ALUs of 4 bits each to obtain a 16 bit ALU.

2.1 Primarily Mesh-Based Architectures
Mesh-based architectures arrange their PEs in a rectangular

2-D array with horizontal and vertical connections which
supports rich communication resources for efficient
parallelism. and encourages nearest neighbour (NN) links
between adjacent PEs (NN or 4NN: links to 4 sides {east.
west. north, south}, or, 8NN: NN-links to 8 sides {east, north-
east, north, north-west, west, south-west, south, south-east},
like in CHESS array). Typically, longer lines are added with
different lengths for connections over distances larger than 1.

DP-FPGA (Datapath FPGA) [3] has been introduced to
implement regularly structured datapaths. It is a FPGA-like
mixed fine and coarse grained architecture with 1 and 4 bits.
Its fabric includes 3 component types: control logic, the
datapath, and memory. The datapath block consists of 4 bit-
slices: each bit-slice with a lookup table, a carry chain and a
four-bit register. DP-FPGA provides separate routing
resources for data (horizontal, 4 bits wide) and control signals
(vertical, single bit). A third resource is the shift block to
support single-bit or multi bit shifts and irregularities. 

The KressArray is primarily a mesh
of rDPUs physically connected through
wiring by abutment: no extra routing
areas needed. In 1995 it has been
published [4] as “rDPA” (reconfigur-
able DataPath Array). “KressArray”
has been coined later. The KressArray
is a super-systolic array (generalization
of the systolic array: fig. 4) which is
achieved by DPSS (see § „DPSS“). Its
interconnect fabric distinguishes 3
physical levels: multiple unidirectional and/or bidirectional NN
links (fig. 3), full length or segmented column or row backbuses,
a single global bus reaching all rDPUs (also for configuration).
Each rDPU can serve for routing only, as an operator, or, an
operator with extra routing paths. The 2nd and 3rd level is layouted
over the cell: wiring by abutment capability is not affected. 

Project first  
publ. Source Architecture Granularity Fabrics Mapping intended target 

application
PADDI 1990 [29] crossbar 16 bit central crossbar routing DSP
PADDI-2 1993  [31] crossbar 16 bit multiple crossbar routing DSP and others
DP-FPGA 1994 [3] 2-D array 1 & 4 bit, multi-granular inhomogenous routing channels switchbox routing regular datapaths
KressArray 1995 [4] [10] 2-D mesh family: select pathwidth multiple NN & bus segments (co-)compilation (adaptable)
Colt 1996 [11] 2-D array 1 & 16 bit inhomogenous (sophisticated) run time reconfiguration highly dynamic reconfig.
RaPID 1996 [26] 1-D array 16 bit segmented buses channel routing pipelining
Matrix 1996 [13] 2-D mesh 8 bit, multi-granular 8NN, length 4 & global lines multi-length general purpose
RAW 1997 [15] 2-D mesh 8 bit, multi-granular 8NN switched connections switchbox rout experimental
Garp 1997 [14] 2-D mesh 2 bit global & semi-global lines heuristic routing loop acceleration
Pleiades 1997 [32] mesh / crossbar multi-granular multiple segmented crossbar switchbox routing multimedia
PipeRench 1998 [28] 1-D array 128 bit (sophisticated) scheduling pipelining
REMARC 1998 [16] 2-D mesh 16 bit NN & full length buses (information not available) multimedia
MorphoSys 1999 [17] 2-D mesh 16 bit NN, length 2 & 3 global lines manual P&R (not disclosed)
CHESS 1999 [18] hexagon mesh 4 bit, multi-granular 8NN and buses JHDL compilation multimedia
DReAM 2000 [19] 2-D array 8 &16 bit NN, segmented buses co-compilation next generation wireless
CS2000 family 2000 [21] 2-D array 16 & 32 bit inhomogenous array co-compilation communication
MECA family 2000 [22] 2-D array (not disclosed) tele- & datacommunication
CALISTO 2000 [23] 2-D array (not disclosed) tele- & datacommunication
FIPSOC 2000 [24] 8x12, 8x16 array (not disclosed) tele- & datacommunication
flexible array 2000 [25] 2-D array (not disclosed) (not disclosed) (not disclosed) software radio 

Fig. 1: Summary of the technical details of the different coarse-grained reconfigurable architectures; Note: NN stands for “nearest neighbour”.
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A first 32 bit KressArray included an additional control unit for
the MoM-3 [5] Xputer [6] [7] [8] [9] with rDPUs supporting all C
language operators. With the new Xplorer environment [10]
rDPUs also support any other operator repertoires including
branching, while loops and do-while loops. I/O data streams from
and to the array can be transferred by global bus, array edge ports,
or ports of other rDPUs (addressed individually by an address
generator). Although KressArrays are dynamically partially
configurable, applications tried out so far did not make use of it.

The KressArray Family. Supported by an application and
development tool and platform architecture space explorer
(PSE) environment the basic principles of the KressArray
define an entire family of KressArrays covering a wide but
generic variety of interconnect resources and functional
resources. A later version of this PDE environment, called
(see paragraph “Xplorer,”), supports the rapid creation of RA
and rPDU architectures optimized for a particular application
domain (like e. g. image processing, multimedia, or others),
and rapid mapping of applications onto any RA of this family.

Colt  [11] combines concepts from FPGAs
and data flow computing. It’s a 16 bit pipenet
[12] and relies highly on runtime
reconfiguration using wormhole routing.
Hereby, the data stream headers hold
configuration data for routing and the
functionality of all PEs encountered. Colt has a
mesh of 16 bit IFUs (Interconnected Functional
Units), a crossbar switch, an integer multiplier,
and six data ports. Each IFU features an ALU, a barrel shifter to
support multiplication and floating point, a decision unit for flow
branching, and optional delay units for pipeline synchronization.

MATRIX [13] (Multiple Alu architecture with Reconfigur-
able Interconnect eXperiment) is a multi-granular array of 8-bit
BFUs (Basic Functional Units) with procedurally programmable
microprocessor core including ALU, multiplier, 256 word data and
instruction memory and a controller which can generate local
control signals from ALU output by a pattern matcher, a reduction
network, or, half a NOR PLA. With these features, a BFU can
serve as instruction memory, data memory, register-file and ALU,
or independent ALU function. Instructions may be routed over the
array to several ALUs. The routing fabric provides 3 levels of 8-bit
buses: 8 nearest neighbour (8NN) and 4 second-nearest neighbour
connections, bypass connections of length 4, and global lines. 

The Garp Architecture. [14] resembles an FPGA and
comes with a MIPS-II-like host and, for acceleration of
specific loops or subroutines, a 32 by 24 RA of LUT-based 2
bit PEs. Basic unit of its primarily mesh-based architecture is a
row of 32 PEs, a reconfigurable ALU. The host has instruction
set extensions to configure and control the RA. Array
execution is initialized by the number of clock cycles to do.
Host and RA share the same memory hierarchy. Memory
accesses can be initiated by the RA, but only through the
central 16 columns. The blocks in the leftmost column are
dedicated controllers for interfacing. For fast reconfigurations,
the RA features a distributed cache with depth 4, which stores
the least recently used configurations. The routing architecture
includes 2 bit horizontal and vertical lines of different length,
segmented in a non-uniform way: short horizontal segments
spanning 11 blocks, long horizontals spanning the whole
array, and different length vertical segments. 

RAW: Reconfigurable Architecture Workstation. [15]
pro-vides a RISC multi processor architecture composed of NN-
connected 32-bit modified MIPS R2000 microprocessor tiles
with ALU, 6-stage pipeline, floating point unit, controller,
register file of 32 general purpose and 16 floating point registers,
program counter, and local cached data memory and 32 Kilobyte
SRAM instruction memory. The prototype chip features 16 tiles
arranged in a 4 by 4 array. Early concepts [15] having been
abandoned included also configurable logic to allow customized
instructions. RAW provides both a static (determined at compile-
time) and a dynamic network (determined at run-time: wormhole

routing for the data forwarding). Since the processors lack hardware
for register renaming, dynamic instruction issuing or caching (like in
superscalar processors), statically scheduled instruction streams are
generated by the compiler, thus moving the responsibility for all
dynamic issues to the development software. However, RAW
provides possible flow control as a backup dynamic support, if the
compiler should fail to find a static schedule. 

REMARC. (Reconfigurable Multimedia Array Coprocessor)
[16], a reconfigurable accelerator tightly coupled to a MIPS-II RISC
processor, consists of an 8 by 8 array of 16 bit “nanoprocessors” with
memory, attached to a global control unit. The communication
resources consist of nanoprocessors NN connections and additional
32 bit horizontal and vertical buses which also allow broadcast
to processors in the same row or column respectively, or, to
broadcast a global program counter value each cycle to all
nanoprocessors, also to support SIMD operations.

MorphoSys. (Morphoing System [17]) has a MIPS-like
“TinyRISC” processor with extended instruction set, a mesh-
connected 8 by 8 RA, a frame buffer for intermediate data,
context memory, and DMA controller. The RA is divided into
four quadrants of 4 by 4 16 bit RCs each, featuring ALU,
multiplier, shifter, register file, and a 32 bit context register for
storing the configuration word. The interconnect network
features 3 layers: 4 NN ports, links of distance 2, and, inter-
quadrant buses spanning the whole array. TinyRISC extra
DMA instructions initiate data transfers between the main
memory and the “frame buffer” internal data memory for
blocks of intermediate results, 128 by 16 bytes in total. 

The CHESS Array. The CHESS hexagonal array [18]
features a chessboard-like floorplan with interleaved rows of
alternating ALU / switchbox sequence (figure 5). Embedded
RAM areas support high memory requirements. Switchboxes
can be converted to 16 word by 4 bit RAMs if needed. RAMs
within switchboxes can also be used as a 4-input, 4-output
LUT. The interconnect fabrics of CHESS has segmented four-
bit buses of different length. There are 16 buses in each row
and column, 4 buses for local connections spanning one
switchbox, 4 buses of length 2, and 2 buses of length 4, 8 and
16 respectively. To avoid routing congestion, the array
features also embedded 256 word by 8 bit block RAMs. An
ALU data output may feed the configuration input of another
ALU, so that its functionality can be changed on a cycle-per-
cycle basis at runtime without uploading. However, partial
configuration by uploading is not possible.

The DReAM Array. (Dynamically Reconfigurable Architecture
for Mobile Systems [19]) for next generation wireless
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communication, is a 0.35 µm CMOS standard cell design
fabricated by Mietec/Alcatel. Each RPU consists of: 2
dynamically reconfigurable 8-bit Reconfigurable Arithmetic
Processing (RAP) units, 2 barrel shifters, a controller, two 16 by
8-bit dual port RAMs (used as LUT or FIFO), and, a
Communication Protocol Controller. The RPU array fabric uses
NN ports and global buses segmentable by switching boxes.

CS2000 family. Chameleon Systems [20] offers the CS2000
family multi-protocol multi-application reconfigurable platform
RCP (reconfigurable communication processor) for telecom-
munications and data communications [21], with a 32 bit
RISC core as a host, licensed from ARC Cores, UK, with full
memory controller and PCI controller, connected to a RA of 6,
9, or 12 reconfigurable tiles, where each tile has 7 32-bit rDPUs
(each including an 8 word instruction memory), 4 local memory
blocks of 128 x 32 bits, 2 16x24-bit multipliers. Every 3 tiles are
grouped as a “slice” also including 8 kBytes of local memory.
The RA allows multiple independent data streams and its
reconfigurable fabric can be changed within a single clock cycle.
The CS1200 family aims at initial markets in communication
infrastructure and is intended to cope with the chaotic world of
evolving standards, protocols and algorithms with application
areas as 2nd and 3rd generation wireless basestations, fixed
point wireless local loop (WLL), smart antennas, voice over
IP (VoIP), very high speed digital subscriber loop (DSL), and,
for instance, supports 50 channels of CDMA2000.

The MECA family by Malleable [22] is intended to be a
family of DSPs (digital signal processors) optimized for VoIP, by
compressing voice into ATM or IP packets etc., aims at next
generation VoIP and VoATM. The MECA family claims -
compared to conventional DSPs- a speed-up factor of 10. 

CALISTO (Configurable ALgorithm-adaptive Instruction
Set TOpology) by Silicon-Spice [23] intends to be an innovative
adaptive instruction set architecture for internet protocols (IP) and
ATM packet.-based networks with flexibility for Any-Service-
Any-Port (ASAP) to deliver voice and data simultaneously
over a unified data network. CALISTO is a single-chip com-
munications processor for carrier-class voice gateways, soft switches,
and remote access concentrators/remote access servers (RAC/RAS),
which aims at applications like echo cancellation, voice/fax/data
modems, packetization, cellification, delay equalization.

FIPSOC (Field-programmable System-on-Chip) by SIDSA
[24] has an 8051 controller, a RA and a RAA (reconfigurable
analog array). The 8x12 (8x16 or 16x16) RA is an array of
“digital macro cells” (DMC) including a 4-input LUT and 4
latches, programmable to be a 4 bit up/down counter, shift
register, 4 bit adder, 16x4 bit RAM etc. The RAA has “con-
figurable analog blocks” (CAB) usable as differential amplifiers,
comparators, converters etc. The RA is a multi-context RA
featuring 2 extra configuration memories. Device booting can be
done from external parallel ROM (as the 8051 controller does),
external serial PROM, or RS 232 serial port. FIPSOC is intended
to be used as an ASIC emulator for rapid prototyping.

MorphICs mentions its RA, but without details [25].
2.2 Architectures Based on Linear Arrays

Some RAs are based on one or several linear arrays,
typically also with NN connect, aiming at mapping pipelines
onto it. If the pipes have forks, which otherwise would require a
2-D realization, additional routing resources are needed, like
longer lines spanning the whole or a part of the array, often
being segmented. Two RAs have linear array structure. RaPiD
[26] provides different computing resources, like ALUs, RAMs,
multipliers, and registers, but irregularly distributed. While
RaPiD uses mostly static reconfiguration, PipeRench relies on
dynamic reconfiguration, allowing the reconfiguration of a PE
in each execution cycle. Besides the mostly unidirectional NN
connects, it provides also a global bus.

RaPiD: The Reconfigurable Pipelined Datapath (RaPiD)
[26] aims at speed-up of highly regular, computation-intensive
tasks by deep pipelines on its 1-D RA. RaPiD-1 features 15

DPUs of 8 bit with integer multiplier (32 bit output), 3 integer
ALUs, 6 general-purpose datapath registers and 3 local 32 word
memories, all 16 bits wide. ALUs can be chained. Each
memory has a special datapath register with an incrementing
feedback path. To implement I/O streams RaPiD includes a
stream generator with address generators, optimized for nested
loop structures, associated with FIFOs. The address sequences
for the generators are determined at compile-time. RaPiD’s
routing and configuration architecture consists of several
parallel segmented 16 bit buses, which span the whole array.
The length of the bus segments varies by tracks. In some tracks,
adjacent bus segments can be merged. The sophisticated
interconnect fabric cannot be detailed here.

PipeRench [28], an accelerator
for pipelined applications,
provides several reconfigurable
pipeline stages (“stripes”) and
relies on fast partial dynamic
pipeline reconfiguration and run
time scheduling of configuration
streams and data streams. It has
a 256 by 1024 bit configuration
memory, a state memory (used to save the current register contents
of a stripe), an address translation table (ATT), four data
controllers, a memory bus controller and a configuration
controller. The reconfigurable fabric of the PipeRench allows the
configuration of a pipeline stage in every cycle, while concurrently
executing all other stages. The fabric consists of several
(horizontal) stripes composed of interconnect and PEs with
registers and ALUs, implemented as 3-input lookup tables. The
ALU includes a barrel shifter, carry chain circuitry, etc. A stripe
provides 32 ALUs with 4 bits each. The whole fabric has 28
stripes. The interconnect scheme of PipeRench features local
interconnect inside a stripe as well as local and global interconnect
between stripes and four global buses.
2.3 Crossbar-Based Architectures

A full crossbar switch, a most powerful communication
network is easily to rout. But the 2 RAs of this category use
only reduced crossbars. PADDI for the fast prototyping of
DSP datapaths features eight PEs, all connected by a
multilayer crossbar. PADDI-2 has 48 PEs, but saves area by
restricted crossbar with a hierarchical interconnect structure
for linear arrays of PEs forming clusters. This fabrics
sophistication has again an impact on routing.

PADDI-1 (Programmable Arithmetic Device for DSP) [29]
[30], for rapid prototyping of computation-intensive DSP data
paths, consists of clusters of 8 arithmetic execution units (EXUs)
16 bits wide, including 8 word SRAM (which may be con-
catenated for 32 bits) and connected to a central crossbar switch
box. Interconnect is organized in 2 levels: a 3 bit global bus to
broadcast global instructions to each EXU’s controller CTL,
decoded locally at second level into a 53 bit instruction word. 

The PADDI-2 Architecture [31] features a data-driven
execution mechanism. Although the basic architectural
principles of the original PADDI were kept, the PADDI-2 has
several differences. It has 48 EXUs. Each PE features a 16 bit
ALU also including booth multiply and select, multiplication
instructions taking 8 cycles on a single processor. Alternatively,
eight EXUs can be pipelined, resulting in a single cycle
multiplication. PADDI-2 EXUs are packed in 12 clusters of
four elements each two level interconnect: six 16 bit intra-
cluster data buses (plus one bit control buses, and, inter-cluster
16 data buses, which can be broken up into shorter segments.  

The Pleiades Architecture [32] is a generalized low power
“PADDI-3” with programmable microprocessor and hetero-
geneous RA of EXUs, which allows to integrate both fine and
coarse grained EXUs, and, memories in place of EXUs. For each
algorithm domain (communication, speech coding, video
coding), an architecture instance can be created (with known
EXU types and numbers). Communication between EXUs is
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dataflow driven. The control means available to the programmer
are basic EXU configurations to specify its operation, and
interconnect configurations to build EXU clusters. All
configuration registers are part of the processor’s memory map
and configuration codes are processor’s memory writes.

2.4 Memory Bandwidth Problems
RAM cycle time as throughput bottleneck of von-Neumann-

style computing, known as “memory bandwidth problem”, a
communication gap which spans up to 2 orders of magnitude, can
be even wider in RA use as accelerator in data-intensive
applications - a challenge to RA architectures and mappers (see §
“DTSE”). Interfaces like RAMbus etc. may reduce the gap a little
bit for both, host and accelerator. But the use of caches, mainly
based on instruction loops (write once - multiple read) does not
help in RA usage: compare fig. 15. That’s why RA architectures
should be capable to interface multiple memory banks, only known
from the KressArray (example: fig. 7, where 8 ports communicate
with 4 memory banks [33]). Also see chapter 4 and 5.

2.5 Future Reconfigurable Architectures
A universal RA obviously is an illusion. The way to go is

toward sufficiently flexible RAs, optimized for a particular
application domain like e. g. wireless communication, image
processing or multimedia etc. There is a need for tools supporting
such dedicated RA architecture development. But architectures
have an immense impact on implementability of good mapping
tools. “Clever“ fabrics are too sophisticated to find good tools.
The best solution are simple generic fabrics architecture
principles, or, a mapping tool which generically creates by itself
the architectures it can manage easily [10], or, a combination of
both approaches like the platform space exploration (s. „The
KressArray Family“ and “Xplorer,”). See chapter 5.

3. Programming Coarse Grain RAs
Programming frameworks for RAs (also see fig. 1) are

highly dependent on structure and granularity, and differ by
language level. For MorphoSys, MATRIX, PADDI-2 and
REMARC it’s assembler level. Some support the designer by a
graphical tool for manual P&R. Others feature automatic design
flow from HDL or high-level programming language.
Environments differ by the approach used for technology
mapping, placement, routing. Using only a simple script for
technology mapping [34] DP-FPGA [3] is not considered. 

Technology mapping is mostly simpler for coarse grain
architectures than for FPGAs. Approaches are: direct
mapping, where the operators are mapped straight forward
onto PEs, with one PE for one operator, or, using an additional
library of functions not directly implementable by one PE, or,
more sophisticated tree matching also capable to merge
several operators into one PE by a modified FPGA tool kit. An
exception is the RAW compiler doing partitioning instead of
technology mapping, since RAW has RISC cores as PEs
accepting blocks from program input.

For operator placement, the architecture has an impact. An
approach often used for FPGAs synthesis is placement by
simulated annealing or a genetic algorithm. Garp uses a tree
matching algorithm instead, where placement is done together
with technology mapping. The use of greedy algorithms is
feasible only for linear arrays (PipeRench), or with a high
level communication network (RAW). PADDI is an exception
by using a scheduling algorithm for resource allocation. 

Routing also features quite different approaches. In two cases,
the routing is not done in an extra phase but integrated into the
placement and done on the fly. One approach (KressArray) uses a
simple algorithm restricted to connects with neighbours and
targets with at most the distance of one. The other (RaPiD)
employs the pathfinder algorithm [35], which has been developed
for FPGA routing. Greedy routing would be not satisfying.
General exceptions to the routing approaches is the RAW
architecture, which features only one high-level communication
resource, so no selection of routing resources is needed, and the
PADDI architecture, which features a crossbar switch having the
same effect. Greedy routing algorithms are only used for 1-D
RAs, or architectures capable to cure routing congestion by other
mechanisms, like Colt with wormhole run-time reconfiguration.
3.1 Assembler Programming

Assembler level code for coarse grain architectures can be
compared to configuration code for FPGAs. In the case of
systems comprising a microprocessor / RA symbiosis, only
the reconfigurable part is considered for the classification.

Fig. 7: Mapping application (linear filter) and memory communication 
architecture (dark background) onto the same KressArray, including the 
address ports and the data ports to 4 different memory banks (5 of 8 
memory port connects are routed through application DPUs).
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Programming is done mainly at a kind of assembler level for
PADDI-2, MATRIX, and, RAs of REMARC and MorphoSys.
PADDI-2 is crossbar-based whereas the rest is mesh-based.

Programming PADDI-2. For programming PADDI-2
[31], a tool box has been developed which includes software
libraries, a graphical interface for signal flow graphs, routing
tools, simulation tools, compilation tools and tools for board
access and board debugging. Major parts of this process are
done manually. The input specifies assembly code for each
function in the signal flow graph. The programmer manually
partitions the signal flow graph with a graphical tool, which
also aids in manual placement and routing. As an alternative to
manual placement and routing, an automated tool is provided,
which guarantees to find a mapping, if one exists, by
exhaustive methods which need much computation time.

For Programming MATRIX. [13] an assembly level macro
language has been developed. Some work on P&R pointed out
the original MATRIX’s weak points [36].

REMARC tools. [16] allow concurrent programming of the
RISC processor (by C using the GCC compiler) and the RA by
adding REMARC assembler instructions. The compiler then
generates assembly code for the RISC processor with the
REMARC assembler instructions embedded which are further
processed by a special REMARC assembler generating binary
code for the REMARC instructions. Finally, the GCC compiler
is used again to generate RISC instruction code to invoke
REMARC and its instructions embedded as binary data.

Programming MorphoSys. is supported by a SUIF-based
compiler [17] for host, and development tools for RA. Host / RA
partitioning is done manually by adding a prefix to functions to
be mapped onto RA. The compiler generates TinyRISC code for
RA activation. Configuration code is generated via a graphical
user interface or manually from an assembler level source also
usable to simulate the architecture from VHDL.
3.2 Frameworks with FPGA-Style Mapping

Computation-intensive algorithms for mapping onto
FPGAs are well-known and can often be used directly for
coarse grain architectures like for CHESS, Colt, KressArray,
RaPiD (see fig. 9). All four use simulated annealing or other
genetics for placement, and two use pathfinder for routing
[35]. The KressArray DPSS (Datapath Synthesis System)
accepts a C-like language source. The compilation framework
for the RaPiD system works similar, but relies on relatively
complex algorithms. Colt tools use a structural description of
the dataflow. CHESS has been programmed from a hardware
description language (JHDL) source. P&R quality has a
massive impact on application performance. But, due to the low
number of PEs, P&R is much less complex than for FPGAs and
computational requirements are drastically reduced.

DPSS (DataPath Synthesis System) [4] generates configuration
code for KressArrays from ALE-X high-level language
sources [4]  [37] supporting datapaths with assignments, local
variables and loops. After classical optimizations it generates
an expression tree. Next processing steps include a front end,
logic optimization, technology mapping creating a netlist,
simultaneous P&R by simulated annealing, and I/O scheduling
(incl. loop folding, memory cycle optimization, register file
usage). The result is the application’s KressArray mapping and
array I/O schedule. Finally configuration binaries are
assembled. Routing is restricted to direct NN connect and
rout-through of length 1. Other connect is routed to buses or
segmented buses. DPSS has also been part of the MoM-3
Xputer compiler accepting and partitioning a subset of C
subset into sequential MoM code and structural KressArray
code. The more general CoDe-X approach [38] uses this MoM

compiler as part of a partitioning co-compiler accepting a C
language superset and partitioning the application onto the
host and one or several Xputer-based accelerators.

Tools for Colt [11] accept a dataflow description (below C
level) for placement by a genetic algorithm and routing by a greedy
algorithm (routing congestion is cured at run-time by wormhole
reconfiguration). Data stream headers hold configuration data for
routing and the functionality of all PEs encountered.

Programming RaPiD [26]
is done in RaPiD-C, a C-like
language with extensions
(like synchronization mechan-
isms and conditionals to
identify first or last loop
iteration) to explicitly speci-
fy parallelism, data movement
and partitioning, RaPiD-C
programs may consist of
several nested loops de-
scribing pipelines. Outer
loops are transformed into
sequential code for address
generators, inner loops into
structural code for the RA.
The compilation steps are: netlist generation from structural
code, extraction of dynamic control, generation of controller
code instruction streams for dynamic control and generation of
I/O configuration data for the stream units. The netlist is
mapped onto RaPiD by pipelining, retiming, and P&R.
Placement is done by simulated annealing, with routing (by
pathfinder [35]) done on the fly to measure placement quality [39].

For Programming the CHESS array [18] a compiler [40]
has been implemented accepting JHDL [41] sources and
generating CHESS netlists. Placement is done by simulated
annealing and routing by Pathfinder’s negotiated congestion
algorithm [35]. Part of the work is not disclosed.
3.3 Other mapping approaches

Greedy algorithms are poor in mapping to FPGAs. But,
although Garp is mesh-based, mapping treats it like a linear array
which allows mapping in one step by a simple greedy routing
algorithm. RAW features only one communication resource,
removing the wire selection problem from routing. Instead, the
compiler schedules time multiplexed NN connections. CPU
cores inside RAW PEs simplify mapping by loading entire
source code blocks. PipeRench resembling a linear array and
interconnect fabrics restrictions keep placement simple for a
greedy algorithm. PADDI uses a standard P&R approach. 

Garp tools. [14] use a SUIF-based C compiler [42] to generate
code for the MIPS host with embedded RA configuration code to
accelerate (only non-nested) loops. At next basic blocks are
generated and converted into hyperblocks containing a contiguous
group of basic blocks, also from alternative control paths. Control
flow inside a hyperblock is converted for predicated execution.
Blocks, which cannot be mapped, are removed from hyperblocks.
The resulting reduced hyperblock is then the basis for mapping.
The next step generates interfacing instructions for the host, and
transforms the hyperblock into a DFG (data flow graph). The
proprietary Gamma tool [43] maps the DFG onto Garp using a tree
covering algorithm which preserves the datapath structure, supports
features like the carry chains. Gamma first splits the DFG into

mapping Kress DPSS CHESS RaPiD Colt

placement simulated 
annealing

simulated annealing genetic algorithm
routing Pathfinder greedy algorithm

Fig. 9: FPGA-Style Mapping for coarse grain reconfigurable arrays.
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subtrees and then matches subtrees a with module patterns which
fit in one Garp row. During tree covering, the modules are also
placed in the array. After some optimizations the configuration
code is generated (incl. outing [45]), assembled into binary form,
and, linked with the hosts C object code.

RAW tools [46] [47] include a SUIF-based C compiler and
a run-time system managing dynamic mechanisms like branch
prediction, data caching [48], speculative execution, dynamic
code scheduling. The compiler handles resource allocation,
parallelism exploitation, communication scheduling, code
generation (for host and switch processors in each tile), and,
divides execution into coarse-grain parallel regions internally
communicating by static network, whereas intra-region
communication uses messages. The phases are: pointer
analysis [46] with data dependency analysis and memory
access generation (if known at compile-time), partitioning
application data for distributed memory; space-time
scheduling [47] for parallelization; address translation for
caching by software. RAW binary is generated by the MIPS
compiler back end. The RAW project aims more at parallel
processing rather than reconfigurable computing and failed in
finding a good automatic mapping algorithm [49].

PipeRench tools. [28] [50] use the DIL single-assignment
language (SAL) for design entry and as an intermediate form. First,
the compiler inlines all modules, unrolls loops and generates a
straight-line SA program (SAP). After optimizations and breaking
the SAP into pieces fitting on one stripe, a greedy P&R algorithm is
run which tries to add nodes to stripes. Once placed, a node is
routed and never moved again. P&R is fast by crossbar switch
usage, coarse granularity, and, restriction to unidirectional pipelines. 

CADDI. [51], assembler and simulator, has been imple-
mented for PADDI. First a silage [52] specification is
compiled into a CDFG (control /data flow graph), used for
estimations of critical path, minimum and maximum bounds
for hardware for a given time allocation, minimum bounds of
execution time, and for transformations like pipelining,
retiming, algebraic transformations, loop unrolling and
operation chaining. CDFG to architecture technology mapping
is straight-forward since all components are fixed and routing
through crossbars is efficient. If several PADDI clusters are
involved, a partitioning step comes before resource allocation,
assignment, and scheduling. The assignment phase maps
operations to EXUs by a rejectionless antivoter algorithm [53]. 

Compilation for Pleiades.  Because of the complex design
space created by the heterogeneous architecture, the
application mapping problem is not yet solved completely.

C~SIDE. development tools for the Chameleon CS2000 family
include a GNU C compiler for the RISC host, a HDL synthesizer for
the reconfigurable fabric, a simulator, a C-style debugger and a
verifier. eBIOS (eConfigurable Basic I/O Services), a kind of
operating system, interfaces the RISC processor with the
reconfigurable fabric. C~SIDE is a tool box, rather than a co-
compiler. About mapping or compilation for the MECA family [22],
FIPSOC [24] and MorphICs RA [25] no information is available.

IDE. (Integrated Development Environment) with a C-
compiler, debugger, simulator and “Evaluation Module” (EVM)
serves for CALISTO from Silicon Spice [23], where a Real-time
operating system (RTOS) supports “Any Service Any Port”

(ASAP) configurations for up to 240 channels of carrier class
G.711 VoIP (voice over IP). IDE is a tool box, but no co-compiler.

3.4 Run-time Mapping
The VIRTEX FPGA family from Xilinx, the RAs being

part of the CS2000 series systems from Chameleon and others
are run-time reconfigurable. Programming a host/RA
combination is a kind of H/S Co-design. However using such
devices changes many of the basic assumptions in the
HW/SW co-design process: host / RL interaction is dynamic
and needs a kind of tiny operating system like eBIOS, also to
organize RL reconfiguration under host control. A typical goal
is mimization of reconfiguration latency (especially important
in communication processors), to hide configuration loading
latency, and, list scheduling to find ’best’ schedule for a series
of eBIOS calls (also see § “C~SIDE”). For more about typical
aspects of run-time reconfiguration see [54] [55].

3.5 Retrospective
The history of silicon synthesis and application distinguishes

three phases [56] (or, 3 Makimoto waves [57]): hardware design
(fig. 13 a), introduction of the microcontroller (fig. 13 b), and
RA usage (fig. 13 c). The transition from phase 1 (structural
synthesis) to phase 2 brought a shift from net-list-based CAD
(fixed algorithms, no machine paradigm, infinite design space)
to RAM-based (procedural) synthesis by compilation, based on
a machine paradigm, which reduces the design space by
guidance. Note: RAM-based means flexibility and fast turn-
around. Accelerator synthesis (fig. 16 b) still uses phase 1
methods (CAD). The third phase introduces reconfigurable
hardware, i. e. RAM-based structural synthesis: resources have
become variable. But still phase 1 synthesis tools are mainly
used: versions of CAD tools. Since structural synthesis has
become RAM-based it is time to switch to real compilation
techniques, based on a soft machine paradigm. But the R&D
scene ignore, that we now have a dichotomy of RAM-based
programming: procedural programming versus structural
programming, integrating two worlds of computing (fig. 17)

4. Compilation Techniques
The classical “von Neumann” scheme is obsolete (fig. 16 a).

Today, microprocessor / accelerator(s) symbiosis is the
dominant computer application (fig. 16 b), where sequential
code is downloaded into the host’s RAM, whereas the
accelerator is implemented by CAD. From this view also the
classical compiler is a kind of obsolete. Using RAs as
accelerators again changes this scenario: now implementations
onto both, host and RA(s) are RAM-based and compilation
techniques for both sides would be desirable: co-compilation
(fig. 16 c). But until recently only hardware/software co-design
environments have been implemented, where a C compiler is
only an isolated minor part to program the host and RAs are still
programmed by CAD [43] [50] [58] [59] [62].

Explorer System year source inter-
active status evaluation status generation

DPE 1991 [75] no abstract models rule-based
Clio 1992 [76] yes prediction models advice generator
DIA 1998 [77] yes prediction fr. library rule-based

DSE for RAW 1998 [48] no analytical models analytical
ICOS 1998 [85] no fuzzy logic greedy search

DSE f. Multimedia 1999 [86] no simulation branch and bound
Xplorer 1999 [10] [49] yes fuzzy rule-based simulated annealing

Fig. 12: Design Space Exploration Systems.

Fig. 13: Synthesis a) hardwired, b) “von Neumann”, c) reconfigurable.
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Since the design flow in
mapping applications onto RAs
is still managed by hand, using
isolated tools for particular
steps for particular platforms,
currently massive hardware
expertise is needed to implement
accelerators on RA platforms.
Programming of both, host and
RA, being RAM-based allows
turn-around times of minutes -
instead of months needed for hardwired ASIC accelerators. This
means a change of market structure by migration of accelerator
implementation from IC vendor to customer who mainly has no
hardware designers available. So there is a strong need for
automatic compilation from high level programming language
sources onto RAs. 

Most of the platforms summarized above make use of a
host/RA symbiosis. Newer commercial platforms include all
on a single chip. E. g. Altera’s EXCALIBUR combines a core
processor (ARM, or MIPS, etc.), embedded memory and RL.
Compilers mentioned above (except CoDe-X, see below), like
e. g. a GNU C compiler, are used just for programming the
host. However, software / configware partitioning and the
creation of host/RA interfaces are still mainly done manually. 
4.1 Software / Configware Partitioning

An important goal to be met by innovative compilers is to
do the partitioning automatically which has to be controlled
several criteria: how far an algorithm is parallelizable at all, to
consider the capacity and capabilities of available flexware to
find out what and how much workload fits onto a given RA
part (with a compiler which is retargettable by parametrization
[38]), to optimize the hardware/configware trade-off, and, by
PSE to optimize the performance/hardware/flexware trade-off:
A compiler doing all this from a high level language source we
call a software / configware Co-compiler (see next section).
4.2 Co-Compilation

Real software / configware co-compilation means a consequent
transition from a CAD / compilation mix to real machine-
paradigm-based compilation onto both, host and RA including
automatic partitioning. (This is the only way to avoid, that designers
hate their tools [60]). CoDe-X is the first such environment having
been implemented [38]. also using parts of earlier work [61].

CoDe-X. The availability of reconfigurable universal
accelerator machines (like the Xputer [62]) creates a demand
for innovative compilation techniques, such as e. g. a
partitioning compiler accepting input from programming
language sources (fig. 14). This is needed, because two
different kinds of code have to be downloaded (fig. 16 c):
procedural code into the RAM of the host, and, structural code
into the (hidden) RAM of the reconfigurable accelerator. We
need a partitioning compiler, which we call Co-Compiler. An
example is the CoDe-X partitioning co-compiler [38] (fig. 14),
accepting C programs and partitioning an application into a
task for the host and tasks for the accelerator machine. 

Loop transformations. Host/accelerator partitioning in CoDe-
X is mainly carried out by identifying loops suitable for
parallelizing transformation into code downloadable to the MoM
accelerator machine (MoM is an Xputer architecture). The CoDe-X
implementation includes 5 different loop transformation methods:
strip mining [63] [64], loop fusion [63] [65], loop splitting [63]
[66]), loop interchanging [67], and, loop unrolling [64]. Within
CoDe-X these loop transformations are controlled by resource
parameters for optimum adaptation to the amount of KressArray
resources available, like in hardware / software co-design. 

C~SIDE etc. Chameleon Systems reports for its CS2000
series co-compilation [21] techniques, combining compiler opti-
mization, multithreading to hide configuration loading latency,
and, list scheduling to find ’best’ schedule for eBIOS calls (see §
“C~SIDE”). Whether automatic partitioning is used is undisclosed.

4.3 Why we need a Soft Machine Paradigm
Exploding ASIC design cost and shrinking ASIC product

life cycles are a motivation to replace at least some of the ASICs
by RAs for product longevity by upgrading [68] [69] [70].
Performance is only one part of the story. The design community
is far away from fully exploiting the flexibility of RAs [41],
supporting novel powerful techniques -directly in system
jointly with all other components in real time, dramatically
faster than simulation- for debugging, run-time profiling,
verification, system-wide tuning, run-time API, field-
maintenance, field-upgrades (also via internet) flexible self-
monitoring functions by configuring unused parts of the RA. 

This potential is largely unrealized
although having been technically possible
and demonstrated already for about a
decade [41]. Using RAs instead of
ASICs creates new market structures
by transferring synthesis from vendor
to customer, who does not have the
hardware experts required, and, thus
needs compilers to replace CAD. A
machine paradigm makes compilers
much easier to develop and machines
easier to program - the success story of software industry. 

Soft Machine Paradigm needed. We need a new machine
paradigm, since “v. Neumann” does not support soft datapaths
because “instruction fetch” is not done at run time (fig. 15).
Instead of a program counter like the “von Neumann machine”
(fig. 11 a) we need a data counter (fig. 11 b) [62] provided by
the Xputer paradigm. Figure 10 clarifies he fundamental
differences between both machine paradigms. The Xputer
(deterministic) is not a classical “data flow machine” operating
inderterministically since being driven by arbitration. An
Xputer (non-von-Neumann) is not a transputer (von Neumann).
Equipped with multiple data sequencers (fig. 11 c) a single such
Xputer machine may even handle several parallel data streams,
like illustrated by the example in fig. 7 (see section 2.4).

The Xputer Machine Paradigm. Xputer data sequencers
(see fig. 11 b and c) have already been implemented [72]. This
Xputer machine paradigm -the diametral counterpart of the
von Neumann paradigm- has been published a decade ago: the
new “Xputer” machine paradigm for soft hardware (fig. 10)
[6] [7] [8] [9]. Instead of a “control flow” sublanguage a “data
stream” sublanguage recursively defines data goto, data
jumps, data loops, nested data loops, and parallel data loops
(using multiple data counters) like by the MoPL language [73]
- easy to learn by its similarity to control flow.

5. Design Space Explorers (DSEs)
Some development environments aim beyond compiling. DSEs

(fig. 12 [49]) select one of many alternative solutions to meet a
design goal meeting constraints or desired properties to optimize a
design or a (by PSE) programmable platform. Guidance systems
or design assistants are interactive DSEs giving advice during
the design flow. Some DSEs avoid the status generation and
provide only predictions etc. from a knowledge data base.
Advanced DSEs provide status generation, e g. by expert
system, and present advice like a choice of proposals. Non-
interactive DSEs automatically generate a solution status from
rule-based knowledge or fuzzy learning.
5.1 Design Space Exploration

Interactive design assistants are DPE and Clio (both for VLSI)
and DIA. Including effect predictors and proposal generators
DPE (Design Planning Environment) [75] (using an expert
system), Clio [76] (using a hierarchy of templates) and DIA
(Datapath-Intensive ASICs) [77] (targeting semi-custom ASIC
behavioural level and based on encapsulated expert knowledge),
generate a design flow by creating a schematic, a data flow graph,
or a layout from a specification and area, cycle time, power, e.a.
constraints and to improve area, power, throughput etc. 

Fig. 14: CoDe-X
Co-Compiler
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DTSE. For data-dominated systems the usual local optimization
techniques lead to performance-degrading runtime solution of
access conflicts. A cost overhead of 10 - 100% (in power) for
hardware and around 35% (in clock rate) for software has been
estimated [78] [79]. For global exploration the use of conflict-
directed ordering (CDO) [80] as an extension of force-directed
scheduling (FDS) [81] has been proposed [82]. Instead of
working on a signal access flow graph (SAFG) [80] a multi-
dimensional conflict graph (MD-CG) is used for a generalized
CDO (G-CDO) algorithm for the ATOMIUM / ACROPOLIS
data transfer and storage exploration (DTSE) system [83] [84]. 
5.2 Platform Space Explorers (PSEs)

A PSE serves to find an optimum RA or processor array (PA)
platform for an application domain by optimizing array size, path
width, processor’s MIPS, number of ALUs and branch units, local
SRAM size, data and instruction cache sizes, local bandwidth,
interconnect latency etc. from requirements like chip area, total
computation, memory size, buffer size, communication etc.
Software or configware application programming is finally not
part of exploration, but may serve platform evaluation. All three
being non-interactive, the DSE [48] for RAW [15] featuring an
analytical model, ICOS (Intelligent Concurrent Object-oriented
Synthesis) [85] featuring object-oriented fuzzy techniques, and
“DSE for Multimedia Processors” [86] (DSEMMP) aim at
automatic synthesis of a multiprocessor platform from system
descriptions, performance constraints, and a cost bound and
generate an architecture.. DSEMMP aims at shared memory with
intel Strong-ARM SA-110 as a starting point.
5.3 Compiler / PSE symbiosis

Since to map an application onto a coarse grain RA may
take only minutes, retargettable mappers or compilers may be
also used for platform exploration. By profiling the results of
the same application or benchmark on different platforms may
be compared. Such a compiler / PSE symbiosis like in Xplorer
provides direct verification and yields more realistic and more
precise results than explorers using abstract models for
estimation and gives better support for manual tuning.

Xplorer, an interactive PSE framework [10] [49] has been
implemented around the DPSS mapper [4]. This universal
design space exploration environment supports both, optimum
architecture selection (e. g. domain-specific) and application
development onto it and includes several tools: architecture
editor (to edit communication resources and annealing
parameters), mapping editor (to change I/O port type, freeze
locations of edge port, cell or cell group etc.), instruction
mapper to change the operator repertoire, architecture
suggestion generator [87], HDL generator for cell simulation,
retargettable cell layout generator (planned, similar to [88]), power
estimator (planned [89], using methods from [91]). A cycle through
an exploration loop usually takes only minutes, so that a number of
alternative architectures may be checked in a reasonable time. By
mapping the application onto it verification is provided directly.

The memory bandwidth problem. The Xplorer also
yields efficient solutions to the memory bandwidth problem
[33] by supporting mixed rDPU types in an array, so that both, data
sequencers and rDPUs dedicated to the application can be mapped
onto the same KressArray what is illustrated by the example in fig.
7 (also see section 2.4). These Xplorer capabilities provide a straight-
forward approach to support architectural implementations of the
Xputer soft machine paradigm (also see section 4.3). 

5.4 Parallel Computing vs. Reconfigurable
RISC core IP cells are available (e.g. from ARM) so small,

that 32 or more (soon 64) of them would fit onto a single chip to
form a massively parallel computing system. But this is not a
general remedy for the parallel computing crisis [92], indicated
by rapidly shrinking supercomputing conferences. For many
application areas process level parallelism yields only poor
speed-up improvement per processor added. Amdahls law
explains just one of several reasons of inefficient resource
utilization. A dominating problem is the instruction-driven late
binding of communication paths (fig. 15), which often leads to
massive communication switching overhead at run-time. R&D in
the past has largely ignored, that the so-called “von Neumann”
paradigm is not a communication paradigm. However, some
methods from parallel computing and parallelizing compiler
R&D scenes may be adapted to be used for lower level
parallelism on RA platforms (compare § “CoDe-X“ ff.). 

6. Conclusions 
Exploding design cost and shrinking product life cycles of

ASICs create a demand on RA usage for product longevity.
Performance is only one part of the story. The time has come
fully exploit their flexibility to support turn-around times of
minutes instead of months for real time in-system debugging,
profiling, verification, tuning, field-maintenance, and field-
upgrades. The new machine paradigm and language framework is
available for novel compilation techniques to cope with the new
market structures transferring synthesis from vendor to customer. 

Reconfigurable platforms
and their applications are
heading from niche to main-
stream, bridging the gap between
ASICs and micro-processors.
Many system-level integrated
future products without
reconfigurability will not be
competitive. Instead of tech-
nology progress better archi-
tectures by RA usage will be
the key to keep up the
current innovation speed
beyond the limits of silicon.
It’s time to revisit past decade
R&D results to derive
commercial solutions: at least
one promising approach is
available. It is time for you to get involved. Theory and
backgrounds are ready for creation of a dichotomy of computing
science (fig. 17) for curricular innovations. 
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