A Decade of Reconfigurable Computing: a Visionary Retrospective
Reiner Hartenstein (embedded tutorial)

CS Dept. (Informatik), University of Kaiserdautern, Germany

http://iww.fpl.uni-kl.de

Abstract. The paper surveys a decade of R&D on coarse
grain reconfigurable hardware and related CAD, points out
why this emerging discipline is heading toward a dichotomy
of computing science, and adocates the introduction of a new
soft machine paradigm to replace CAD by compilation.

1. Introduction

Rapidly increasing attendance [1] of conferences on re-
configurable computing and the adoption of this topic area by
congresses like ASP-DAC, DAC, DATE, ISCAS, SPIE, and
others indicate, that reconfigurable platforms are heading from
niche to mainstream, bridging the gap between ASICs and
microprocessors (fig. 2). It's time to revisit R&D results: the
god of this paper. (On some projects mentioned we have only
incomplete or no information on the status of implementation.)

2. Coarse-Grained Reconfigurable
Architectures

Using FPGASs as accelerator platforms is not subject of this
paper. In contrast to FPGA use (fine grain reconfigurable) the
area of Reconfigurable Computing mostly stresses the use of
coarse grain reconfigurable arrays (RAS) with pathwidths greater
than 1 bit, because fine-grained architectures are much less
efficient because of a huge routing area overhead and poor
routability HZ]. Since computational datapaths have regular
structure, full custom designs of reconfigurable datapath units
(rDPUs) can be dragticdly more area-efficient, than by
assembling the FPGA way from single-bit CLBs. Coarse-grained
architectures provide operator level CFBs, word level datapaths,
and powerful and very area-efficient datapath routing switches.

A major benefit is the massive reduction of configuration
memory and configuration time, as well as drastic complexity
reduction of the P& R (placement and routing) problem. Several
architectures will be briefly outlined (also see figure 1). Some
of them introduce multi-granular solutions, where more
coarse granularity can be achieved by bundling of resources,
such ase. g. 4 ALUs of 4 hits each to obtain a 16 bit ALU.

hartenst@rhrk.uni-kl.de

21 Primarily Mesh-Based Architectures

M esh-based architectures arrange their PEs in arectangular
2-D array with horizontal and vertical connections which
supports rich communication resources for efficient
Barallelism. and encourages nearest neighbour (NN) links

etween adjacent PES (NN or 4NN: links to 4 sides {east.

west. north, south}, or, 8NN: NN-linksto 8 sides { east, north-
east, north, north-west, west, south-west, south, south-east},
like in CHESS array). Typicaly, longer lines are added with
different lengths for connections over distances larger than 1.

DP-FPGA (Datapath FPGA) [3] has been introduced to
implement regularly structured datapaths. It is a FPGA-like
mixed fine and coarse grained architecture with 1 and 4 bits.
Its fabric includes 3 component types. control logic, the
datapath, and memory. The datapath block consists of 4 bit-
slices. each bit-slice with a lookup table, a carry chain and a
four-bit register. DP-FPGA provides separate routing
resources for data (horizontal, 4 bits wide) and control signals
(vertical, single bit). A third resource is the shift block to
support single-bit or multi bit shifts and irregularities.

TheKressArrayisprimarily amesh flexibility Fig. 2: Bridg-
of rDPUs physicdly connected through micro- ing the gap.
wiring by abutment: no extrarouting || processor

aess needed. In 1995 it has been
published [4] as “rDPA” (reconfigur-
able DataPath Array). “ KressArray”
has been coined later. The KressArray
is a super-systolic array (generaization

reconfigurable

computing

of the systalic array: fig. 4) which is
achieved by DPSS (see § ,, DPSS'). Its performance

interconnect fabric distinguishes 3
physical levels: multiple unidirectional and/or bidirectional NN
links (fig. 3), full length or segmented column or row backbuses,
asingle globa bus reaching all rDPUs (also for configuration).
Each rDPU can serve for routing only, as an operator, or, an
operator with extrarouting paths. The 2nd and 3rd level islayouted
over the cell: wiring by abutment capability is not affected.

first

Project publ. Source | Architecture Granularity Fabrics Mapping |ntggg|¢iaga%rr§];et
PADDI 1990 [29] crossbar 16 bit central crossbar routing DSP
PADDI-2 1993 [31] crossbar 16 bit multiple crossbar routing DSP and others
DP-FPGA {1994 [3] 2-Darray |1 &4 bit, multi-granular |inhomogenous routing channels| switchbox routing regular datapaths
KressArray ||1995 | [4][10] 2-Dmesh | family: select pathwidth | multiple NN & bus segments (co-)compilation (adaptable)
Colt 1996 [11] 2-Darray |1&16 bitinhomogenous (sophisticated) run time reconfiguration| highly dynamic reconfig.
RaPID 1996 [26] 1-D array 16 bit segmented buses channel routing pipelining
Matrix 1996 [13] 2-D mesh 8 bit, multi-granular | 8NN, length 4 & global lines multi-length general purpose
RAW 1997 [15] 2-D mesh 8 bit, multi-granular 8NN switched connections switchbox rout experimental
Garp 1997 [14] 2-D mesh 2 bit global & semi-global lines heuristic routing loop acceleration
Pleiades 1997 [32] |mesh/crossbar multi-granular multiple segmented crossbar switchbox routing multimedia
PipeRench || 1998 [28] 1-D array 128 bit (sophisticated) scheduling pipelining
REMARC || 1998 [16] 2-D mesh 16 bit NN & full length buses (information notavailable) multimedia
MorphoSys || 1999 [17 2-D mesh 16 bit NN, length 2 & 3 global lines manual P&R (not disclosed)
CHESS 1999 [18] hexagon mesh | 4 bit, multi-granular 8NN and buses JHDL compilation multimedia
DReAM 2000 [19] 2-D array 8 &16 bit NN, segmented buses co-compilation next generation wireless
CS2000 family| | 2000 [21] 2-D array 16 & 32 bit inhomogenous array co-compilation communication
MECA family|| 2000 [22] 2-D array (not disclosed) tele- & datacommunication
CALISTO ||2000 [23] 2-D array (not disclosed) tele- & datacommunication
FIPSOC 2000 [24] |8x12, 8x16 array (not disclosed) tele- & datacommunication
flexible array|| 2000 [25] 2-D array (not disclosed) (not disclosed) (not disclosed) software radio

Fig. 1: Summary of the technical details of the different coarse-grained reconfigurable architectures, Note: NN stands for “nearest neighbour”.

A first 32 bit KressArray included an additional control unit for
the MoM-3 [5] Xputer [6L[7L[8] [9] with rDPUs supporting al C
language operators. With the new Xplorer environment [10]
rDPUs adso sup‘oort any other operator repertoires including
branching, while loops and do-while loops. I/O data streams from
and to the array can be transferred by globa bus, array edg;iports
or ports of other rDPUs (addressed individualy by an address
generator). Although KressArrays are dynamically partialy
configurable, applicationstried out so far did not make use of it.

TheKressArray Family. Supported by an application and
development tool and platform architecture space explorer
(PSE) environment the basic principles of the KressArray
define an entire family of KressArrays covering a wide but
generic variety of interconnect resources and functional
resources. A later version of this PDE environment, called
(see paragraph “ Xplorer,”), supports the rapid creation of RA
and rPDU architectures optimized for a particular application
domain élike €. g. image processing, multimedia, or others),
and rapid mapping of applications onto any RA of this family.

Calt [11] combines concepts from FPGAS
and data flow computing. It's a 16 bit pipenet 16$ %8$32
[12] and relies highly on runtime <« &y
reconfiguration using wormhole routing. ¢— PPY |
Hereby, the data stream headers hold 2
configuration data for routing and the $
functiondity of al PEs encountered. Colt hasa Fig. 3: KressArray
mesh of 16 bit IFUs (Interconnected Functional NN ports examples.
Units), a crosshar switch, an integer multiplier,
and sx data ports. Each IFU features an ALU, a barrd shifter to
support multiplication and floating point, a decison unit for flow
branching, and optiond delay unitsfor pipdine synchronization.

MATRIX [13] (Multiple Alu architecture with Reconfigur-
able Interconnect eXperiment) is a multi-granular array of 8-bit
BFUs (Basic Functiona Units) with proceduraly programmable
microprocessor coreincluding ALU, multiplier, 256 word dataand
ingruction memory and a controller which can generate local
contraol sgnasfrom ALU output by a pattern matcher, areduction
network, or, haf a NOR PLA. With these features, a BFU can
serve as ingtruction memory, data memory, register-fileand ALU,
or independent ALU function. Instructions may be routed over the
array to severd ALUs. Therouting fabric provides 3 levels of 8-bit
buses. 8 nearest neighbour (BNN) and 4 second-nearest neighbour
connections, bypass connections of length 4, and global lines.

The Garp Architecture. [14] resembles an FPGA and
comes with a MIPS-II-like host and, for acceleration of
specific loops or subroutines, a 32 by 24 RA of LUT-based 2
bit PEs. Basic unit of its primarily mesh-based architectureisa
row of 32 PEs, areconfigurable ALU. The host hasinstruction
set extensions to configure and control the RA. Array
execution is initialized by the number of clock cycles to do.
Host and RA share the same memory hierarchy. Memory
accesses can be initiated by the RA, but only through the
central 16 columns. The blocks in the leftmost column are
dedicated controllers for interfacing. For fast reconfigurations,
the RA features a distributed cache with depth 4, which stores
the least recently used configurations. The routing architecture
includes 2 hit horizontal and vertical lines of different length,
segmented in a non-uniform way: short horizontal segments
spanning 11 blocks, long horizontals spanning the whole
array, and different length vertical segments.

RAW: Reconfigurable Architecture Workstation. [15]
pro-vides a RISC multi Processor architecture comp of NN-
connected 32-bit modified MIPS R2000 microprocessor tiles
with ALU, 6-stage pipeline, floating point unit, controller,
register file of 32 generad purpose and 16 floating point registers,
program counter, and local cached data memory and 32 Kilobyte
SRAM ingtruction memory. The prototype chip features 16 tiles
arranged in a 4 by 4 array. Early concepts [15] having been
abandoned included aso configurable logic to allow customized
instructions. RAW provides both a static (determined at compile-
time) and a dynamic network (determined a run-time: wormhole

pipeline scheduling
array | applications properties mapping (data stream
formation)

shape |resources|

systolic| regular data | linear | uniform linear projection or

array |dependencies| only | only algebraic synthesis

super- simulated annealing, | (.. force-directed)

systolic no restrictions genetic morphing, or| scheduling
RA other P&R algonthm| algorithm

Fig. 4: Pipelined datapath arrays (pipe networks).
routing for the data forwarding). Since the processors lack hardware
for regigter renaming, dynamic ingtruction issuing or caching (likein
uperscalar processors), daticdly scheduled indruction streams are
generated by the compiler, thus moving the respongbility for dl
dynamic issues to the devdopment software. However, RAW
provides possible flow control as a backup dynamic support, if the
compiler should fail to find agatic schedule.

REMARC. (Reconfigurable Multimedia Array Coprocessor)
[16], areconfigurable accelerator tightly coupled to aMIPS-| RISC
processor, condstsof an 8 by 8 array of 16 bit “nanoprocessors’ with
memory, attached to a global control unit. The communication
resources condst of nanoprocessors NN connections and additional
32 bit horizontal and vertical buses which also alow broadcast
to processors in the same row or column respectively, or, to
broadcast a globa program counter value each cycle to all
nanoprocessors, aso to support SIMD operations.

MorphoSys. (Morphoing System [17]) has a MIPS-like
“TinyRISC” processor with extended Instruction set, a mesh-
connected 8 by 8 RA, a frame buffer for intermediate data,
context memory, and DMA controller. The RA isdivided into
four quadrants of 4 by 4 16 bit RCs each, featuring ALU,
multiplier, shifter, register file, and a 32 bit context register for
storing the configuration word. The interconnect network
features 3 layers: 4 NN ports, links of distance 2, and, inter-
gquadrant buses spanning the whole array. TinyRISC extra
DMA ingtructions initiate data transfers between the main
memory and the “frame buffer” internal data memory for
blocks of intermediate results, 128 by 16 bytesin total.

The CHESS Array. The CHESS hexagona array [18%
features a chesshoard-like floorplan with interleaved rows o

aternating ALU / switchbox sequence (figure 5). Embedded
RAM areas support high memory requirements. Switchboxes
can be converted to 16 word by 4 bit RAMs if needed. RAMs
within switchboxes can aso be used as a 4-input, 4-output
LUT. The interconnect fabrics of CHESS has segmented four-
bit buses of different length. There are 16 buses in each row
and column, 4 buses for local connections spanning one
switchbox, 4 buses of length 2, and 2 buses of length 4, 8 and
16 respectively. To avoid routing congestion, the array
features also embedded 256 word by 8 bit block RAMs. An
ALU data output may feed the configuration input of another
ALU, so that its functionality can be changed on a cycle-per-
cycle basis at runtime without uploading. However, partial
configuration by uploading is not possible.

TheDReAM Array. (Dynamicaly Reconfigurable Architecture
for Mobile Sysems [19]) for next generation wirdess
{ ()

|
| y

fi .‘5 ALU j[.‘{‘ AW | i -
O o) G 0 g 1) S G W
o [D AT]) R

J.a.@ﬁ%a@ﬁ'@%a@‘

F—H L] J—HTaw]}

o o i QY i
wo | T]]

ALU y ALU
i

NGl

Fig. 5: CHESS array hexagon floor plan.

communication, is a 0.35 mm CMOS dandard cell design
fabricated by Mietec/Alcatel. Each RPU condsts of: 2
dynamically reconfigurable 8-bit Reconfigurable Arithmetic
Processing (RAP) units, 2 barrel shifters, a controller, two 16 by
8-bit dual port RAMs (used as LUT or FIFO), and, a
Communication Protocol Controller. The RPU array fabric uses
NN ports and globa buses segmentable by switching boxes.

CS2000 family. Chameleon Systems [20] offers the CS2000
family multi-protocol multi-application reconfigurable platform
RCP (reconfigurable communication processor) for telecom-
munications and data communications [21], with a 32 bit
RISC core as a host, licensed from ARC Cores, UK, with full
memory controller and PCI controller, connected to a RA of 6,
9, or 12 reconfigurable tiles, where each tile has 7 32-bit rDPUs
(each including an 8 word instruction memory), 4 local memory
blocks of 128 x 32 bits, 2 16x24-bit multipliers. Every 3tilesare
grouped as a “dlice” also including 8 kBytes of loca memory.
The RA alows multiple independent data streams and its
reconfigurable fabric can be changed within asingle clock cycle.
The CS1200 family aims at initid markets in communication
infrastructure and is intended to cope with the chaotic world of
evolving standards, protocols and agorithms with application
areas as 2nd and 3rd generation wireless basestations, fixed
point wireless local loop (WLL), smart antennas, voice over
IP (VolP), very high speed digital subscriber loop (DSL), and,
for instance, supports 50 channels of CDMA2000.

The MECA family by Mallesble [22] is intended to be a
family of DSPs (digital signal processors) optimized for Vol P, by
compressing voice into ATM or IP packets etc., ams a next
generation VolP and VOATM. The MECA family clams -
compared to conventional DSPs- a speed-up factor of 10.

CALISTO (Configurable ALgorithm-adaptive Ingtruction
Set TOpology) by Silicon—Spice[231] intends to be an innovative
adaptive ingtruction set architecture for internet protocols (IP) and
ATM packet.-based networks with flexibility for Any-Service-
Any-Port (ASAP) to deliver voice and data simultaneously
over a unified data network. CALISTO is a single-chip com-
munications processor for carrier-class voice gateways, soft switches,
and remote access concentratorsremote access sarvers (RAC/RAS),
which aims at applications like echo cancellation, voice/fax/data
modems, packetization, cdlification, delay equdizetion.

FIPSOC (Fidd-programmable System-on-Chip) by SIDSA
[Zég has an 8051 controller, a RA and a RAA (reconfigurable
andog array). The 8x12 (8x16 or 16x16) RA Is an array of
“digitdl macro cdls’ (DMC) including a 4-input LUT and 4
latches, programmable to be a 4 bit up/down counter, shift
register, 4 bit adder, 16x4 bit RAM etc. The RAA has “con-
figurable andog blocks’ (CAB) usable as differentid amplifiers,
comparators, converters etc. The RA is a multi-context RA
featuring 2 extra configuration memories. Device booting can be
done from externa paralledl ROM (as the 8051 controller does),
externd serid PROM, or RS 232 serid port. FIPSOC isintended
to be used asan ASIC emulator for rapid prototyping.

M or phl Cs mentionsits RA, but without details [25].

2.2 ArchitecturesBased on Linear Arrays

Some RAs are based on one or severa linear arrays,
typicaly dso with NN connect, aiming at mapping pipelines
onto it. If the pipes have forks, which otherwise would require a
2-D redlization, additional routing resources are needed, like
longer lines spanning the whole or a part of the array, often
being segmented. Two RAS have linear array structure. RaPiD
[26] provides different computing resources, like ALUS, RAMS,
multipliers, and registers, but irregularly distributed. While
RaPiD uses mostly static reconfiguration, PipeRench relies on
dynamic reconfiguration, allowing the reconfiguration of a PE
in each execution cycle. Besides the mostly unidirectional NN
connects, it provides also aglobal bus.

RaPiD: The Reconfigurable Pipelined Datapath (RaPiD)
[26] aims at speed-up of highly regular, computation-intensive
tasks by deep pipelines on its 1-D RA. RaPiD-1 features 15

DPUs of 8 hit with integer multiﬁlier (32 hit output), 3 integer
ALUs, 6 general-purpose datapath registers and 3 local 32 word
memories, al 16 bits wide. ALUs can be chained. Each
memory has a special datapath register with an incrementing
feedback path. To implement 1/O streams RaPiD includes a
stream generator with address generators, optimized for nested
loop structures, associated with FIFOs. The address sequences
for the generators are determined a compile-time. RaPiD’s
routing and configuration architecture consists of severd
parallel segmented 16 bit buses, which span the whole array.
The length of the bus segments varies by tracks. In some tracks,
adjacent bus segments can be merged. The sophisticated
interconnect fabric cannot be detailed here.

PipeRench[28], an accderator
for pipelined applications,
provides severa reconfigurable
pipeline stages (“dripes’) and
relies on fast partiad dynamic
pipeline reconfiguration and run
time scheduling of configuration
streams and data streams. It has
a 256 by 1024 hit configuration
memory, astate memory (used to savethe current register contents
of a dripe), an address trandation table (ATT), four daa
controllers, a memory bus controller and a configuration
controller. The reconfigurable fabric of the PipeRench alows the
configuration of apipeline stagein every cycle, while concurrently
executing all other stages. The fabric consists of severa
(horizontal) dripes composed of interconnect and PEs with
registers and ALUs, implemented as 3-input lookup tables. The
ALU includes a barrel shifter, carry chain circuitry, etc. A stripe
provides 32 ALUs with 4 bits each. The whole fabric has 28
dripes. The interconnect scheme of PipeRench festures loca
interconnect inside astripe aswell aslocal and globa interconnect
between stripes and four global buses.

2.3 Crosshar-Based Architectures

A full crossbar switch, a most powerful communication
network is easily to rout. But the 2 RAs of this category use
only reduced crosshars. PADDI for the fast prototyping of
DSP datapaths features eight PEs, al connected by a
multilayer crossbar. PADDI-2 has 48 PEs, but saves area by
restricted crossbar with a hierarchical interconnect structure
for linear arrays of PEs forming clusters. This fabrics
sophistication has again an impact on routing.

PADDI-1 (Programmable Arithmetic Device for DSP) [29]
[30], for rapid prototyping of computation-intensve DSP data
paths, consists of clusters of 8 arithmetic execution units (EXUS)
16 bits wide, including 8 word SRAM (which may be con-
catenated for 32 bits) and connected to a central crossbar switch
box. Interconnect is organized in 2 levels: a 3 bit global bus to
broadcast globa ingructions to each EXU’s controller CTL,
decoded locally a second level into a53 bit instruction word.

The PADDI-2 Architecture [31] features a data-driven
execution mechanism. Although the basic architectura
principles of the original PADDI were kept, the PADDI-2 has
several differences. It has 48 EXUs. Each PE features a 16 bit
ALU aso including booth multiply and select, multiplication
instructions taking 8 cycles on asingle processor. Alternatively,
eight EXUs can be pipelined, resulting in a single cycle
multiplication. PADDI-2 EXUs are packed in 12 clusters of
four elements each two level interconnect: six 16 hit intra
cluster data buses (plus one bit control buses, and, inter-cluster
16 data buses, which can be broken up into shorter segments.

ThePleiades Architecture[32] is a generalized low power
“PADDI-3" with programmable microprocessor and hetero-
geneous RA of EXUs, which alows to integrate both fine and
coarse grained EXUs, and, memoriesin place of EXUs. For each
algorithm domain (communication, speech coding, video
coding), an architecture instance can be created (with known
EXU types and numbers). Communication between EXUs is

Paradigm | Platform |Programming

Software

high level
Configware

RL | fine grain | netlist level
(FPGA etc.) Flexware | Configware

Fig. 6: About terminology.

Neurann” | Hardware

coarsegrain
Flexware

Xputer

dataflow driven. The control means available to the programmer
are basic EXU configurations to specify its operation, and
interconnect configurations to build EXU clusters. All
configuration registers are part of the processor’'s memory map
and configuration codes are processor’s memory writes.

24 Memory Bandwidth Problems

RAM cycle time as throughput bottleneck of von-Neumann-
style computing, known as “ memory bandwidth problem”, a
communication gap which spans up to 2 orders of magnitude, can
be even wider in RA use as accelerator in dataintensive
applications - a chalenge to RA architectures and mappers (see §
“DTSE"). Interfaces like RAMbus etc. may reduce the gap alittle
bit for both, host and accderator. But the use of caches, mainly
based on ingtruction loops (write once - multiple read) does not
help in RA usage: compare fig. 15. That's why RA architectures
should be cgpable to interface multiple memory banks, only known
from the KressArray (example: fig. 7, where 8 ports communicate
with 4 memory banks[33]). Also see chapter 4 and 5.

2.5 FutureReconfigurable Architectures

A universal RA obvioudy is an illuson. The way to go is
toward sufficiently flexible RAs, optimized for a particular
application domain like e. g. wirdess communication, image
processing or multimedia etc. Thereis aneed for tools supporting
such dedicated RA architecture development. But architectures
have an immense impact on implementability of good mapping
tools. “ Clever* fabrics are too sophigticated to find good tools.
The best solution are simple generic fabrics architecture
principles, or, a mapping tool which generically creates by itself
the architectures it can manage easily [10], or, a combination of
both approaches like the platform space exploration (s. , The
KressArray Family* and “ Xplorer,”). See chapter 5.

Address
to Bank 3

| 08

Data
to Bank 3

| | 08t

Data
to Bank 4

087

‘Address
to Bank 4

used for data
sequencers used for
application

unused

/0 & Memory memory por

Communicafion
Architecture

Fig. 7: Mapping application (linear filter) and memory communication
architecture (dark background) onto the same KressArray, including the
address ports and the data portsto 4 different memory banks (5 of 8
memory port connects are routed through application DPUS).

3. Programming Coarse Grain RAs

Programming frameworks for RAs (adso see fig. 1) are
highly dependent on structure and granularity, and differ by
language level. For MorphoSys, MATRIX, PADDI-2 and
REMARC it's assembler level. Some support the designer by a
graphical tool for manual P& R. Others feature automatic design
flow from HDL or high-level programming language.
Environments differ by the approach used for technology
mapping, placement, routing. Using only a simple script for
technology mapping [34] DP-FPGA [3] is not considered.

Technology mapping is mostly simpler for coarse grain
architectures than for FPGAs. Approaches are: direct
mapping, where the operators are mapped straight forward
onto PEs, with one PE for one operator, or, using an additional
library of functions not directly implementable by one PE, or,
more sophisticated tree matching also capable to merge
several operatorsinto one PE by a modified FPGA tool kit. An
exception is the RAW compiler doing partitioning instead of
technology mapping, since RAW has RISC cores as PEs
accepting blocks from program input.

For operator placement, the architecture has an impact. An
approach often used for FPGAs synthesis is placement by
simulated annealing or a genetic algorithm. Garp uses a tree
matching a gorithm instead, where placement is done together
with technology mapping. The use of greedy algorithms is
feasible only for linear arrays (PipeRench), or with a high
level communication network (RAW). PADDI is an exception
by using a scheduling a gorithm for resource allocation.

AS application-specific MIPS million instructions / second

ASAP any service any port MMACS million MAC per second
ASPP AS programmable product MOPS million operations/ second
CAB configurable analog block NN nearest neighbour
CDFG control / data flow graph ~ NNP NN port
CFB configurable function block OS operating system
CLB configurable logic block P&R placement & routing
CP communication processor PA processor array
DP data path PSE platform space explorer
DPSS DP synthesis system RA reconfigurable array
DRL dynamically RL RAA reconfigurable analog array
DSE design space explorer RCP reconfigurable CP
DSL digital subscriber loop rDPU reconfigurable DP unit
DSP digital signal processor RL reconfigurable logic
DTSE data transfer and storage RTOS real time OS

explorer _ SAL single assignment
FPL field-programmable logic language
GCC GNU C compiler SAP single assignment program
HDL hardware descr. language SUIF Stanford intermediate Form
IP internet protocol VolP voice over IP
JHDL Java HDL WLL wireless local loop
MAC multiply and accumulate Fig. 8: Glossary.

Routing also features quite different approaches. In two cases,
the routing is not done in an extra phase but integrated into the
placement and done on the fly. One approach (KressArray) usesa
smple agorithm redtricted to connects with neighbours and
targets with a most the distance of one. The other (RaPiD)
employsthe pathfinder agorithm [35], which has been developed
for FPGA routing. Greedy routing would be not satisfying.
Genera exceptions to the routing approaches is the RAW
architecture, which features only one high-level communication
resource, S0 no selection of routing resources is needed, and the
PADDI architecture, which features a crossbar switch having the
same effect. Greedy routing agorithms are only used for 1-D
RAS, or architectures capable to cure routing congestion by other
mechanisms, like Colt with wormhole run-time reconfiguration.

31 Assembler Programming

Assembler level code for coarse grain architectures can be
compared to configuration code for FPGAS. In the case of
systems comprising a microprocessor / RA symbiosis, only
the reconfigurable part is considered for the classification.

mapping | Kress DPSS | CHESS RaPiD Colt
placement simulated simulated annealing | genetic algorithm
routing annealing Pathfinder greedy algorithm

Fig. 9: FPGA-Style Mapping for coarse grain reconfigurable arrays.

Programming is done mainly at a kind of assembler level for
PADDI-2, MATRIX, and, RAs of REMARC and MorphoSys.
PADDI-2 is crosshar-based whereas the rest is mesh-based.

Programming PADDI-2. For programming PADDI-2
[31], a tool box has been developed which includes software
libraries, a graphical interface for signal flow graphs, routing
tools, simulation tools, compilation tools and tools for board
access and board debugging. Major parts of this process are
done manually. The input specifies assembly code for each
function in the signal flow graﬁh The programmer manuall
partitions the signal flow graph with a graphical tool, whic
also aidsin manual placement and routing. As an alternative to
manual placement and routing, an automated tool is provided,
which guarantees to find a mapping, if one exists, by
exhaustive methods which need much computation time.

For Programming MATRIX. [13] an assembly level macro
language has been developed. Some work on P& R pointed out
the origina MATRIX’s weak points [36].

REMARC tooals. [16] alow concurrent programming of the
RISC processor (by C using the GCC compiler) and the RA by
adding REMARC assembler instructions. The compiler then
generates assembly code for the RISC processor with the
REMARC assembler instructions embedded which are further
processed by a special REMARC assembler generating binary
code for the REMARC instructions. Finally, the GCC compiler
is used again to generate RISC ingtruction code to invoke
REMARC and its instructions embedded as binary data.

Programming M orphoSys. is supported by a SUIF-based
compiler [17] for host, and development toolsfor RA. Host / RA
gartltl oning is done manually by adding a prefix to functions to

e mapped onto RA. The compiler generates TinyRISC code for
RA act|vat|on Configuration code is generated via a graphical
user interface or manually from an assembler level source also
usable to simulate the architecture from VHDL.

3.2 Frameworkswith FPGA-Style Mapping

Computation-intensive algorithms for mapping onto
FPGAs are well-known and can often be used directly for
coarse grain architectures like for CHESS, Colt, KressArray,
RaPiD (see fig. 9). All four use simulated annealing or other
genetics for placement, and two use pathfinder for routing
[35]. The KressArray DPSS (Datapath Synthesis System)
accepts a C-like language source. The compilation framework
for the RaPiD system works similar, but relies on relatively
complex algorithms. Colt tools use a structural description of
the dataflow. CHESS has been programmed from a hardware
description language (JHDL) source. P&R quality has a
massive impact on application performance. But, due to the low
number of PES, P&R is much less complex than for FPGAs and
computational requirements are drastically reduced.

DPSS (DataPath Synthesis System) [4] generates configuration
code for KressArrays from ALE-X high-level language
sources [4] [37] supporting datapaths with assignments, local
variables and loops. After classical optimizations it generates
an expression tree. Next processing steps include a front end,
logic optimization, technology mapping creating a netlist,
simultaneous P&R by simulated annealing, and 1/0O scheduling
(incl. loop folding, memory cycle optimization, register file
usage). The result is the application’s KressArray mapping and
aray 1/0 schedule. Finally configuration binaries are
assembled. Routing is restricted to direct NN connect and
rout-throu edgh of length 1. Other connect is routed to buses or
segmented buses. DPSS has also been part of the MoM-3
Xputer compiler accepting and partitioning a subset of C
subset into sequential MoM code and structural KressArray
code. The more general CoDe-X approach [38] usesthisMoM

compiler as part of a dpartitioni ng co-compiler accepting a C
language superset and partitioning the application onto the
host and one or several Xputer-based accelerators.

Toolsfor Caolt[11] accept a dataflow description (below C
level) for placement by a genetic algorithm and routing by agreedy
agorithm (routing congestion is cured a run-time by wormhole
reconfiguration). Data stream headers hold configuration data for
routing and the functionality of al PES encountered.

Programming RaPID[28] [machine || Computer | Xputer [7
isdonein RaPD-C, aC-like | category || (v. NeuEnann (no ?rgnsthlzr)
language with extensons —machine rocedural sequencin
(like synchronization mechan- | paradigm deFt)ermmlstlc ncg1 “data fl%w
isms and conditionals t0 [griven by [control flow |datastreamis)
identify first or last Ioop rRAsupport o yes
|terat|g||2| to ex Cgautly Spet- engine instruction data
fyper 1am, principles || sequencing | sequencing

and partitioning, R"’RD -C state program |(multiple) data
progrgns efggé’ ICOHSSt dOf register counter | counter(s)
sved n oops de- o)
soribing pipelines. Outer Ogm%rgﬁ%” atruntime | atload time
loops are transformed iNto [yatlresourcd | single ALU |array of ALUs
sequential code for address |path operation|| sequential | parallel
generators, inner loops into Fig. 10: Machine Paradigms.

sructura code for the RA.
The compilation steps are: netlist generation from structural
code, extraction of dynamic control, generation of controller
code ingtruction streams for dynamic control and generation of
I/0 configuration data for the stream units. The netlist is
mapped onto RaPiD by pipelining, retiming, and P&R.
Placement is done by simulated annealing, with routing (by
pathfinder [35]) done on the fly to measure placement qudity [39].
For Programming the CHESS array [18] a compiler [40]
has been implemented accepting JHDL [41] sources and
generating CHESS netlists. Placement is done by simulated
annealing and routing by Pathfinder’s negotiated congestion
algorithm [35]. Part of the work is not disclosed.

3.3 Other mapping approaches

Greedy agorithms are poor in mapping to FPGAs. But,
athough Garp is mesh-based, mapping tregtsit like alinear array
which allows map mg in one step by a simple greedy routing
dgorithm. RAW features only one communication resource,
removing the wire selection problem from routing. Instead, the
compiler schedules time multiplexed NN connections. CPU
cores insde RAW PEs smplify mapping by loading entire
source code blocks. PipeRench resembling a linear array and
interconnect fabrics redtrictions keep placement simple for a
greedy dgorithm. PADDI uses astandard P& R approach.

Garp tools. [14] use a SUIFbased C compiler [42] to generate
code for the MIPS hogt with embedded RA configuration code to
accelerate (only non-nested) loops. At next basic blocks are

generated and converted into hyperblocks containing a contiguous
1group of basic blocks, dso from dternative control paths. Control
low inside a hyperblock is converted for predicated execution.
Blocks, which cannot be mapped, are removed from hyperblocks.
The resulting reduced hyperblock is then the basis for mapping.
The next step generates interfacing ingructions for the hogt, and
transforms the hyperblock into a DFG (data flow graph). The
proprietary Gammatool [43] maps the DFG onto Garp using atree
covering agorithm which preservesthe datapath structure, supports
features like the carry chains, Gamma firgt splits the DFG into

Memory m

Scheduler

Y ¢/ instructions & /nstructlonsi

Mj/’ Datapath
[Sequencer P [Sequencer ,

7
prog‘am hardwired data/ reconflgurable tal! reconfigurable
counter counter) counters c)

Fig. 11: Machine paradigms: &) v.Neumann, b) Xputer, c) paralel Xputer

Datapath Datapath

[~}
0
[

Explorer System | year |source| é%tt?vre statusevaluation | statusgeneration Specification h'gpalnea’l%géogéﬁggmng Specification
DPE 1991| [75] | no | abstract models rule-based a) VLSICAD b) c)
Clio 1992| [76] | yes |prediction models| advice generator netlist netlist
DIA 1998| [77] | yes |prediction fr. library| rule-based v relocatable code

DSE for RAW [1998| [48] | no | analytical models analytical Placement . Placement
ICOS 1998/ [85] | no fuzzy logic greedy search |& Routing downloading |& Routing

DSE f. Multimedia|1999| [86] | no simulation branch and bound __V
Xplorer 1999[10][49] vyes | fuzzy rule-based |simulated annealing hard- mach?n((: RAM|9,§2§,E,?; RAM| %ﬁ(t:h?:lg

Fig. 12: Design Space Exploration Systems. wired paradigm |paradigm |paradigm

subtrees and then matches subtrees a with module patterns which
fit in one Garp row. During tree covering, the modules are aso
pleced in the array. After some optimizations the configuration
code is generatedagnd. outing [45]), assembled into binary form,
and, linked with the hosts C object code.

RAW tools[46] [47] include a SUIF-based C compiler and
arun-time system managing dynamic mechanisms like branch
prediction, data caching [48], speculative execution, dynamic
code scheduling. The compiler handles resource allocation,
parallelism exploitation, communication scheduling, code
generation (for host and switch processors in each tile), and,
divides execution into coarse-grain Earallel regions internally
communicating by static network, whereas intraregion
communication uses m es. The phases are: pointer
analysis [46] with data dependency analysis and memory
access generation (if known at compile-time), partitioning
application data for distributed memory; ace-time
scheduling [47] for paralelization; address trandlation for
caching by software. RAW binary is generated by the MIPS
compiler back end. The RAW project aims more at parallel
processing rather than reconfigurable computing and failed in
finding a good automatic mapping algorithm [49].

PipeRench tools [28] [50] use the DIL dngle-assignment
language (SAL) for design entry and as an intermediate form. Firdt,
the compiler inlines al modules, unrolls loops and generates a
graight-line SA program (SAP). After optimizations and breaking
the SAPinto piecesfitting on onestripe, agreedy P& R dgorithmis
run which tries to add nodes to stripes. Once placed, a node is
routed and never moved again. P&R is fagt by crossbar switch
usage, coarse granularity, and, redtriction to unidirectiona pipdines.

CADDI. [51], assembler and simulator, has been imple-
mented for PADDI. First a silage !52] specification is
compiled into a CDFG (control /data flow graph), used for
estimations of critical path, minimum and maximum bounds
for hardware for a given time allocation, minimum bounds of
execution time, and for transformations like pipelining,
retiming, algebraic transformations, loop unrolling and
operation chaining. CDFG to architecture technology mapping
is straight-forward since al components are fixed and routing
through crossbars is efficient. It severa PADDI clusters are
involved, a partitioning step comes before resource allocation,
assignment, and scheduling. The assignment phase maps
operations to EXUs by arejectionless antivoter algorithm [53].

Compilation for Pleiades. Because of the complex design
space created by the heterogeneous architecture, the
application mapping problem is not yet solved completely.

C~SIDE. devdopment toals for the Chameeon CS2000 family
incdludeaGNU C compiler for the RISC hogt, aHDL synthesizer for
the reconfigurable fabric, a amulator, a C-style debugger and a
verifier. eBIOS (eConfigurable Badc /O Services), a kind of
operating sysem, interfaces the RISC processor with the
reconfigurable fabric. C~SIDE is a tool box, rather than a co-
compiler. About mapping or compilation for the MECA family [22],
FIPSOC [24] and MorphICsRA [25] noinformeation isavailable

IDE. (Integrated Development Environment) with a C-
compiler, debugger, smulator and “ Evauaion Module’ (EVM)
serves for CALISTO from Silicon Spice [23], where a Red-time
operating system (RTOS) supports “ Any Service Any Port”

(algorithms: fixed) (algorithms: variable) (algorithms: variable)
(resources: fixed] (resources: fixed] (resources: variable)
Fig. 13: Synthesis &) hardwired, b) “von Neumann”, c) reconfigurable.

(ASAP) configurations for up to 240 channds of carrier class
G.711VolP (voiceover IP). IDE isatool box, but no co-compiler.

34 Run-timeMapping

The VIRTEX FPGA family from Xilinx, the RAs being
part of the CS2000 series systems from Chameleon and others
are run-time reconfigurable. Programming a host/RA
combination is akind of H/S Co-design. However using such
devices changes many of the basic assumptions in the
HW/SW co-design process. host / RL interaction is dynamic
and needs a kind of tiny operating system like eBIOS, also to
organize RL reconfiguration under host control. A typical goal
is mimization of reconfiguration latency (especially important
in communication processors), to hide configuration loading
latency, and, list scheduling to find "best’ schedule for a series
of eBIOS calls (A0 %= §"“C~SIDE"). For more about typical
aspects of run-time reconfiguration see [54] [55].

35 Retrogpective

The history of silicon synthesis and application distinguishes
three phases[56] (or, 3 Makimoto waves [57]): hardware design
(fig. 13 a), introduction of the microcontroller (fig. 13 b), and
RA usage (fig. 13 c). The transition from phase 1 (structural
synthesis) to phase 2 brought a shift from net-list-based CAD
(fixed agorithms, no machine paradigm, infinite design space)
to RAM-based (procedural) synthesis by compilation, based on
a machine paradigm, which reduces the design space by
guidance. Note: RAM-based means flexibility and fast turn-
around. Accelerator synthesis (fig. 16 b) still uses phase 1
methods (CAD). The third phase introduces reconfigurable
hardware, i. e RAM-based structural synthesis: resources have
become variable. But still phase 1 synthesis tools are mainly
used: versions of CAD tools. Since structural synthesis has
become RAM-based it is time to switch to real compilation
techniques, based on a soft machine paradigm. But the R& D
scene ignore, that we now have a dichotomy of RAM-based
programming: procedural programming versus structural
programming, integrating two worlds of computing (fig. 17)

4. Compilation Techniques

The dassicd “von Neumann” scheme is obsolete (fig. 16 a).
Today, microprocessor / accelerator(s) symbiosis is the
dominant computer gpplication (fig. 16 b), where sequential
code is downloaded into the host's RAM, whereas the
accelerator is implemented by CAD. From this view also the
classical compiler is a kind of obsolete. Using RAs as
accelerators again changes this scenario: now implementations
onto both, host and RA(s) are RAM-based and compilation
techniques for both sides would be desirable: co-compilation
(fig. 16 c). But until recently only hardware/software co-design
environments have been implemented, where a C compiler is
only an isolated minor part to program the host and RAs are still
programmed by CAD [43] [50] [58] [59] [62].

Since theI design flow in Fig. 14: CoDe-X
mapping applications onto RAs Co-Compiler
is still managed by hand, using (X-C}-»| Partitioner
isolated tools for particular XC's Clanguage
steps for particular platforms, extended by MorlL
currently massive hardware | GNU.C || Analyzer || - X-C
expertise is needed to implement | compiler || 5= = || compiler
accderators on RA platforms.,

Progranming of both, host and v

RAog being I%AM—based alows host KressArray < DPSS
turn-around times of minutes -

instead of months needed for hardwired ASIC accdlerators. This
means a change of market structure by migration of accelerator
implementation from 1C vendor to customer who mainly has no
hardware designers available. So there is a strong need for
automatic compilation from high level programming language
sources onto RAS.

Most of the platforms summarized above make use of a
host/RA symbiosis. Newer commercia platforms include all
on asingle chip. E. g. Altera s EXCALIBUR combines a core
processor (ARM, or MIPS, etc.), embedded memory and RL.
Compilers mentioned above (except CoDe-X, see below), like
e. g. a GNU C compiler, are used just for programming the
host. However, software / configware partitioning and the
creation of host/RA interfaces are still mainly done manually.

4.1 Software/ Configware Partitioning
An important goal to be met by innovative compilersis to
do the partitioning automatically which has to be controlled
severd criteria how far an agorithm is paralelizable at al, to
consider the capacity and capabilities of available flexware to
find out what and how much workload fits onto a given RA
art (with acompiler which isretargettable by parametrization
38]), to optimize the hardware/configware frade-off, and, by
PSE to or;ti mize the performance/hardware/flexware trade-off:
A compiler doing all this from a high level language source we
call asoftware/ configware Co-compiler (see next section).

4.2 Co-Compilation

Redl software/ configware co-compilation means a consequent
trangtion from a CAD / compilation mix to real machine-
paradignmbased compilation onto both, host and RA induding
automatic partitioning. (Thisisthe only way to avoid, that designers
hate their tools [60]). CoDe-X is the first such environment having
been implemented [38]. o using parts of earlier work [61].

CoDe-X. The availability of reconfigurable universa
accelerator machines (like the Xputer [62]) creates a demand
for innovative compilation techniques, such as e g. a
r)artitioni ng compiler accepting input from programming
anguage sources (fig. 14). This is needed, because two
different kinds of code have to be downloaded (fig. 16 c):
procedural code into the RAM of the host, and, structural code
into the (hidden) RAM of the reconfigurable accelerator. We
need a partitioning compiler, which we call Co-Compiler. An
example is the CoDe-X partitioning co-compiler [38] (fig. 14),
accepting C programs and partitioning an application into a
task for the host and tasks for the accelerator machine.

L oop transfor mations. Host/accdlerator partitioning in CoDe-
X is manly caried out by identifying loops suitable for
pardldizing transformation into code downloadanle to the MoM
accd erator machine (MoM isan Xputer architecture). The CoDe-X
implementation includes 5 different loop transformation methods.
srip mining [63] [64], loop fusion [63] [65], loop splitting [63]
[66]), loop interchanging [67], and, loop unralling [64]. Within
CoDe-X these loop transformations are controlled by resource
parameters for optimum adaptation to the amount of KressArray
resources available, likein hardware / software co-design.

C~SIDE etc. Chameleon Systems reports for its CS2000
series co-compilation [21] techniques, combining compiler opti-
mization, multithreading to hide configuration loading |atency,
and, list scheduling to find "best’” schedule for eBIOS calls (see §
“C~SIDE"). Whether autometic partitioning is used is undisclosed

4.3 Why weneed a Soft M achine Paradigm

Exploding ASIC design cost and shrinking ASIC product
life cycles are amotivation to replace at least some of the ASICs
by RAs for product longevity by upgrading [68] [69] [70].
Performanceis only one part of the story. The design community
is far away from fully exploiting the flexibility of RAs [41],
supporting novel powerful techniques -directly in system
jointly with all other components in real time, dramatically
faster than simulation- for debugging, run-time profiling,
verification, system-wide tuning, run-time API, field-
maintenance, field-upgrades (also via internet) flexible self-
monitoring functions by configuring unused parts of the RA.

This potentid islargely unrealized timeof , instruction fetch
dthough having been technically possble
and demongtrated aready for abouta [y,
decade [41]. Using RAs instead of

microprocessor
parallel computer

ASICs cregtes new market structures '°3ing RS
by transferring synthesis from vendor)
{0 cusiomer, who does not have the “pRe e

hardware experts required, and, thus ¢prica
needs compi?gts toe?eplace CAD. A iime"
machine paradigm makes compilers Fq. 15: “Ingruction Fetch .
much eas%r to develop and machines 9 rucion
eader to program - the success story of software indudtry.

Soft M achine Paradigm needed. We need a new machine
paradigm, since “v. Neumann” does not support soft datapaths
because “instruction fetch” is not done at run time (fig. 15).
Instead of a program counter like the “von Neumann machine”
(fig. 11 @) we need a data counter (fig. 11 b) [62] provided by
the Xputer paradigm. Figure 10 clarifies he fundamental
differences between both machine paradigms. The Xputer
(deterministic) is not a classical “ data flow maching” operating
inderterministically since being driven by arbitration. An
Xputer (non-von-Neumann) is not atrans#outer (von Neumann).
Equipped with multiple data sequencers (fig. 11 ¢) asingle such
Xputer machine may even handle severa parallel data streams,
likeillustrated by the examplein fig. 7 (see section 2.4).

The Xputer M achine Paradigm. Xputer data sequencers
(seefig. 11 b and c) have already been implemented [72]. This
Xputer machine paradigm -the diametral counterpart of the
von Neumann paradigm- has been published a decade ago: the
new “ Xputer” machine paradigm for soft hardware (fig. 10)
[6] [7] [8] [9]. Instead of a*“control flow” sublanguage a“ data
stream” sublanguage recursively defines data goto, data
jumps, data loops, nested data Ioogs, and parallel data loops
(using multiple data counters) like by the MoPL language [73]
- easy to learn by its similarity to control flow.

5. Design Space Explorers (DSEs)

Some devel opment environments aim beyond compiling. DSEs
(fig. 12 [49]) sdect one of many dternative solutions to meet a
design god mesting congtraints or desired propertiesto optimize a
design or a (by PSE) programmable platform Guidance systems
or design assistants are Interactive DSEs giving advice during
the design flow. Some DSEs avoid the status generation and
provide only predictions etc. from a knowledge data base.
Advanced DSEs provide status generation, e g. by expert
system, and present advice like a choice of proposals. Non-
interactive DSEs automatically generate a solution status from
rule-based knowledge or fuzzy learning.

5.1 Design Space Exploration

Interactive design assistants are DPE and Clio (both for VLSI)
and DIA. Including effect predictors and proposal generators
DPE (Design Planning Environment) [75] (using an expert
system), Clio [76] (using a hierarchy of templates) and DIA
(Datapath-Intensive ASICs) [77] (targeting semi-custom ASIC
behavioural level and based on encapsulated expert knowledge),
generate adesign flow by creating a schematic, adata flow graph,
or alayout from a specification and areg, cycle time, power, ea
congtraints and to improve area, power, throughput etc.

@) [compilation] [compilation| [CAD | [co-compilation]
b

v o | |
v

110/ |RAM ||| host Wi hardwired host Wl

instruction] | [|RAM[jaccelerator(s) | [|[ram RA(S)
sequencer B =

Fig. 16: Computing Platforms. @) “v. Neumann”, b) current, c) emerging.

DT SE. For data-dominated systemsthe usual loca optimization
techniques lead to performance-degrading runtime solution of
access conflicts. A cost overhead of 10 - 100% (in power) for
hardware and around 35% (in clock rate) for software has been
estimated [78] [79]. For global exploration the use of conflict-
directed ordering (CDO) [80] as an extension of force-directed
scheduling (FDS) [81] has been proposed [82]. Instead of
working on a signal access flow graph (SAFG) [80] a muilti-
dimensiona conflict graph (MD-CG) is used for a generaized
CDO (G-CDO) dgorithm for the ATOMIUM / ACROPOLIS
datatransfer and storage exploration (DTSE) system [83] [84].

5.2 Platform Space Explorers (PSES)

A PSE servesto find an optimum RA or processor array (PA)
platform for an application domain by optimizing array size, path
width, processor’ s MIPS, number of ALUs and branch units, local
SRAM dgze, data and ingruction cache szes, locd bandwidth,
interconnect latency etc. from requirements like chip area, total
computation, memory size, buffer size, communication etc.
Software or configware gpplication programming is finaly not
part of exploration, but may serve platform evauation. All three
being non-interactive, the DSE [48] for RAW [15] festuring an
anayticd model, 1COS (Intelligent Concurrent Object-oriented
Synthesis) [85] featuring object-oriented fuzzy techniques, and
“DSE for Multimedia Processors’ [86] (DSEMMP) am at
automatic synthesis of a multiprocessor platform from system
descriptions, performance condraints, and a cost bound and
generate an architecture.. DSEMMP aims at shared memory with
intel Strong-ARM SA-110 as astarting point.

53 Compiler / PSE symbiosis

Since to map an application onto a coarse grain RA may
take only minutes, retargettable mappers or compilers may be
also used for platform exploration. By profiling the results of
the same application or benchmark on different platforms may
be compared. Such a compiler / PSE symbiosis like in Xplorer
provides direct verification and yields more realistic and more
precise results than explorers using abstract models for
estimation and gives better support for manual tuning.

Xplorer, an interactive PSE framework [10] [49] has been
implemented around the DPSS mapper [4]. This universa
design space exploration environment supports both, optimum
architecture sdection (e g. domain-specific) and application
development onto it and includes several tools architecture
editor (to edit communication resources and annedling
parameters), mapping editor (to change I/O port type, freeze
locations of edge port, cell or cell group etc.), instruction
mapper to change the operator repertoire, architecture
suggestion generator [87], HDL generator for cell simulation,
retargettable cell layout generator (planned, similar to [88]), power
edtimator (planned [89], usng methodsfrom[91]). A cyclethrough
an exploration loop usudly takes only minutes, so that a number of
dternative architectures may be checked in a reasonable time. By
mapping the application onto it verification is provided directly.

The memory bandwidth problem. The Xplorer also
yields efficient solutions to the memory bandwidth problem
[33] by supporting mixed rDPU typesin an array, so that both, data
sequencers and rDPUS dedicated to the gpplication can be mapped
onto the same KressArray what isillustrated by the examplein fig.
7 (50 see section 2.4). These Xplorer cgpabilities provide astraight-
forward gpproach to sgmrt architectura implementations of the
Xputer soft machine paradigm (o see section 4.3).

pah

5.4 Paralled Computing vs. Reconfigurable

RISC core IP cdls are available (e.g. from ARM) so small,
that 32 or more (soon 64) of them would fit onto a single chip to
form a massively paralel computing system. But this is not a
genera remedy for the parallel computing crisis [92], indicated
by rapidly shrinking supercomputing conferences. For many
application areas process level pardldism yidds only poor
speed-up improvement per processor added. Amdahls law
explains just one of several reasons of inefficient resource
utilization. A dominating problem is the ingtruction-driven late
binding of communication paths (fig. 15), which often leads to
massive communication switching overhead at run-time. R&D in
the past has largely ignored, that the so-called “von Neumann”
paradigm is not a communication paradigm. However, some
methods from parallel computing and parallelizing compiler
R&D scenes may be adapted to be used for lower leve
paralelism on RA platforms (compare § “ CoDe-X" ff.).

6. Conclusions

Exploding design cost and shrinking product life cycles of
ASICs create a demand on RA usage for product longevity.
Performance is only one part of the story. The time has come
fully exploit their flexibility to support turn-around times of
minutes instead of months for real time in-system debugging,
profiling, verification, tuning, field-maintenance, and field-
upgrades. The new machine paradigm and language framework is
avalable for novel compilaion techniques to cope with the new
market structures transferring synthesis from vendor to customer.

Reconfigurable platforms Co-Compilation
and their applications are

heading from niche to main-

“‘von Neumann® Xputer machine

stream, bridging the gap between paradigm J paradigm
ASICs and micro-processors.
Many sysem-level integrated procedural structural

programming

future products without programming
reconfigurability will not be
competitive. Instead of tech-
nology progress better archi-
tectures by RA usage will be
the key to keep up the
current innovation speed
beyond the limits of silicon.
It'stimeto revisit past decade
R&D results to derive
commercial solutions. at least
one promising approach is
avalable, It is time for you to get involved. Theory and
backgrounds are ready for crestion of a dichotomy of computing
science (fig. 17) for curricular innovations.

7. Literature
R. Hartengtein, H. Griinbacher (Editors): The Road to Reconfigurable
computing - Proc. FPL 2000, Aug. 27-30, 2000; LNCS, Springer-Verlag 2000
R. Hartenstein: The Microprocessor is no more General Purpose
(invited paper), Proc. ISIS97, Austin, Texas, USA, Oct. 8-10, 1997.

D. Cherepacha and D. Lewis: A Datapath Oriented Architecture for
FPGAs; Proc. FPGA*' 94, Monterey, CA, USA, February 1994.

1.
2.
3.
4. R.Kresseta.: A Datapath Synthesis System for the Reconfigurable Datar
5.
6.
7.

migration by retiming
and other transformations

Fig. 17: Computing Science Dichotomy.

path Architecture; ASP-DAC'95, Chiba, Japan, Aug. 29 - Sept. 1, 1995

H. R_einLiJg:_ A Scalable Architecture for Custom Computing; Ph.D.

Thesis, Univ. of Kaiserslautern, Germany, July 1999.

R. Hartenstein, A. Hirschbiel, M. Weber: MoM - apartly custom-design

architecture compared to standard hardware; IEEE CompEuro 1989

R. Hartenstein et a.: A Novel ParadiPm of Parallel Computetion and its

Use to Implement Simple High Performance Hardware; InfoJapan’ 90,

30th Anniversary o' Computer Society of Japan, Tokyo, Japan, 1990.

R. Hartenstein et. a.: A Novel ASIC Design Approach Based on a

New Machine Paradigm; IEEE J.SSC, Volume 26, No. 7, July 1991.

9. (invited reprint of [7]) R. Hartenstein, A. Hirschbiel, K. Schmidt, M.
Weber: A Novel Paradigm of Parallel Computation and its Use to
Implement Simple High-Performance-HW; Future Generation Com-
puter Systems 7 91/92, p. 181-198, (Elsevier Scientific).

10. U. Nageldinger et al.: KressArray Xplorer: A New CAD Environment
to Optimize Reconfigurable Datapath Array Architectures; ASP-

©

DAC, Y okohama, Japan, Jan. 25-28, 2000.

11. R. A. Bittner et al.; Colt: An Experiment in Wormhole Run-time Recon-
figuration; SPIE Photonics East "96, Boston, MA, USA, Nov. 1996.

12. K. Hwang: Advanced Computer Architecture; McGraw-Hill, 1993.

13. E. Mirsky, A. DeHon: MATRIX: A Recon_figurab_leComé)uting Archi-
tecture with Configurable Instruction Distribution and Deployable
Resources; Proc. IEEE FCCM' 96, Napa, CA, USA, April 17-19, 1996.

14. J. Hauser and J. Wawrzynek: Garp: A MIPS Processor with a Recon-
figurable Coprocessor; Proc. IEEE FCCM' 97, Napa, April 16-18, 1997.

15. E. Waingold et a.: Baring it al to Software: RAW Machines; |IEEE
Computer, September 1997, pp. 86-93.

16. T. Miyamori and K. Olukotun: REMARC: Reconfigurable Multimedia
Array Coprocessor; Proc. ACM/SIGDA FPGA'98, Monterey, Feb. 1998.

17. H. Singh, et a.: MorphoSys: An Integrated Re-configurable Architec-
ture; Proceedings of the NATO RTO Symp. on System Concepts and
Integration, Monterey, CA, USA, April 20-22, 1998.

18. A. Marshdl et a.: A Reconfigurable Arithmetic Array for Multimedia
Applications; Proc. ACM/SIGDA FPGA' 99, Monterey, Feb. 21-23, 1999

19. J. Becker et d.: Architectureand ApEIicaIion of aDynamically Recon-
figureble Hardware Array for Future Mobile Communication
Systems; Proc. FCCM’ 00, Napa, CA, USA, April 17-19, 2000.

20. http://www.chamel eonsystems.com

21. X.Tang, et a.: A Compiler Directed Approach to Hiding Configura-
tion Loading Latency in Chameleon Reconfigurable Chips; in [1

22. http://www.malleable.com

23. http://www.silicon-spice.com

24. http://www.sidsa.com

25. http://www.MorphlCs.com

26. C. Ebdinget d.: , RaPiD: Reconfigurable Pipelined Datapath”, in [27]

27. M. Glesner, R. Hartenstein (Editors): Proc. FPL’ 96, Darmstadt, Ger-
many, Sept. 23-25, 1996, LNCS 1142, Springer Verlag 1996

28.S. C. Goldstein et al.: PipeRench: A Coprocessor for Streaming Mul-
timedia Acceleration; Proc. ISCA* 99, Atlanta, May 2-4, 1999

29. D. Chen and J. Rabaey: PADDI: Programmable arithmetic devices for
digital signal processing; VLS Signal Processing IV, IEEE Press 1990.

30.D. C. Chen, J. M. Rabaey: A Reconfigurable Multiprocessor IC for
Rapid Prototjlpinlg of Algorithmic-Specific High-Speed DSP Data
Paths; |IEEE J. Solid-State Circuits, Vol. 27, No. 12, Dec. 1992.

31. A. K. W. Yeung, JM. Rabagy: A Reconfigurable Data-driven Multi-

rocessor Architecture for Rapid Prototyping of High Throughput
SP Algorithms; Proc. HICSS-26, Kauai, Hawaii, Jan. 1993.

32.J. Rabaey: Reconfigurable Computing: The Solution to Low Power
Programmable DSP; Proc. ICASSP’ 97 Munich, Germany, April 1997.

33. M. Herz: High Performance Memory Communication Architectures
for Coarse-Grained Reconfigurable Computing Architectures; Ph. D.
Dissertation, Universitaet Kaserslautern, January 2001

34.D. Lewis: Personal Communication, April 2000.

35. C. Ebeling et al.; Placement and Routing Toolsfor the Tryptich FPGA;
IEEE Trans VLS| Systems 3, No. 4, December 1995.

36. A. DeHon: Personal Communication, February 2000.

37.T. Molketin: Analyse, Transformation und Verteilung arithmetischer
und logischer Ausdruecke auf die rekonfigurierbare Datenpfadarchi-
tektur; Diplomarbeit, Universitaet Kaiserslautern, 1995

38.J. Becker: A Partitioning Compiler for Computers with X puter-based
Accelerators; Ph. D. dissertation, Kaiserslautern University, 1997.

39. C. Ebeling: Personal Communication, March 2000.

40. A. Marshall: Personal Communication; February 2000.

41.B. Hutchin'g_s, B. Nelson: Using General-Purpose Proe?rammi ngzLan-
guages for FPGA Design; Proc. DAC 2000, Los Angeles, June 2000

42.M. W. Hall et al.. Maximizing Multiprocessor Performance with the
SUIF Compiler; IEEE Computer, Dec. 1996

43.T. J. Calahan and J. Wawrzynek: Instruction-Level Parallelism for
Reconfigurable Computing; in [44] pp. 248-257.

44, R. Hartenstein, A. Keevallik (Editors): Proc. FPL’98, Tallinn, Estonia,
Aug. 31- Sept. 3,1998, LNCS, Springer Verlag, 1998

45. J. Hauser: Personal Communication, March 2000.

46.R. Barua et a.: Maps: A Compiler-Mana%A Memory System for
RAW Machines; Proc. ISCA'99, Atlanta, USA, June, 1999.

47.W. Leeetal.: Space-Time Scheduling of Instruction-Level Parallelism
on a RAW Machine; Proc. ASPLOS 98, San Jose, Oct. 4-7, 1998.
48. C. A. Moritz et a.: Hot Pages. Software Caching for RAW Microproc-

essors; MIT, LCS-TM-599, Cambridge, MA, Aug. 1999.
49. U. Nageldinger: Design-Space Explaration for Coarse Grained Reconfigu-
rable Architectures; Dissertation, Universitaet Kaiserdautern, Febr. 2001
50. M. Budiu and S. C. Goldstein: Fast Compilation for Pipelined Recon-
figurable Fabrics; Proc. FPGA® 99, Monterey, Feb. 1999, pp. 135-143.
51. D. Chenat a.: An Integrated System for Rapid Pr_ototyRi ng of High Per-
formance Data Paths; Proc. ASAP 92, Los Alamitos, Aug. 4-7, 1992
52. P. H. Hilfinger: A High-Leve Lan%u e and Silicon Compiler for Digital
Signal Processing; Proc. 1985 IEEE CICC., Portland, May 20-23, 1985.
53. M. Potkonjak, J. Rabaey: A Scheduling and Resource Allocation Algorithm

for Hierarchicd Signal Flow Graphs; Proc. DAC'89, LasVegas, June 1989

54.J. Noguera, R. Badia: A HW/SW Partitioning Algorithm for Dynami-
caly Reconfigurable Architectures, Proc. DATE 2001, Munich,
Germany March 12 - 15, 2001

55. J. Noguera, R. Badia: Run-time HW/SW Codesign for Discrete Event

stems using Dynamicall Recqnfl%ljrabl_e Architectures, Proc. 1SSS

2000 (Int'l Symp. System Synthesis), Madrid, Spain, Sept. 20 - 22, 2000

56. N. Tredennick: Technology and Business: Forces Driving Microproc-
essor Evolution; Proc. IEEE 83, 12 (Dec. 1995)

57. T. Makimoto: The Rising Wave of Field-Programmability; in: [1]

58. M. Weinhardt, W. Luk: Pipeline Vectorization for Reconfigurable
Systems; Proc. IEEE FCCM, April 1999

59. M. Gokhale, J. Stone: NAPA C: Compilin%for ahybrid RISC/ FPGA
architecture; Proc. IEEE FCCM April 199

60. N.N.: FCCM’98 Top 10 Predictions...; http:/Aww.fccm.org/topl0_98raw.html

61. K. Schmidt: A Program Partitioning, Restructuring, and Mapping
Method for Xputers; Ph.D. Thesis, University of Kaiserslautern 1994

62. J. Becker et al.: A Genera Approachin System Design Integrating Recon-
figurable Accelerators; Proc. |IEEE 1SIS96; Austin, TX, Oct. 9-11, 1996

63. L. Lamport: The Parallel Execution of Do-Loops, C. ACM, Febr. 1974

64. D. B. Loveman: Program Improvement by Source-to-Source Transfor-
mation; J. ACM 24,1, p. 121-145, Jan. 1977

65.W. A. Abu-Sufah, D. J. Kuck, D. H. Lawrie: On the Performance
Enhancement of Paging Systems Through Program Analysis and
Transformations; |IEEE-Trans. C-30(5), p. 341-356, May 1981

66. U. Banerjee: Speed-up of Ordinary Programs; Ph.D. Thesis, Univ. of Illi-
nois a Urbana-Champaign, DCS Rep. UIUCDCS-R-79-989, Oct. 1979.

67. J. Allen, K. Kennedy: “ Automatic Loop Interchange”; Proc. ACM SIGP-
LAN’84 Symp. on Compiler Construction, Montreal, Ca, June 1984

68. T. Kean: It'sFPL, Jim - but not aswe know it! - Market Opportunities
fro the new Commercial Architectures; in [1]

69. H.Fallside, M.Smith: Internet Connected FPL; in[1]

70. R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger: An Internet Based
Development Framework for Reconfigurable Computing; in [71]

71. P. Lysaght, J. Irving, R. Hartenstein (Eds.): Proc. FPL'99, Glasgow,
UK, Aug./Sept. 1999, LNCS Voal. 1673, Springer-Verlag, 1999

72.M.Herz, etal.: A Novel uencer Hardware for Application Specific
Computing; Proc. ASAP' 97, Zurich, Switzerland, July 14-16, 1997

73.A. A, J. Becker, R. Hartenstein, R. Kress, H. Reinig, K. Schmidt:
Data-procedural Languages for FPL-based Machines; in [74]

74.R. Hartenstein, M. Servit (Editors): Proc. FPL’'94, Prague, Czech
Republic, Sept. 7-10, 1994, LNCS, Springer Verlag, 1994

75. D.Kngpp & d.: TheADAM Design Flanning Engine, IEEE TransCAD, Jly 1991

76.J. Lopez et a.: Design Assistance for CAD Frameworks; Proc. EURO-
DAC’ 62, Hamburg, Germany, Sept. 7-10, 1992

77.L. Guerraet a.: A Methodology for Guided Behavioural Level Opti-
mization; Proc. DAC’ 98, San Francisco, June 15-19, 1998

78. A. Vandecapelle et al.: Global Multimedia Desi%1 Exploration using
Accurate Memory organization Feedback; Proc. DAC 1999

79.T. Omneés et al: Dynamic Algorithms for Minimizing Memory Band-
width in High throughput Telecom and Multimedia; in: Techniques de
Parallelisation Automatique, TSI, Editions Hermes, 1999

80. S. Wuytack et al: Mi_nimizing the required Memory Bandwidth in
VLS| System Redlizations; |IEEE Trans. VLSI Systems, Dec. 1999

81. P. Paulin et al.: Algorithms for High-Level Synthesis; IEEE Design
and Test, Dec. 1989

82. F. Cathoor et d: Interactive Co-design of High Throughput Embedded
Multimedia; Proc. DAC 2000

83. L. Nachtergaele et al.: Optimization of Memory Organization and Par-
titioning for Decreased Size and Power in Video and Image Processing
Systems; Proc. |EEE Workshop on Memory Technology, Aug 1995

84. F. Cathoor et a.: Custom Memory Man ient Methodology - Exploration
of Memory Organization f. Embedded Multimedia Systems; Kluwer 1998

85. P.-A. Hsiung et al.: PSM: An Object-oriented Synthesis Approach to
Multiprocessor Design; IEEE Trans VLS| Systems 4/1, March 1999

86. J. Kin et a.: Power Efficient Media Processor Desi%n Space Explora-
tion; Proc. DAC’ 99, New Orleans, June 21-25, 199

87. R. Hartenstein, M. Herz, T. Hoffmann, U. Naggldinger:_ Generation of
Design Suggestions for Coarse-Grain Reconfigurable Architectures; in [1]

88. V. Moshnyaga, H. Yasuura: A Data-Path Modules Design from Algorith-
mic ReFremntz;tl ons, IFIP WG 10.5 Worksh. on Synthes's, Generation and
Portability of Library Blocksfor ASIC Design, Grenoble, France, Mar 1992

89. U. Nageldinger et dl.: D&dgn—Sﬁace Exploration of Low Power Coarse
Grained Reconfigurable Datapath Array Architectures; in [90]

90. D. Soudris, P. Pirsch, E. Bark(%)Editors): Proc. PATMOS 2000; Géttin-
gen, Germany Sept. 13 - 15, 2000; LNCS, Springer Verlag, 2000

91. L. Kruseet a.: Lower Bounds on the Power Consumption in Scheduled
Data Flow Graphswith Resource Congtraints, Proc. DATE, Mrch 2000.

92. R. Hartenstein Si nvited paper): High-Performance Computing; tber Szenen
und Krisen; GI/ITG Worksh. Custom Computing, Dagstuhl, June 1996

