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2 1 INTRODUCTION

1 Introduction

This is a survey of decision problems for groups, that is of algorithms for
answering various questions about groups and their elements. The general
objective of this area can be formulated as follows:

Objective: To determine the existence and nature of algorithms
which decide

• local properties – whether or not elements of a group have
certain properties or relationships;

• global properties – whether or not groups as a whole possess
certain properties or relationships.

The groups in question are assumed to be given by finite presentations or in
some other explicit manner.

Historically the following three fundamental decision problems formulated
by Max Dehn in 1911 have played a central role:

word problem: Let G be a group given by a finite presentation.
Does there exist an algorithm to determine of an arbitrary
word w in the generators of G whether or not w =G 1?

conjugacy problem: Let G be a group given by a finite pre-
sentation. Does there exist an algorithm to determine of
an arbitrary pair of words u and v in the generators of G
whether or not u and v define conjugate elements of G?

isomorphism problem: Does there exist an algorithm to de-
termine of an arbitrary pair of finite presentations whether
or not the groups they present are isomorphic?

In terms of the general objective, the word and conjugacy problems are de-
cision problems about local properties while the isomorphism problem is a
decision problem about a global relationship.

Motivation for studying these questions can be found in algebraic topol-
ogy. For one of the more interesting algebraic invariants of a topological
space is its fundamental group. If a connected topological space T is reason-
ably nice, for instance if T is a finite complex, then its fundamental group
π1(T ) is finitely presented and a presentation can be found from any reason-
able description of T . The word problem for π1(T ) then corresponds to the
problem of determining whether or not a closed loop in T is contractible.
The conjugacy problem for π1(T ) corresponds to the problem of determining
whether or not two closed loops are freely homotopic (intuitively whether one
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can be deformed into the other). Since homeomorphic spaces have isomor-
phic fundamental groups, a solution to the isomorphism problem would give
a method for discriminating between spaces (the homeomorphism problem).

Following the development of the theory of algorithms in the 1930’s (re-
cursive functions and Turing machines), it was reasonable to expect that
Dehn’s fundamental problems might be recursively unsolvable. It turns out
that not only these problems but a host of local and global decision problems
are unsolvable. These developments are discussed in the next two sections.
In subsequent sections we consider decision problems restricted to classes of
groups enjoying particular algebraic properties, the problem of computing in-
variants (largely homological) of groups and some measures of computational
complexity.

The purpose of this survey is to give some picture of what is known about
decision problems in group theory. While a number of references are given
for various results, historical matters have been largely neglected. Naturally
the choice of material reported on reflects the author’s interests and many
worthy contributions to the field will unfortunately go without mention. A
number of relatively straight forward proofs have been included; usually they
are not too difficult, or illustrate the concepts involved or even, occasionally,
have a novel aspect. Many concepts and results from mathematical logic,
particularly recursive function theory, are explained in an informal manner
and occasionally at some length. Hopefully this will make these concepts
more accessible for a wide audience.

2 Basic local unsolvability results

A finite presentation π of a group is a piece of notation such as

< x1, . . . , xn | R1 = 1, . . . , Rr = 1 >

where the xi are letters in some fixed alphabet and the Rj are words in the
xi and their inverses x−1

i . The group presented by π, denoted gp(π), is the
quotient group of the free group on the xi by the normal closure of the Rj.
Usually it is not necessary to distinguish so carefully between a group and
its presentation and we often write simply

G =< x1, . . . , xn | R1 = 1, . . . , Rr = 1 >

to mean the G is the group defined by the given presentation.
It is convenient to introduce some notation for several decision problems

we will consider. Suppose that G is a finitely presented group defined by a
presentation as above. Then the word problem for G is the decision problem

WP (G) = (?w ∈ G)(w =G 1).
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Here the “?” is intended as a sort of quantifier and should be read as “the
problem of deciding for an arbitrary word w in G whether or not . . ..” A
closely related problem is the equality problem:

EqP (G) = (?w1, w2 ∈ G)(w1 =G w2).

Of course, w1 =G w2 if and only if w1w
−1
2 =G 1 so that an algorithm for

solving either of WP (G) or EqP (G) easily yields an algorithm for solving the
other. On the other hand, from the viewpoint of computational complexity,
these problems are subtly different.

Again using this “?” quantifier, the conjugacy problem for G is

CP (G) = (?u, v ∈ G)(∃x ∈ G)(x−1ux =G v).

If H is a finitely generated subgroup of G and if H given by say a finite set
of words which generate it, then the generalized word problem for H in G is
the problem of deciding for an arbitrary word w in G whether or not w lies
in the subgroup H, that is

GWP (H,G) = (?w ∈ G)(w ∈ H).

When the subgroup H is an arbitrary finitely generated subgroup rather than
a fixed one we write simply GWP (G).

On the face of it, each of these algorithmic problems appears to depend
on the given presentation. We will show below that the solvability of each of
these problems is independent of the finite presentation chosen. It can hap-
pen that for a particular finitely presented group each of the above problems
is solvable. For instance, if G is a finite group given by a multiplication table
presentation, it is easy to describe algorithms for solving WP (G), CP (G)
and GWP (G). Similarly, if F =< x1, . . . , xn | > is a finitely generated free
group WP (F ) is solved by freely reducing and CP (F ) is solved by cycli-
cally permuting and freely reducing. The GWP (H,F ) for finitely generated
subgroups H of F is more difficult and its solution is due to Nielsen (see
[71]).

Finally, in terms of the “?” notation, the isomorphism problem for finitely
presented groups is

IsoP = (?π1, π2 finite presentations)(gp(π1) ∼= gp(π2)).

We assume the reader is familiar with the rudiments of the theory of
algorithms and recursive functions. Thus a set of objects is recursive if there
is an algorithm for deciding membership in the set. A set S of objects is
recursively enumerable if there is an algorithm for listing all the objects in S.
It is easy to see that every recursive set is recursively enumerable. Moreover,



5

a set S is recursive if and only if both S and its complement are recursively
enumerable. A diagonal argument can be used to prove the important result
that there exists a set which is recursively enumerable but not recursive. This
fact is in a sense the source of all undecidability results in mathematics.

Each of the above decision probems is recursively enumerable in the sense
that the collection of questions for which the answer is “Yes” is recursively
enumerable. For instance, the set of words w of G such that w =G 1 is
recursively enumerable. For it is the set of words freely equal to a product
of conjugates of the given finite set of defining relations and this set can (in
principle) be systematically listed. Thus WP (G) is recursively enumerable.
Now WP (G) is recursively solvable (decidable) exactly when the set of words
{w ∈ G | w =G 1} is recursive. So WP (G) is recursively solvable if and only
if {w ∈ G | w 6=G 1} is receursively enumerable.

Similarly, one can systematically list all true equations between words of
G and all true conjugacy equations so that EqP (G) and CP (G) are recur-
sively enumerable. GWP (H,G) is recursively enumerable since one can list
the set of all true equations between words of G and words in the generators
of H. Finally, if two presentations present isomorphic groups, then one can
be obtained from the other by a finite sequence of Tietze transformations.
Since the set of presentations obtainable from a given one by a finite sequence
of Tietze transformations is recursively enumerable, it follows that IsoP is
recursively enumerable.

We recall the notion of Turing reducibility. If A and B are two sets of
objects, we write A ≤T B if an (hypothetical) algorithm to answer questions
about membership in B would yield an algorithm to answer questions about
A. Thus the decision problem for A is reducible to that for B. One way
to make this precise is through the theory of recursive functions. Recursive
functions can be defined as the collection of functions obtained from certain
base functions (like multiplication and addition) by closing under the usual
operations of composition, minimalization and recursion. A function is said
to be B-recursive if it is among the functions obtained from the base functions
together with the characteristic function for B by closing under the usual
operations. Then A ≤T B is defined to mean that that the characteristic
function of A is B-recursive. Of course, if B is already recursive (that is,
membership in B is decidable) and if A ≤T B then A is also recursive.

Now the relation ≤T is a partial order so we can form the corresponding
equivalence relation. Two sets of objects A and B are Turing equivalent
A ≡T B if each is Turing reducible to the other, that is both A ≤T B and
B ≤T A. In terms of this notation there are some obvious relationships
among our decision problems:

EqP (G) ≡T WP (G) ≤T CP (G)
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WP (G) ≡T GWP (1, G) ≤T GWP (G).

We have already observed the first equivalence. Since w =G 1 if and only if
w and 1 are conjugate in G it follows that WP (G) ≤T CP (G). The other
assertions are clear.

A recursive presentation is a presentation of the form

< x1, . . . , xn | R1 = 1, R2 = 1, . . . >

where R1, R2, . . . is a recursively enumerable set of words. A finitely gener-
ated group G is recursively presented if it has a recursive presentation. Of
course finitely presented groups are recursively presented but the converse
is false. The word problem and conjugacy problem are defined for recur-
sively presented groups as before and they are still recursively enumerable
problems.

Lemma 2.1 Let G be a finitely generated group given by a recursive presen-
tation

G =< x1, . . . , xn | R1 = 1, R2 = 1, . . . > .

Suppose that H is a finitely generated group with generators y1, . . . , ym and
that φ : H → G is an injective homomorphism. Then H has a recursive
presentation of the form

H =< y1, . . . , yn | Q1 = 1, Q2 = 1, . . . >

where Q1, Q2, . . . is a recursively enumerable set of words in y1, . . . , ym. More-
over, WP (H) ≤T WP (G).

Proof: Let F =< y1, . . . , ym | > be the free group with basis y1, . . . , ym.
Now we can write φ(yi) = ui (i = 1, . . . ,m) where the ui are certain words
on x1, . . . , xn. There is then a unique homomorphism ψ : F → G such that
ψ(yi) = ui (i = 1, . . . ,m) and since φ is injective we have H ∼= F/ker ψ.
Now the set of all formal products of the words ui and their inverses is a
recursively enumerable set of words of G. The set of words of G equal to the
identity is also recursively enumerable. Hence the intersection of these two
sets is a recursively enumerable set of words, and it follows that ker ψ is a
recursively enumerable set of words on y1, . . . , ym. The first claim follows by
taking Q1, Q2, . . . to be a recursive enumeration of ker ψ.

For the second claim, suppose that we have an algorithm AG to solve the
word problem for G. We describe an algorithm to solve the word problem
for H as follows: let w(y1, . . . , ym) be an arbitrary word in the generators
of H. Since φ is injective, w =H 1 if and only if φ(w) =G 1. Now φ(w) =
w(u1, . . . , um) so we can apply the algorithm AG to decide whether or not
w(u1, . . . , um) =G 1. If so, then w =H 1; if not, then w 6=H 1. This algorithm
solves the word problem for H. Thus WP (H) ≤T WP (G) completing the
proof.
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Lemma 2.2 For finitely presented groups (respectively finitely generated, re-
cursively presented groups), the word problem, conjugacy problem and gener-
alized word problem are algebraic invariants. That is, for any two presenta-
tions π1 and π2 of the same group on a finite set of generators, WP (π1) ≡T
WP (π2), CP (π1) ≡T CP (π2) and GWP (π1) ≡T GWP (π2).

Proof: The proof is in each case similar to the proof of the second part of the
previous lemma except that φ is an isomorphism. We omit the details.

The main local unsolvability result is the following:

Theorem 2.3 (Novikov [87], Boone [21]) There exists a finitely presented
group whose word problem is recursively unsolvable.

The original proofs of this result proceed along the following lines: start
with a Turing machine T whose halting problem is unsolvable. That is, the
problem of deciding whether the machine started with an arbitrary tape in a
certain state will eventually halt is unsolvable. Constructions of Markov and
of Post, associate to such a Turing machine a certain semigroup S(T ) whose
defining relations mimic the transition rules defining the Turing machine T .
They show a code word incorporating a tape and state of T is equal in S(T )
to a particular fixed halting word, say q0, if and only if T halts when started
with that tape and state.

Groups G(T ) having unsolvable word problem are constructed by in turn
mimicking the defining relations of S(T ) inside a group. The construction is
not so direct as the Markov-Post construction and involves starting with free
groups and performing a number of HNN-extensions and/or free products
with amalgamation. Nevertheless, there is a direct coding of a tape and
state of T as a word w of G(T ) so that w =G(T ) 1 if and only if the machine
T halts when started with that tape and state. Since T has an unsolvable
halting problem, it follows that G(T ) has unsolvable word problem.

A readable account of the Novikov-Boone Theorem along these lines can
be found in the textbook by Rotman [92].

In view of the previously noted relationships among our various decision
problems, the Novikov-Boone Theorem has the following immediate corol-
lary:

Corollary 2.4 There exists a finitely presented group G such that WP (G),
CP (G) and GWP (G) are all recursively unsolvable.

In contrast to the difficulties encountered for finitely presented groups, it
is easy to give examples of finitely generated, recursively presented groups
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with unsolvable word problem. For example, let S ⊂ N be a recursively enu-
merable set of natural numbers which is not recursive. Define the recursively
presented group

HS =< a, b, c, d | a−ibai = c−idci ∀i ∈ S > .

Now HS can be described as the free product with amalgamation of the free
group < a, b | > and the free group < c, d | > amalgamating the subgroup
(freely) generated by the left hand sides of the indicated equations with
the subgroup (freely) generated by the right hand sides. It follows from the
normal form theorem for amalgamated free products that a−ibaic−id−1ci =HS

1 if and only if i ∈ S. Thus S ≤T WP (HS) and so WP (HS) is recursively
unsolvable.

Using this observation Higman [54] gave a very different proof of the
unsolvability of the word problem. Indeed he proved the following remarkable
result:

Theorem 2.5 (Higman Embedding Theorem) A finitely generated group H
can be embedded in a finitely presented group if and only if H is recursively
presented.

That finitely generated subgroups of finitely presented groups are recur-
sively presented is contained in our first lemma above. The difficult part of
this theorem is to show that a recursively presented group can be embedded
in a finitely presented group.

The Novikov-Boone Theorem is an easy corollary. For let HS be the
finitely generated, recursively presented group with unsovable word problem
constructed above. By Higman’s Embedding Theorem, HS can be embedded
in a finitely presented group, sayGS. Then by an earlier lemma, WP (HS) ≤T
WP (GS) and so GS has unsolvable word problem.

Higman’s Embedding Theorem has a number of other remarkable aspects.
It provides a complete characterization of the finitely generated subgroups of
finitely presented groups - namely they are the recursively presented groups.
It also provides a direct connection between a purely algebraic notion and a
notion from recursive function theory. Another consequence is the existence
of universal finitely presented groups.

Corollary 2.6 ([54]) There exists a universal finitely presented group; that
is, there exists a finitely presented group G which contains an isomorphic
copy of every finitely presented group.

To prove this one systematically enumerates all finite presentations on a
fixed countable alphabet. The free product of all of these can be embedded
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in a two generator group which will be recursively presented. This group can
then be embedded in a finitely presented group which is the desired universal
group.

It is known from recursive function theory that the relation ≡T partitions
sets into equivalence classes called degrees of unsolvability. Those degrees
of unsolvability which contain a recursively enumerable set are called r.e.
degrees of unsolvability and are of particular interest. The r.e. degrees are
then partially ordered by ≤T . There is a smallest r.e. degree denoted 0 which
consists of the recursive sets and a largest r.e. degree denoted 0′ which is
essentially the general halting problem for all Turing machines. However,
a particular Turing machine can have a halting problem with degree lying
strictly between these two. There are infinitely many r.e. degrees and they
have a rich structure; for example, they are dense with respect to the partial
order ≤T . In view of this varied collection of r.e. degrees, it is natural to ask
which degrees arise from word problems of finitely presented groups. The
answer is the following strengthening of the Novikov-Boone Theorem:

Theorem 2.7 (Fridman [35], Clapham [27], Boone [21]) Let D be an r.e.
degree of unsolvability. Then there is a finitely presented group whose word
problem has degree D. In more detail, there is an explicit, uniform con-
struction which when applied to a Turing machine T having halting problem
of degree D yields a finitely presented group G(T ) such that WP (G(T )) is
Turing equivalent to the halting problem for T .

The arguments used to prove the Novikov-Boone Theorem already con-
structed a group G(T ) such that the halting problem for T is ≤T WP (G(T )).
The difficulty is in showing the word problem isn’t any harder than the halt-
ing problem for T . The proofs of this result are technically rather difficult.

It is easy to see that the amalgamated free product of two free groups HS

described above has WP (HS) ≡T S. Clapham’s approach to the previous
theorem is to show that Higman’s embedding theorem can be made “degree
preserving”. More precisely, he shows the following:

Theorem 2.8 (Clapham [28]) If H is a finitely generated, recursively pre-
sented group, then H can be embedded in a finitely presented group G such
that WP (H) ≡T WP (G). In particular, a finitely generated group with solv-
able word problem can be embedded in a finitely presented group with solvable
word problem.

As we shall see in the next section, the precise control of the word problem
implicit in this result enables one to obtain additional unsolvability results
of a global nature.
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Since one always has WP (G) ≤T CP (G), one can ask whether they are
always the same. They can in fact be of any two appropriate r.e. degrees of
unsolvability. The most general result in this direction is the following:

Theorem 2.9 (Collins [29]) Let D1 and D2 be r.e. degrees of unsolvability
such that D1 ≤T D2. Then there is a finitely presented group G such that
WP (G) has degree D1 and CP (G) has degree D2. In particular, there is a
finitely presented group with solvable word problem but unsolvable conjugacy
problem.

We turn now to briefly consider other local decision problems concerning
elements in a group.

The structure of finitely generated abelian groups can be completely de-
termined from a finite presentation of such a group, and in particular one
can solve the word problem for such groups. Consequently, if G is an arbi-
trary finitely presented group one can effectively determine the structure of
its abelianization G/[G,G]. So for instance, there is an algorithm to decide
whether G is perfect. Moreover, since one can solve the word problem for
G/[G,G] it follows that one can decide of a arbitrary word w of G whether
or not w ∈ [G,G].

However, it would seem that any property of elements a finitely presented
group which is not determined by the abelianization G/[G,G] will be recur-
sively unrecognizable. The following result show a few common properties of
elements are not recognizable.

Theorem 2.10 (Baumslag, Boone and Neumann [10]) There is a finitely
presented group G such that there is no algorithm to determine whether or
not a word in the given generators represents

1. an element of the center of G;

2. an element permutable with a given element of G;

3. an n-th power, where n > 1 is a fixed integer;

4. an element whose class of conjugates is finite;

5. a commutator;

6. an element of finite order > 1.

Proof: Fix a finitely presented group U having unsolvable word problem.
Define G to be the ordinary free product of U with a cyclic group of order 3
and an infinite cyclic group, that is,

G = U∗ < s | > ∗ < t | t3 = 1 > .
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We use the commutator notation [x, y] = x−1y−1xy. In the following, w is a
variable for an arbitrary word in the generators of U .

The center of G is trivial so w lies in the center of G if and only if w =U 1.
So there is no algorithm to determine whether an arbitrary word of G lies
in the center. This gives the first assertion. Similarly, w is permutable with
s if and only if w =U 1 which establishes the second assertion. The element
sn[t, w] is an n-th power if and only if w =U 1 establishing the third assertion.
The conjugacy class of w is finite if and only if w =U 1 since if w 6=U 1 the
conjugates s−iwsi would all be distinct. This gives the fourth assertion. For
the fifth assertion, note that [s, t]w is a commutator if and only if w =U 1.
Finally for the sixth assertion, observe that tw has infinite order if and only
if w 6=U 1, while if w =U 1 then tw has order 3. This completes the proof.

In the next section we will present some related unsolvability results con-
cerning the subgroups of a finitely presented group generated by finite sets of
elements. These are a sort of mixture between local and global unsolvability
results.

3 Basic global unsolvability results

In this section the existence of a finitely presented group with unsovable word
problem is applied to obtain a number of global unsolvability results.

Consider the problem of recognizing whether a finitely presented group
has a certain property of interest. For example, can one determine from a
presentation whether a group is finite? or abelian? It is natural to require
that the property to be recognized is abstract in the sense that whether a
group G enjoys the property is independent of the presentation of G.

An abstract property P of finitely presented groups is recursively recog-
nizable if there is an effective method which when applied to an arbitrary
finite presentation π determines whether or not gp(π) has the property P .
More formally, P is recursively recognizable if {π | gp(π) ∈ P} is a recursive
set of finite presentations.

It turns out that very few interesting properties of groups are recursively
recognizable. To formulate the key result we need the following definition.

Definition 3.1 An abstract property P of finitely presented groups is said
to be a Markov property if there are two finitely presented groups G+ and
G− such that

1. G+ has the property P ; and

2. if G− is embedded in a finitely presented group H then H does not have
property P.
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These groups G+ and G− will be called the positive and negative witnesses
for the Markov property P respectively.

It should be emphasized that if P is a Markov property then the negative
witness does not have the property P , nor is it embedded in any finitely
presented group with property P .

For example the property of being finite is a Markov property. For G+

one can take < a | a2 = 1 > which is a finite group. For G− one can take
the group < b, c | b−1cb = c2 > which is an infinite group and therefore not
embedded in any finite group.

Similarly, the property of being abelian is a Markov property. Indeed the
two groups chosen as witnesses for the property of being finite will also serve
as witnesses for the property of being abelian.

An example of a property which is not a Markov property is the property
of being perfect, that is G/[G,G] ∼= 1. For it is not hard to show (and indeed
will follow from the constructions given below) that any finitely presented
group can be embedded in a perfect finitely presented group. Hence there
can be no negative witness G− for the property of being perfect.

An abstract property P of finitely presented groups is hereditary if H
embedded in G and G ∈ P imply that H ∈ P , that is, the property P is
inherited by finitely presented subgroups. A property of finitely presented
groups P is non-trivial if it is neither the empty property nor is it enjoyed by
all finitely presented groups. Suppose P is a non-trivial, hereditary property
of finitely presented groups. Then, since P is non-trivial, there are groups
G+ ∈ P and G− /∈ P . But if G− is embedded in a finitely presented group
H, then H /∈ P because P is hereditary. Thus P is a Markov property with
witnesses G+ and G−. This proves the following:

Lemma 3.1 If P is a non-trivial hereditary property of finitely presented
groups, then P is a Markov property.

Another useful observation is the following:

Lemma 3.2 If ∅ 6= P1 ⊆ P2 are properties of finitely presented groups and
if P2 is a Markov property, then P1 is also a Markov property.

For if G− is a negative witness for P2 and if K ∈ P1, then P1 is a Markov
property with positive and negative witnesses K and G−.

Recall from the previous section that Higman has constructed a universal
finitely presented group, say U . If P is a Markov property with positive
and negative witnesses G+ and G−, then G− is embedded in U so U /∈
P . Moreover, if U is embedded in a finitely presented group H then so
is G− and hence H /∈ P . Thus P is a Markov property with positive and
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negative witnesses G+ and U . Hence U is a negative witness for every Markov
property.

The main unsolvability result concerning the recognition of properties of
finitely presented groups is the following:

Theorem 3.3 (Adian [2], [3], Rabin [88]) If P is a Markov property of
finitely presented groups, then P is not recursively recognizable.

Before indicating a proof of this result, we note the following easy corol-
laries:

Corollary 3.4 The following properties of finitely presented groups are not
recursively recognizable:

1. being the trivial group;

2. being finite;

3. being abelian;

4. being nilpotent;

5. being solvable;

6. being free;

7. being torsion-free;

8. being residually finite;

9. having a solvable word problem;

10. being simple;

11. being automatic.

For each of (1) through (9) is a non-trivial, hereditary property and hence
is a Markov property. For (10), it is known (see below) that finitely presented,
simple groups have solvable word problem and hence, by the above lemma,
being simple is a Markov property. Similarly for (11), automatic groups have
solvable word problem and so being automatic is a Markov property.

Corollary 3.5 The isomorphism problem for finitely presented groups is re-
cursively unsolvable.

For by (1) in the previous corollary there is no algorithm to determine of
an arbitrary presentation π whether or not gp(π) ∼= 1.

Proof of the Adian-Rabin Theorem: We are going to give a simple
proof of the Adian-Rabin Theorem which is our modification of one given
by Gordon [40]. The construction is quite straightforward and variations on
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the details can be applied to obtain further results. So suppose that P is a
Markov property and that G+ and G− are witnesses for P . We also have
available a finitely presented group U having unsolvable word problem.

Using these three items of initial data, we construct a recursive family
of finite presentations {πw | w ∈ U} indexed by the words of U so that if
w =U 1 then gp(πw) ∼= G+ while if w 6=U 1 then G− is embedded in U. Thus
gp(πw) ∈ P if and only if w =U 1. Since U has unsolvable word problem, it
follows that P is not recursively recognizable.

The family {πw | w ∈ U} is rather like a collection of buildings con-
structed from playing cards standing on edge. Such a building can be rather
unstable so that if an essential card is removed (corresponding to w =U 1)
then the entire structure will collapse. The main technical result needed is
the following.

Lemma 3.6 (Main Technical Lemma) Let K be a group given by a presen-
tation on a finite or countably infinite set of generators, say

K =< x1, x2, . . . | R1 = 1, R2 = 1, . . . > .

For any word w in the given generators of K, let Lw be the group with pre-
sentation obtained from the given one for K by adding three new generators
a, b, c together with defining relations

a−1ba = c−1b−1cbc (1)

a−2b−1aba2 = c−2b−1cbc2 (2)

a−3[w, b]a3 = c−3bc3 (3)

a−(3+i)xiba
(3+i) = c−(3+i)bc(3+i) i = 1, 2, . . . (4)

where [w, b] is the commutator of w and b. Then

1. if w 6=K 1 then K is embedded in Lw by the inclusion map on genera-
tors;

2. the normal closure of w in Lw is all of Lw; in particular, if w =K 1
then Lw ∼= 1, the trivial group;

3. Lw is generated by the two elements b and ca−1.

If the given presentation of K is finite, then the specified presentation of Lw
is also finite.

Proof: Suppose first that w 6=K 1. In the free group < b, c | > on generators
b and c consider the subgroup C generated by b together with the right hand
sides of the equations (1) through (4). It is easy to check that the indicated
elements are a set of free generators for C since in forming the product of two
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powers of these elements or their inverses some of the conjugating symbols
will remain uncancelled and the middle portions will be unaffected.

Similarly, in the ordinary free product K∗ < a, b | > of K with the
free group on generators a and b consider the subgroup A generated by b
together with the left hand sides of the equations (1) through (4). Using the
assumption that w 6=K 1 it is again easy to check that the indicated elements
are a set of free generators for A.

Thus assuming w 6=K 1, the indicated presentation for Lw together with
the equation identifying the symbol b in each the two factors is the natural
presentation for the free product with amalgamation

(K∗ < a, b | >) ∗ < b, c | > .

A = C

So if w 6=K 1, then K is embedded in Lw establishing the first claim.
Now let Nw denote the normal closure of w in Lw. Clearly [w, b] ∈ Nw so

by equation (3), b ∈ Nw. But equations (1) and (2) ensure that a, b, c are all
conjugate and so a, b, c all belong to Nw. Finally, since each of the system
of equations (4) can be solved to express xi in terms of a, b, c, it follows that
xi ∈ Nw for i = 1, 2, . . . . Thus each of the generators of Lw belongs to Nw

and so Lw = Nw. This verifies the second assertion.
Finally, let M be the subgroup of Lw generated by b and ca−1. Equation

(1) can be rewritten as b(ca−1)b(ca−1)−1b−1 = c so that c ∈ M . But then
from ca−1 ∈ M it follows that a ∈ M. Finally from the system of equations
(4) which can be solved for the xi in terms of a, b, c it follows that xi ∈M for
i = 1, 2, . . . and so M = Lw. (For later use we note that neither equation (2)
nor equation (3) was used in the proof of the final assertion). This completes
the proof of the lemma.

Using this technical lemma it is easy to complete the proof of the Adian-
Rabin Theorem. We are given the three finitely presented groups U , G+ and
G− which can be assumed presented on disjoint alphabets as follows:

U =< y1, . . . , yk | Q1 = 1, . . . , Qq = 1 >

G− =< u1, . . . , um | S1 = 1, . . . , Ss = 1 >

G+ =< v1, . . . , vn | T1 = 1, . . . , Tt = 1 >

Let K = U∗G− the ordinary free product of U and G− presented as the union
of the presentations of its factors. Since U has unsolvable word problem, K
also has unsolvable word problem. Also both U and G− are embedded in
K by the inclusion map on generators. For any word w in the generators of
U (these are also generators of K) form the presentation Lw as in the Main
Technical Lemma. Finally we form the ordinary free product Lw ∗G+.
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A presentation πw for these groups Lw ∗ G+ can be obtained by simply
writing down all of the above generators together with all of the above defin-
ing equations. Such a presentation is defined for any word w in U whether
or not w 6=U 1. But it follows from the lemma that if w 6=U 1 then the group
G− is embedded in gp(πw) = Lw ∗G+ and so gp(πw) /∈ P by the definition of
a Markov property. On the other hand, if w =U 1 then by the lemma Lw ∼= 1
and so gp(πw) ∼= G+ and hence gp(πw) ∈ P.

Thus we have shown that the recursive collection of presentations

{πw | w a word in U}

has the property that gp(πw) ∈ P if and only if w =U 1. Since U has unsolv-
able word problem, it follows that P is not recursively recognizable. This
completes the proof of the Adian-Rabin Theorem.

The Main Technical Lemma (and minor variations on it) can be used to
establish a number other results. Here are some well-known results which
follow easily:

Corollary 3.7 (Higman, Neumann, and Neumann [55]) Every countable
group K can be embedded in a two generator group L. If K can be presented
by n defining relations, then L can be chosen to have n defining relations.

Proof: Since K is countable it can be presented as in the statement of the
Main Technical Lemma. Form L as in the lemma except omit the two defining
relations (2) and (3). Only equation (3) involved the parameter w and neither
equation (2) nor equation (3) were used in the proof that L is two generator.
Then K is embedded in L which is a two generator group with generators
b and ca−1. This proves the first assertion. (At the expense of considering
cases, one could instead use the lemma as stated by choosing a fixed w 6=K 1.)

Equation (1) of the lemma defines c in terms of these two generators.
Then using a as an abbreviation for (ca−1)−1c, the system of equations (4)
define the xi in terms of the given generators. Hence equation (1) and all of
the equations of (4) can be eliminated, leaving only the relations Rj rewritten
in terms of the generators b and ca−1. This completes the proof.

Combining the proof of this corollary with the Higman Embedding The-
orem we obtain the following result which is frequently useful.

Corollary 3.8 If the group K can be presented by a recursive set of gen-
erators subject to a recursively enumerable set of defining relations, then K
can be embedded in a two generator, finitely presented group L. Under this
embedding the given generators of K are represented by a recursive set of
words in the generators of L.
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Proof: As in the proof of the previous corollary, the groupK can be embedded
in a two generator recursively presented group, say L1. By the Higman
Embedding Theorem this recursively presented group L1 can be embedded
in a finitely presented group, say K1. Now again applying the previous
corollary, K1 can be embedded in a two generator finitely presented group
L as desired. The final assertion follows from the explicit nature of the
embedding of K into the two generator group L1.

Mixing these constructions with results from recursive function theory, we
obtain the following result which has a number of applications, for instance
to the study of algebraically closed groups.

Corollary 3.9 (Miller [78]) There exists a finitely presented group G with
unsolvable word problem such that every non-trivial quotient group of G also
has unsolvable word problem.

Proof: A pair of disjoint sets of natural numbers P and Q is said to be
recursively inseparable if there is no recursive set R such that P ⊆ R and Q∩
R = ∅. The result we need from recursive function theory is that there exists
a disjoint pair of recursively enumerable sets P and Q which are recursively
inseparable. We may suppose that these sets are chosen so that 0 ∈ P and
1 ∈ Q. Define K0 to be the group presented by

K0 =< e0, e1, e2, e3, . . . | e0 = ei ∀i ∈ P, e1 = ej ∀j ∈ Q > .

Since P and Q are recursively enumerable, the previous corollary implies
that K0 can be embedded in a two generator, finitely presented group which
we will denote by K. We continue to use the symbol ek as an abbreviation
for the word in K which is the image of image of ek under the embedding.
Now apply the Main Technical Lemma above to K and the word e0e

−1
1 to

obtain the finitely presented group G = Le0e−1
1

. Since P and Q were disjoint,

e0 6=K e1 or equivalently e0e
−1
1 6=K 1.

Now suppose that H is a non-trivial quotient group of G. We view H
as being presented on the same set of generation symbols as G. Since H is
non-trivial, by the second assertion of the Main Technical Lemma e0 6=H e1.
Put R = {i | e0 =H ei}. Since H is a quotient group of G it follows that
P ⊆ R. But since e0 6=H e1 it follows that Q ∩R = ∅. Because P and Q are
recursively inseparable, R is not recursive. Now the {ek} are a recursive set
of words in the generators of H so if H had a solvable word problem then R
would be recursive. Hence H must have an unsolvable word problem. This
completes the proof.

Corollary 3.10 (P. Hall [52], Goryushkin [42], Schupp [97]) Every countable
group K can be embedded in a 2-generator simple group.
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Proof: If K ∼= 1 the result is clear. Suppose K 6∼= 1 and let x1, x2, . . . be
a list of the non-trivial elements of K and take K to be presented on these
generators. Form the two generator group L as in the Main Technical Lemma
except that the equations (3) and (4) are to be replaced by the two systems
of equations

a−(3+2i)[xi, b]a
(3+2i) = c−(3+2i)dc(3+2i) i = 1, 2, . . . (3)

a−(4+2i)xiba
(4+2i) = c−(4+2i)dc(4+2i) i = 1, 2, . . . . (4)

Note that the commutator [xi, b] has infinite order since each xi 6=K 1 and
that K is embedded in L.

Using Zorn’s lemma, choose a normal N subgroup of L maximal with
respect to the property K ∩ N = 1. The normal closure in L of any xi
contains [xi, b] and hence d and is thus clearly all of L. It follows that L/N
is a two generator simple group containing an isomorphic copy of K. This
completes the proof.

The Adian-Rabin Theorem asserts that a large number of properties of
finitely presented groups are not recursive. Recursive function theory pro-
vides a number of methods for classifying the difficulty of decision problems
so it is natural to ask how difficult are various properties of groups to recog-
nize?

Many properties of interest are recursively enumerable. For instance, in
the case of the property “being trivial”, the collection of all finite presenta-
tions of the trivial group is recursively enumerable. To see this one simply
observes that each such presentation can be obtained from the obvious one
< x | x = 1 > by a finite sequence of Tietze transformations and the set of all
Tietze transformations of any finite presentation is recursively enumerable.

Similarly, the property of “being abelian” is recursively enumerable. For
we know a canonical form in which to present a finitely presented abelian
group; that is, these nice presentations are recognizable and every finitely pre-
sented abelian group has such a presentation. Since every other presentation
can be obtained from a canonical one by Tietze transformations, it follows
that “being abelian” is a recursively enumerable property. Similarly being
finite, nilpotent, polycyclic and free are all recursively enumerable properties.

An appropriate method for trying to classify familiar group theoretic
properties is to try to locate them in the arithmetic hierarchy. Recall that a
property or relation P is recursively enumerable (r.e.) if and only if it can
be expressed in the form ∃xR where R is a recursive relation involving an
additional variable. (A coding device can be used to reduce the apparently
more general form ∃x1 . . .∃xnRn to a single existential quantifier.) The set of
relations expressible in this form is denoted Σ0

1. The superscript “0” here is
to distinguish the arithmetic hierarchy we are going to describe from others.
The set of relations expressible in the form ∀xR whereR is a recursive relation
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is denoted Π0
1. Now the complement of an r.e. relation lies in Π0

1. For if P has
the form ∃xR where R is a recursive relation then ¬P has the form ∀x¬R.
Since ¬R is also recursive, it follows that ¬P is in Π0

1. Recall that a relation
P is recursive if and only if both P and ¬P are recursively enumerable. Thus
P is recursive if and only if P ∈ Σ0

1 ∩ Π0
1.

More generally, a relation P is said to be in Σ0
n if it is expressible in the

form ∃∀ . . .R where there are n alternations of quantifiers. (As mentioned
before, adjacent quantifiers of the same type can be collapsed into a single
quantifier; only the number of alternations matters.) Thus for example P ∈
Σ0

3 means that P↔∃x1∀x2∃x3R for some recursive relation R. Similarly P
is said to be in Π0

n if it is expressible in the form ∀∃ . . .R where there are n
alternations of quantifiers. Thus P ∈ Π0

2 means that P↔∀x1∃x2R for some
recursive relation R.

We need a few fundamental facts about this arithmetic hierarchy. First,
if P is a recursive relation then P is in Σ0

n and in Π0
n for all n ≥ 0. If P

is in Σ0
m or in Π0

m, then P is in Σ0
n and in Π0

n for all n > m. In particular
Σ0
m ∪Π0

m ⊆ Σ0
m+1 ∩Π0

m+1. Also P is in Σ0
n if and only if its complement ¬P

is in Π0
n.

Finally there is the result called the Arithmetical Hierarchy Theorem due
to Kleene which asserts these classes are increasingly difficult: for each n ≥ 1
there is a unary Σ0

n relation P which is not Π0
n and hence not Σ0

n or Π0
m for

any m < n. Hence also ¬P is Π0
n but not Σ0

n or Π0
m for any m < n. This

is of course a generalization of the existence of r.e. but non-recursive sets.
In addition, one can show that each Σ0

n contains certain “most difficult”
relations not in Π0

n which are said to be Σ0
n-complete (and similarly there

are Π0
n-complete relations).

While many properties of groups may be recursively enumerable, it turns
out that the property of “having a solvable word problem” is very far from re-
cursively enumerable. Recall that there are constructions which yield groups
with word problem equivalent to the halting problem for given Turing ma-
chines (Theorem 1.7). Combining this with some results from recursive func-
tion theory, Boone and Rogers have shown the following:

Theorem 3.11 (Boone and Rogers [24]) For finitely presented groups, the
property of having a solvable word problem is Σ0

3-complete.

This result has a number of striking consequences about the general en-
terprise of solving the word problem for finitely presented groups, some of
which are the following:

Corollary 3.12 ([24]) There is no recursive enumeration

G0, G1, G2, . . .

of all finitely presented groups with solvable word problem.
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For if there were such an enumeration, then all finite presentations of
groups having solvable word problem would be recursively enumerable, that
is, Σ0

1. But by the theorem this is impossible since having a solvable word
problem is Σ0

3-complete.

Similarly combining the Theorem 1.7 with a construction applied to Tur-
ing machines Boone and Rogers establish the following:

Theorem 3.13 ([24]) There is no uniform partial algorithm which solves the
word problem in all finitely presented groups with solvable word problem.

Combining this last corollary with an enumeration of homomorphisms
one can show the following result.

Corollary 3.14 (Miller [77]) There is no universal solvable word problem
group. That is, if G is a finitely presented group which contains an isomorphic
copy of every finitely presented group with solvable word problem, then G itself
must have unsolvable word problem.

More generally, one can ask what is the level in the arithmetic hierarchy
of any Markov property of interest. If it is r.e. then the Adian-Rabin result
can be used to show it is Σ0

1-complete. Upper bounds can be found for those
not apparently r.e., but the status of several properties remains unresolved.
The table below indicates some of the unresolved issues.

Markov property recursion theoretic status

being trivial r.e. (Σ0
1-complete)

being finite r.e.
being abelain r.e.
being nilpotent r.e.
being polycyclic r.e.
being solvable ? (≤ Σ0

3)
being free r.e.
being torsion-free ? (≤ Π0

2)
being residually finite ? (≤ Π0

2)
having solvable word problem Σ0

3-complete
being simple ? (≤ Π0

2)
being automatic r.e.

We turn now to some unsolvability results concerning the recognition of
certain properties of the subgroups of a finitely presented group generated by
finite sets of elements. The following is a general result of this type motivated
by the Adian-Rabin Theorem.
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Theorem 3.15 (Baumslag, Boone and Neumann [10]) Let P be an algebriac
property of groups and assume that (i) there is a finitely presented group that
has P and that (ii) there is an integer n such that no free group Fr of rank
r ≥ n has P . Then there is a finitely presented group GP such that there
is no algorithm to determine whether or not the subgroup generated by an
arbitrary finite set of words in the given generators of GP has the property
P .

Proof: Fix a finitely presented group U having unsolvable word problem.
Let G+ be a finitely presented group which has property P . By hypothesis,
there is an integer n such that the free groups Fr of rank r ≥ n do not have
P . We may assume that G+ is generated by at least n elements, say by
t1, . . . , tr(r ≥ n). Now form the ordinary free product GP of U with G+ and
a free group of rank two, that is,

GP = U ∗G+∗ < a, b | > .

We use w as a variable for words in the generators of U . If w 6=U 1 then in
GP the elements

a−1b−1[a, w]ba, . . . , a−rb−1[a, w]bar

freely generate a free subgroup of rank r. Hence also the elements

tia
−ib−1[a, w]bai for i = 1, . . . , r

freely generate a free subgroup of rank r which does not have P . On the other
hand, if w =U 1 then tia

−ib−1[a, w]bai =GP ti so in this case these elements
just generate G+ which has P . That is, the elements tia

−ib−1[a, w]bai for
i = 1, . . . , r generate a subgroup having the property P if and only if w =U 1.
Since U has unsolvable word problem, the result follows.

Corollary 3.16 ([10]) There are finitely presented groups G (depending on
the property considered) such that there is no algorithm to determine whether
or not the subgroup generated by an arbitrary finite set of words of G is

1. trivial;

2. finite;

3. free;

4. locally free;

5. cyclic;

6. abelian;
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7. nilpotent;

8. soluble;

9. simple;

10. directly decomposable;

11. freely indecomposable;

12. a group with solvable word problem.

Using similar constructions, Baumslag, Boone and Neumann further show
the following which is similar to the above corollary but not an immediate
consequence of the previous theorem:

Theorem 3.17 ([10]) There are finitely presented groups G (depending on
the property considered) such that there is no algorithm to determine whether
or not the subgroup generated by an arbitrary finite set of words of G is

1. a finitely related subgroup;

2. a subgroup of finite index;

3. a normal subgroup;

4. a subgroup with finitely many conjugates.

4 Decision problems and constructions

In this section we consider the basic decision problems for finitely presented
groups which are built from more elementary groups by such operations as
direct products, extensions, free products, amalagamated free products, and
HNN-extensions.

The basic decision problems are well behaved with respect to (ordinary)
free products. Suppose that A and B are finitely presented groups with solv-
able word problem (respectively, solvable conjugacy problem). Then their
free product A ∗ B has solvable word problem (respectively, solvable conju-
gacy problem) by stantard results on normal forms and conjugacy in free
products. Mihailova [76] has shown the more difficult result that if A and
B have solvable generalized word problem, then A ∗B also has solvable gen-
eralized word problem. Concerning the isomorphism problem, the Grushko-
Neumann theorem easily implies the following: If C is a recursive class of
freely indecomposable finitely presented groups and if there is an algorithm
to decide the isomorphism problem for groups in C, then there is an algo-
rithm to decide the isomorphism problem for the class of all free products of
finitely many groups in C.
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One might have thought the direct product was a rather benign construc-
tion. For example it is clear that if A and B are finitely presented groups
with solvable word problem (respectively, solvable conjugacy problem) then
their direct product A×B has solvable word problem (respectively, solvable
conjugacy problem). However, Mihailova [75] has shown that solvability of
the generalized word problem is not preserved by direct products. The proof
is based on the following lemma.

Lemma 4.1 Let M be any group with a given set of generators {s1, . . . , sn}
having quotient group H with presentation

H =< s1, . . . , sn | R1 = 1, . . . , Rm = 1 >

on the images of the given generators of M . Let G = M ×M be the direct
product of two copies of M and let LH be the subgroup of G generated by the
elements

(s1, s1), (s2, s2), . . . , (sn, sn)

(R1, 1), (R2, 1), . . . , (Rm, 1).

Then for any pair of word u and v in the given generators,

(u, v) ∈ LH if and only if u =H v.

Before beginning the proof, we note that the subgroup LH is just the
pull-back or fibre-product of two copies of the quotient mapping from M
onto H.
Proof: Clearly if (u, v) ∈ LH then u =H v since this is true for each of the
generators of LH and H is a quotient group of M .

For the converse, first suppose w =H 1. Then

w =M

r∏
k=1

Xk(si)
−1Rεk

jk
Xk(si)

for suitable words Xk in the given generators. But then in G = M ×M we
have

(w, 1) =G

r∏
k=1

Xk((si, si))
−1(Rεk

jk
, 1)Xk((si, si)) ∈ LH

as desired. More generally suppose u =H v. Then uv−1 =H 1 and so
(uv−1, 1) ∈ LH . Since LH contains the diagonal of G = M × M , it con-
tains (v, v) and hence we also have (u, v) ∈ LH . This completes the proof.

Theorem 4.2 Let M be a finitely presented group having a quotient group
H with unsolvable word problem. Then the group G = M ×M has a finitely
generated subgroup LH such that the generalized word problem for LH in G
is recursively unsolvable.
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Proof: According to the previous lemma using the same notation, (w, 1) ∈ LH
if and only if w =H 1. Since the word problem for H is unsolvable, the
problem of deciding membership in LH is recursively unsolvable. This proves
the theorem.

Corollary 4.3 (Mihailova [75]) Let F be a finitely generated free group of
rank at least 2. Then the group G = F ×F has a finitely generated subgroup
L such that the generalized word problem for L in G is recursively unsolvable.

The above lemma can also be used to obtain a number of other unsolv-
ability results concerning the direct product of two free groups. The following
result was proved for free groups of rank at least nine by Miller [77] and later
improved to two generators by Schupp [97]

Theorem 4.4 (Miller [77]) Let F be a free group of rank at least 2 and let
G = F ×F . The the problem to determine of an arbitrary finite set of words
whether or not they generate G is recursively unsolvable.

Proof: To see this we apply the proof of the Adian-Rabin Theorem in the
case of the Markov property “being trivial” so that G+ = 1. In this case one
obtains a recursive family of presentations {πw | w ∈ U} indexed by words
in a group U with unsolvable word problem such that πw ∼= 1 if and only if
w =U 1. Moreover, if we suppose F has free basis {s1, . . . , sn}, then each πw
can be written as a presentation on the same generating symbols. For by the
Main Technical Lemma the presentations could be given on two generators,
say s1 and s2. In case n > 2 the same group can then also be presented by
adding additional generators {s3, . . . , sn} and additional defining relations
s3 = 1, . . . , sn = 1.

Now in the above lemma take M = F and let Lw be the subgroup
generated by the indicated elements using the presentation πw as H. Let
Hw = gp(πw). Then by the lemma and properties of the πw we have

Lw = G ↔ ∀u, v ∈ F ((u, v) ∈ Lw)

↔ ∀u, v ∈ F (u =Hw v)

↔ Hw
∼= 1

↔ w =U 1.

Since U has unsolvable word problem, this proves the result.

Continuing to use the notation of the previous proof, let Nw be the kernel
of the natural homomorphism from F onto Hw. Now by the above lemma
(y, 1) ∈ Lw if and only if y ∈ Nw. Thus the intersection of Lw with the first
factor F ×{1} of G is Nw (or more precisely Nw×{1}). If w 6=U 1 then from
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the proof of the Adian-Rabin Theorem, we know U is embedded in Hw and
so in particular Hw is infinite. So if w 6=U 1 then Nw is not finitely generated.

Now in F ×F one can check that the centralizer of any element is finitely
generated. On the other hand the centralizer of an element (1, z) ∈ Lw in Lw
will have the form Nw × Z. So if w 6=U 1 then the centralizer of an element
of Lw need not be finitely generated. Consequently, if w 6=U 1 then Lw and
G = F × F are not isomorphic. This proves the following:

Theorem 4.5 Let F be a free group of rank at least 2 and let G = F × F .
Then the problem to determine of an arbitrary finite set of words whether
or not they generate a subgroup isomorphic to G is recursively unsolvable.
Hence the isomorphism problem for subgroups of G given by finite sets of
generators is recursively unsolvable.

Variations on the above arguments can be used to show the following:

Theorem 4.6 (Miller [77]) Let F be a free group of rank at least two. Put
G = F × F . Then G has a finitely generated subgroup L such that L has an
unsolvable conjugacy problem. Moreover, the generalized word problem for L
in G is unsolvable.

Notice that the group F ×F is residually free as are all of its subgroups.
However, the finitely generated subgroups L constructed in the above are not
finitely presented (see Baumslag and Roseblade [19]).

Recall that a property P of groups is a poly-property if, whenever N and
G/N have P , so has G. Here N is a normal subgroup of G.

Lemma 4.7 The following are poly-properties

1. being finitely generated

2. having a finite presentation

3. satisfying the maximum condition for subgroups

4. being finitely presented and having a solvable word problem.

That the first three are poly-properties is shown in Hall [51] and that the
last is a poly-property is easily verified. Note that it is not enough in the
last item to assume finite generation because the extension might not then
be even recursively presented (see [12]).

Since F × F where F is free can have unsolvable generalized word prob-
lem, the property “having solvable generalized word problem” is not a poly-
property. Neither is “having solvable conjugacy problem”. Indeed the fol-
lowing result shows groups with a surprisingly elementary structure can have
an unsolvable conjugacy problem:
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Theorem 4.8 (Miller [77]) There is a finitely presented group G with the
following properties:

1. G is the split extension of one finitely generated free group by another,
that is, there is a split short exact sequence of groups 1 → F → G →
T → 1 where F and T are finitely generated free groups.

2. G is residually finite;

3. G has solvable word problem;

4. G has unsolvable conjugacy problem.

Also, G is an HNN-extension of the finitely generated free group F with a
finite number of stable letters (the generators of T ) acting as automorphisms
of F . The ordinary free product G∗T0 of G with a free group T0

∼= T has the
structure of an amalgamated free product of two finitely generated free groups
with finitely generated amalgamation.

Proof: (Sketch) Suppose that

U =< s1, . . . , sn | R1 = 1, . . . , Rm = 1 >

is a finitely presented group with unsolvable word problem. Let F =<
q, s1, . . . , sn | > be the free group of rank n + 1 on the listed generators.
The idea is to construct a group G in which the equations of U are mimicked
by conjugations of certain words in F . Of course U can not be embedded in
G since G is to have solvable word problem. G is defined as follows:

Generators: q, s1, . . . , sn, d1, . . . , dn, t1, . . . , tm.
Defining relations:

t−1
i qti = qRi

t−1
i sjti = sj

}
1 ≤ i ≤ m
1 ≤ j ≤ n

d−1
k qdk = s−1

k qsk
d−1
k sjdk = sj

}
1 ≤ k ≤ n
1 ≤ j ≤ n

For each dk and ti the right hand sides of the above defining relations gen-
erate the free group F and so by a theorem of Nielsen [71] they freely generate
F . Hence these relations define an action of each dk and ti as an automor-
phism of F . If we denote by T the free group with basis {d1, . . . , dn, t1, . . . , tn},
then the quotient of G by its normal subgoup F is clearly isomorphic to T . A
group with this sort of structure must be residually finite (see [77]). The as-
sertions about HNN-extensions and amalgamated free products follow from
general facts about those constructions.

To see that G has unsolvable conjugacy problem, one shows the following:
if w is any word on {s1, . . . , sn}, then qw is conjugate in G to q if and only
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if w =U 1. Since the word problem for U is unsolvable, it follows that the
conjugacy problem for G is unsolvable.

In one direction this claim is easy. For observe that U is the homomorphic
image of G obtained by mapping each si in G to the corresponding si in U and
mapping all other generators to the identity 1U . Denote this homomorphism
by φ. Then if y−1qwy =G q it follows that φ(y)−1wφ(y) =U 1 and hence
w =U 1. For the converse, suppose w =U 1. Then

w =U

r∏
k=1

Xk(si)
−1Rεk

jk
Xk(si)

for suitable words Xk in the given generators. As an example of a conjugation
in G, consider the following:

(d1d2t
ε
id
−1
2 d−1

1 )−1qd1d2t
ε
id
−1
2 d−1

1 =G d1d2t
−ε
i d
−1
2 d−1

1 qd1d2t
ε
id
−1
2 d−1

1

=G d1d2t
−ε
i d
−1
2 s−1

1 qs1d2t
ε
id
−1
2 d−1

1

=G d1d2t
−ε
i s
−1
1 s−1

2 qs2s1t
ε
id
−1
2 d−1

1

=G d1d2s
−1
1 s−1

2 qRε
is2s1d

−1
2 d−1

1

=G d1s
−1
1 qs−1

2 Rε
is2s1d

−1
1

=G qs−1
1 s−1

2 Rε
is2s1

Generalizing this calculation, one can find a word Y on {d1, . . . , dn, t1, . . . , tn}
determined by the representation of w as a product of conjugates of the
defining relations of U such that Y −1qY =G qw which is the desired result
(see [77] for more details of the calculation). This completes our sketch of
the proof.

The construction of the previous theorem can be combined with the con-
struction used in proving the Adian-Rabin Theorem to show that the isomor-
phism problem for groups with such a very elementary structure is unsolvable.
The details are somewhat more difficult.

Theorem 4.9 (Miller [77]) Let U be a group with unsolvable word problem.
Then there is a recursive class of finite presentations Ω = {πw | w ∈ U}
indexed by words of U such that

1. each gp(πw) is residually finite;

2. each gp(πw) is the split extension of one finitely generated free group
by another;

3. the word problem for each of the groups gp(πw) is solvable by a uniform
method;

4. gp(πw) ∼= gp(π1) if and only if w =U 1.
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In particular, the isomorphism problem for Ω is unsolvable. Hence the iso-
morphism problem for finitely presented, residually finite groups is unsolvable.

The foregoing results show, among other things, that “having solvable
generalized word problem” and having “solvable conjugacy problem” are not
poly-properties. It is natural to ask whether these properties are at least
preserved under finite extensions. For the generalized word problem the
answer is not difficult.

Lemma 4.10 ([11]) If G is a finite extension of the finitely generated group
H having solvable generalized word problem, then G has solvable generalized
word problem.

In contrast to this, the conjugacy problem for a group G and for a sub-
group of finite index in G can be quite different as the following result shows:

Theorem 4.11 ([30])

1. There is a finitely presented group G1 with unsolvable conjugacy prob-
lem that has a subgroup M of index 2 which has solvable conjugacy
problem.

2. There is a finitely presented group G2 with solvable conjugacy prob-
lem that has a subgroup L of index 2 which has unsolvable conjugacy
problem.

An example of the first type was given by Gorjaga and Kirkinskii [41],
while examples of both of these phenomena were given by Collins and Miller
[30]. The proofs are somewhat technical.

A further aspect of the above results is the following: denote by Ψ0

the set of finitely generated free groups. Then denote by Ψ1 the collection
of groups formed from groups in Ψ0 by either free product with finitely
generated amalgamation or HNN-extension with finitely many stable letters
and finitely generated associated subgroups. Similarly form Ψ2 by applying
these constructions to groups in Ψ1. Note that all of these groups are finitely
presented.

By a theorem of Nielsen [71], finitely generated free groups have solvable
generalized word problem so each of the groups in Ψ1 has a solvable word
problem. However, the foregoing results show that the generalized word
problem, the conjugacy problem and the isomorphism problem can be re-
cursively unsolvable for groups in Ψ1. Since the generalized word problem is
unsolvable for a group in Ψ1, it follows that the word problem for a suitable
group in Ψ2 is unsolvable.
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For example, if F is free of rank at least two and L is a finitely generated
subgroup such that the generalized word problem for L in F×F is unsolvable,
one can form the HNN-extension

G =< F × F, t | t−1xt = x, x ∈ L > .

Then for any word y ∈ F × F we have t−1yt = y if and only if y ∈ L. Since
membership in L is not decidable, the word problem for G is unsolvable. Of
course G ∈ Ψ2 and G is finitely presented.

Using the Mayer-Viettoris sequences for (co)homology of free products
with amalgamation and for HNN-extensions, it is easy to check that groups
in Ψ1 have cohomological dimension ≤ 2 and that groups in Ψ2 have co-
homological dimension ≤ 3. The above observations give no information
about the word problem for groups of cohomological dimension 2. Collins
and Miller (unpublished) have verified that some of the groups constructed
in the Boone-Britton proofs of the unsolvability of the word problem have
cohomological dimension 2.

Theorem 4.12 There exists a finitely presented group G of cohomological
dimension 2 having unsolvable word problem. Indeed, G can be obtained from
a free group by applying three successive HNN-extensions where the associated
subgroups are finitely generated free groups.

Of course the associated subgroups in the second and third HNN-extension
are only free subgroups of the previous stage in the construction, not sub-
groups of the original free group. The proof is obtained by making minor vari-
ations to the one given in Rotman’s textbook [92]. There a group G = G(T )
is constructed based on a Turing machine T which is first encoded into a
semi-group and that in turn into G. The group G is obviously obtained by
successive HNN-extensions. The only difficulty is to check that the associ-
ated subgroups in the final HNN-extension can be taken to be free. This
can be done by arranging for the Turing machine T and the semigroup con-
structed to have a few special properties. The proof then uses the technical
details of the proof in [92] and appeals to the deterministic nature and special
properties of T .

5 Decision problems in algebraic classes of
groups

While the fundamental decision problems are unsolvable for finitely presented
groups in general, it is interesting to ask whether they can be solved for classes
of finitely presented groups enjoying a particular algebraic property.
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For example, it is easy to see that for the class of finite groups the word
problem, the conjugacy problem, the generalized word problem and the iso-
morphism problem are all recursively solvable. Given any finite presentation
of a finite group G, by enumerating Tietze transformations of the given pre-
sentation one can effectively find a multiplication table presentation for G.
Each of the fundamental decision problems can then be effectively answered
from knowledge of the multiplication table. Of course these are not practical
algorithms and there is considerable interest in obtaining efficient practical
algorithms for studying finite groups.

Similarly for the class of finitely generated free groups, the word and con-
jugacy problems are solvable by standard facts about equality and conjugacy.
That the generalized word problem is solvable is a theorem of Nielsen [71].
The isomorphism type of a free group is determined by its rank which can
be easily computed from any presentation by considering its abelianization.
Hence all of the basic decision problems are solvable for finitely generated
free groups.

In this section we survey what is known about the fundamental decision
problems for classes of groups enjoying some of the more familiar algebraic
properties, for example abelian, solvable, linear and so on. A diagram is
included which summarizes the status of four fundamental problems and
indicates some of the relationships between the various classes. Generally a
class C1 of groups is connected by a line to a class C2 higher in the diagram
if C1 ⊆ C2. Unfortunately not all containments and intersections can be
accurately portrayed in the diagram.

The following notation is used for the various decision problems in the
diagram: +WP means that all groups in the class have solvable word prob-
lem; ¬WP means that there exist groups in the class having unsolvable word
problem; and ?WP means the solvability of the word problem seems to be
an open question. Of course if a decision problem is solvable for a class of
groups then it is solvable in every class contained that class. Likewise if a
decision problem is unsolvable for a class of groups then it is also unsolvable
for every larger class.

The following commentary, references and quoted results are intended to
explain the status of the decision problems as indicated in the table.

As we have mentioned before, the structure of a finitely generated abelian
group can be completely and effectively determined from a finite presentation
for such a group. In particular this enables one to solve the word problem
in each such group and to solve the ismorphism problem for the class of
such groups. Now for abelian groups conjugacy is the same as equality so
the conjugacy problem is also solvable. The generalized word problem for
a subgroup H of an abelian group G is equivalent to the word problem for
G/H so GWP (G) is also solvable. Thus for finitely generated abelian groups
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f.p. solvable
derived length 3
¬WP ¬CP
¬GWP ¬IsoP

f.g. abelian-
by-nilpotent
+WP ?CP

+GWP ?IsoP

f.g. abelian-
by-polycyclic
+WP ?CP

?GWP ?IsoP

f.p. metabelian
+WP +CP

+GWP ?IsoP

f.g. metabelian
+WP +CP

+GWP ?IsoP

f.g. abelian
+WP +CP

+GWP +IsoP

f.g. linear
+WP ¬CP
¬GWP ¬IsoP

f.g. subgroups
of GL(n,Z)
+WP ¬CP
¬GWP ¬IsoP

f.g. nilpotent
+WP +CP

+GWP +IsoP

polycyclic
+WP +CP

+GWP +IsoP

arithmetic
+WP +CP
¬GWP ?IsoP

S-arithmetic
+WP +CP
¬GWP ?IsoP

f.p. subgroups
of GL(n,Z)
+WP ?CP
¬GWP ?IsoP

f.p. residually
finite

+WP ¬CP
¬GWP ¬IsoP

f.p. hopfian
¬WP ¬CP
¬GWP ¬IsoP

f.p. residually
nilpotent

+WP ¬CP
¬GWP ¬IsoP

f.p. resid. free
+WP ?CP
¬GWP ?IsoP
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all of the basic decision problems are solvable.

Theorem 5.1 Finitely generated linear groups have solvable word problem.

For finitely generated groups which are linear over a field, this result is
proved in Rabin [89] but also follows easily from an older result of Malcev
[72]. For Malcev proved that if a finitely generated group G has a faithful
representation as a group of matrices over a field, then G also has a faithful
representation over a field which is a purely transcendental extension of finite
degree of the prime field. As the arithmetic of such a field is clearly effective,
the word problem for such a group G is solvable.

More generally, a finitely generated group G of matrices with entries from
a commutative ring has a solvable word problem. For sinceG is finitely gener-
ated, the entries in its matrices all lie in some finitely generated commutative
ring. Now the arithmetic of such a ring is effective and hence such a group
has solvable word problem (see [11]).

In the group SL(2,Z) the two matrices(
1 2
0 1

)
and

(
1 0
2 1

)

freely generate a free subgroup of rank 2. Moreover, Sanov [93] has shown
that an arbirtary 2× 2 matrix (

a b
c d

)

with integer entries belongs to this subgroup if and only if the following three
arithmetic conditions are satisfied:

1. ad− bc = 1

2. a and d are congruent to 1 mod 4

3. c and b are even.

It follows that the direct product Fn×Fn of two free groups of rank n has a
faithful representation in SL(4,Z). Combining this representation with the
results discussed in the last section, one has the following:

Theorem 5.2 The conjugacy problem, the generalized word problem and the
isomorphism problem are all unsolvable for finitely generated subgroups of
SL(4,Z). Further, the generalized word problem is unsolvable for arithmetic
groups.



33

Note that the finitely generated groups in this theorem need not be finitely
presented. Such a group can however be finitely described just by giving the
finite set of integer matrrices which generate the group.

Recall that a group G is hopfian if G/N ∼= G implies N = {1}. Malcev
[72] showed that finitely generated linear groups are residually finite. He
further showed that finitely generated residually finite groups are hopfian.

Using the idea of “finite reducibility” which goes back to J. C. C. McK-
insey [74] and was applied to groups by Dyson [33] and Mostowski [80] one
can show the following result.

Theorem 5.3 Finitely presented, residually finite groups have solvable word
problem.

Proof: (Sketch) For suppose we are given a finite presentation of a residually
finite group G. To decide whether an arbitrary word w is equal to 1 in G we
effectively enumerate two lists. The first list consists of all of the words equal
to 1 in G, that is, all words which are freely equal to products of conjugates
of the given defining relations.

The second list is more complicated: first systematicly enumerate all
multiplication table presentations of finite groups. For any function f from
the given generators of G to such a finite group K, one can effectively check
whether f defines a homomorphism by checking to see whether the formal
extension of f sends each of the finitely many defining relations of G to 1
in K. Thus we can effectively enumerate all homomorphisms fi from G into
finite groups Ki.

Now to decide whether w =G 1 we start both listing processes. As each
fi is enumerated, evaluate fi(w) and check to see whether fi(w) = 1 in Ki.
Since G is residually finite, if w 6=G 1 then for some i one eventually finds
fi(w) 6= 1 in Ki. On the other hand if w =G 1 then w will appear in the
first list. So by waiting until one of these two events occurs we can decide
whether w =G 1.

Despite the solvability of the word problem for finitely presented, residu-
ally finite groups the results explained in the previous section show the other
fundamental decision problems are all unsolvable.

Theorem 5.4 The conjugacy problem, the generalized word problem and the
isomorphism problem are all unsolvable for finitely presented, residually finite
groups.

Recently, Baumslag [9] has varied these constructions to show that these
problems are also unsolvable for the class of finitely presented, residually
nilpotent groups.
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In view of Malcev [72] one can ask whether more generally finitely pre-
sented hopfian groups have solvable word problem. That hopfian groups can
have unsolvable word problem follows easily from an embedding theorem of
Miller and Schupp [79].

Theorem 5.5 A finitely presented group can be embedded into a finitely pre-
sented, hopfian group. In particular, there exist finitely presented hopfian
groups with unsolvable word problem.

One might have hoped that finitely presented solvable groups would have
reasonable algorithmic properties. Any such hopes were destroyed by Khar-
lampovich [58] who constructed a finitely presented solvable group of de-
rived length 3 with unsolvable word problem. Analysing and varying her
construction, Baumslag, Gildenhuys and Strebel [18] have shown that the
isomorphism problem is unsolvable for such groups. In summary:

Theorem 5.6 The word problem and the isomorphism problem are unsolv-
able for finitely presented solvable groups of derived length 3.

In contrast to this situation for solvable groups in general, a large number
of decision problems are recursively solvable for polycyclic groups. A general
reference for polycyclic groups is the book by Segal [98]. First it is clear that
polycyclic groups are finitely presented and have solvable word problem since
these are poly–properties. The conjugacy problem is solvable for polycyclic
groups since Remmeslenikov [91] and Formanek [34] have shown they are
conjugacy separable, that is, two elements of a polycyclic group which are
non–conjugate remain non–conjugate in some finite quotient group. Malcev
[73] has shown that polycyclic groups are subgroup separable which implies
the generalized word problem is solvable. Alternatively, the generalized word
problem for polycyclic groups can be solved by a direct inductive method (see
[12]).

Quite remarkably, Grunewald and Segal [48] have shown that the isomor-
phism problem for finitely generated nilpotent groups is recursively solvable.
And more recently Segal [99] has succeeded in solving the isomorphism prob-
lem for polycyclic groups. In fact all of the algorithms mentioned carry over
to the larger class of polycyclic–by–finite groups. In summary:

Theorem 5.7 The word problem, conjugacy problem, generalized word prob-
lem and isomoprphism problem for polycyclic–by–finite groups are recursively
solvable.

In fact a large number of other algorithmic questions about polycyclic–
by–finite groups admit a positive solution (see [15]). Further, there is an
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algorithm to determine whether or not a given finitely presented solvable
group is polycyclic (see [14]).

As part of their work leading to the solution of the isomorphism problem
for finitely generated nilpotent groups, Grunewald and Segal solved the con-
jugacy problem for arithmetic groups (see [48]). Subsequently they extended
this to S-arithmetic groups ([49]). They are further able to give a number of
algorithms for determining orbits and constructing systems of generators for
such groups.

Theorem 5.8 The conjugacy problem for S-arithmetic groups is recursively
solvable.

Next we turn our attention to finitely generated, abelian–by–polycyclic
groups. In [51] Hall has shown that ifG is a polycyclic group, then any finitely
generated right ZG-module is Noetherian. Of course this is equivalent to the
assertion that ZG is right Noetherian and is an extension of the Hilbert
basis theorem. Now a finitely generated, abelian–by–polycyclic group E is
an extension of normal abelian subgroup M by a polycyclic group G. Then
M can be viewed as a ZG-module which must be finitely generated as a
module because E is a finitely generated group. A particular instance of this
is the case of finitely generated metabelian groups E where M = [E,E] and
G = E/[E,E]. When E is metabelian ZG is actually a finitely generated
commutative ring.

In studying such groups one is able to apply the techniques of commuta-
tive algebra including the Hilbert basis theorem, the Nullstellensatz and so
on. The advantage for algorithmic questions is that large parts of commuta-
tive algebra can be carried out effectively. In particular, there is an effective
version of the Hilbert basis theorem which carries over to group rings ZG
where G is a polycyclic group. Such group rings are submodule computable
which roughly means that operations in their finitely generated modules can
be effectively carried out, that one can decide membership in finitely gener-
ated submodules and that one can find presentations for finitely generated
submodules. See [11] for an account of these effective methods.

One easy consequence of these effective extensions of commutative algebra
is the solvability of the word problem for finitely generated, abelian–by–
polycyclic groups. The generalized word problem is apparently more difficult,
but using Theorem 2.14 of [11] one can solve the generalized word problem
for finitely generated, abelian–by–nilpotent groups. The problem is reduced
to deciding whether two submodules over the same subgroup of a nilpotent
group coincide. Whether this can be extended to the abelian–by–polycyclic
case seems to be unknown. In summary:
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Theorem 5.9 The word problem for finitely generated, abelian–by–polycyclic
groups is recursively solvable. The generalized word problem for finitely gen-
erated, abelian–by–nilpotent groups is recursively solvable.

The particular case of metabelian groups is even more tractable. For
finitely generated metabelian groups, Noskov [85] has solved the conjugacy
problem. In summary:

Theorem 5.10 For finitely generated metabelian groups the word problem,
generalized word problem and conjugacy problem are all recursively solvable.

Finitely generated metabelian groups need not be finitely presented. But
from an algorithmic point of view there seems to be little advantage in as-
suming finite presentation. Decision problems are reduced to questions about
modules over finitely generated commutative rings. The isomorphism prob-
lem for finitely generated metabelian groups seems to be open. Indeed the
following important and related algorthmic problem seems to be open: Is
the isomorphism problem for finitely presented modules over the integral
polynomial ring Z[x1, . . . , xn] recursively solvable?

This completes our commentary concerning the summary table. Decision
problems for certain other algebraic classes will be considered in a subsequent
section.

6 Algorithms for further classes of groups

In this section we review the status of the fundamental decision problems
for some further classes of groups which did not fit conveniently into the
previous two sections. Nevertheless algorithmic questions concerning these
groups have played an important role in ongoing developments.

One relator groups: Consider a group G defined by a single defining
relation, say

G =< x1, . . . , xn | r = 1 >

where r is a cyclically reduced word on the xi. Magnus [69] (see also [71] or
[66]) initiated the study of such one relator groups by proving his Freheitsatz:
the subgroup of G generated by a subset S = {xi1 , . . . , xik} of the given
generators which omits at least one generator appearing in the cycllically
reduced word r is a free group with basis S. His proof was by induction on the
length of the defining relation r using a rewriting method which has become
a powerful technique for studying one relator groups. Using this technique
Magnus [70] succeeded in solving the word problem for such groups in the
following strong sense: there is an algorithm to determine for an arbitrary
word w ofG and an arbitrary subset S = {xi1 , . . . , xik} of the given generators
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whether or not w belongs to the subgroup generated by S. Of course the
ordinary word problem is just the case S = ∅. Note however that one can
only decide membership in subgroups of a certain form. The full generalized
word problem for one relator groups seems to be open.

In the case the defining relation is a proper power, say r = un for some
n > 1, Newman [84] proved a “Spelling Theorem” which provides a very
sharp solution to the word problem (see [66]). Using this result he further
solved the conjugacy problem for these one relator groups with torsion. Quite
recently, Juhasz [57] has succeeded in solving the conjugacy problem for all
one relator groups. In summary:

Theorem 6.1 The word and conjugacy problems are recursively solvable for
groups defined by a single defining relation.

The isomorphism problem for one relator groups is open. Some modest
progress has been made on classifying one relator groups with relation of a
particular form, but progress seems difficult.

Simple groups: In [63] Kuznetsov observed the following result which
hold more generally for a large number of algebraic systems.

Theorem 6.2 A recursively presented simple group G has solvable word
problem.

Proof: Suppose G =< x1, . . . , xn | r1 = 1, r2 = 1, . . . >. If G = 1 the result
certainly holds. So assume G 6= 1 and let u be a fixed word of G such that
u 6=G 1. Now for any word w on the generators of G, let Gw be the group
obtained from G by adding w as a new defining relator, that is,

Gw < x1, . . . , xn | w = 1, r1 = 1, r2 = 1, . . . > .

Now if w 6=G 1 then Gw = 1 since G is simple and in particular u = 1 in Gw.
But if w =G 1 then Gw = G and of course u 6= 1 in Gw. Clearly Gw is again
recursively presented.

To decide whether an arbitrary word w is equal to 1 in G begin recursively
enumerating two lists of words. The first list consists of all word equal to
1 in G. The second list consists of all words equal to 1 in Gw. If w =G 1
then w will appear in the first list. But w 6=G 1 if and only if u appears in
the second list. By examinig the lists until one of these events occurs we can
determine whether or not w is equal to 1 in G. This completes the proof.

In particular, finitely presented simple groups have solvable word prob-
lem. In contrast to this, Scott [94] has shown the following:

Theorem 6.3 There is a finitely presented simple group whose conjugacy
problem is recursively unsolvable.
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See [95] for a recent survey concerning finitely presented infinite sim-
ple groups. Boone and Higman [23] have used a variation on Kuznetsov’s
argument and the Higman embedding theorem to give the following charac-
terization of finitely presented groups with solvable word problem.

Theorem 6.4 (Boone-Higman Theorem) A finitely presented group G has
solvable word problem if and only if G can be embedded in a simple subgroup
of a finitely presented group.

Proof: (Sketch) Suppose G ⊆ S ⊆ H where S is simple and H is finitely
presented. Fix a word u ∈ S with u 6=H 1. For any word w of H let Hw

be the presentation obtained from that of H by adding w as a new defining
relator. Now to decide whether a word in the generators of G is equal to 1
in G we regard it as a word, say w, in the generators of H. As above, either
w appears on the list of words equal to 1 in H or else since S is simple u
appears on the list of words equal to 1 in Hw (in which case w 6=H 1 ). So
by enumerating these two lists we can decide whether w is equal to 1 in G.

For the converse, suppose G has solvable word problem. Then the set of
all pairs of words (u, v) such that u 6=G 1 and v 6=G 1 is recursive and can
be arranged in a recursive list as say (ui, vi), i = 1, 2, . . .. Let x, t1, t2, . . . be
new generating symbols and form the presentation

σ(G) =< G, x, t1, t2, . . . | t−1
i [ui, x]ti = vix

−1uix, i = 1, 2, . . . > .

Then σ(G) is an HNN-extension of the free product of G with the infinite
cyclic group generated by x. The associated subgroups are just the infinite
cyclic groups genrated by the [ui, x] and the vix

−1uix. A routine argument
shows that the word problem for σ(G) in the indicated presentation can be
solved using the given solution to the word problem for G. Also observe that
in σ(G) each vi lies in the normal closure of the corresponding ui. Thus the
normal closure in σ(G) of any non-trivial element of G contains all of G.

Now iterating this construction G1 = σ(G), G2 = σ(G1), . . . and forming
the union

S =
∞⋃
j=1

Gj

we obtain a recursively presented simple group S in which G is embedded. By
the Higman embedding theorem, S can be embedded in a finitely presented
group H. This completes the proof.

Small cancellation groups: A subset R of a free group F is sym-
metrized if all of the elements of R are cyclically reduced and if r ∈ R implies
that all cyclically reduced conjugates of r±1 are also in R. Thus the words in
R are all cyclically reduced and are closed under taking inverses and cyclic
permutations. Let N =< R >F be the normal closure of R in F . Clearly any



39

presentation (respectively, finite presentation) of a group can be converted to
a presentation on the same set of generators with a symmetrized set (respec-
tively, finite symmetrized set) of defining relators. One just cyclically reduces
the given relators and then closes under inverses and cyclically permutations
of words.

In small cancellation theory one consider various cancellation hypotheses
on a symmetrized set of words R and uses them to deduce properties of the
group G = F/N . In what follows we assume R is a symmetrized set of words.

If R contains two distinct words of the form r1 ≡ bc1 and r2 ≡ bc2 then the
word b is called a piece relative to R or simply a piece when R is understood.
Observe that, in forming the product r−1

1 r2 and freely reducing, such a piece
b is cancelled. Thus a piece is simply a subword of an element of R which
can be cancelled by the multiplication of two non-inverse elements of R. Also
note that an initial segment of a piece is again a piece.

There are two types of small cancellation hypotheses which assert that
pieces are relatively small parts of elements of R. The first is a metric
condition denoted C ′(λ) where λ is any positive real (for example 1

6
or 1

8
).

The set R is said to satisfy C ′(λ) if r ≡ bc ∈ R where b is a piece implies
that |b| < λ|r|. For instance, C ′(1

6
) means that in forming the product of any

two non-inverse elements of R less that 1
6

of either word is cancelled. Note
that C ′(1

8
) implies C ′(1

6
) and that generally C ′(λ) is a stronger condition for

smaller λ.

For any natural number p the non-metric condition C(p) asserts that no
element of R is a product of fewer than p pieces. Observe that C ′(λ) implies
C(p) for λ ≤ 1/(p− 1). Thus C ′(1

6
) implies C(7).

Another type of condition considered in small cancellation theory is the
condition T (q) for q a natural number. R satisfies T (q) if for every sequence
r1, . . . , rm (3 ≤ m ≤ q) with no successive inverse pairs, at least one of
the products r1r2, . . . , rm−1rm, rmr1 is reduced without cancellation. (This
condition turns out to be dual to to the condition C(p) when 1/p+1/q = 1/2
in a suitable geometric sense. See [66].)

Small cancellation theory was initiated by Tartakovskii [101] [102] [103]
who solved the word problem for groups whose defining relators R satisfy
C(7). Greendlinger [43] investigated the metric conditions C ′(λ) and showed
that the word problem for groups with defining relators R satisfying C ′(1

6
)

is solvable by Dehn’s algorithm (see below). In addition he obtained quite
a strong result for such groups called “Greedlinger’s Lemma” which has a
number of applications (see [66]). Further, Greendlinger [44] showed that
the conjugacy problem for groups with defining relators R satisfying C ′(1

8
)

is solvable by Dehn’s conjugacy algorithm (see below).

Lyndon [65] introduced the geometric method of Lyndon-van Kampen
diagrams into small cancellation theory and solved the word problem for
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groups whose defining relators satisfy C(6) (and also in certain other cases).
Schupp [96] used these geometric methods to obtain a solution to the conju-
gacy problem for these groups. In summary:

Theorem 6.5 Let F be a free group, R a finite symmetrized subset of F and
N the normal closure of R. Assume that R satisfies either C(6), or C(4) and
T (4), or C(3) and T (6). Then the word problem and the conjugacy problem
for G = F/N are recursively solvable.

There are many applications of small cancellation theory and much more
detailed information than we can present here. Moreover, the geometric
methods using Lyndon-van Kampen diagrams provide significant insight into
the word and conjugacy problems. A very readable account of small cancel-
lation theory is given in Chapter V of the book [66] by Lyndon and Schupp.

Varieties of groups: In the previous section we noted Kharlampovich’s
result [58] that there is a finitely presented solvable group of derived length 3
with unsolvable word problem. In particular, this is an example of a finitely
presented group satisfying a non-trivial varietal law having unsolvable word
problem.

For groups in a non-trivial variety one often considers groups that are rel-
atively finitely presented, that is, finitely generated groups which are defined
by the laws of the variety together with finitely many additional relations.
For example, a result of Hall [51] shows that finitely generated metabelian
groups are always relatively finitely presented although they need not be
“absolutely” finitely presented.

In a series of papers Kleiman [59], [61], [60], [62] has proved a number
of remarkable results concerning varieties which answer a large number of
questions. We mention only some of those results of an algorithmic nature.

Theorem 6.6 ([59],[61]) There is a solvable variety defined by finitely many
laws in which the non-cyclic free groups have unsolvable word problem.

An easy consequence of the unsolvability of the word problem for these
relatively free groups is the following:

Corollary 6.7 There is a finite set S of identities such that the problem to
decide whether an arbitrary word represents an identity which is a conse-
quence of S is recursively unsolvable.

As another consequence, Kleiman shows that the problem of recognizing
whether a variety can be factored into a product is recursively unsolvable.
In the context of varieties, the identity problem for a group is the problem
of deciding whether or not an arbitrary identical relation (law) holds in the
group. Kleiman [61] has also shown that there is a 3 generator group with
solvable word problem in which the identity problem is unsolvable.



41

7 Geometry and complexity

Suppose that the group G has the presentation P =< X | R > where R is
a symmetrized set of words on X. Let F be the free group with basis X
and N the normal closure of R. If w is a word in the group G = F/N then
w =G 1 if and only if w =F u1r1u

−1
1 · · ·umrmu−1

m where the ui are words in
F and the ri are elements of R. The sequence u1r1u

−1
1 , . . . , umrmu

−1
m is said

to be an R-sequence of length m for w. For any w ∈ N we define AP (w) to
be the minimium length of an R-sequence for w.

Using Lyndon-van Kampen diagrams one associates with any R-sequence
for w a connected, simply connected R-diagram D (consisting of vertices,
edges and regions) in the euclidean plane. The edges of D are labelled by
elements of F in such a way that the label on the boundary of each region is
an element of R and the label on the boundary circuit of D is w (see Chapter
V of [66]). Conversely, R-diagrams with boundary label w are the diagrams
of suitable R-sequences for w. Thus the AP (w) is the number of regions in
the R-diagram of a minimal R-sequence for w.

For any word u of F we denote the length of u by |u|. A useful observation
that is easily established using R-diagrams is the following (see [66] Lemma
1.2 of Chapter V, p. 239):

Lemma 7.1 If w ∈ N and AP (w) = m then there is an R-sequence

u1r1u
−1
1 , . . . , umrmu

−1
m

of length m for w such that

|uj| ≤ |w|+
m∑
i=1

|ri| j = 1, . . . ,m.

In particular, if the lengths of all the elements of R are bounded by some
constant, say CR, then the conjugating elements uj in a minimal R-sequence
can be chosen so that |uj| ≤ |w|+m · CR.

Consequently, when R is finite, in order to decide whether a word w lies
in N or not, it suffices to have an upper bound for AP (w) in terms of |w|.
For then one can systematically try the bounded number of R-sequences with
conjugating elements of length at most the above estimate. Indeed it is easy
to see that being able to compute such a bound is equivalent to solving the
word problem in the case that R is finite.

Corollary 7.2 Suppose that G has finite presentation P =< X | R > where
R is a symmetrized set of words on X. Let F be the free group with basis
X and N the normal closure of R. Then the word problem for G = F/N
is recursively solvable if and only if there is a recursive function f such that
AP (w) ≤ f(|w|) for all w ∈ N .
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It is often helpful to use a more invariant form of the function AP . Thus
one defines [36] the Dehn function ΩP as follows:

ΩP (n) = max{AP (w) | w ∈ N and |w| ≤ n}.

It can be shown that if the finitely presented group G is defined by two
finite presentations P and P1, then there are constants c1, c2 and c3 such
that ΩP1(n) ≤ c1ΩP (c2n) + c3n. In a different direction, suppose that the
finite presentation P2 =< X | R2 > of G is obtained from P by adding some
elements of N to R so that R ⊆ R2. Then AP2(w) ≤ AP (w) for all w ∈ N
and ΩP2(n) ≤ ΩP (n).

The above corollary can be restated now as follows: the word problem
for G is solvable if and only if there is a recursive function f such that
ΩP (n) ≤ f(n) for all n > 0. In fact, if ΩP is bounded by such a recursive
function, it then follows that ΩP itself is recursive. So the corollary becomes:
the word problem for G is solvable if and only if ΩP is recursive.

Assuming the presentation P =< X | R > is finite, there is a standard
and familiar way to realizeG = F/N as the fundamental group of a 2-complex
K = K(P ) consisting of a single 0-cell, one 1-cell for each free generator of
F , and one 2-cell for each element of R. The 1-cells are attached as loops at
the 0-cell giving a wedge of circles. The 2-cells are attached to the 1-skeleton
by subdividing the boundary of the cell corresponding to r ∈ R and sewing
onto the 1-skeleton in accordance with r as a sequnce of generators and their
inverses. The Seifert-van Kampen Theorem then shows that π1(K) ∼= G.

If an element w ∈ N is represented as a loop τ(w) in the 1-skeleton of
K and if D is the R-diagram of a (minimal) R-sequence for w, then there
is clearly a continuous map from D to K which sends the boundary of D to
τ(w), sends the edges of D into the 1-skeleton of K and sends the regions of
D onto 2-cells of K. Since D is connected and simply connected this map
lifts to a map of D into the universal covering space K̃.

If we fix a 0-cell in the universal cover K̃ as base point, then the 0-cells of
K̃ are in one-one correspondence with the elements of G. Now the 1-skeleton
of K̃ is a graph which we denote by Γ(G) called the Cayley graph of G.
Another way to view Γ(G) is as follows: regard F as the fundamental group
of the 1-skeleton K1 of K. Then Γ(G) can be identified with the covering
space of K1 corresponding to the normal subgroup N of F . Note that Γ(G)
depends only on the choice of generating set X and not on the choice of the
defining relators. We write Γ(G) = Γ(G,X) to show this dependence when
necessary. Thus we think of the vertices of Γ(G) as being labelled by the
elements of G. For each generator in X there is an oriented edge entering
and an edge leaving each vertex of Γ(G). Paths in Γ(G) correspond to words
in X starting at the vertex labelled 1. In particular, loops starting at the
vertex labelled 1 correspond to elements of N .
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The Cayley graph Γ(G) = Γ(G,X) is given the word metric defined by
taking each edge to have unit length. A geodesic for an element g ∈ G is a
shortest path w in the Cayley graph from the vertex labelled 1 to the vertex
labelled g. This w is a shortest word in the generators X representing the
element G.

Dehn’s algorithm and hyperbolic groups: Let G be a group with
finite presentation P =< X | R > and let F and N be as above. A Dehn’s
algorithm for G is a finite set of words ∆ ⊂ N such that any non-empty
word w ∈ N can be shortened by applying a relator in ∆. That is, any
non-empty w ∈ N has the form w ≡ ubv where there is an element of the
form bc ∈ ∆ with |c| < |b|. Thus applying the relator bc to w, we can deduce
that w =G uc

−1v where |uc−1v| < |w|.
If G has Dehn’s algorithm ∆ then one can solve the word problem for G

in a particularly straight forward way: repeatedly try to shorten the word
in question by replacing a subword using a relator in ∆. If ∆ is a Dehn’s
algorithm for G as above, then < X | ∆ > is also a finite presentation for G
and A<X | ∆>(w) ≤ |w| for every w ∈ N . Thus also Ω<X | ∆>(n) ≤ n for all
n, so the Dehn function is bounded by a linear function. Observe this last
property does not depend on the finite presentation of G.

If ∆ is a Dehn’s algorithm for G and ∆1 is a larger finite set of words
with ∆ ⊆ ∆1 ⊂ N , then ∆1 is also a Dehn’s algorithm for G. In particular,
if c is a constant larger than the lengths of all the words in ∆ then

∆c = {w ∈ N | |w| ≤ c}

is also a Dehn’s algorithm. Using these observations and Theorem 7.3 below,
one can check that having a Dehn’s algorithm is independent of the choice
of generating set and hence is an abstract property of the group.

The following are examples of groups having presentations with a Dehn’s
algorithm: free groups, finite groups (multiplication table presentation), and
groups satisfying the cancellation condition C ′(1

6
) (Greendlinger’s Lemma).

After introducing the fundamental decision problems, Dehn [31] consid-
ered the fundamental groups of closed orientable surfaces of genus g > 1
having presentation

Sg =< a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1 > .

He showed that the symmetrized closure R of the given defining relator is
a Dehn’s algorithm for Sg. Note that this presentation satisfies the small
cancellation coditions C(4g) and C ′(1/(4g − 1)).

Suppose the group G has a finite presentation < X | R > where R is a
Dehn’s algorithm. A word u is said to be R-reduced if u can not be shortened
by applying a relator in R. Also, u is cyclically R-reduced if every cyclic
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permutation of u is R-reduced. Clearly if u is any word on X, then by taking
cyclic permutations and applying Dehn’s algorithm one can effectively find
a cyclically R-reduced word u′ which is conjugate to u in G.

We say that Dehn’s conjugacy algorithm solves the conjugacy problem
for G if there is an integer constant c such that two non-trivial cyclically
R-reduced words u and v are conjugate in G if and only if there is a word
z on X such that u =G z

−1vz and |z| ≤ c · (|u| + |v|). This clearly provides
a recursive solution to the conjugacy problem for G since only finitely many
conjugating elements z need to be tested. Also note that the number of
regions in an annular R-diagram representing such a conjugacy equation is
bounded by a linear function of (|u|+ |v|).

Dehn also solved the conjugacy problem for the groups Sg by showing
what we have called Dehn’s conjugacy algorithm applies. Actually, for Sg
and more generally C ′(1

8
) groups a stronger condition holds. Namely, if u

and v as before are conjugate, then they have cyclic permutations u′ and v′

such that u′ =G z
−1v′z where z is a subword of an element of R. See [66] for

details and generalizations to infinite sets of defining relators.

Gromov [45] has given several equivalent definitions of the notion of a
word hyperbolic group. Let G be a finitely generated group and fix a finite
generating set X for G. Let Γ = Γ(G,X) be the corresponding Cayley graph
with the word metric.

A triangle in Γ with geodesic sides is said to be δ-thin if any point on one
side is at distance less than δ from some point on one of the other two sides.
Γ is said to be δ-hyperbolic if every triangle in Γ with geodesic sides is δ-thin.
Finally G is said to be word hyperbolic if it is δ-hyperbolic with respect to
some generating set and some fixed δ ≥ 0. We remark that one should think
of δ as a large integer rather than a small positive real in these definitions.

The following result gives some equivalent characterizations of word hy-
perbolic groups.

Theorem 7.3 The following conditions on a finitely presented group G are
equivalent:

1. G is word hyperbolic (in the sense of δ-thin triangles);

2. the Dehn function for G is bounded by a linear function;

3. G has a Dehn’s algorithm.

The above is a combination of results of Gromov [45] and of (indepen-
dently) Lysënok [67] and Shapiro [5] (see also [8]). Not only do word hyper-
bolic groups have solvable word problem (by this theorem), but Gromov [45]
has also shown they have solvable conjugacy problem:
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Theorem 7.4 Let G be a finitely presented word hyperbolic group. Then
Dehn’s conjugacy algorithm solves the conjugacy problem for G.

Thus Dehn’s algorithm for the word problem always implies that Dehn’s
conjugacy algorithm solves the conjugacy problem. In terms of R-diagrams
this means the following: if the number of regions in a R-diagram which is a
disk is bounded by a linear function of the length of the boundary, then the
same is true of annular R-diagrams.

Automatic groups: The notion of an automatic group was introduced
in [26]. Another reference is [17].

We will need the notion of a finite state automaton. Intuitively, a finite
state automaton M is just a computing device with a fixed finite amount of
storage (memory). M reads an input string (or word) from a free monoid Φ
on a finite alphabet from a tape and eventually either “accepts” or “rejects”
the input string. M reads only in one direction (no backups) and can write
only in its fixed internal storage. (If arbitrarily large storage for scratch work
were allowed, the resulting class of machines would be as powerful as Turing
machines)

The set of strings (words) which M accepts is called the language recog-
nized by M . A regular language is a set of words in a free monoid Φ which
is recognized by some finite state automaton.

To compare two words using a finite state automaton one pads the shorter
with a new symbol, say $, on the end so the two words have the same length.
Then intersperse these two words on the input tape taking symbols alter-
nately from the two words. Equivalently, one can use a two tape automaton
which reads its tapes with one (possibly padded) word on each at the same
rate (synchronously). We call such a device a synchronous two-tape automa-
ton. If instead such a two tape automaton is allowed to read its input tapes
at different rates, we call such a device an asynchronous two-tape automaton.
An asynchronous two tape automaton can recognize far more complicated
sets of pairs than a synchronous one.

Let X be a set of generators for a group G. Let Φ be the free monoid
with basis X ∪ X−1. For any word w ∈ Φ define µ(w) ∈ G to be the
element represented by w. An (synchronously) automatic structure for G
with respect to the generating set X is a regular language L in Φ such that
µ(L) = G together with a synchronous two-tape automaton M which accepts
the collection of pairs of elements of L which represent elements of G lying
at most a unit apart in the Cayley graph Γ(G,X). That is M accepts the
set of pairs

{(u, v) | u, v ∈ L and µ(u) = µ(va) for some a ∈ X ∪X−1 ∪ {1}}.

If in addition there is a finite state automaton M ′ which accepts the set
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of pairs

{(u, v) | u, v ∈ L and µ(u) = µ(bv) for some b ∈ X ∪X−1 ∪ {1}}

the triple (L,M,M ′) is called a biautomatic or two-sided automatic structure.
Finally, if instead M is an asychronously automaton, we say that (L,M) is
an asynchronously automatic structure.

Note that while µ maps L onto G it need not be one-one; that is, and
element of G may be represented by several elements of L.

The group G is said to be automatic (respectively, biautomatic or asyn-
chronously automatic) if it has an automatic (respectively, biautomatic or
asynchronously automatic) structure. Of course biautomatic groups are au-
tomatic, but it is not known whether these two notions coincide. Automatic
groups are asynchronously automatic, but the class of asynchronously auto-
matic groups is much larger.

One of the motivations for studying automatic groups was the observation
[26] that word hyperbolic groups are automatic (even biautomatic [38]). Note
that if R is a Dehn’s algorithm for a word hyperbolic group, then the R-
reduced words form a regular language. Moreover, it can be shown (see
Gromov [45]) that if G is word hyperbolic with Cayley graph Γ, then the set
of words on X corresponding to geodesic paths starting at 1 ∈ Γ is a regular
language.

While not all of the non-metric small cancellation groups are word hy-
perbolic, Gersten and Short [37] have shown that groups satisfying any one
of C(6), or C(4) and T (4), or C(3) and T (6) have an automatic structure.

The word problem for these classes of automatic groups is solvable, and
more detailed information is as follows (see [26] and [17]):

Theorem 7.5 Asynchronously automatic groups all have solvable word prob-
lem. The Dehn function of an automatic group is bounded by a quadratic.
The Dehn function Ω of an asynchronously automatic group is bounded by a
simple exponential, that is, Ω(n) ≤ cn for some constant c > 0.

Moreover, Gersten and Short [37] have shown the following result which
generalizes previously mentioned results of Schupp and of Gromov:

Theorem 7.6 The conjugacy problem for biautomatic groups is recursively
solvable.

Their proof uses various closure properties of regular languages and re-
formulates the conjugacy problem as a question about whether two regular
languages have a non-empty intersection. This latter problem is known to
be solvable [56].
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For asynchronously automatic groups the conjugacy problem is no longer
solvable. Indeed, it is not hard to show [17] that the split extension of one
finitely generated free group by another is asychronously automatic. Con-
sequently, the examples of [77] discussed in the earlier section on “Decision
problems and constructions” show the following:

Theorem 7.7 There exist asynchronously automatic groups with unsolvable
conjugacy problem. The isomorphism problem for asynchronously automatic
groups is recursively unsolvable.

For more information on asynchronously automatic groups see [17]. These
various classes of (bi)automatic groups have number of other interesting prop-
erties. Thurston has shown that automatic groups are of type FP∞ (see [4]).
Gersten and Short [39] have obtained useful information about subgroups of
biautomatic and hyperbolic groups.

Normal forms and rewriting systems: Continuing with the above
notations, one difficulty with Dehn’s algorithm for solving the word problem
is the following: if R is a Dehn’s algorithm and we apply the process of R-
reduction to a word w 6=G 1 the resulting word, say ρ(w) will be R-reduced
but it is not unique. There may be other R-reduced words u with u =G ρ(w);
for instance, one might have applied a completely different sequence of R-
reductions.

One would like a solution to the word problem which transforms an arbi-
trary word into a sort of unique standard form, preferably by straight forward
operations. Also it seems reasonable to expect that a subword of a word in
standard form is also in standard form; otherwise one should continue trying
to transform the subwords. Notice that the R-reduction process has all of
these properties except uniqueness.

A set of words T in the free monoid Φ with basis X ∪ X−1 is a set of
normal forms for G (with respect to the generating set X) if µ|T is a bijection
from T onto G. Thus every element of G is represented by a unique element
of T . Equivalently, one can view T as a transversal in F of the normal
subgroup N . If in addition T is closed under taking of subwords, then we
call T a hereditary set of normal forms.

Observe that a set of words is closed under taking subwords if and only
if it is closed under taking both initial and terminal segments of words.
Thus T is a hereditary set of normal forms if and only if it is a two-sided
Schreier transversal for N in F . One can well-order the words in Φ by
ordering X ∪X−1 and then ordering Φ by length and within the same length
lexicographically. In [50] M. Hall shows the set T obtained by choosing the
least element tg representing each group element g ∈ G is a two-sided Schreier
transversal.
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Thus every group G has a hereditary set of normal forms T with respect
to a generating set X. Assuming X is finite, the set T constructed in this
way is recursive if and only if G has solvable word problem.

So normal forms exist, but what of “transforming” words into normal
form? One such notion has been investigated by computer scientists ( see
[64] or [68]). Define a rewrite rule to be an ordered pair (u, v) of words of
Φ such that u =G v. An application of the rewrite rule (u, v) consists of
replacing a subword of the form u in a word w by v to obtain a new word
w′. We write this as w → w′. In more detail, an application of the rewrite
rule (u, v) looks like w ≡ yuz → w′ ≡ yvz. One often writes u → v for
the rewrite rule itself thereby emphasizing the ordered nature of the rule.
The words u and v are called the left and right hand sides of the rewrite
rule u→ v respectively. Note that an application of a rewrite rule need not
reduce the length of a word, and it may indeed lengthen the word.

Let Λ be a set of rewrite rules. A word w is Λ-reduced or Λ-irreducible if
no subword of w is the left hand side of any rewrite rule in Λ. That is, w is
Λ-irreducible if it is impossible to apply any of the rewrite rules in Λ to W .

A set of rewrite rules Λ is a complete rewriting system if it satisfies two
conditions: (1) the set T of Λ-irreducible words is a hereditary set of normal
forms; and (2) there are no infinite chains w1 → w2 → . . . of applications of
rewrite rules from Λ.

If Λ is a complete rewriting system, it is clear that starting with any word
w one can apply successively the rewrite rules of Λ to reach a unique normal
form for w. If w1 and w2 are two words such that w1 =G w2, then applying
rewrite rules to each of w1 and w2 in any order will eventually lead to the
same word. A rewrite system with this property is said to be confluent, a
condition which could have been used in place of (1). Also, if Λ is a complete
rewriting system then the collection of equations u = v where (u, v) ∈ Λ give
a presentation for G.

Here is one (non-effective) way to obtain such a complete rewriting sys-
tem. Choose a hereditary set T of normal forms as before. If w is a word of
Φ, denote by w the unique element of T which is equal in G to w (the coset
representative for wN in F ). Take Λ to be the set of rewrite rules ta→ (ta)
for all t ∈ T and all a ∈ X ∪X−1. We observe that if G has solvable word
problem then this set of rewrite rules is recursive.

Of particular interest is the class of finitely generated groups which have a
finite complete rewriting system. If G has a finite complete rewriting system
Λ, then G is finitely presented and the set T of Λ-irreducible words is a
regular language. The word problem for such a group is easily solved by
repeatedly applying the finite set of rewrite rules until an irreducible word is
obtained.

Examples of such groups are free groups and finite groups. One can also
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show that the class of groups with finite complete rewriting systems is closed
under ordinary free products and under extensions (see [47]). In particular,
this class includes all polycyclic–by–finite groups and groups which are ex-
tensions of one finitely generated free group by another. So from our previous
results we can summarize the status of the fundamental decision problems
as follows:

Theorem 7.8 The word problem for groups with a finite complete rewrit-
ing system is recursively solvable. There exist groups groups with a finite
complete rewriting system having unsolvable conjugacy problem and unsolv-
able generalized word problem. Moreover the isomorphism problem for such
groups is unsolvable.

It should be emphasized again that rewrite rules are not required to be
length reducing. If a groupG has a finite, length reducing, complete rewriting
system, then that system gives a Dehn’s algorithm and, moreover, it is known
(see [68]) that G must be virtually free.

One interesting feature of groups with a finite complete rewriting system
is that they are of type FP∞ (see [6], [25], [46] and [100]). Moreover, one can
in principle effectively calculate free resolutions and carry out certain homo-
logical calculations for such groups. The nature of subgroups of such groups
remains to be explored, as do a number of generalizations. For instance,
instead of finite systems one can consider “regular” complete rewriting sys-
tems. Exactly how these might be related to the various types of automatic
groups is not yet clear.

Trivial words as a language: Another way of approaching the word
problem is to consider the collection N(Φ) of all words w ∈ Φ such that
w =G 1. Of course words in N(Φ) represent elements of N but they may not
be freely reduced. One measure of the complexity of the word problem for G
is the complexity of N(Φ) as a language. Thus a group G is said to be regular
(respectively, context–free) if N(Φ) is a regular (respectively, context–free)
language.

Recall that a language is context-free if it is recognized by a pushdown
automaton which is a non-deterministic finite state automaton with a push-
down stack (“first in, last out”) storage device. See [56] for details concerning
such languages and machines.

The following result was observed by Anisimov [7]. Its proof is an easy
exercise (see [81]).

Theorem 7.9 A group is regular if and only if it is finite.

In a series of papers, Muller and Schupp [81], [82] investigate some re-
markable connections between groups, pushdown automata, the theory of
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ends and second-order logic. One of their results [81] is a characterization of
context–free groups which involves the notion af accessibility. Subsequently
Dunwoody [32] has proved that all finitely presented groups are accessible.
So combining these results, one has the following:

Theorem 7.10 A finitely generated group is context–free if and only if it is
virtually free.

For additional information about rewriting systems and complexity issues
for groups the reader may wish to consult the survey article [68].

8 Computability of homological invariants

This section is concerned with decision theoretic aspects of the homological
invariants of finitely presented groups. Suppose that G is a group and M a
left ZG-module where ZG denotes the integral group ring of G. If

F : . . .→ F3 → F2 → F1 → F0 → Z→ 0

is a free resolution of Z by free left ZG-modules then the homology groups of
G with coefficients in M are given by H∗(G,M) = H∗(M ⊗ZG F). Similarly,
if M is a left ZG-module, then the cohomology groups with coefficients in
M are given by H∗(G,M) = H∗(HomZG(F,M)).

IfG is a finitely presented group, then we ask to what extent the sequences
of abelian groups H∗(G,M) and H∗(G,M) can be effectively determined?

The most familiar homology group of a group G is H1(G,Z) = G/[G,G],
the abelianization of G. If G is finitely presented then G/[G,G] is a finitely
generated abelian group, and an additive finite presentation for G/[G,G] can
be easily written down from a presentation for G. There is then a familiar
algorithm for expressing uniquely G/[G,G] as a direct sum of cyclic groups
(Smith normal form). This solves the isomorphism problem for H1(G,Z) and
so this group can be effectively determined. We record this as follows:

Proposition 8.1 The homology group H1(G,Z) can be effectively determined
from a finite presentation for G.

Next consider the case G is a finite group which may be assumed to be
given by a multiplication table presentation. The the additive group of the
integral group ring ZG is a free abelian group of finite rank. Hence a free
resolution F as above can be found in which each Fi is a finitely generated
free abelian group (for instance the bar resolution). Now if M is a finitely
presented ZG-module, it is also finitely generated as an abelian group and
its structure can be completely determined. It is easy to see that all of the
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maps necessary to compute the homology groups up to any dimension can
be effectively computed. Hence each of the finitely generated abelian groups
Hn(G,M) and Hn(G,M) can be effectively determined in this case.

Proposition 8.2 If G is a finite group and M is a finitely presented ZG-
module, then each of the homology groups Hn(G,M) and Hn(G,M) can be
effectively determined.

Of course in practice one is not so much interested in computing these
groups individually as in establishing general properties of the sequences
H∗(G,M) and H∗(G,M) for a group or a collection of groups. The above
gives little information about these general questions.

Finally consider the case in which G is a polycyclic-by-finite group. As
indicated above, large parts of commutative algebra can be carried out ef-
fectively, in particular Hilbert’s basis theorem is effective. The analogous
results for polycyclic-by-finite groups can likewise be shown to be effective
(see [11]). Using this theory one can show the following:

Theorem 8.3 ([11]) Let G be a polycyclic-by-finite group and let M be a
finitely presented ZG-module. Then each of the homology groups Hn(G,M)
is a finitely generated abelian group. Moreover, there is a recursive procedure
which yields for each n ≥ 0 a finite presentation of Hn(G,M). The procedure
is uniform in the given data.

In general there is little hope of effectively computing the homology
groupsHn(G,M) forM an arbitrary finitely presented ZG-module even when
the group G is reasonably nice. Suppose for instance that G is a free group
on finitely many generators and let Q be a quotient group of G. Then ZQ is
a cyclic ZG-module. But Q might have unsolvable word problem, in which
case the word problem for ZQ as a ZG-module is unsolvable. Similarly, one
can not in general decide whether Q is the trivial group, so one cannot decide
whether ZQ is isomorphic to Z as a ZG-module.

In view of these considerations it is convenient to restrict one’s attention
to the case M is a trivial ZG-module and to the case M = Z in particular.
For simplicity we use the abbreviations HnG = Hn(G) = Hn(G,Z).

Since H1G can be effectively computed, it is natural to consider H2G.
Now if G = F/R where F is a free group and R is a normal subgroup, then
Hopf’s formula for H2G is

H2(G,Z) = ker{R/[F,R]→ F/[F, F ]} = (R ∩ [F, F ])/[F,R].

The abelian group R/[F,R] is generated by the images of a set of defining
relations for G so if G is given by a finite presentation then H2G is finitely
generated on a set of generators no larger than the number of relations of G.
Despite this, the groups H2G can not be effectively determined.
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Theorem 8.4 (Gordon [40]) There is no algorithm to determine of an ar-
bitrary finitely presented group G whether or not H2G = 0.

As we shall see, this result follows easily from the sorts of constructions
used to prove the Adian-Rabin Theorem. However, it should be pointed out
that the property H2G = 0 is definitely not a Markov property of G and
so the above result is not an instance of the Adian-Rabin Theorem. This
follows from the following result:

Theorem 8.5 ([16]) Every group G which admits a recursively enumerable
presentation can be embedded in a finitely presented acyclic group Q; thus by
definition HnQ = 0 for n > 0.

While Gordon’s result is not implied by the Adian-Rabin Theorem, it
does follow easily from any of the constructions used to prove it. In fact the
argument shows a certain class of homological properties are not recognizable.
To describe these we introduce the following definition.

Definition 8.1 An abstract property P of finitely presented groups is said to
be a homological Markov property if there are two finitely presented groups
G+ and G− such that

1. G+ has the property P ; and

2. if Y is a finitely presented group such that HnG− ⊆ HnY for n > 1
then Y does not have property P.

These groups G+ and G− will be called the positive and negative witnesses
for the homological Markov property P respectively.

Note that the property H2G = 0 is an example of a homological Markov
property. In terms of this definition, the arguments for the Adian-Rabin
Theorem show the following result which includes Gordon’s result.

Theorem 8.6 If P be a homological Markov property of finitely presented
groups, then P is not recursively recognizable.

Proof: We apply the Technical Lemma used in the proof of Adian-Rabin
Theorem. Let Q be a finitely presented acyclic group with unsolvable word
problem. Take K = Q ∗G− and for any word w of Q construct Lw as in the
Technical Lemma. Finally put πw = Lw ∗G+. Then if w 6=Q 1 it follows from
the Mayer-Viettoris sequence for homology of amalgamated free products
that HnG− ⊆ HnLw ⊆ Hn(gp(πw)) for n > 1. So in this case gp(πw) /∈ P .
On the other hand, if w =Q 1 then Lw ∼= 1 and so gp(πw) ∼= G+ and hence
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gp(πw) ∈ P. Since the word problem for Q is unsolvable, it follows that Q is
not recursively recognizable. This completes the proof.

To describe abelian groups on a possibly infinite set of generators we use
the notation < X | R >ab where X = {x1, x2, . . .} is a set of generators and
R = {r1, r2, . . .} is a set of words on X. The abelian group A presented
by < X | R >ab is then the quotient of the free abelian group on X by the
subgroup generated by the words in R. If X is a recursively enumerable set
of symbols and R a recursively enumerable set of words in those symbols we
say that < X | R >ab is an r.e. abelian group presentation.

In [16] Baumslag, Dyer and Miller investigated the possibilities for the
whole integral homology sequence HnG for a finitely presented group. De-
spite the fact that one knows very little about a finitely presented group from
its presentation, the sequence of integral homology groups HnG turns out to
be a sequence of recursively presentable abelian groups.

Theorem 8.7 ([16]) If G is a recursively presented group, then the inte-
gral homology sequence HnG can be described by a recursively enumerable
sequence of r.e. abelian group presentations. Moreover, if G is finitely pre-
sented, the first two terms of this sequence are finitely generated.

Whether or not a complete converse to this statement holds has not yet
been resolved. However Baumslag, Dyer and Miller [16] have shown that a
wide variety of r.e. sequences of recursively presentable abelian groups can
be realized as the integral homology sequence of a finitely presented group.
To state their results another definition is needed. An r.e. abelian group
presentation < X | R >ab is called untangled if R is a basis of the subgroup
it generates, and otherwise tangled. Since subgroups of free abelian groups
are free they have bases. But a given r.e. abelian group presentation may
be tangled and indeed may not be effectively untangled. The situation is
summarized by the following result.

Lemma 8.8 ([16]) Let < X | R >ab be an r.e. abelian group presentation
of the abelian group A.

1. if A is a torsion-free abelian group there is a recursive procedure which
transforms < X | R >ab into an untangled r.e. abelian group presen-
tation < Y | S >ab of A.

2. if the word problem for < X | R >ab is recursively solvable there is a
recursive procedure which transforms < X | R >ab into an untangled
r.e. abelian group presentation < Y | S >ab of A.

However, there exist abelian groups A having an r.e. abelian group presenta-
tion but having no untangled r.e. abelian group presentations at all.
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The main result on realizing a sequence of abelian groups as the integral
homology of a finitely presented group is as follows:

Theorem 8.9 Let A1, A2, A3, . . . be a sequence of abelian groups in which
the first two terms are finitely generated. If the Ai’s are given by an r.e.
sequence of r.e. abelian group presentations each of which is untangled, then
there exists a finitely presented group G whose integral homology sequence is
the given sequence, that is HnG = An for n > 0.

If one is interested in constructing a finitely presented group with a spec-
ified HnG for a particular n, the restriction to untangled presentations is not
necessary. However, the constructions used to build such a group lose control
of the homology in adjacent dimensions.
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