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GALOIS REPRESENTATIONS WITH CONJECTURAL
CONNECTIONS TO ARITHMETIC COHOMOLOGY

AVNER ASH, DARRIN DOUD, and DAVID POLLACK

Abstract

In this paper we extend a conjecture of A. Ash and W. Sinnott relating niveau 1 G
lois representations to the mod p cohomology of congruence subgroupls,¢f.)

to include Galois representations of higher niveau. We then present computatior
evidence for our conjecture in the case=n3 in the form of three-dimensional Ga-
lois representations which appear to correspond to cohomology eigenclasses as f
dicted by the conjecture. Our examples include Galois representations with nontrivi
weight and level, as well as irreducible three-dimensional representations that are
no obvious way related to lower-dimensional representations. In addition, we pro\
that certain symmetric square representations are actually attached to cohomolo
eigenclasses predicted by the conjecture.

1. Introduction

In [22], J.-P. Serre published his conjecture (which had existed in some form sin
1973) relating continuous odd absolutely irreducible Galois representations
Gg — GLZ(IF‘p) to the modp reductions of modular forms. He not only conjec-
tured that a relationship existed but also gave precise formulae describing where
find the predicted modular forms.

In [4], Ash and Sinnott presented a conjecture giving a relationship between o
niveau 1 Galois representations of arbitrary dimensioand certain cohomology
groups of congruence subgroups of &Z). In the two-dimensional case, this conjec-
ture is closely related to Serre’s conjecture. Ash and Sinnott presented computatio
evidence for their conjecture in certain three-dimensional cases, primarily in the ce
of three-dimensional level 1 reducible representations. In this paper we present
ditional computational evidence for the conjecture, including cases with nontrivi
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weight, level, and nebentype. We also expand the conjecture to include represelr
tions of higher niveau and present computational evidence for this generalization. T
representations in Sectioh2 are particularly interesting—they are the first examples
in which a cohomology eigenclass seems to correspond to a native three-dimensic
Galois representation (i.e., a Galois representation that is in no obvious way rela
to a one-dimensional or two-dimensional Galois representation).

There is no problem in finding many Galois representations to which the col
jecture that we make applies. The challenge is in finding Galois representations
which the predicted weights and levels allow computation of the associated cohom
ogy classes and their Hecke eigenvalues. Our verifications of the conjecture invo
finding representations that have fairly small weight and level and computing the pr
dicted cohomology groups and the action of Hecke operators on these groups
primes up to 47. We then compare the Hecke eigenvalues with the coefficients of 1
characteristic polynomials of the images of Frobenius, and if they match, we claim
have evidence for the conjecture. We present many examples of Galois representat
with weight and level small enough for us to work with, resulting in over 200 predic
tions (counting each weight associated to a Galois representation by Conjedture
separately). These examples are summarized in Tables 1 through 10, in which we
scribe Galois representations and give predicted weights, levels, and characters.
all the examples listed in the tables, we have computed the homology groups (wh
are naturally dual to the cohomology groups), and in all cases an eigenclass with
correct eigenvalues up to= 47 (¢ = 3 in Table 1) did exist in the predicted weight,
level, and character. Our examples include cases with niveau 1, 2, and 3, as wel
wildly ramified niveau 1 representations. We also call attention to Thedrérand
the examples that follow it, in which the theory of symmetric squares is ugadve
a prediction of Conjecturg.1for certain irreducible three-dimensional Galois repre-
sentations.

2. Definitions

Let p be a prime number, and I@b be an algebraic closure of the finite fidlg with

p elements. By &alois representatiomve mean a continuous representation of the
absolute Galois grou@g of Q to a matrix group GL(]F,;,). The representations with
which we work in this paper will always, in addition, be semisimple. We say that «
Galois representation is odd if the image of complex conjugation is a nonscalar mat
and that it is even if the image of complex conjugation is a scalar.

For a given primeg, we denote a decomposition groupcgin Gg by Gq. This
decomposition group then has a filtration by ramification subgré@ps with the
whole inertia group abovg equal toGq 0. We often denote the inertia grou®, o
at p by Ip. We fix a Frobenius element Frglfor eachq, and we fix a complex
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conjugation Frok,.
We denote the fundamental characters of nivedu characteristicp (see [L9))
by ¥nd, d = 1,...,n, and we note that they are all Galois conjugates (d4gr
of ¥n.1. In many cases we are interested in working with fundamental characters
niveau 2 and 3, so for brevity we lgt = 21, ¥’ = Y22, and we let) = 31,
0’ = 32, andd” = vr3 3. Note that the cyclotomic characteris equal toyr 1.

2.1. Hecke operators
Let I'o(N) be the subgroup of matrices in §1Z) whose first row is congruent to
(*,0,...,0 moduloN. Define Sy to be the subsemigroup of integral matrices in
GLn(Q) satisfying the same congruence condition and having positive determina
relatively prime toN.

Let s#(N) denote thd?p—algebra of double cosefSo(N)\Sn/To(N). Then
27 (N) is a commutative algebra that acts on the cohomology and homology
I'o(N) with coefficients in anpr[SN]—moduIe. When a double coset is acting on
cohomology or homology, we call it a Hecke operator. Clear#§(N) contains all
double cosets of the formig(N)D (¢, K)['o(N), where£ is a prime not dividingN,
0<k<n,and
1

D, k) =

14
is the diagonal matrix with the first — k diagonal entries equal to 1 and the l&st

diagonal entries equal th When we consider the double coset generated (4 k)
as a Hecke operator, we calllit(¢, k).

Definition 2.1
LetV be ans#(pN)-module, and suppose thate V is a simultaneous eigenvector
for all T (¢, k) and thatT (¢, k)v = a(¢, k)v with a(¢, k) € ]Fp forall ¢ f pN prime
and allO<k <n. If

p: Gg — GLn(Fp)

is a representation unramified outsigdl and

n
> (=D, 2a, kXK = det(l — p(Froby)X)
k=0

for all £ / pN, then we say that is attachedto v or thatv corresponds t@.
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2.2. Level and nebentype
Let
p:Gg — GLn(Fp)

be a continuous representation. We define a level and nebentype assocjated to
actly as Serre does i2f].

For a fixed primeg # p, andi > 0, letg; = |p(Gg,i)|. Note that this is a finite
integer since by continuity the image pimust be finite. LeM = ]F‘?) be acted on by
G via p in the natural way, and define

[0
g . Gy i
Ng=) —dmM/M>ai,
‘ Z{: 9o /
The sum definingq is then a finite sum since eventually tGg ; are trivial.

Definition 2.2
With p as above, define the level

N(p) =[] a".
q#p

Note that this product is also finite sinpeis ramified at only finitely many primes,
andng is zero if p is unramified atj.
In order to define the nebentype character, we again proceed exactly as Serre
in [22]. We factor dep = ewX, wherew is the cyclotomic character modufn ande
is a characteGg — IF’p unramified atp. By class field theory, we may then consider
€ as a Dirichlet character
e:(Z/N(p)Z)X—e]F;.
We then pull back the definition efto Sy by defininge to be the composite character
S\ — (Z/N(p)Z)* — F3,

where the first map takes a matrix$ to its (1, 1) entry, and we defin&, to be the
one-dimensional spadi_q, with the action ofSy given bye.
For a GLy(Fp)-moduleV, we now define

V(e) =V QF..

LettingTo(N) act onV by reduction modul@, we see tha¥ (¢) is al'o(N)-module.
In addition, sinceSyn acts onfFe, we see tha¥ (¢) is also anSpn-module.

In specifying the nebentype, we often refer to the unique quadratic charact
modulo p ramified only at a prime > 3, and we denote this character by

€q: Gg — Fp.
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We also refer to the charactef, which is ramified only at 2 and cuts out the field

QW=D.

2.3. IrreducibleGLn (IFp)-modules

The natural generalization of the weight in Serre’s conjecture is an irreducib
GLn(Fp)-module. To see this, we note that the Eichler-Shimura theorem Zsge [
relates the space of modular forms of weighio cohomology with coefficients in

SymP(C?)

with g = k — 2. Hence, an eigenforrh of level N, nebentype, and weighk gives
rise to a collection of Hecke eigenvalues which, when reduced mquwtso occurs
in
H(To(N), Vg(e)),

whereVy = Symg(I_F%) is the space of two-variable homogeneous polynomials o
degree g oveF , with the natural action of Si(FF,). Ash and G. Stevens have shown
in [5] that any system of Hecke eigenvalues occurring in the cohomologis@f)
with coefficients in some GI(Fp)-module also occurs in the cohomology with co-
efficients in at least one irreducible &{F)-module occurring in a composition se-
ries of the original module. Hence, there is some irreducible(@p)-module W
such that the system of eigenvalues coming frbaiso occurs irH1(I'o(N), W(e)).
Given this fact, it is natural to ask which irreducible modules give rise to the syste
of eigenvalues.

We may parameterize the complete set of irreducible @B)-modules as in
[10].

Definition 2.3
We say that am-tuple of integergbs, ..., by) is p-restricted if

O<b—byi1<p-1 1<i<n-1,

and

PROPOSITION2.4
The set of irreducibleGL, (Fp)-modules is in one-to-one correspondence with the
collection of all p-restricted n-tuples.

The one-to-one correspondence in this proposition may be described explici
as follows: the moduleF (b, ..., b,) corresponding to thep-restricted n-tuple
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(by, ..., by) is the unique simple submodule of the dual Weyl modigbs, . . ., bp)
with highest weightbs, ..., by). TheorenmB.1gives an explicit model for the module
F (b1, bz, b3) in the casen = 3, but for largemn no general computational models are
known to the authors.

In dealing with Galois representations, it often becomes necessary to associate
irreducible module to an-tuple that is notp-restricted. We do this via the following
definition.

Definition 2.5
Let(a, ..., an) be anyn-tuple of integers. Define

F(a].’ ey an)/ = F(blv ) bn),
where(bs, ..., by) is a p-restrictedn-tuple for which

a=b (modp-1.

We note that in certain cases (namely, when s@ne= a1 (mod p — 1)) the
moduleF(ay, ..., a,)’ may not be well defined. In this case we interpret any state
ment concernindg-(ay, ..., ap)’ to mean that the statement is true for some choice
of F(by, ..., bp) as in the definition. For example, g = 5, a statement concern-
ing F(1, 0, 0) is true if the statement is true for eith&r(1, 0, 0) or F(5, 4, 0) (or
both). When dealing with modules defined by the prime notation, we say that a mo
ule F(ay, ..., an) is determined unambiguously if there is a uniqueestricted se-
guence congruent t@g, . .., ap) modulop — 1.

2.4, The strict parity condition
We modify slightly the statement of the strict parity condition4hfpr ease of expo-
sition, but our formulation is logically equivalent to that .|

Definition 2.6
LetV = ) be ann-dimensional space with the standard action of,Glp). A Levi
subgroup Lof GLn(IE_?p) is the simultaneous stabilizer of a collectibn, ..., D of

subspaces such thdt= P, D;. If eachD; has a basis consisting of standard basis
vectors forV, thenL is called astandard Levi subgroup

Example 2.7
The standard Levi subgroups of @(I]P‘p) are the subgroup of diagonal matrices and
the whole of GLo(Fp).
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Example 2.8
The standard Levi subgroups of @(I]Fp) are the subgroup of diagonal matrices, the
whole of GLs(Fp), and the three subgroups

*+ 0 O * 0 % * x 0
0 x x|, 0 x 0], * x 0
0 *x =« * 0 % 0 0 x

Definition 2.9

Letp : Gg — GLn(IF‘p) be a continuous representation. A standard Levi subgrou
L of GLn(Fp) is said to bepo-minimal if L is minimal among all standard Levi sub-
groups that contain some conjugate of the image. of

Definition 2.10

A semisimple continuous representatipn Gg — GLn(I_Fp) satisfies the strict parity
condition with Levi subgroupt. if it has the following properties:

) L is p-minimal;

(2) the image of complex conjugation is conjugate indide a matrix

1
+ -1

with strictly alternating signs on the diagonal.

Example 2.11
Any odd irreducible two-dimensional (resp., three-dimensional) representation sat
fies strict parity, with. = GL2(Fp) (resp.,L = GL3(Fp)).

Example 2.12
Let p be the direct sum of a two-dimensional odd irreducible representation and
one-dimensional representation, with image contained inside

*x 0 0 0
L=]0 x =% or L= 0
0 *x =« *

o ¥ %
o ¥ *

Thenp satisfies the strict parity condition, with Levi subgrolup

Example 2.13
Let p be the direct sum of a two-dimensional even irreducible representation anc
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one-dimensional representation, with the image obntained inside

* *
L= *
* *

Thenp satisfies strict parity with this Levi subgroup exactly wheis odd.

Remark 2.14

Note that any odd three-dimensional Galois representation is conjugate to a ref
sentation that satisfies the strict parity condition for some standard Levi subgrol
L. More generally, ifpo is ann-dimensional representation where the numbetbf
eigenvalues and the number efl eigenvalues of complex conjugation differ by at
most one, thep satisfies the strict parity condition for some standard Levi subgrou
L.

Definition 2.15
If p: Gg — GLn(Fp) lands inside a Levi subgroup, ando : Gg — GLn(Fp) is
another representation Gip, we say that

p~LO
if there is a matrixM € L such that
Mp( @M~ = o (g)
forallg e Gg. If L = GLn(]F‘p), then we may write

p ~o.

2.5. Weights

We now begin to predict the weights (or irreducible modules) for which we expec
to find cohomology eigenclasses withattached. Following the example of Serre’s
conjecture, we expect these weights to be determined by the restrictiortaof
decomposition group gt, so we are interested in studying representations of the de
composition grouf§s ». For convenience we denote the inertia grépo by 1, and

the wild ramification groufp 1 by I,,. We begin by considering simple representa-
tions of G .

LEMMA 2.16
Let V be a simple n-dimension&h[G p]-module, with the action of Ggiven by a
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representatiorp : Gp — GL(V). Then we may choose a basis for V such that

@1
IO| | p = . o )
®n
with the charactergy, .. ., ¢n equal to some permutation (bﬂ”l, e, w,Tn for some
me Z.
Proof

This proof is almost identical to the proof ibJ] for two-dimensional representations.
We first note thajp has finite image, so that we may actually realize it over a finite
extension off ,. Hence, we may find alpn[G p]-moduleV’ such that/ = V' @ Fp,.

We note that,, must act trivially onV’ since the invarianty’'” are a nontrivialG p-
submodule of the simple modul’ (since the image of,, underp is a p-group).
Hence, we may diagonalizg ,. Since the Frobenius acts on the tame inertipths
powers, we see that the set of diagonal characters must be stable underptiking
powers. Finally, sinc& is simple, the Frobenius must permute the diagonal charac

ters transitively, resulting in the characterization given above. O
Remark 2.17

Note that for a giverV, Lemma2.16yieldsn distinct values ofn modulo(p" — 1).
If mg is one of them, the others are congruenfpiog, p?mo, ..., p"tme modulo
(p" = D).

Definition 2.18
Let V be a simpleGp-module, diagonalized as in Lemrdal 6 with some choice of
exponenmn. If possible, writem as

m=a;+ap+-- +ap" ",

with0 <a —ap < p—1foralli. Suppose thats, ..., by) satisfiedy; > bj4 for
alli < nand is obtained by permuting the entriesaf, . .., a,). Then we say that
(b, ..., bn) is derived from \ If the action ofG, onV is given by a representation
0, we say that tha-tuple is derived from p.

Remark 2.19

Note that not all values ah have an expansion of the form given here. For example
if p=5,n= 3, m = 30, there is no expansion satisfying the above properties. |
is a simple exercise to see that every simple module has at least one detiyaéd
and that a given value oh yields a uniquen-tuple if it yields any. Hence, a simple
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n-dimensionalG p,-module may have at most n-tuples derived from it, but it can
have fewer.

Now let V be anyn-dimensionalG p-module, with the action oG given by p :
Gp — GL(V). We may find a composition series

{0l=VWCcViC---CW=V.

Let each composition factds; / Vi _1 have dimensiowl;, and setly = 0.
By diagonalizingp on each simple composition factor, we may find a basis
(e1, ..., ey of V such thafo is upper triangular, with diagonal characters

((pl,l’ coog (pl,dlv (P2,1, ©coog (P2,d27 co0og ¢k,1’ co0og (pk,dk)’

where the firsd; characters come from the action da/ Vo, the nextd, from the
action onV,/Vy, and so on. For each composition factor, chaossuch that for some
i wg?il = ¢j,j, and such that; yields ad;-tuple derived fromV; /Vi_;. Concatena-
ting tﬁesedi -tuples gives us an-tuple(ay, .. ., an).

We wish to preserve the order of the integers inmtuple which come from an
individual composition factor, so we make the following definition.

Definition 2.20
A permutatioro of the integerdg1l, ..., n} is compatiblewith the filtration

O=VpcViCc---CcW=V

given above if for O< s < kanda, b € [1+ Z?:o dj, dsy1 + Z?:o dj]witha < b,
we haver (a) < o (b).

Definition 2.21

Let V be ann-dimensionalG p-module with chosen basig, . .., e,} with respect
to which the action ofG is upper triangularized, and lgty, ..., an) be ann-
tuple obtained as above. #f is a permutation of the integefd, ..., n} compati-

ble with the filtration above and such that the actionGyf with respect to the or-
dered basige; (1), . . . . €& (n)} remains upper triangular, then we say that thieiple
(@5 (1), - - - » 8o (ny) IS derived from V.

Remark 2.22
Note that there is at least one (and possibly mor&)ple derived fromV, namely,
the originaln-tuple (ay, . .., ay). In addition, even the choice of this originafuple

is not unique, so that there usually are maryples derived from a give¥.
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Definition 2.23

Letp : Gg — GLn(IE_?p) be a semisimple continuous representation, conjugated t
land in ap-minimal standard Levi subgroup. Let Dy, ..., Dk be the subspaces of
I_Frr‘, given in the definition ofL. Then we have representations: Gg — GL(Dj),
which make eaclb; into aGg-module. LetG, be a decomposition group abope
and consider eacB; as aGp-module. Letd; = dimD;, and let(ay, ..., aq) be a

di -tuple derived fromD; as above. If the standard basis elementﬁ’pf/vhich span

Dj areej,, 1 <r < dj, with j < jsforr <s,thensebj =a forr =1,...,d.
Doing this for eactD; produces am-tuple (b, ..., by). Such am-tuple is said to be
derived fromp, with Levi subgroup L

Remark 2.24

Note that the above discussion may (in many cases) be summarized more inform:
as follows. Given a representatign: Ggo — GLn(]P‘p) which lands inside -
minimal standard Levi subgroup, we may upper triangularize its restriction to in-
ertia by conjugating by an element bf This gives a sequence of characters of the
tame inertia group on the diagonal. Group these characters together into diveal
collections. (Aniveau d collectioris set ofd characters, each a power of a differ-
ent fundamental character of nivedwith the same exponem and all appearing

in the same “Levi block”.) For a given nivealicollection, write the exponemh as
a1+a2p+~~~+adpd*1,with05 g —ag < p—1foralli, and let(by, ..., by)

be the ordered (decreasirdftuple with the same components@s, ..., a4). Then
construct am-tuple (cy, ..., ¢y) as follows: if theith character in the nivead col-
lection is in thekth diagonal position in the image @f, setck = b;. (Note that the
order of theb; should be preserved in thetuple.) This procedure gives the same
derivedn-tuples as above, except when there is a combination of wild ramificatio
and multiple niveau collections containing the same characters, in which case th
more complicated procedure described above is needed.

3. Conjecture

CONJECTURES3.1

Letp : Gg — GLn(]Fp) be a continuous semisimple Galois representation. Suppos
that p satisfies the strict parity condition with Levi subgroup L. k&t, ..., ay) be

an n-tuple derived frormp with the Levi subgroup L, and let ¥ F(a1—(n—1), ax—
(n—2),...,an, — 0). Further, let N= N(p) be the level op, and lete = ¢(p) be
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the nebentype character pf Thenp is attached to a cohomology eigenclass in

H*(To(N), V (¢)).

Remark 3.2
We note that in the case of two-dimensional Galois representations, we mayttake
be 0 or 1, and in fact, for irreducible two-dimensional representations, we may take
to be 1.

In the case of three-dimensional Galois representations, we mayxtakde
at most 3, and for irreducible Galois representations (or sums of an even tw
dimensional representation with a one-dimensional representation) we mayttake
be equal to 3, as explained ][ As mentioned previously, any odd two-dimensional
or three-dimensional representation is conjugate to a representation that satisfies s
parity for some standard Levi subgroup

In our computations we test the conjecture for three-dimensional representatic
by computingH3. In cases wherg is the sum of three characters or the sum of an
odd two-dimensional representation and a character, we are thus actually testin
stronger assertion than Conjecturé, namely, that the cohomology class exists in
H3 (see, e.g., Tables 4 am)l We did not test any that are sums of three characters
in this paper, but several examples of such may be found]iarid [1]. In addition,
we do not present computational examplesgoee 2 as this would involve rewriting
portions of our computer programs. In addition, for= 2 andp = 3, our compu-
tational techniques (based on those}) flo not always compute the whole f°.
Nevertheless, we have no reason to doubt our conjecture for these primes. In par
ular, problems with the weight and nebentype that occur whea 2 or p = 3 for
Serre’s original conjecture involving classical modular forms modukshould not
occur for our conjecture, which involves m@dcohomology.

Remark 3.3

Note that Conjecturg.1applies to Galois representations of arbitrary dimension, bu
that we have no computational evidence for dimension higher than 3. Forthcomil
work of Ash with P. Gunnells and M. McConnell touches on the case of certain fou
dimensional representations.

Remark 3.4
Note that the conjecture makes no claim of predicting all possible weights that yie
an eigenclass witp attached. In fact, we have three types of computational example
in which additional weights (not predicted by the conjecture) do yield eigenclass:
that appear to have attached.

The first type of additional weight occurs jf is attached to a quasi-cuspidal
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eigenclass (e.g., ip is either irreducible or reducible as a sum of an even two-
dimensional representation and a character). In this case, for certain weights, we r
define an extra weight as follows.

Definition 3.5
Let F(a, b, ¢) be anirreducible Gi(IFp)-module, witha — ¢ < p — 2. Then we may
define

F(p—2+c,b,a—(p—2) ifa>p-—2,

M=F(,e f)= .
F2p—2+c+1b+(p—-1.,a+1) ifa<p-2

Then we say thaM is the extra weight associatedfdqa, b, ¢).

Applying [10, Proposition 2.11], it is easy to see thaFifd, e, f) is the extra weight
associated té (a, b, ¢), there is an exact sequence

0— Fd,e f) - W(,e, f) - F(a,b,c) — 0.

Now, suppose that is attached to a quasi-cuspidal homology eigenclass in weigkh
F(a, b, ¢). Examining the long exact homology sequence associated to this short ¢
act sequence, we find that a quasi-cuspidal eigenel@sdisz(T'o(N), F(a, b, ¢)(¢))

(in particular, any eigenclass corresponding to an irreducible Galois representatic
either is the image of an eigenclass k3(I'o(N), W(d, e, f)(¢)) or has nonzero
image B in Ha(T'o(N), F(d, e, f)(¢)). In the second casg, is an eigenclass, and
using TheorenB.10and Lefschetz duality, we find that there is an eigencjags
H3(To(N), F(d, e, f)(¢)) which has the same eigenvaluescasHence, for each
guasi-cuspidal eigenclass in an appropriate weight there are two possibilities: eitl
the eigenclass lifts to the dual Weyl module, or the eigenclass gives rise to anot}
eigenclass with the same eigenvalues in the extra weight. Our experimental evide
supports the hypothesis that in all such cases a quasi-cuspidal eigenclass gives ri
another eigenclass with the same eigenvalues in the extra weight.

The second class of additional weights which we have observed consists
certain weights which would be predicted by our conjecture if we eliminated th
strict parity condition. These additional weights have been observed only for re
resentation that are either the sum of three characters or the sum of an odd tw
dimensional representation and a character. These additional weights seem to o
fairly rarely and sporadically and may be related to the occurrence of eigenclasses
H2 which havep attached. A full investigation of them would require new computa-
tional techniques, beyond those developed in this paper.

The third class of additional weights consists of extra weights associated
weights that would be predicted by our conjecture but for the strict parity condi
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tion. As in the second case, these additional weights occur only rarely, and only f
reduciblep.

Before beginning to present computational evidence for Conjeétiyeve begin by
proving several facts about the conjecture.

THEOREM 3.6
If Conjecture3.1is true for a representatiop, then it is true for the representation
p ® w°, wherew is the cyclotomic character modulo p.

Proof
First, note that twisting bw® does not affect the predicted level or nebentype in any
way. Denote the level gf by N and the nebentype @fby €.

If p has niveau 1, then this is just,[Proposition 2.6].

For higher niveau representations, we note that twistingbghanges the value
of m coming from a nivead character bg(1+ p+ - - -+ p9—1); hence, it changes all
the values o#; arising fromm by s. Following this change through the permutations
involved in deriving am-tuple, we find that twisting a representatiprby »° adds
s to each element of a derivedtuple. This change is then reflected in the predicted
weight, and we have that the set of predicted weightofgr «° is precisely the set
of twists by det of the predicted weights of.

Finally, if an eigenclass shows up in weighV and has attached, then we may
considemw as lying in cohomology with weigh¥ ® def, and we see easily (as if]]
that in this new cohomology grouphasp ® »*° attached. Hence, jf is attached to
a cohomology class in each of the weights predicted by Conjestly¢henp ® s
satisfies the conjecture as well. O

We now note that there is a correspondence between systems of Hecke eigenva
arising from modular forms and systems of eigenvalues arising from arithmetic coh
mology in characteristip, similar to that given by the Eichler-Shimura isomorphism
in characteristic zero. In particular, we note that ByRroposition 2.5], fop > 3,
any system of Hecke eigenvalues comes from the moelduction of an eigenform
of level N, nebentype, and weightkk = g + 2 if and only if it comes from a Hecke
eigenclass irH1(I'o(N), Vg(Fp)(€)), whereVy(Fp) is thegth symmetric power of
the standard representation of £E).

THEOREM3.7
If p > 3, Serre’s conjecture implies Conjectusel for n = 2.
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Proof
For a complete description of Serre’s conjecture, including Serre’s prediction of tt
weight, see?2] or [13].

There are two cases: whepds niveau 1 and wherg is niveau 2. In either case
we note that the level and nebentype predicted by Serre’s conjecture are identica
those predicted by Conjectugel, so that we need only deal with the weight.

Suppose thap : Gg — GLz(Fp) is odd, semisimple, and has niveau 1plis
reducible, Conjecturé.lis true (see4, Proposition 2.7]), so we may assume that
is irreducible. Ifp is tamely ramified, we have

| a)al
oli, ~
> a)El2 ’

with 0 < a1, ap < p — 2. Conjecture3.1 predicts a weight of (a1 — 1, ap)’.

If a» < aj, then
—ap S e
C() ~ b
P& ||p 0

and Serre’s conjecture claims tha® ™~ corresponds to a modular form of weight
1+ a; — ap or (via [6, Proposition 2.5]) thap ® »~% corresponds to a cohomology
class with coefficients ifF(a; — ap — 1, 0). Twisting by w® (which corresponds to
twisting the weight by dét), we find thatp corresponds to a cohomology class with
coefficients inF (a1 — 1, a2), exactly as predicted by Conjectusel.

If ap > ayg, then

p—1+a;—ap
_1— w
poarie, ~ ( )

and by Serre’s conjecture (together wih) Proposition 2.5])p ® «P~1-2 corre-

sponds to a cohomology class with coefficient&itp — 2+ a; — ap, 0). Twisting by

®® as before, we find that has weight=(a; — 1+ (p— 1), a2), exactly as predicted.
Now if p is wildly ramified atp, then

Cl)l3 *
plig ~ o)

withO <a < p—2andl< g8 < p—1, and Conjecturg.1 predicts a weight of
F(8 — 1, «)'. Before applying Serre’s conjecture, we twisby »~ to obtain

— WP %
,0 ® w ~ o] -
w

Applying Serre’s conjecture to this representation, we find that it has weight
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Q) 1+@B-a)(e,FB—a—-10)ifL>a+1,

2) 2(@(.e,F0,0)if B=ao+1andp ® v~ * is peu ramifee

3) p+1(.e,F(p—210)ifB=a+1andp ® ¢ istres ramifeg
4 1+B-a)+(p-1 (e, FB—a+(p—-1-10if B <a.

Twisting each of these weights by 8etve find thato corresponds to a cohomol-
ogy class in weighF (8 — 1, @)’ in every case. (Note that whg¢h— 1 < o we may
addp — 1toB — 1 to obtain ap-restricted pair.)

This proves the theorem in the case whelmas niveau 1.

Suppose that
wm
10| I P ~ ( 1p/m) )

wherem = a+ bp, and 0< a — b < p — 1. (Note that ifa = b, we are really in

niveau 1.) For simplicity we use the fact thatandy’ have orderp? — 1 to reduce

to the case where @ m < p?2 — 1, so thatb < p — 1. The weight predicted by
Conjecture3.lis thenF(a — 1, by'.

Now,
_ 1pafb
1% ® w g ~L ( w/a*b 5

so that by Serre’s conjecture® «~° corresponds to a cohomology class with co-
efficients inF(a — b — 1, 0). Twisting by w°, we see thap then corresponds to a
cohomology class with coefficients (a — 1, b), exactly as predicted.

Hence, Serre’s conjecture implies ConjectBréefor n = 2. O

We now prove a partial converse to Theor8ri, which shows that in certain cases
Conjectures.lis actually equivalent to Serre’s conjecture.

THEOREM 3.8

Assume Conjecture.l. Let p > 3, and letp : Gg — GL2(]F‘p) be a semisimple
continuous odd Galois representation. If each weight predicted by Conjetture
defined unambiguously, then Serre’s conjecture is true for

Proof
We may clearly assume that: Gg — GLZ(I_Fp) is irreducible since Serre’s conjec-
ture says nothing about reducible representations.

First, note thaip cannot be attached to any classHi? since, according toZ]
Theorem 4.1.4], any class id° is a twist of a punctual class, and a punctual class
corresponds to a reducible representationyy fmma 4.1.2].

Conjecture3. 1 implies thatp is attached to an eigenclasskh'(I'o(N), V (¢)),
where N, V, ande are as predicted in the conjecture. We note that the level an
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nebentype predicted by Conjecture 3.1 are exactly the same as those predictec
Serre’s conjecture.
If p is tamely ramified and has niveau 1, then we have

wa
Iolle a)b )

and we may further conjugate so that 0< b < a < p — 1. The weights pre-
dicted by Conjectur&.1 are thenF (a — 1, b)’ and (permuting the diagonal charac-
ters) F(b — 1, a)’. These are defined unambiguously exactly wheg b + 1. For

a > b+ 1, we have thakF (a — 1, b) embeds irVa_1bp, SO Conjectures. 1 predicts
that p is attached to a cohomology eigenclass in welghtypp since any system
of eigenvalues occurring in a submodule occurs in the containing module43ee [
This implies (by p, Proposition 2.5]) thap is attached to an eigenform of weight
1+a+bp, which is exactly the weight predicted by Serre’s conjectureakerb = 0,
the predicted weights for Conjectuel and Serre’s conjecture are bdiip — 2, 0).
Fora = b # 0, Conjecture3.1 predicts a weight oF (a— 1+ p— 1, b), while Serre’s
conjecture predicts a weight &1 pa. Using [LO, Table 1] (specifically, the last
line, asb # 0), we see thaF (a — 1+ p — 1, b) is a subquotient o¥,_1 pa. Hence,
we are finished if we can show that the system of eigenvalues correspondirig to
weightF (a— 1+ p— 1, b) also shows up in weightp_1, pa. Lemma3.9 shows that
for GL,, systems of eigenvalues of eigenclasses that are not twists of punctual clas
are inherited from subquotients, so that we are finished.

For a tamely ramified niveau 2 representation, the proof is essentially identical-
one of the weights predicted in Conjecté embeds in the module corresponding
to the weight predicted by Serre’s conjecture.

If p is wildly ramified, then we have

¥ %
=(" 5)
Conjecture3.1then predicts a weight df («—1, 8)’, which is unambiguously defined
aslongas # 8+ 1 (mod p—1).

In order to apply Serre’s conjecture, we normalize so that & < p — 1 and
0O<p=<p-2

If « > g anda # B + 1, then Serre’s conjecture predicts a weighWpf 1 gp,
which containg-(« — 1, 8) as a submodule; hence we are finished, as before.

If « < B, then Serre’s conjecture predicts a weight of-18 + pa, and we
haveF(a —1,8) = F(a —1+ p—1, B). Using [LO, Table 1] as before, we find that
F(a—1+p—1, B) is asubquotient o¥s_1, pe, Which is the module corresponding to
the weight predicted by Serre’s conjecture. Hence, by Le@®ave are finished. o
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LEMMA 3.9

If « is an eigenclass in {(To(N), A), where A is a subquotient of@L,(F)-module
B, « is not a twist of a punctual eigenclass, and>3, then there is an eigenclass in
H1(Io(N), B) with the same eigenvalues @s

Proof
LetT ¢ Sc B,withS/T = A, and examine the long exact cohomology sequence
arising from the short exact sequence

0—-—T—-S— A—0.

Note that sincep > 3, H3(I'g(N), T) = 0, so that the eigenclassmust come from
a classo in H1(I'o(N), S). By [5], we may replacer by an eigenclass having the
same eigenvalues as(calling the new class again). The long exact cohomology
sequence arising from the short exact sequence

0—-S—-B—->B/S—>0

then shows that goes to a nonzero clagsin H1(I'o(N), B) since it cannot come
from HO(I'o(N), B/S) (as it is not a twist of a punctual class). Cleayhas the
same eigenvalues as O

THEOREM3.10

Assume thap : Gg — GLn(]Fp) is attached to an eigenclassin HI (To(N), V (¢)),
where N, and V are the level, the nebentype, and a weight predicted.fdhen
p¥ = 'p~1is attached to a cohomology clagsin H' (I'o(N), W(e~1)), where
W = V* @ det "D is a twist of the contragredient */of V. Further, the level,
the nebentype, and a weight predicted fdrare N,e~1, and W.

Proof
The proof that there is g in the indicated cohomology group wih” attached is
exactly the same as the proof ¢f, [Proposition 2.8]. Fop of niveau 1, Ash and
Sinnott also prove that the invariants pf are as above. The level and nebentype
computations remain the same regardless of the niveau of the representation, sc
need only show thatV is a predicted weight fop".

We show that if(by, ..., b,) is a derivedn-tuple for p, then(—by, ..., —b1)
is a derivedh-tuple forp. Then, sincgF (a1, ..., an))* = F(—an, ..., —a1)/, it
follows that if V is a predicted weight fop, thenW is a predicted weight fop".

It is an easy exercise to reduce the question to simple representati@s. of
Suppose that is a simple representation Gfy, with then-tuple(by, . . ., bn) derived



GALOIS REPRESENTATIONS AND COHOMOLOGY 539

from it. Then there must be some exponerguch that

¥1
p||p: .'. )
Yn

where(gs, ..., ¢n) IS SOme permutation oj/rTl, ..., ¥ Then—mis an exponent
associated t@" in the same way, as is any multiple ofn by a power ofp. Now
m=a;+ap+---+anp" 1, where thes, are some permutation of the decreasing
n-tuple(by, ..., by), with0 < g —a, < p— 1. Letak be the largest of the, which

is equal toby. Then—p"~1-Km s congruent (modulgp™ — 1)) to

—apr— - —anp" P —apt R - —
with0 < g —ax < p — 1, so that(—hy, ..., —by) is easily seen to be amtuple
associated withy". O

3.1. Heuristic for the niveau n case
For the most part, we have derived our conjecture using Serre’s conjecture as a mo
We can provide a suggestive heuristic for one feature of our conjecture: the weight
a niveaun representation into GL(I_Fp).

Letp : Gg — GLn(Fp) be given such that

¢1
Plip ~ ,
®n

where they; are powers of a fundamental character of niveand are conjugate to
each other.

Let us suppose that lifts to a p-adic representatio® unramified at almost all
primes. Further, suppose th@tcomes from a motivévl with good reduction ap,
which would conjecturally be the case wébdeattached to an automorphic represen-
tation of cohomological type of leveN prime top (cf. [9]). Then® is crystalline.
So by analogy it is reasonable to assume that “crystalline” in the sense oflf],
that is, that it corresponds to a filtered Frobenius modulé for

Now write ¢ = y&11T32P++an " with 0 < a < p—1.By[14, Theorem 0.8],
there is indeed a unique filtered Frobenius modbleverF, which corresponds to
a representation dbg, into GLn(Fp) whose restriction td, is equivalent top|, .
This is our motivation for choosing tte in the given range.

Assuming again tha® and M exist, the Hodge numbers &l would be the
same as the Hodge-Tate numberﬂpi;Qp, and these in turn would be the same as



540 ASH, DOUD, and POLLACK

the jumps in the filtration of the filtered Frobenius module associat@j@@p. If we
take the latter to be the same as the jump®hey areqy, ..., an.

Now, suppose we are in the generic case; that is, suppos¢athata;| > 1
fori #£ j. Let{bs,...,by} = {a1,...,an}, withby > bo > --- > by. Assuming
the general picture of L. Clozel (following R. Langlands) of the relationship betwee
automorphic representations and motives, as founél jregpecially Chapters 3 and 4,
the motiveM predicts the existence of an automorphic representataached tavi
such thatr,, ® W has(g, K)-cohomology, wher&V is the irreducible representation
of GL,(C) with highest weightb; — (n —1),b — (n—2), ..., bp).

By analogy, we conjecture that will be attached to a cohomology class with
weightV = F(by — (n—1),bp — (n—2), ..., by). After all, p is the reduction of
® modulo p, andW mod p (or, more precisely, the reduction modypoof a model
for W overZp) hasV as a composition factor. If we now require our conjecture to be
closed under twisting by powers af a simple exercise yields the weights predicted
by Conjecture3.1 for niveaun, dimensiom, in the generic case. By “continuity” we
extend the heuristic to the nongeneric case.

4. Symmetric squares
Using work of Ash and P. Tiep7], who proved that certain Galois representations
are in fact attached to cohomology eigenclasses, we are able to verify certain spe
cases of Conjecturé L

THEOREM4.1

Leto : Gg — GL2(Fp) be a continuous irreducible odd Galois representation
ramified only at p. Assume that Serre’s conjecture is truef@nd let k be the weight
predicted by Serre’s conjecture. TherRik k < (p+3)/2andSynt ¢ isirreducible,
Syn? o is attached to a cohomology eigenclass in weigt@®k — 2), k — 2, 0), and
this weight is predicted by Conjectutel.

Proof
By [6, Proposition 2.5], we see that is attached to a cohomology eigenclass in
H1(SL2(Z), Un(Fp)), whereh = k — 2 andUn (Fp) = SyW(F%), with the standard
action of Gla(Fp) onF2. Then, by [, Corollary 5.3], Symo is attached to a coho-
mology eigenclass il 3(SLs(Z), F(2h, h, 0)). Hence, we need only show that the
weight F (2h, h, 0) is predicted by Conjecture L

If o has niveau 1, this is trivial since we must have

o* 1
oli, ~ 1)
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w2(kfl) * *
Symza||p~ o1 %],

If o has niveau 2, then we must have

1'bkfl
U|Ip"’( 1/,/k—1>,

withl <k—-1<(p—1)/2, so that

so that

I/f2(kfl)
Syrr120||p ~ oK1 ,
w/Z(k—l)
with 2 < 2(k — 1) < p — 1. Clearly, a predicted weight for this representation is
FKk-2),k—2,0). m]
Example 4.2

Let K be a totally complexgs-extension of), such that the quartic subfield &f has
discriminantp®, wherep is a prime congruent to 5 mod 8 (for examples of such fields
see [L1]). The unigue three-dimensional irreducible unimodular nocepresenta-
tion of & gives rise to an irreducible unimodular representatiorGg — GL3(Fp)
which is ramified only atp. This representation is (up to a twist by a power of the
cyclotomic character) the symmetric square of a two-dimensional irreducible repr
sentations : Gg — GLZ(I_Fp) with projective image isomorphic t& and image

of order 96 (seed0]). Serre’s conjecture is true far sinces has a lift to a two-
dimensional irreducible complex Galois representation with solvable image to whic
we apply the theorem of Langlands and J. Tunr#&f].[Hence,o is modular and so,
by thee-conjecture, Serre’s conjecture holds toi(see [L1] for more details). One
easily checks that has niveau 1 and that the weight predicted by Serre’s conjectur
for o is (p + 3)/4, so that Theorem.1 applies. Hence, at least one of the weights
predicted forp by Conjecture3.1 yields an eigenclass with attached. In fact, this
weightisF((p —5)/2, (p — 5)/4, 0) @ def(P~1/4,

Example 4.3

Let K be a totally complex&;-extension of such that the quartic subfield &f has
discriminant— p, wherep is a prime congruent to 3 mod 8. Letbe the unimodular
irreducible three-dimensional Galois representation associat¢mabove. Again,
there is a two-dimensional irreducible representation Gg — GL2(FFp), with
projective image isomorphic &, such that is ramified only atp (see RQ]; this time
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the image ofs has order 48) and (again up to a twist by a power of the cyclotomic
character) is the symmetric square of. (Note that up to twisting, the symmetric
square depends only on the projectivization of a representation.) One checks ea
that Serre’s conjecture predicts a weight(pf+ 1)/2 for o (againo has niveau 1)
and that (just as above) Serre’s conjecture is truesforence, one of the weights
predicted by Conjecturé.1does in fact contain an eigenclass witlattached. In this
case, the weight i§ (p — 3, (p — 3)/2, 0) ® detP~D/2,

Example 4.4

Let K be a complex§;-extension ofQ with K ramified at only one primep, with

p congruent to 3 modulo 8, and with ramification indexmequal to 4 (for ex-
amples of such extensions, sedl]). Let p be the unique unimodular irreducible
three-dimensional mod Galois representation with image isomorphi&iand such
that the fixed field of the kernel gf is K. Then, up to twistingp is the symmetric
square of a representation: Gg — GL2(IFp) with image isomorphic t& (i.e.,
isomorphic to Gl(F3)). In this caseg has niveau 2, Serre’s conjecture is true for
o and its twists, and a twist of has weight(p + 5)/4 (see L1]), so that Theo-
rem4.1lapplies. Hence, one of the weights predicteddgives a cohomology group
that contains an eigenclass predicted forln this case, the weight that works is
F((p—23)/2, (p—23)/4,0) @ det3P—5/4,

5. Niveau 1 representations

5.1. Reducible representations in level 1
In [4] Ash and Sinnott dealt extensively with reducible representations ramified
only one prime. Each of their examples was a direct sum of an even two-dimensiot
representation with a one-dimensional representation, and they included cases wi
the two-dimensional representation had image isomorphic to a dihedral group or p
jective image isomorphic téy. They did not give examples in which the projective
image was isomorphic t& or As.

We recall their construction from].

Leto : Gg — GLZ(I_Fp) be an irreducible representation with the following
properties:
(1) o is unramified outside;
(2) theimage ot has order relatively prime tp;
(3) o(Froby) is central, where Frof is a complex conjugation iq;
(4)  o(Gp,o) has order dividingp — 1.
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Then, choosing integerg andk appropriately, we find that the representatjor=
(c ®w)) @ wX is three-dimensional and odd, and by adjustirandk, we may adjust
the predicted weight op to some extent. In particular, we need to chopsandk
to have opposite parity 5 (Frob,,) = 1 and the same parity i (Frob,) = —1. In
addition, we choos¢ andk to give the simplest possible weight.

The reducibility of these representations makes it possible to reduce the weic
to calculable levels; however, in the examples that we consider here the weight is s
quite high. Hence, rather than being able to calculate many Hecke eigenvalues,
found it impractical to calculate more eigenvalues than those at 2 and 3, due to tir
constraints.

We begin by specifying the fixed field of the kernel of the projective image, of
which is a totally real number field.

5.1.1. Representations of typq A

In [4] Ash and Sinnott presented several examples of reducible Galois represen
tions that are sums of one-dimensional characters with even two-dimensional rep
sentations having projective image isomorphiddp Using the same computational
techniques as inl], we have been able to find othég-extensions for which we can
compute the predicted quasi-cuspidal homology classes. These examples are give
Tablel.

We begin with a quartic polynomidl that has four real roots and whose splitting
field K is anA4-extension of) ramified only at one prime. We know (by B, Lemma
4.1]) thatK sits inside ams-extensiorK of Q, with K /Q ramified only atp. In fact,
there are two possibilities foK ; following [4], we takeK to be the one that has
ramification index 3 ap. Let K4 be the quartic extension @f defined byf. We note
thatK, must be contained in an octic subextensianof K , with Kg/K4 unramified
at all finite primes. Sinc&g hasK as its Galois closure, we may determine whether
K is totally real or totally complex by comparing the two-ranks of the class group an
the narrow class group d¢f4. For instance, whep = 1009, the class number &,
is two, and the narrow class group is cyclic of order four. Thus, the two class grou
have the same two-rank, $0 must be real (sinc&g and all its conjugates must be
real). If K is totally real, we write its sign as 1; otherwise its sign-is.

Now A4 has a unique two-dimensional irreducible unimodular npagpresen-
tationo : Gg — GL2(Fp). We see easily that|;, = o ® o4 withd = (p—1)/3.

We now takep = (0 ® wl) ® ¥ with j = 2d andk = 1 if the sign ofK is 1, and
k = 2 otherwise. We note thatsatisfies the conditions of the construction4jfand
has a predicted weight &f((p—1)/3—2,0,0)if k =1 andF((p—1)/3—2,1,0)
if k=2.
For each of the examples in Takllewe have calculated the interior homology of
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Table 1. Reducible representations of tyjue

Polynomial Sign p |k Weight
x*—2x3 —13x° — 9x + 4 —1l 163 |2 | F(52 1,0)
x*—x3—16x2+3x+1 1 277 | 1 | F(90,0,0)
x4 — x3 — 10x%2 + 3x + 20 -1 349 | 2 | F(1141,0)
x* — x3 — 13x? + 12x + 16 —1l 397 | 2 | F(130,1,0)
x*—2x3 —19x% + 29 + 1 -1 547 | 2 | F(180 1,0)
x4 —2x3 —31x? — 51x — 4 1 607 | 1 | F(200,0, 0)
x* — 2x3 — 39x° + x + 125 1 |1009| 1| F(3340,0)
x*—2x3—51x2+100x +83 | 1 | 1399| 1 | F(464 0,0)
x*—2x3—51x?+32x+192| 1 |1699| 1| F(5640,0)
x% —2x3 — 37x° + 10x + 29 1 | 1777| 1| F(5900,0)
Xx*—2x3 —43x°+127%x —55| 1 | 1951| 1 | F(6480,0)

SL3(Z) in the given weight using the techniques describedl]rahd found it to be
one-dimensional. We have also calculated the Hecke eigenvalues at 2 and 3 and fo
that they exactly match the values predicted from the characteristic polynomial of tl
image of Frobenius underby Conjectures. L

5.1.2. Representations of typg S

Totally real &4-extensions ramified at only one prime can have two types of ramifice
tion; either the ramification index is 2, or the ramification index is 4. For our purpose:
the extensions with ramification index 4 are better (since they yield lower weights
although they are more difficult to find. They can, however, be found by applicatio
of explicit class field theory, and many such examples are known. Only the two belc
yield predicted weights that are feasible for computation.

Example 5.1

Let K be the splitting field of the polynomiat* —x3— 10172 +9665«+60608. Then

K is a totally real$;-extension ofQ, ramified only atp = 2713, with ramification
indexe = 4. Let S, be the central extension & by Z/2Z which is isomorphic to
GLa(F3). ThenK embeds in ar&s-extensiorK of Q (by [4, Lemma 4.1]), andK /K
must further ramify ap (as described ini[1]), so thatinK, p = 2713 hae = 8. We
need to determine whethé& is totally real or totally complex. To do this, we note
that $; has three conjugacy classes of subgroups of order 6 and that each subgr
of order 12 contains exactly one subgroup of order 6 from each conjugacy cla:
In terms of field extensions then, each subfieldKobf degree 4 has exactly three
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quadratic extensions lying i. Hence, ifK is totally real, the degree 4 subfieid
of K must have a Klein four extension contained insikiehence ramified only ap
(in particular, not ramified at infinity). Such an extension would lie inside the ray clas
field of K4 modulop™ (wherep is the unique prime oK4 lying over p). However,
the two-part of the ray class group kf, modulop™ is cyclic for everym (see [L7)).
Hence,K must be totally complex.

Now, we leto be the two-dimensional representation Gg — GLz(Fp), with
image isomorphic t& and kernel equal t&;, chosen such that

3(P-1)/8 23339
o, = ( w(pl)/S) = ( w339> .

Taking j = —339,k = 1 (with the same parity since(Frob,,) = —1), we see that
o= (0 @w)® K has

678

pliy ~L w ,

where we take

Then the weight predicted by Conjectitéd is F(678—2,1—1,0) = F(676,0, 0),

the level is 1, and the nebentype is trivial. Computations using the techniqués of |
show that the interior cohomology is in fact one-dimensional. The Hecke eigenvalu
at 2 and 3 correspond exactlydo as predicted by Conjectufel.

A similar construction can be performed with the splitting fi&gldf the polynomial

x* — 66683 4 165980462 — 18278822428 + 7514424150025, which is a totally
real §4-extension ofQ ramified only atp = 3137. In this case is totally real, and
the predicted weight i$ (782 0, 0). Again, the homology is one-dimensional and
the eigenvalues at 2 matgh The image of the Frobenius at 3 is of order 8, however,
and presents some difficulty. We have determiaetind hence alsp) by a local
condition atp, namely, its restriction to inertia &p. Determining the Frobenius at 3 is
a local condition at 3, and combining these two determinat{omsrder to determine
Tr(p(Frobg))) is a global problem that involves calculations in a large number field
We thus have not distinguished between two possibilities for eigenvalues at 3 whi
would correspond t@. One of these possibilities does in fact occur in the predictec
cohomology.
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5.1.3. Representations of typg A

Ash and Sinnott’s construction works best wi-extensions if the ramification in-
dex of the unique ramified prime is as large as possible. However, totallyAgeal
extensions of) ramified at only one prime with ramification index 5 are quite diffi-
cult to find. D. Doud thanks S. Harding for showing him the second example belo
with p = 3821.

Example 5.2
Let K be the splitting field of the polynomidl = x° — 74023 — 3701x2 + 14804« +
11103. TherK is a totally real Galois extension €f, with Galois groupAs, ramified
only atp = 3701.K must lie inside an extensidf of Q with Galois groupAs (the
unigue nonsplit central extension 8§ by 7Z/27). In fact, K lies inside two such
extensions, one in which primes aboperamify further, and one in which primes
abovep do not ramify further.

Let K be anAs-extension ofQ containingK , in which p has ramification index
5. LetH be a subgroup ofs of order 20. Using the computer algebra system Magma
one can see thatl has a quotient group that is cyclic of order 4. Hence, the degre
6 subextension oK must have a cyclic quartic extension containecKirwhich is
unramified at all finite primes.

A defining polynomial for the degree 6 subextensiorkofmay be found as the
minimal polynomial of the element

o102 + 03 + 030 + @405 + a5,

whereaj, 1 < i < 5, are the roots of . Using PARI/GP (seelff]) to compute the

ideal class group and the narrow class group, we find that both are cyclic of order

Hence, the only possible cyclic quartic extension of the degree 6 subfi&gldwfich

is unramified at all finite primes is also unramified at infinity, so tkds totally real.
Now As has two two-dimensional mog representations. Call themando’.

On inertia atp = 3701, we may choose ando’ such that

<w3(p—l)/5 (w<p—l)/5

o, ~

/
a)Z(P—l)/5) @~ w—(p—1>/5> :

Ifweletp = (6 @ 2P~D/3) g w, thenp is an odd three-dimensional representation,
and if it is conjugated to land inside

L = * ,
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then it satisfies strict parity. We then have
w(P=D/5

Plip ~L w ,
1

giving a predicted weight oF ((p — 1)/5— 2,0,0) = F(738 0, 0). We may cal-
culate the quasi-cuspidal homology in this weight and find that it is one-dimension
and has the appropriate eigenvalues at 2 and 3 to correspgndrtahis case, there
is an ambiguity similar to that in the preceding example, in that we have not dete
mined which of the two conjugacy classes of order 5 contains the Frobenius at 2. T
computed eigenvalues at 2 are in fact one of the two possible pairs of values.

A similar calculation may be carried out for thg-extension defined by the poly-
nomial x® — 3821x3 — 3821x? + 3821x + 3821 and ramified only g = 3821. In
this caseK is again totally real. Hence, as above, we get a predicted weiglt dbr
F((p—21/5-2,0,0) = F(762 0, 0). Calculating the quasi-cuspidal homology in
this weight yields a one-dimensional space, which has appropriate eigenvalues ¢
and 3 to correspond to, with the ambiguity that we have not determined the conju-
gacy class of elements of order 10 (resp., 5) containing the Frobenius at 2 (resp.,
just as in the previous examples.

5.2. Reducible representations in higher level
With the introduction of levels higher than one, we gain immensely in reducing th
weight of the representations that we can find. In particular, we find that we can a
tually compute “companion forms,” or classes with different weights, attached to tt
same representation. These offer important examples of Conjeciure

We work out one interesting example in full detail and describe others in a tab
format.

Example 5.3

Let K be thez-extension ofQ given as the splitting field of the polynomiaf —x? —

3x + 1. ThenK is ramified only atp = 37 (with ramification index 2) and &t = 2
(with ramification index 3). Sinc&s has a two-dimensional mod 37 representation,
we obtain a two-dimensional Galois representation Gog — GL2(F37), with the
fixed field of the kernel o& equal toK. Let w be the cyclotomic character modulo
37, and letp = o ® w. We note that is an even representation sinkeis totally
real, so we want to conjugateto land inside the Levi subgroup

* *
L = *
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Table 2

Eigenvalues| 2 3 5 7111 |13 |17 | 19| 23| 29 | 31 | 37 | 41 | 43 | 47
a(, 1) * 2 10 | 13 | 17| 19| 23 | 29 | 31 1 3 6 9
a(t, 2 * |1 24| 22|15| 26| 17 | 13 | 35 8| 29| 31 1| 27 6 | 25

[é)]
]

Now insideL, the image of complex conjugation is conjugate to the matrix

1
()
1
so thatp satisfies strict parity.

One sees easily that the levelofs equal to the level of, which is 2 (since the
ramification at 2 is tame and the image of inertia at 2 uadéoes not fix a subspace).
The nebentype o# is trivial since the determinant is just:®. Finally, if we examine
the restriction ofo to inertia at 37, we find that

w18
/O||37 ~L a)l .
0

Thus, the weight predicted by Conjectire. is F(18 — 2,1 — 1,0) = F(16, 0, 0).
When we compute the cohomology in this weight, in level 4 with trivial nebentype
we obtain a fifteen-dimensional space containing a one-dimensional eigenspace v
eigenvalues given by Table 2.

We now compute the trace (Ja(Froky)) and T2 (o (Froky)) (the sum of products
of pairs of eigenvalues) fat between 2 and 47. To do this, we note that the charac
teristic polynomial ofp (Froly) is

det(l — xp(Froky)) = def{l — xo (Froky))(1 — xw(Froky))
= (1 - Tr(o (Froby))x + det(o (Froky))x?)(1 — £x)
= 1— (Tr(o(Froky)) + €)x
+ (det(o (Frohy)) + Tr(o (Froly))¢)x? — det(o (Frohy) ) ¢x3,

so that the trace gf (Froly) is Tr(o (Froly)) +¢ andT2 (o (Froby)) = det(o (Froky))+

Tr(o (Froly))£. Using PARI/GP, we may calculate these two valuegfisom 2 to 47
(excluding the ramified primes 2 and 37), and we find that they exactly match tt
values ofa(¢, 1) andta(¢, 2) calculated above.
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Other reducible examples are easily computed just as above. In each row oB;Table
we give a polynomial whose splitting field is a totally real Galois extension of
Q with Galois groupG, such thatG has a unigue two-dimensional representation
modulo p. We also give the predicted weight(s), level, and nebentype of the coh
mology classes correspondinggo= o ® w. Several examples have more than one
predicted weight, coming from multiple orderings of the diagonal characters. Sut
predictions actually occur in all of these examples, but most are too large for us
calculate and hence do not appear in this table. For all of the examples in this
ble, all Hecke eigenvalues up to= 47 coincide exactly with the coefficients of the
characteristic polynomial of the image of Frobenius, as predicted by Conjeciure

We may also apply Conjectuflto reducible representations that are the sum
of an odd two-dimensional representation and a character. In order to satisfy stt
parity, such a representation must land inside a Levi subgroup of the form

*
L = * ok or L =
*

For each such three-dimensionalwe thus have four predicted weights, two from
each choice of Levi subgroup. In Table 4, for each example we give a polyndmial
that has Galois grous = S or Dy, together with a primep and the ramification
index of p in the splitting fieldK of f. If we let o be the unigue two-dimensional
mod p Galois representation arising frof, andp = o ® »°, we also give the
level N and nebentype associated tp, and the set of predicted weights arising from
Conjecture3. 1 In this case we are able to compute with all the predicted weights, ar
we find that in every case an eigenclass with the correct eigenvalues {ug #7)
appears in every predicted weight.

The last examples in the table, in whiehhas image isomorphic t®4 (the
dihedral group with 8 elements), are interesting in that fewer than four weights a
predicted. In these cases the four predicted weights are not distinct, so that the ft
number of weights in which we expect to find eigenvalues wittitached is less than
four. For instance, in the last example in Table 4, in whick 5, the image of inertia
at 5 is contained in the center @f4, so that the restriction of to inertia at 5 has
diagonal characters? andw?. The coincidence of these diagonal characters result
in the fact that only two distinct weights are predicted.

5.3. Irreducible representations in higher level

In order to find irreducible three-dimensional Galois representations, it is necess:
to find Galois groups that have irreducible three-dimensional poepresentations.
For p larger than 3 this is easily done: the groups &, and As all have three-
dimensional irreducible mogd representations. We thus concentrate primarily on rep:
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Table 3. Reducible higher-level niveau 1 examples (even
two-dimensional plus?)

Polynomial G p Weight(s) Level | €
x3—x?2—3x+1 S | 37| F(16,0,0) 4 |1
X3 — X% —4x +2 S | 79| F(37,0,0 4 | ey
x3—x2—-5Bx—1 S | 101 | F480,0) 4 |1
x3—x?—4x+1 S | 107 | F(51,0,0) 3 | e3
x3 —x° —5x+4 S | 67| F(3L,0,0 7 | e
x3—5x—1 S | 43] F@190,0) 11 | enn

S | 11| F(3,0,0 43 | es3
x3—7x—5 S | 41| F(18,0,0) 17 | e17
17 | F(6,0,0) 41 | esr
x3—x%2—6x+5 S 5| F(0,0,0) 157 | €157
x3—7x—1 S 5| F(0,0,0) 269 | eze9
x3—x?—9x+38 S 7| F(8,6,2),F(6,6,4) | 53 | es3
x—x3—3%Z+x+1 Da 5| F(0,0,0), F(6,4,2) | 29 | exg
29 | F(120,0) 5 | es
x*—x®—5x°+2x+4 | Dy 5| F(0,0,0), F(6,4,2) | 89 | egg
89 | F(420,0) 5 | es
x* —2x3 —4x?>+5x+5 | Dy 5| F(0,0,0), F(6,4,2) | 101 | €101
101 | F(48,0,0) 5 | es
x*—x3—7x?4+3x+9 | Dq4 5| F(0,0,0) 181 | e1g1
181 | F(88, 0,0) 5 | es
x*—2x3—4x?+5x+2 | Ds| 17| F(6,0,0) 53 | es3
53| F(24,0,0) 17 €17
x*—x®—6x2+8x—1 | Ds| 13| F(4,0,0) 61 | 61
61| F(28,0,0) 13 | €13
x*—x®—5x°+x+1 Ds | 13| F(4,0,0) 53 | es3
53 | F(24,0,0) 13 | €13
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Table 4. Reducible higher-level niveau 1 examples (odd
two-dimensional plus,?)

Galois representation

Weights

p=7,e=3 N=19,¢=¢19 F(2 1,0), F(4,3,2)
G=% x3—x24+5x -6 F(6,3,0), F(10,7, 4)
p=7,e=3 N=47¢=ear F(2, 1,0, F(4,3,2
G=S x3—x2—2x—27 | F(6,3,0), F(10,7,4)
p=7,e=3 N=059¢€=es5 F(2,1,0), F(4,3,2
G=% x3—x2+5x+8 F(6,3,0), F(10,7, 4)
p=7,e=3 N =59 =esg F(2 1,0), F(4,3,2)
G=% x3—x2—9x+36 | F(6,3,0), F(0,7,4)
p=7,e=3 N =59 =esg F(2, 1,0), F(4,3,2
G=% x3—x2—2x—20 | F(6,3,0), F(10,7, 4)
p=19,e=3 N=3,e=¢3 F (10,5, 0), F(16, 11, 6)
G=S% x3—x2—6x—12 | F(22 11, 0), F(34, 23 12
p=13,e=3 N =43, =es3 F(6,3,0), F(10,7, 4)
G=% x3 —x%2—17x+38 | F(14,7,0), F(22 15, 8)
p=3,e=2 N =13, = €13 F(2,1,1),F@1,10

G = Da4 x*+x2-3 F(0,0,0)

p=3,e=2 N=237¢c=ce37 F2 1,1), F(1,1,0)

G =Dy x*+5x% -3 F (0,0, 0)

p=3,e=2 N=61le=c¢p F(2, 1,1), F(1,1,0)

G =Dy x*—7x2-3 F (0,0, 0)

p=3,e=2 N=73e=e¢3 F2, 1,1), F(1,1,0)

G = Da4 x*+34x2 -3 F(0,0,0)

p=5e=2 N = 39,¢ = €3¢13 F (6,5, 2)

G = Dq4 x4 —x3-8x—1 F(4,1,0)

551
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Table 5

Triple Weight
@2p—-1/3,(p—1/3,00 | F2(p—4)/3,(p—4)/3,0)
(p—1)/3,0,2(p—1)/3) | F(2(p—4)/3, (p—4/3,0) ® defP~D/3
0,2(p—1)/3,(p—1)/3) | F2(p—4)/3, (p—4)/3,0) ® detP~b/3
(2(p—1)/3,0,(p—1)/3) | F(2(2p—5)/3, (2p — 5)/3,0) ® detP~D/3
©.(p—1)/3,2(p—1)/3) | F(2(2p—5)/3, (2p — 5)/3,0) @ defP~D/3

resentations (up to a twist) whose images are isomorphic to one of these groups.
course, we deal only with odd representations. For all the irreducible niveau 1 re
resentations presented in this section, the three-dimensional Galois representatic
a symmetric square of an odd two-dimensional representation; hence the corresy
dences presented here are not native three-dimensional phenomena.

5.3.1. Representations of typg A

Suppose thap is a prime congruent to 1 mod 3 and thatis a totally complex
As-extension ramified ap, with ramification index 3. There may be other rami-
fied primes, which would then contribute to the level. Sieghas an irreducible
3-dimensional mog representation, we obtain an irreducible three-dimensional ref
resentatiorp : Gg — GL3(IFp). We observe that the restriction pfto inertia atp

is
a)a
pliy = P :
a)C

where(a, b, ¢) is some permutation a2(p — 1)/3, (p — 1)/3, 0). The six permu-
tations of(2(p — 1)/3, (p — 1)/3, 0) then give six predicted weights fer. The six
weights are displayed in Tabte

Hence, we expect to find three cohomology eigenclasses, each with gne of
p @ wP~ V3 andp @ w?P~D/3 attached, in each of the two weigh2(p —
4)/3,(p — 4/3,0) and F(22p — 5)/3, 2p — 5)/3,0). In fact, however, since
p ® wP~D/3 ~ 5 the three eigenclasses may coincide, and there may actually |
only one such eigenclass in each weight. In practice, in order to compute the col
mology associated to a representation as above, we often have to twist by a chara
that is unramified ap in order to reduce the level. We illustrate with an example.

Example 5.4
LetK be the splitting field of the polynomial* — x3+5x? —4x +3, which is ramified
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Table 6. Irreducible higher level niveau 1 examples

Galois representation Predicted weights
p=7,e=3 N =13,¢ = €13 F(2,1,0), F(4,3,2), F(6,5,4)
G=Agx=¢€13 x*—x34+5x2—4x+3 | F(6,3,0),F(8,5,2),F(10,74)
p=7,e=3 N = 29,¢ = epg F(2,1,0), F(4,3,2), F(6,5,4)
G=A4 x=€9 x*—x3+5x2—6x+7 | F(6,3,0),F(8,5,2),F(10,74)
p=7,e=3 N=2Xe=1 F(2,1,0), F(4,3,2), F(6,5,4)
G=Asx=1 x*—2x3+2x242 F(6,3,0), F(8,5,2), F(10,7, 4)
p=13,e=3 N=5¢€=e5 F(6,3,0), F(10,7,4), F(14, 11, 8)
G=Asx=e5 x*—x3-3x+4 F(14,7,0), F(18 11, 4), F(22 15, 8)
p=13,e=3 N=5%e=1 F(6,3,0), F(10,7,4), F(14, 11, 8)
G=Asx=1 x*-x3-3x+4 F(14,7,0), F(18 11, 4), F (22, 15, 8)
p=19,e=3 N=7€=¢7 F(10,5,0), F(16, 11, 6), F(22, 17, 12)
G=Asx=¢€ x*+3x%2—-7x+4 F(22 11, 0), F(28 17,6), F(34, 23, 12)
p=19,e=3 N=11€ =€ F(10,5,0), F(16, 11, 6), F(22,17,12)
G=A x=¢€11 Xx*+15x2—11x+81 F(22 11, 0), F(28, 17, 6), F(34, 23,12
p=7,e=3 N = 53,¢ = 53 F(2,1,0), F(4,3,2), F(6,5,4)
G=%x=1 X —x3+4ax2 41 F(6,3,0), F(8,5,2), F(10,7,4)
p=13,e=4 N =19,¢ = €19 F(7,5,3), F(13 8, 6), F(16,14,9)
G=S,x=1 x4 — x3+2x2 +4x — 88 | F(16,8,3), F(19, 14, 6), F(25,17,9)
p=7,e=3 N =73,¢ = e73 F(2,1,0), F(4,3,2), F(6,5,4)
G=As, x=€73 X2—5x3—x24+9x+7 | F(6,3,0),F(8,5,2),F(10,74)

atp = 7 (withe = 3) and at 13 (withe = 2). The predicted weights aF&2, 1, 0) and

F (6, 3, 0). The level ofp is 1%, and the nebentype is trivial. Unfortunately, this level
is too large for us to use in computations. Howeyey 13 is easily seen to have level
13 and nebentype;s. Thus, we predict the existence of cohomology eigenclasses i
weightsF (2, 1, 0) andF (6, 3, 0), level 13, and nebentypas, which are attached to

o ® €. Direct computation shows that these eigenclasses do in fact exist and that
eigenvalues match, at least uptte- 47.

Other Az-extensions that give rise to computable cohomology classes are shown
Table6. Each example in this table gives a polynomifalith Galois groupG. The
prime p is given, together with its ramification indexin the splitting field of f.
WhenG equalsAg4, p is the twist by the character of the unique irreducible three-
dimensional mod representation dBg cutting out the splitting field of . The level

N, nebentype, and predicted weights far are indicated in the table. In all cases, we
have computationally verified the existence of an eigenclass in the predicted weig
level, and character, with the correct eigenvalues (Up+047) to havep attached.
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5.3.2. Representations of typg S

For p > 3, & has two absolutely irreducible three-dimensional representations d
fined overFp. Hence, by finding extensions /Q with Galois groupS;, we may
easily construct irreducible three-dimensional Galois representations that have im:
isomorphic to&. Two such examples are given in TalileHere the format is as in
the A4 case, except that we taketo be the unique irreducible three-dimensional
representation oG cutting out the splitting field off and taking transpositions to
elements of trace 1. In both of these cases, the twisting charadsdrivial.

5.3.3. Representations of typg A

The groupAs has two three-dimensional irreducible representations definecﬁ‘gver
for eachp > 5. By composing these representations with the projedgn —
Gal(K/Q), whereK is a field with Galois groupAs, we obtain irreducible three-
dimensional Galois representations with image isomorphistdVe give one exam-
ple in Table6, which we now explain in detail.

Example 5.5

LetK be the splitting field of the polynomia® —5x3 — x2+9x+ 7. Then GalK /Q)

is isomorphic toAs, andK is ramified only atp = 7 (with ramification index 3) and
at 73 (with ramification index 2). Lep; and p] be the two characteristic 7 Galois
representations alluded to above. Then it is easy to seepthand p] are Galois
conjugates of each other over the fi€lg The trace of botlp; andp; on a generator

of inertia at 73 is-1, so that both representations have levélatid trivial nebentype.
This level is too large for us to work with, so we twist both representations by th
charactery = e73to obtainp = p1 ® e7zandp’ = p; ® e73. Now p andp” have level

73 and nebentypeys.

Just as in Examplg.4, the restriction ofp (and ofp’) to inertia at 7 has diagonal
characters.?, w?, andw?. Hence, the predicted weights are the same as in thos
examples, namelys (2, 1, 0) ® def andF (6, 3, 0) ® def witha = 0, 2, 4.

Computing the cohomology in each of these six weights with level 73 and nebe
typeers, we find that there is a unique eigenspace with the correct eigenvalues to c
respond tqo, and a unique eigenspace with the correct eigenvalues to correspond
o’ (atleast up t& = 47). As expected, these eigenspaces are definedfeyeather
than overF7, and they are Galois conjugates of each other Byer

5.3.4. Wildly ramified representations

In addition to the preceding representations, we are able to calculate cohomolc
classes corresponding to irreducible three-dimensional representatiosy —
GL3(]P“p) which are wildly ramified atp. We have two types of examples of such
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representations, those having ima@ye which are wildly ramified at 5, and those
having image PSA(F7), which are wildly ramified at 7.
We begin our study of the typ&s representations by noting that there is a unique
(up to isomorphism) injective homomorphism frofg to GLs(F5), with image gen-
erated by the three matrices
11 4 2 4 1
1 1), 1 2], 0 4 1},
1 4 2 4 2
of orders 5, 2, and 3, respectively. The fields from which we obtain our Galois repr
sentations have inertia group at 5 of order 5 or 10.
In the case of representations with inertia group of order 10, we choose our re
resentation so that the image of inertia is generated by the first two matrices abo

With this choice of Galois representation, it is clear that we have
plip ~ w° ok

Hence, we obtain a triple @2, 0, 2) yielding a predicted weight of
FO,-1,2) = F(4,3,2) = F(2,1,0) ® def.

In order to keep the level to a manageable size, we work with a twistlnf a
character unramified gt (so that the weight is not affected). Letbe the product
of the charactersq, whereq runs through the set of primes at whiphis ramified
with ramification index 2. Then each printeat which p has ramification index 2
contributes a factor of] to the level ofp ® €, and each prime at which p has
ramification index 3 contributes a factor@f to the level ofp ® €. The nebentype of
o ® € is easily seen to be.

We have one example in which the inertia group has order 5. In this case Vv
choose the representation so that the image of inertia is generated by the first ma

above. It is then clear that
1

k
plip ~ 1

= % %

yielding a predicted weight of (—2, —1, 0) = F (6, 3, 0). The level of this repre-
sentation is 8 (note that 3 is wildly ramified), and the nebentype is trivial. For all of
these examples, we have found that the predicted eigenclass does exist in the g
weight, level, and character and has the correct eigenvalues (at least ep4@) to
havep attached.
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Table 7. Wildly ramified Galois representations in niveau 1

Polynomial G p Weight Level €
X° + 5x3 — 10x% — 45 As 5| F@4,32 |13 €13
X2 +5x3 —10x2 — 1 As 5| F@4,32 | 31 €31
X2 +5x3 —10x2 + 5 As 5| F@4,32 |37 €37
X° +5x3 — 10x% + 9 As 5| F@4,32 |41 €
x° 4+ 5x3 — 10x% + 20 As 5| F@4,32 | 22.13] €13
X2 + 25x2 — 75 As 5| F6,3,0 | 3* 1
XT—7x®— x4 =73 —7x2 -7 PSL(F7) | 7 | F(6,5,4) | 17 €17
x7 + 14x5 4+ 14x°> — 14x* + 35 PSL([T7) | 7 | F(8,52 | 5° 1
x! =213 +7x — 27 PSLy(F7) | 7 | F(6,5,4) | 47 €47
XT—7x>— 282+ 7x + 4 PSL(Fy) | 7 | F@8,5,2 | 28 1
X' —7x°—21x* — 43 —21x2 +1 | PSLL(F,) | 7 | F8,5,2) | 2° 1
X! —14x* + 422 - 21x — 9 PSL(F7) | 7 | F(6,5,4) | 3* 1
X7 +7x° —7x% —49x3 —98x — 107 | PSL(F7) | 7 | F(6,5,4) | 112 1

We have also found Galois representations with image isomorphic te(PgL
which have low enough level that we can compute the predicted cohomology class
The image of the representation is generated by the three matrices

11 2 3 10
01 1), 0 1 3}, 2 6 0],
0 01 0 0 4 4 0 6

of orders 7, 3, and 2, respectively. The image of inertia at 7 under the representati
that we examine always has order 21 and may be chosen to be the subgroup genel
by the first two matrices above. Hence, on inertia, we have

w2 % % o k%
pliz ~ ¥ % or  pli; ~ ® %
604 (1)2

In order to distinguish between these two possibilities, we use the action of tar
ramification on wild ramification. LeK be our PSk(F7)-extension, and leK, be
its localization at a prime above 7. Thé, /Qp is a degree 21 extension, which is
totally ramified. Denote its Galois (inertia) group By and its higher ramification
subgroups byGi, Go, .... Clearly, there is a unique > 1 such thatG;/Gjy1 is
nontrivial, sinceG; is simple. By P1], for a € Go/Gy andb € Gj/Gj41, we have

6;(abat) = 6o(a) i 6; (t),

wherefj : Gj/Gji1 — U&j)/U,g“) is the injective homomorphism sendinagto
o(mw)/m, wherer is a uniformizer of,,.
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If we considertp as a map intd";, then we see (by1p]) that6p = w?. We
identify Gj /Gj 11 = Gj with its image undeé;. Then we have

stsl =t ®

However, we see easily (by matrix multiplication) tsas™1 = t2, so thatw? (s) = 2,

and we have
w k k

pli; ~ 1 =x

Finally, analysis of the ramification groups shows that if the discriminant of the
degree 7 subfield oK is exactly divisible by ?, theni = 1, and if it is exactly
divisible by 79, theni = 2.

Clearly, ifi = 1, we get a predicted weight (0, —1,4) = F (6,5, 4), and
if i = 2, we get a predicted weight d&%(2, —1,2)’ = F(8,5,2). The level and
nebentype are easily calculated, and in the case of odd pdntleat have inertia
group of order 2, we twist byq to lower the level frong? to q.

Table 7 contains information on the wildly ramified Galois representations we
have studied. Each line of the table gives a polynomial whose Galois closure is
G-extension ofQ (whereG = As or PSLy(IF7)), as well as the weight, level, and
nebentype predicted by Conjectuté for the appropriate twist gf. In each case the
representation for which the invariants were computed is actpaly, wheree is the
indicated nebentype (as described above, this lowers the level to a manageable s
In every example an eigenclass with the correct eigenvalues (ug-td7) occurs in
the predicted cohomology group.

6. Niveau 2 representations

6.1. Reducible representations in higher level
Each line of Table3 gives a polynomial with splitting field a totally re&-extension
K of Q. In each case we define to be the unique two-dimensional Galois repre-
sentations : Gg — GLZ(IF‘p) which cuts outK, and we note that is niveau 2.
Letting p = o ® X, wherek is indicated in the table, Conjectuel predicts two
possible weights corresponding go as indicated in the table. We have checked that
for each row of Table3, the cohomology in the given weights, level, and nebentype
does contain an eigenclass with the correct eigenvalues to correspenat teast up
to¢ =47.

Table 9 contains examples of Galois representations, each of which is the su
of an odd irreducible two-dimensional Galois representation and the trivial charact



558 ASH, DOUD, and POLLACK

Table 8. Reducible niveau 2 representatiorng K with o even

Fixed field ofker(c) | G | k p Weights Level | €
X3 — X2 —8X+7 5| F(54,1) F(4, 4,2 73 €73
5| F4,22 FG5,2,1) 73 €73
11 | F(5,4,3) F(22 14,6) | 13 €13
11 | F(15,6,3) F(12 6, 6) 13 €13
11 | F(15,8,3) F(12 8, 6) 13 €13
11| 11 | F(15,10,3) F(1210,6) | 13 €13
13| 11 | F(15123) F(12126) | 13 €13
11 | F(5,4,3) F(22 14,6) | 17 €17
11 | F(15,6,3) F(12 6, 6) 17 €17
9| 11| F(158,3) F(128,6) | 17 €17
11| 11 | F(15,10,3) F(1210,6) | 17 €17
13| 11 | F(1512 3 F(12126) | 17 €17

x3—x2—T7x +2

O N Ow

x3 —11x — 11 S

~N O

In each example a polynomial is given that has Galois gi@ugor all but the last
two examples, we let be the unique two-dimensional mgrrepresentation o6,

and in all cases we taketo beo @ 1. The ramification index of p, and the level

N and nebentype of p, are indicated. For each such representation, Conjeétiire
predicts four weights (two of the predicted weights are the same ip the8 cases),

as indicated in the table, and in all cases we have been able to check that the predi
eigenvalues exist in the cohomology in all of the predicted weights. We explain tt
last two examples in Tabkin detail in Examples. 1.

Example 6.1
Let K be the splitting field of the polynomial = x5 — 19x2 + 38x — 95. ThenK
is a totally complexDs-extension ofQ, ramified only at 7 (with ramification index 2
and residual degree 1) and 19 (with ramification index 5 and residual degree 2).
The groupDs has two irreducible two-dimensional representations @igr—
we denote the corresponding Galois representatiors dxydo’. Let p (resp.,0’) be
the direct sum of (resp.,o’) with the trivial character. Then bofhandp’ are easily
seen to have level 7 and nebentype
We may conjugate each @fand o’ to land in either of the standard Levi sub-
groups

L=|=x% =« or L' = x x|,
* x %

and each representation satisfies strict parity with Levi subgko(gy L"), ase and
o’ are both odd.
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Table 9. Reducible niveau 2 representatior® »° with o odd

Galois representation

Predicted weights

p=5e=3 N=7e¢e=e3 F(1,0,0), F(4,1,0)
G=S x3—x2+2x—3 F(2,2 1), F(6,5,2)
p=5e=3 N=43c=¢3 F(1,0,0), F(4,1,0)
G=% x3 —x2+4+2x +12 F(2 2,1),F(6,5,2)
p=5e=3 N=47,e=¢3 F(1,0,0), F(4,1,0)
G=$% x3+5x—5 F(2,2, 1), F(6,5,2)
p=5e=3 N=67,e=e¢3 F(1,0,0), F(4,1,0)
G=% x3—x24+7x+2 F(2, 2 1), F(6,5,2)
p=5e=3 N=83e=e¢3 F(1,0,0), F(4,1,0)
G=% x3 —10x — 15 F(2,2 1), F(6,5,2)
p=5e=3 N=83¢c=e3 F(1,0,0), F(4,1,0)
G=% x3—-x24+7x—8 F(2 2,1),F(6,5,2)
p=5e=3 N=283¢e=¢3 F(1,0,0), F(4,1,0)
G=% x3—x2—-3x—8 F(2, 2,1), F(6,5,2)
p=17,e=3 N=3,c=e3 F(9, 4,0), F(20,9,0)
G=$% x3 — x2 4 6x — 12 F (14, 10, 5), F(30, 21, 10)
p=17,e=3 N=7,e=¢7 F(9,4,0), F(20,9,0)
G=S x3—x2+6x+5 F (14,10, 5), F(30, 21, 10)
p=3,e=4 N=7¢e=¢ F(1,0,0), F(2,2 1)

G =Da x*—3x2-3 F(2 1,0

p=3,e=4 N=19=c¢19 F(1,0,0), F(2,2 1)

G = D4 x*—30x%? -3 F(2, 1,0

p=3,e=4 N=3le=¢3 F(1,0,0), F(2,2 1)

G =Dy x*+9x2 -3 F(2,1,0)

p=3,e=4 N=43c=es F(1,0,0), F(2,2 1)

G = D4 x4 —3182%—-3 F(2,1,0)

p=7,e=4 N=1l,e=e1 F(3,0,0), F(6,3,0)

G = Da Xt —7x2 -7 F(4,4,1), F(10,7, 4)
p=19,e=5 N=7,e=¢7 F(13,2,0), F(20, 13, 0)
G = Ds x5 —19x2 + 38x — 95 | F(16, 14, 3), F(34, 21, 14)
p=19,e=5 N=7,e=¢7 F(9,6,0), F(24,9,0)

G = Ds x5 —19x% + 38x — 95 | F(16,10,7), F(34, 25, 10)

559
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Both p and p’ have niveau 2, but they differ on restriction to inertia at 19. We
chooseo (possibly swapping ando’) such that
72

72
p||19 ~L w/ ,

while p’ has diagonal characteys!44, /44, 4,0.

Since 72= 15+ 3 % 19, we get a predicted weight (15— 2,3 - 1,0) =
F (13, 2, 0) for p. In addition, we may also conjugateinsideL, so that the diagonal
characters on inertia afe?88, /238 andw?. Since 288= 2241419, we also predict
a weight ofF (20, 13, 0) for p. Finally, we may conjugate to land insidel’, yielding
predicted weights oF (16, 14, 3) andF (34, 21, 14). In a similar fashion, we predict
four weights forp’, namely,F (9, 6, 0), F (16, 10, 7), F(24, 9, 0), andF (34, 25, 10).

In order to test whether the representatiprendp’ are attached to Hecke eigen-
classes with these weights, we need to compute the characteristic polynomials of
images of Frobenius elements ungeandp’. There is a subtlety introduced here by
the fact thatDs has two conjugacy classes of order 5. On one of these clasbes,
trace 5 ang’ has trace 15, while on the other class these traces are reversed. We I
determine which class contains each Frobenius element of order 5.

Supposer € Gg restricts to an element of order 5 in Gil/Q). Then there is
some elemeny € 19 such that = n moduloGg . So

Tr (o(0) = Tr(p(m) = ¥"2(n) + ¥

Let B be the unique prime oK lying over p = 19, and letr be a uniformizer
of P. Thens = ¢'2(n) = n(n)/x (mod<P) is a fifth root of unity in the residue
field F of 3 (which has order 13). Note that there are two possible images @i F,
depending on our choice of fundamental charagtée may, however, compute+
¢ P, which is in the prime field and is independent of this choice. These calculations a
easily performed using PARI/GP sin&eis only of degree 10 ove. A convenient
uniformizer to use is a roat of the polynomialf defined above.

We find, for instance, that Tp (Frolky)) = 5, giving predicted Hecke eigenvalues
a(2,1) = 5anda(2, 2) = 12 for the classes attacheddpand eigenvaluea(2, 1) =
15 anda(2, 2) = 17 for the classes attacheddb

We have computed the Hecke eigenvalues I(fer 47) for cohomology classes
with each of the 8 weights that arose above, and in each case we have found that
eigenvalues are exactly as predicted.

/72
(n + 1L

6.2. Irreducible representations in higher level
In niveau 2 we again obtain several irreducible representations that are symmel
squares of odd two-dimensional representations, but we also obtain one set of ex:
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ples that are not. We begin by describing an example of the former type of represe
tation.

Example 6.2

Let p = 5, and letK be the splitting field of the polynomial = x* + x% — x + 2.
Then K has Galois groufy; and is ramified only at 5 (with ramification index 3)
and at 73 (with ramification index 2). In fact, since the discriminant @ 5°73, the
guadratic subfield oK is ramified at 73, so the inertia group at 73 must be generate
by a transposition. If we lep be the unique irreducible three-dimensional mod 5
representation oGg cutting outK and taking transpositions to elements of trace 1,
we easily determine that the level pis 73 and that its nebentypedss. The weights
predicted forp by Conjecture3.1are calculated by noting that

wS
IO||5 ~ WS s

°

with 8 = 3+ 1 % 5, so that we have a predicted weightfef3 — 2,1 — 1,0) =
F(1, 0,0). We may also write

ws wO
plis ~ 2 or  plig~ w8 :
y'® y'®
yielding predicted weights df (3—2,0—1, 1) = F(5, 3,1) andF(0—-2,3-1,1) =
F22,21).
In addition, we note thaqlf’8 = ¢16, so we can permute the two characters of

niveau 2 and write
16

16
plis ~ W’ ,

0

with16=1+ 3% 5= 6+ 2% 5, so that we have a predicted weightFofé — 2, 2 —
1,0/ = F(4, 1, 0). We may also write

I'[/16 (,UO
16
plis ~ ® or plis ~ ¥ ,

1}[,/16 1’0/16

yielding predicted weights df (6—2,0—1, 2)' = F(4, 3, 2) andF(0—2,6—1,2) =
F (6,5, 2).

Calculating the cohomology in all six of these weights, we find eigenclasses wi
the correct Hecke eigenvalues to correspong fat least for primes up to 47). This
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Table 10. Irreducible niveau 2 representations

Galois representation Predicted weights
p=5e=3 N =73,¢ = e73 F(1,0,0), F(53,1), F(2,2 1)
G=S,x=1 X4+ x2 —x+2 F4,1,0), F4,3,2),F(@®,5,2)
p=5e=3 N=144,c =1 F(1,0,0), F(53,1), F(2,2 1)
G=%x=1 x*—2x3—8x+4 F4,1,0), F(4,3,2),F(@®,5,2)
p=7,e=4 N =67,¢ = eg7 F(6,3,3), F(128,4), F(7,7,4)
G=S,x=1 x* — 56x + 112 F(9,6,3), F(3,2,1), F(7,4,1)
p=1l,e=3 N =17 = €17 F(5,20), F(15 9, 3), F(8,6,3)
G=%x=1 x*—x34+3x+2 F(12 5,0), F(12 9, 6), F(18,13,6)
p=5e=3 N = 89,¢ = egg F(1,0,0), F(53,1), F(2,2 1)
G=As x=€gg X°—2x3—x2—6x—11| F(4,1,0), F(4,3,2), F(6,5,2)
p=5e=3 N =151,¢ = €151 F(1,0,0), F(53,1), F(2,2 1)
G=As, x=¢€151 X°—3x3-x2+x-3 F(4,1,0), F(4,3,2), E(6,5,2)
p=5e=3 N = 157,¢ = €157 F(1,0,0), F(53,1), F(2,2 1)
G=As, x=€157 X°+7x3—x2—-9x+7 | F(4,1,0),F(4,3,2),F(6,5,2)

yields a family of six “companion forms” of different weights, all of which seem to
correspond te.

Other examples of irreducible niveau 2 representations with image isomorp&i¢c to
as well as examples with image isomorphicAg (where the representation is the
twist by x of the unique irreducible three-dimensional mod 5 representation havin
image As and cutting out the splitting field of ), are given in Table.0, in the same
format as the examples in Talffeln addition, examples with image of order 54 are
given in [L2]. These last examples haye= 5, levelN = 83, with quadratic neben-
type, and cannot be the symmetric square of any two-dimensional representation.

7. Niveau 3 representations

We have two examples of odd niveau 3 representations, both of which support Cc
jecture3.1 It is easy to see that a niveau 3 representation must be irreducible a
that it cannot be the symmetric square of a two-dimensional representation. Our fi
example is induced from a one-dimensional representation of a subgroup of inde:
in G, and the second has image isomorphic to RBt) in GL3(F11) but is in no
obvious way related to any representation of dimension less than 3.

7.1. An induced representation
Let f = x3 + 2x — 1. The Galois group of is S. Let K be the splitting field off ,
and letK3 = Q(«), wherea is a root of f. ThenKg is ramified only at 59. Using
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PARI/GP, we may calculate the ray class groupkaf modulo 7 and find that it is
cyclic of order 9. If we let. be the ray class field df3 modulo 7, then the existence
of L implies the existence of a character. Gk, — no C F3 of order 9, ramified
only at primes above 7. If we now set

Go
10 = |ndGK3 X,

thenp : Gg — GL3(F7) must be irreducible since it has niveau 3 (as the ramificatior
index at 7 is divisible by 9). Note that there are six choiceg a@ince there are six
primitive ninth roots of unity inug. Until we make a choice, everything we state is
true for any choice of and hence for any induced fromy.

If we let M be the Galois closure df, we see thaM contains the composite
field KL, which is abelian of degree 9 ovétr, and in fact,M is generated by the
conjugates oK L overQ. We see from this that no element of @dl/K) has order
more than 9. Note that factors througtG = Gal(M/Q), so in particular, the image
of inertia at 7 undep must be of order 9 (since inertia fixé&s). In fact, it is easy to
see that the factorization efthroughG is a faithful representation @.

Now let

2
Go = U 0i Gks»
i—0

where theg; are coset representatives®k, in G, and forg € G, note that

2
Tr (@) = >_ x°%@%).
i=0

where
0 if X o4 GK3,

0 _
Y= x(X) if X € Gks.

Using this description g, we may calculate values of ([a(g)) in terms ofy for
variousg, given that we know the order af(g), wherer : Gg — s is the natural
projection onto the Galois group &f. Letg’ € Gk, be a conjugate by song of g
if such a conjugate exists; far(g) of order 2,0(g) has trace(g'), and form(g) of
order 3,0(g) has trace zero (since no conjugategas in G,).

In fact, we may go even further and compute the values(gf) using class field
theory. Class field theory shows the existence of an isomorphism between the |
class groupJ of K3 modulo 7 and the groupg of ninth roots of unity. We fix this
isomorphism by setting the image of the idgabove 2 inK3 with inertial degree 1 to
have imageg (Frol,) = ¢9, where Frob is a Frobenius above(note thap has order
9 in the ray class group). Given any ideallof, we may then compute its imageJdn
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Table 11
p 2 3|57 11 | 13 | 17 | 19 | 23| 29 | 31 | 37 | 41 | 43 | 47
O(Frobp) 18| 9| 9 | * 18 | 6 9 9 18 | 3 18 | 18 | 3 2 18
O(n(Frobp)) 2133 |* 2| 2 3 2|3 2 213 2 2
x (Frolj,) o | * S|l |o|* || |1 | ¢
Tr(o(Frobp) | ¢o | 0| 0| * | ¢ | ¢ |0 [0 |2 |0 |22 |0 |1 |¢

in terms of the image of the ideal above 2 and hence find the image of any Froben
element undey . The ray class computations are easily done using PARI/GP sinc
the degree oK3 is only 3.

Using these techniques, we find the values in Table 11.

The only value that has not yet been explained is the trace of Frobenius at
This trace is zero since 17 splits completelykinhence also ifK3). Hence, there are
three distinct conjugates Frg&pof Froby7, all in Gk,, and their images under are
L9, gé, and§97, so that the trace qi (Froby7) is zero.

Direct computation in the ray class group shows thap ik 47 is a rational
prime with r (Froby) having order 2, and) is any Frobenius element fqu, then
x (g% = x(g)?. Since this is true for any conjugate gf, we have T¢o(g?) =
3x(g)? = 3Tr(p(g))2. Using this fact, a simple computation (using Magma) shows
that the eigenvalues @f(g) must bet, &, and—&, whereé = Tr(p(Q)). Hence, the
characteristic polynomial dét — p(g) X) is equal to

1— X — £2X% +£3X8,

In particular, we use the fact that geig) = —£3 = —(Tr p(g))°.

We now compute the level and charactepofThe prime 59 has ramification in-
dex 2 in the fixed field op, and ifg is a generator of inertia at 59, thetig) has order
2 (since 59 has ramification index 2 k). In addition,x (g’) must be simultaneously
a ninth root and a square root of 1, hence equal to 1. Them(@)) = x(g") = 1,
so the three eigenvalues gfare 1, 1, and-1, and the level op must be 59, with
nebentypeso.

Finally, we calculate the predicted weights forThese weights in fact depend
on the choice ofy. We recall that the fundamental characters of niveau 3 are denote
by 0, 6/, and9”. Since 7 has ramification index 9 M, we know thato must have
niveau 3. In fact, we have that either

938 076

9/38 9/76

or  pli;~

pliz ~
9//38 9//76
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Note that
detp = a)38€59 = a)2€59

in the first case, while

detp = a)76€59 = a)4€59

in the second. Thus, in order to obtain the first case, we chgpdsed henceg =
x (Frolp)) such that

—S=-Tr (,o(Frobz))3 = det(p(Frobp)) = w?(Froby)esg(Frokp) = —4,

and in order to get the second, we chogs@nd henceg) such that—gg’ =-2.

Note that each of the two possibilities comes from three choicgs Bence, we
should expect three eigenclasses in each predicted weight—one for each chgice o
Considering the first casey = 38 = 3+ 5% 7 + 0 % 72, so we get a triple

(a,b,c) = (5, 3, 0), yielding predicted weight

F5-2,3-1,0=F(@,20).

We may also permute the characters on the diagonal, which has the effect of mu
plying m by 7 or Z modulo ? — 1, yielding predicted triples and weights as follows.
For 7+ m = 266= 7+ 9 7+ 4 x 72, we get predicted weight

F(9—2,7—-1,4) = F(3,2,0) ® def"
For 49« m = 152= 5+ 7 % 7 + 2 % 72, we get predicted weight
F(7—2,5-1,2) = F(3,2,0) ® det.

We may similarly calculate weights for the second possibility and find the fol
lowing predicted weights:

F(3,1,0) ® det, F(3,1,0 ® def, and F(3, 1,0 ®def.

Computations show that cohomology classes with the correct eigenvalues (up
¢ = 47) exist in all of these weights. In each weight there is a triple of eigenclasse
defined oveif';s and conjugate ovélf7, each corresponding to a choicexohs above.

7.2. A representation with imadgeSLy(F7)

We begin by noting that the irreducible polynomifal= x” — 11x° — 22x* 4 33x? +

33x + 11 has Galois group PSIIF7), as reported by both PARI/GP and Magma. If
L = Q(a), wherea is a root of f, we find that the discriminant of is 116312.
Since 11 is tamely ramified, we may conclude that the ramification index of 11 in tf
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Table 12. Character table of PSIF7)

Class | 1 2 3 4 5 6
Size | 1| 21| 56| 42| 24| 24
Order | 1 2 3 4 7 7
X1 1 1 1 1 1 1
X2 3| -1 0 1 o o
X3 3| -1 0 1 a o
X4 6 2 0 0| -1]-1
X5 7| -1 1| -1 0 0
X6 8 0| -1 0 1 1

splitting field K of f is e = 7. Using the main result o], we see easily that the
ramification index of 31 irK is 2.

The character table of PS{F-) is given in Tablel2, wherex = (—1 + /—7)/2
anda = (—1 — +/—7)/2. OverF1, we have thatr anda are equal to 4 and 6, with
the order depending on our choice@f7.

The existence of the PS[F7)-extensionK gives rise to two irreducible three-
dimensional Galois representations defined @er The image of inertia at 11 under
both representations has order 7, so they are both niveau 3. We chdodee the
representation which, when restricted to inertia at 11, has diagonal chara®rs
0'1%0 ande”1%° and we choose’ to be the other (with diagonal characters on inertia
equal tog570, 97570 ¢7/579),

We note that the level of (and ofc’) is 312 since the elements of order 2 are
mapped to matrices of tracel. This level is too large for convenient calculation, so
we investigater = o ® €31 andp’ = ¢’ ® €31, which are easily seen to have level 31
and nebentypess.

In order to calculate the predicted eigenvalues of the image of a Frobenius e
ment of order 7 undes, we need to distinguish between the two conjugacy classes c
order 7 in PSk(F7). In order to do this, we use a method similar to that used in Ex-
ample6.1. In this case, the method needs to be modified slightly since we are deali
with much larger fields.

We begin by using Magma to determine the Galois gr@ug PSLy(F7) of f
as a permutation group acting on the rootsfofWe note that each root of is a
uniformizer for all primes lying above 11 iK (since 11 is tamely ramified, and all
the ramification occurs i /Q). Let « be a root off, and letr be an element of
order 7 inG. Then we easily compute a complex approximatiote- t(«)/«. If
P is the prime ofK lying over 11 and having inertia group generatedrbyhen the
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image of8 in the residue field off3 is a Galois conjugate of the primitive seventh
root of unity 199(¢). Hence, the trace af (z) is equal tog + A1 + 121 modB.

We actually compute a complex approximationte= g + 82 + g%, which is equal

to this trace modul@3. Knowing that this trace is congruent to either 4 or 6 modulo
B, we computel; = y — 4, ands, = y — 6. Exactly one 081 ands, should lie in

. We note that ifKg is the unique degree 8 subfield Kf fixed by (z) (so thatKg

is the decomposition field ), then there is a unique degree 1 primm Kg, and

P lies overp. Hence, we may determine whetldeties in‘3 by determining whether
the norm of§; (from K to Kg) lies inp. We compute a complex approximation to this
norm (and all of its Galois conjugates) and then easily find a complex approximatic
to the minimal polynomial of this norm. This polynomial should have rational intege
coefficients, so after examining the polynomial to see that this is true to many decin
places, we round off. We then calculate the valuation of the norén af the unique
degree 1 prime ifKg (using PARI/GP). For our choice of we find thats; ¢ p, while

82 € p. Hence, T(o (r)) = 6. Then, using similar techniques, we determine thist

a Frobenius element for the prime 7, but not for the primes 2, 13, or 23. Hence, f
example, we predict that

Tr (p(Froby)) = Tr (o (Froby))ez1(Frobp) = 4- (1) = 4

and
Tr (o (Froby)) = Tr (o (Frobys))eay(Frobys) = 4- (-1) = 7.

Returning to our study g, we have

9190
190
pliy ~ 6’
0//190

Note thatm = 190 = 3 + 6 % 11+ 1 % 11°. Hence, one weight predicted by the
conjecture fop isF(6—2,3—1,1) =F(4,2,1) = F(3,1,0® dett. We may also
takem = 11-190 orm = 112190, which yield predicted weights &%(6, 6, 0) @ def
and F (8, 3, 0) ® def. Computing the cohomology in weiglf(3, 1, 0) ® det, we
find a one-dimensional eigenspace with the eigenvalues indicated inTTallbese
eigenvalues are exactly what ConjectGré predicts, in order fop to be attached to
this eigenclass. The same system of eigenvalues (dp=%047) also occurs in the
other two weights predicted far.

Similarly, the predicted weights fo#’ are F(6, 0, 0) ® det’, F(3, 2, 0) ® def,
and F (8, 5,0) ® def. Each of these weights yields an eigenclass with the correc
eigenvalues to have' attached (at least fdr < 47).
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Table 13. Orders gb(Froly) and eigenvalues in weigl(4, 2, 1)

¢ 2131|565 7011 |13 |17 | 19| 23| 29 | 31 | 37 | 41 | 43 | 47
O(p(Fre)) | 71 3| 4 7 * 7 4 7 3 * 2 3 3 3
a(, 1) 4101 6 0 7 |10 1 7 0 * 1 0 0 0
a, 2) 30|09 10 0 3 2 7 6 0 * 8 0 0 0

8. Computational techniques

We now give an overview of our methods for computing the various Hecke eigel
classes on which we have reported in this paper. We begin by noting that we do n
in fact, do any direct calculations of cohomology. Instead we compute with homolog
exploiting the natural duality, as iff[ Section 3].

Let pandN be positive integers witp prime, and lel be a representation of the

semigroup generated N andI'o(N). Then we wish to calculatélz(I'o(N), V)
along with the action of various Hecke operators. The grddpare easier to calcu-
late thanH1 or H2 since the virtual homological dimension of &) is 3 (see ]]).
In addition, one can show that for many classes of three-dimensional Galois repres
tations, if the representation is attached to any homology class, then it is attached
class inHgz (cf. [4]).

By Shapiro’s lemma,

Ha(To(N), V) = Ha(SLa(Z). IndZ? V).

and by p, Lemma 1.1.4] this isomorphism is compatible with the action of the Heck

operators away frorp N. This reduces our problem to computing the homology of the

full group SL3(Z) as long as we are willing to consider sufficiently general weights.
The broad outline of our calculations follows that d}.[In particular, we first

use a slight modification of theifl| Theorem 1] to identifyfH3(SL3(Z), V) with the

subspace of alk € V such that

(1) v-d=vforall diagonal (but not necessarily scalar) matrides SL3(Z);

(2) wv-z= —v forall monomial matrices of order 2 in SlZ);

B v+v-h+v-(h?)=0,

where
0O -1 0
h=|1 -1 0
0O 0 1

We refer to conditions 1 and 2 as themi-invariant conditiomnd to condition 3 as the
h-condition Given a sufficiently concrete realization ¥f computing the subspace
satisfying these conditions is simply an exercise in linear algebra. In Sécticiwe
discuss some optimizations we have employed in carrying out the calculation. On
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we have this subspace in hand, we then dsé¢mma 3] to compute the actions of
various Hecke operators with respect to a basis of this space.

The main difference between our calculations and thosel]ins[ our use of
more general coefficient modules. We describe below our construction of the mo
ules Inq?(';f,(\lz)) F(a, b, c) for a p-reduced triple(a, b, ¢). Another significant differ-
ence is a sharp increase in efficiency and hence in the complexity of the calculatic
we can tackle. This increase is due partly to better algorithms (as described belc
and partly to having the entire calculation done using C++ code rather than relying
Mathematica.

8.1. Models for weights
We have performed our calculations with a variety of weight modules. Our bas
strategy has been to build more complicated weights up from simpler ones. In t
subsection we describe the &IF p)-modules with which we have worked, giving in
particular a model foF (a, b, ¢) for a generap-reduced triplga, b, ¢). Details of the
implementation of these representations and of the process of inducing fax)
are left to Sectiord.2.

To begin, we viewF 3 as the standard 3-dimensional (righf{ GL3(FF p)]-module
on whichSyn acts via reduction modulp. Then Syrﬁ(fFS) is the space of homoge-
neous polynomials ov&?’p of total degreqy in three variableg, y, z. An elemenim
of GL3(Fp) acts onf € SynP(F3) by

f(xX)-m= f(mx),

wherex is the column vectof(x, y, z). Note that fora < p — 1, the representation

Synf'(F3) is irreducible and is in fact isomorphic ®(a, 0, 0) = W(a, 0, 0). Note

also that this action is the contragredient of the standard action used in the statern

of the conjecture, as required by the duality between homology and cohomology.
Next we look at the modul€ (a, b, 0) for p-restricted(a, b, 0).

THEOREM8.1

Let (a, b, 0) be a p-restricted triple. Then th&L3(Fp)-submodule oSyrrP(fFS) ®
SynP(F 3) generated by

b
_ i (D) yasiyi gy i
v—_D—l)(i ATy @ xyP
i=0
is isomorphic to Ka, b, 0).

Proof
Recall that for any nonincreasing triple, 8, y) of integers, bothW(«, 8, y) and
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F(a, B, y) are modules over Gd(I_Fp) and not just over G§(F,). We prove that
the GL3(I_Fp)-moduIe generated by is isomorphic toF (a, b, 0). Since(a, b, 0) is
assumed to be-restricted,F (a, b, 0) remains irreducible when viewed as a repre-
sentation of Gk(IFp). We may then conclude that the &[F;)-module generated by
v is isomorphic toF (a, b, 0).

Since we are now looking at representations oz ®E an algebraically closed
field, we may employ the theory of highest weights in representations of algebra
groups (cf. L5, Section 31]). In particular, if we work with respect to the standard
diagonal torus and the upper triangular Borel, we note that the nonincreasing trip
(n1, 2, n3) correspond to the dominant weights

7, 0 O
0 t 0 |~ tt%t3°

0O 0 t3

ThenF(ny, n2, n3) is the unique irreducible representation ofﬁip) with highest
weight(ny, n2, n3).
Now, Young's rule (seell6, p. 129]) gives us thatV(a, 0, 0) ® W(b, 0, 0) has a
filtration
WoDWp D DWh1 =0,

with the quotientdV; /W 11 isomorphic to the modules
W@+Db,0,0),..., Wa+b-—i,i,0),...,W(@,b, 0

in the given order (so tha¥(a+b, 0, 0) is a quotient andV(a, b, 0) is a submodule).
Since(a, b, 0) is p-restricted, eackV(a+b—i, i, 0) isirreducible ifa+b—i < p—2
ora+b—-2 = p-1, and otherwise haB(a+ b —i,i,0) andF(p—2,i,a +
b—i — p+ 2) as composition factors (se&(, Proposition 2.11]). We see then that
F(a, b, 0) appears only once as a composition factongf, 0, 0) ® W(b, 0, 0) and
that it appears as a submodule and not just a subquotient.

It follows thatW(a, 0, 0) ® W(b, 0, 0) has a unigue highest weight vectorof
weight(a, b, 0) and that the Gg(I_Fp)—moduIe generated by this vector is isomorphic
to F(a, b, 0). The lemma below shows thats such a vector, and hence theﬁ]}_ip)—
module generated hyis isomorphic toF (a, b, 0). O

LEMMA 8.2
The vector

b
=YD ( ? >(Xa—iyi @ x1yo1)
i=0

in Synf(F3) ® SynP(F3) is a highest weight vector of weigta, b, 0). Here “high-
est” refers to the usual lexicographic ordering of the weights.



GALOIS REPRESENTATIONS AND COHOMOLOGY 571

Proof

It is clear thatv is a weight vector of weigh¢a, b, 0). We need only show that the
images ofv under the operators

1 00 1 00 1 00
=110/, =01 0], g3=| 0 1 0
0 0 1 0 11 101

are all equal ta plus something in the spa®of vectors of weight strictly less than
(a, b, 0). Clearly,v - g2 andv - g3 are both equal to moduloS. Forv- g1, we calculate

b
v-g1= X:(—l)i ( ? )xa_i x4y @x (x+y®h
i=0
b i b—i . .
— Z(—l)i ( b ) ( II< ) ( b_—l )Xa—i+kyi—k®xi+jyb_i_j
i g Sy, ]

- (S () (b))

Settinge = i — (@a—Uu), expanding the binomial coefficients, and canceling equa
terms, the inner sum becomes

ut+v—a

o b'
= 0; S T

—a—a)lal(@—u!

b! u+v—a 1

_i(b—v)!(a—u)! O; =D alU+v—a—a)

-4 b! u+v—a L Utv_a
= b-v)!@-w!u+v-—a) (XXZE)(_) ( o >’

which is zero ifu + v > a. Thus, the only termg!y2 Y @ x”yP~" that appear in

v - g1 with nonzero coefficient have + v = a. It is now easy to see that- g; is in
fact exactly equal te. O

For arbitraryp-restricteda, b, ¢), we note thafF (a, b, ¢) = F(a—c, b—c, O)®def.
In practice, we did all of our calculations with(a — ¢, b — ¢, 0) and simply scaled
by def at the end.

We have also made use of representations of the formP 8y ® SyrrP(ng),
Synf(F3) ® SynP(F 3)* and subquotients of SytiF 3) for a larger thanp — 1. By
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keeping track of the irreducible constituents of these representations, we were sor
times able to show that certain systems of Hecke eigenvalues come from a spec
irreducible module (se€lP] for more details).

8.2. Implementation

The implementation of our algorithms has two very distinct parts. On the one han
we need to do calculations involving various £&¥/ pNZ)-modulesV. This includes
the basic vector space operations as well as multiplying an elem¥riyran element

of GL3(Z/pNZ). Further, we need to identify a basis\fand be able to decompose
elements ofv with respect to that basis. For efficiency reasons it is also importar
to be able to determine the coefficient of a given basis element in some prodgict
without computing all o - g.

On the other hand, we need to carry out various higher-level computations, su
as finding the solutions to tHecondition above in order to compute homology with
coefficients invV. These calculations can be described in terms of the basic operatio
of the previous paragraph without any specific knowledge about the mydulée
have made use of object-oriented programming techniques to keep these two com
tational issues strictly separated. This allows us to switch from computing with or
module to computing with another without having to rewrite any of the code descrik
ing the higher-level algorithms.

8.2.1. Coefficient modules
We now look at a few of the implementation details behind some of our coefficier
modules. As we stated above, the basic building block for all of our representatio
is Syrrﬂ(fFS), the space of homogeneous polynomials of degree g in three variable
The monomials form a natural basis of this space, and it is a simple matter to comp
the coefficient of any given monomial in a prodwctg. We have optimized this code
to work especially well when many afs entries are zero. This is the case for the
elementh above as well as for many of the matrices arising in our Hecke operatt
calculations. The representations Syif3) ® SerP(IF“g) again have natural bases
coming from the monomial bases of Sy@3) and Symi(F3), and all operations on
the tensor product can be carried out in terms of those on each factor. We denote
Bab = {wi} this basis of SyM(F3) ® SyrrP(]FS), and we let-, -) be the bilinear form
with (wj, wj) = bij.

The subspace (a, b, 0) of Syn? ® SynP does not come equipped with a canon-
ical basis. For ease of computation we choose a basis in which each basis vector h
distinguished leading term. In other words, we choose a ljggisuch that for each
i there is an elementj € Bap with (wj, vi) = 1 and(wj, vj) = 0for j #i. We then
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let (-, -)r be the bilinear form witHvi, vj)r = §jj. Then forv € F(a, b, 0), we have
(vj, v)F = (wj, v),

and so we can compute coordinates with respect to this baki&ob, 0) in terms of
those with respect to the badigp,.

The final step in obtaining our general weights is to induce a represent&tion
from I'g(N) to SL3(Z). The W we use are of the forrk (a, b, 0) ® ¢ for somee a
character ofZ/NZ)*. We viewV = d?"f,(\lzj) W as the space of functions

={f:SLs(Z) > W: f(xg) = f(x)-gforge 'o(N)}

with SL3(Z) acting by left translation.

We let{r;} be a set of representatives for$8%)/ 'o(N), and we lef{w,} be a
basis forW. We again choose a bilinear fortn) on W with (ws, wp) = 8ap. Then
we definegr, ., : SLa(Z) — W by

wa -1 if X € riTo(N),

¢ri ,Wa (X) = {

0 otherwise.

It is clear that the functiongy, ,,, comprise a basis of .

In order to express the action of §Z) onV with respect to this basis, we need
to introduce a bit of notation. For € SL3(Z), let {x} be the unique representatike
in xI'g(N). Then

(¢ri,wag) (X) = ¢ri ,wa(gx)

_ |wa-ritgx it gxeriTo(N),
o otherwise

B g riHg i} Ix  if x € g7 To(N),
o otherwise

Z wa - I 9{g~'ri}. wb)‘ﬁ{gflri},wb(x)-
b
Note that in order to compute the actions of Hecke operatotdzg8L3(Z), V),
we also need to know how elements of
S={m e M3(Z) : det(m) is positive and prime t@N}

actonV. Let ¥ be the semigroup generated By(N) andSpn. ThenS = SL3(Z) X
and I'o(N) = SLz(Z) n X. (This is part of what it means for the Hecke pair
(To(N), X) to be compatible with(SL3(Z), S).) Thus, ifm € S, we havem = ns
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for somen € SL3(Z) ands € X. Moreover,n is determined modul®o(N) and so
the coset representatiya} depends only om. If we extend our notation to write
{m} = {n}, the formula above for the action gfon ¢r, ,,, makes sense for amye S.
This action ofSon V described by the formula induces the correct actiopzafp N)
on H3(SLs(Z), V) (i.e., the one compatible with the action Bla(T'g(N), W)).

Ther; may be chosen so that each is congruent to the identity mgauidnich
greatly speeds up some of the calculations. Note thatBl/ I'o(N) = P%(Z/N) and
so is easy to work with. Also, note that our formula shows at once how to compu
the coefficients of a basis elemeft ., inv - gforv e V andg € S.

8.2.2. Finding homology
Now we move on to the general algorithms we have used to compute the homology
SL3(Z) with coefficients in some representatign While this is a simple exercise in
linear algebra, we have found it useful to tailor certain optimizations to our situatio
to allow us to work with larger examples. A typical instance of finding the solutions t
theh-condition, for example, involves finding the kernel of a 700@@D000 matrix.
These optimizations have been largely heuristic. We make no claim of having optirnr
algorithms.

Let V be aX-module of dimension, with basis{v; }, and let(-, -} be the bilinear
form with (vj, vj) = §jj. Let K be the 24-element group of monomial matrices in
SL3(Z). Then forp > 3, the space of semi-invariants\ihis the image of the operator

P=Y €@

geK

wheree(g) is the sign of the permutation on three letters inducedyb@ur com-
putations do not include examples for whiph= 2, and forp = 3 only a minor
adjustment is needed. Computing the actiorPabn eachv; is not computationally
intensive since we have specially optimized all of our coefficient modules with regal
to the operation of monomial matrices. We then use column reduction to find a ba:
for V . P. We note that the dimensialyem;of V - P is approximatelyd/24.

The more serious stage of the calculation is finding the solutions ohthe
condition onV - P. We describe our algorithm for finding the solutions of the
h-condition on anyc-dimensional subspac®/ of V - P with basis{bj}. We are
looking for the nullspace of thed(x c)-matrix M = (mjj), where mjj =
(vi, bj - (14 h + h?)) is the coordinate ofj in bj - (1 + h + h?). Simply comput-
ing this matrix and performing Gaussian elimination would theoretically allow us
find the nullspace but is hopelessly inefficient in both space and time. Although tf
matrix M is quite sparse, it becomes much denser as the elimination proceeds. Sil
we work with very larged (d on the order of % 10° is not uncommon), we would
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rapidly run out of memory. We touch on four optimizations we have made to spee
up the calculation and to reduce the memory requirements.

First, we note that the rows &fl are highly redundant as there are at most abou
1/24th as many columns as rows. We exploit this by computing the rows ohe
at a time and only storing those that yield new information about the kernel. Rec:
that we have set up our coefficient modules so that we can individually compute t
entries(vi, bj - (1 +h+ h2)) in theith row of M without having to compute all of
bj -1+ h+ h?). We discuss below another optimization that makes this separa
computation especially efficient. As we find a new reywe continue our elimination
process by subtracting from the appropriate multiples of all the previously stored
rows. If we are left with a nonzero row, we append it to our stored matrix, whicl
remains in row-echelon form. If we are left with the zero row, tiedid not add any
constraints on the kernel dfl and we may discard it and move on to the next row.
This guarantees that we never waste space by storing redundant rows and caps
maximum number of rows we will ever store@k dsemi ~ d/24. We denote by
the matrix that we are building up row by row in this process.

Our second optimization is motivated by the fact that most of the informatiol
about the kernel oM can be obtained fronM’s early rows. At each stage in our
calculation, we clearly have k&t C kerE. SinceE is in row-echelon form, we can
immediately read off the dimension of kr In practice, we find that the dimension
of ker E drops below 1 or 2 percent demafter we run through as few as one fifth
or so of the rows oM. Once this happens, we pause our calculation and compute
basis for) the kernel oE, which is relatively easy to do sinde is already in row-
echelon form. We have now reduced our problem to finding the kernelof 4 h?
not on W but on the much smaller space KerWe then start the algorithm over,
replacingW by kerE. Our new choice oV guarantees that the initial rows of the
new matrixM will all be zero, and so we can resume our calculation with the row
at which we had paused. It is crucial here that we have not compdtat at once
and thus do not have to make any time-consuming adjustments to account for «
new basis. Indeed, it is now much easier to compute the Mews it has far fewer
columns. In practice the calculation very rapidly proceeds through the remaining ro\
of M and then computes the kernel of the nEywwhich is equal to the kernel d¥l.

Our choice of a cutoff on the dimension of Keiis entirely heuristic, and we adjust
it based on the size &f.

Both of the optimizations above rely on the efficiency of the calculation of the
coefficients(vi, v - (1 + h 4+ h?)) of eachv; in v - (1 + h + h?) for v € V. Although
our modules allow for the calculation 6f; , v - g) for anyv andg without computing
all of v - g, there is still a great deal of work duplicated if we separately perform thi:
calculation for all of they;. For our calculations of the Hecke operators (see below
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this is not necessary, but as described above, we must do this in thegcasds
andg = h2. We have optimized for this by storing some of the common pieces ¢
these calculations. For example, when= Ind:> %" W, we begin by computing
and storing the entire matrices describing the actiortsaridh? on W, and also the
permutations induced by andh? on P?(Z/N). Since the dimension A&V is small
compared to the dimension &f (even whenN = 2, the dimension o¥ is 7 times
that of W), this calculation is not terribly costly in space or time. These stored table
can then be used to compute the actioh ahdh? on elements o¥/ very quickly. We
have implemented similar strategies whéns not induced but is the tensor product
of two smaller representations.

Finally, we have increased our available memory by making use of disk spa
and swapping pieces of our matrix in and out of memory. This requires minor moc
fications to the reduction algorithm described above in order to reduce the number
disk swaps. In particular, we carry out our row reduction on several (1000) new rov
at once. In the end, this does not have a dramatic effect on run time, but it slashes
amount of RAM required.

8.2.3. Computing the Hecke action
Our computation of the action of the Hecke operators closely mirrors that,iarid
we refer the reader td.[ Sections 3 and 8] for a discussion of modular symbols anc
a description of the action of Hecke operators on homology. We just summarize |
noting that forv € V satisfying the semi-invariant condition and theondition, we
have
Td,Kv = Zv~ Mij Bi,
i
where
Fo(N)D(, K)Fo(N) = [ [ To(N) B,
|

the Mjj are unimodular, and the modular syml[)B[’l] is homologous tozj [Mij 1.
We have not recomputed the matridelsj but have used the files generated in the
course of the calculations if]

If {fi}is a basis for the semi-invariants Vh satisfying theh-condition, then we
know a priori thatzij fk - Mij Bj is a linear combination} ; ax f| of the f;. We wish
to obtain the numberay,. To do this efficiently, we use the same trick we employed
in our choice of basis foF (a, b, 0) and adjust our basisf|} such that for eachthere
is a basis vectopn, of V such that(v|, fn) = §im. Thenay is the sum over and j
of (v, fk - Mjj Bj). As we have discussed, we are able to compute these coefficier
directly. This is vastly superior to computing all & - M;; B; since the dimension
of the homology space is only a tiny fraction of the dimensiovofThis technique
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was used inf], although it could not be implemented as efficiently there due to the
reliance on Mathematica’s multivariate polynomial routines.

A final optimization uses the fact that the Hecke operators we are dealing with
commute and so preserve each other’s eigenspaces. The ultimate goal of our calc
tion is to identify simultaneous eigenvectarsf the T (I, k) attached to given Galois
representations, that is, with(l, k)v = «(l, k) for some prescribed(, k). If we
compute the entire matrix for the actiondf2, 1) (which is very easy sinc& (2, 1)
involves only 13M;j terms, wherea§ (47, 1) involves 55923 such terms) and find
a single eigenvector with eigenvaluex(2, 1), we need only compute the image of
the otherT (I, k) onv and not on the whole homology space. Moreover, we know tha
v is an eigenvector of each(l, k), and so we only need to computesiagle coeffi-
cient (vg, T(l, k)) in order to determine the eigenvalue. This gives an extraordinar
reduction in the time required to make the calculation. For example, we find that
dimension of the homology space at leVgl11), weightF (22, 11)(e11), andp = 19
is 31. We are interested in a single eigenvector in this space. In order to compute
entire matrix of a Hecke operator, we would need to find 31961 coefficients of
basis vectors. Instead, we reduce this to a single coefficient, giving nearly a thousa
fold increase in performance. We point out that this technique was not needfd in |
as the homology spaces dealt with there were much smaller.

8.2.4. Reliability
Whenever relying on a large amount of computer calculation, one hopes for a numlt
of consistency checks on the data. Our first check is that two entirely independe
programs were written to carry out the calculations on several different computers
two different authors and both programs yielded identical data where compared. T
programming was done in C and C++ and compiled with gcc running on a Sparc Ult
5, a Pentium Il under Linux, and a Pentium Il under Linux. We also compared oL
data to some of the data obtained 1hgnd [4] and found everything to be consistent.
Other checks include the fact that, whenever tested, the opei&tark) on a
given homology space all commuted and that (again when tested) the Hecke of
ators all did preserve the space of semi-invariant¥ isatisfying theh-condition.
Perhaps more compelling is the fact that our data meshes exactly with the Gal
representations we have studied. While the correspondence is only conjectural,
agreement we observed very strongly suggests the validity of our calculations.
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