
Milling

Simplified flow chart of uranium ore processing from mining to the production of concentrate. These processes are commonly known as milling and the product – uranium oxide concentrate – is the raw material for making nuclear fuel.

WORLD NUCLEAR ASSOCIATION

Carlton House • 22a St James's Square • London SW1Y 4JH • UK Website: www.world-nuclear.org • Email: wna@world-nuclear.org Tel: +44(0)2074511520 • Fax: +44(0)2078391501

Uranium production and resources

Country or area	2008 production (tU)	Capacity (tU) at 31.12.08	Uranium resources (tU)* <us£80 kg<="" th=""></us£80>		
Australia	8430	9550	714 000		
Brazil	330	400	157 400		
Canada	9000	11 810	329 200		
China +	769	1000	44 300		
Czech Rep	263	440	600		
France	5	n/a	n/a		
India †	271	300	n/a		
Kazakhstan	8521	10 000	344 200		
Namibia	4366	5000	145 100		
Niger	3032	3500	44 300		
Pakistan +	45	50	n/a		
Romania +	77	100	n/a		
Russia	3521	3750	172 400		
South Africa	655	2000	205 900		
Ukraine	800	1000	126 500		
USA	1430	2000	99 000		
Uzbekistan	2338	2500	55 200		
Total	43 853	53 400	2 438 100		

Sources: WNA, OECD/NEA *OECD/NEA Reasonably Assured Resources Category † World Nuclear Association estimate NB Many other countires have also known uranium resources

 \odot

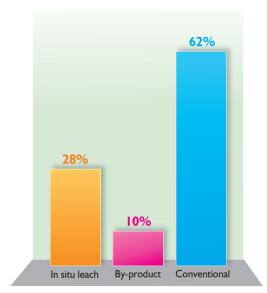
Uranium history

• In 1789 Martin Klaproth, a German chemist, isolated an oxide of uranium while analysing pitchblende samples from the Joachimsthal silver mines in Bohemia.

• For over 100 years uranium was mainly used as a colorant for ceramic glazes and for tinting in early photography. Uranium was produced in Bohemia, Cornwall, Portugal and Colorado and total production amounted to about 300-400 tonnes.

• The discovery of radium in 1898 by Marie Curie led to the construction of a number of radium extraction plants processing uranium ore (radium is a decay product of uranium).

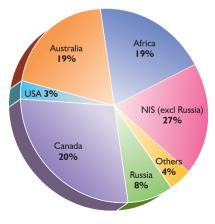
• Prized for its use in cancer therapy, radium reached a price of 750 000 gold francs per gram in 1906 (US\$10 million). It is estimated that 754 grams were produced worldwide between 1898 and 1928. Uranium itself was simply dumped as a waste material.


• With the discovery of nuclear fission in 1939, the uranium industry entered a new era. On 2 December 1942, the first controlled nuclear chain reaction was achieved in Chicago. The first nuclear explosion in 1945 demonstrated the enormous power potential of nuclear fission.

• From a small beginning in 1951, when four lightbulbs were lit with nuclear electricity, the nuclear power industry now supplies some 15% of world electricity.

McArthur River – world's top producing uranium mine in 2008

Uranium - from mine to mill



World uranium production by mining method, 2008

Top ten uranium mines in 2007 - 2008

Mine	Country	Main owner	Mine type	Production (tU)		% of world production		Rank	
	Country			2007	2008	2007	2008	2007	2008
McArthur River	Canada	Cameco	Conventional	7199	6383	17	15	I	I
Ranger	Australia	ERA (Rio Tinto 68%)	Conventional	4589	4527	П	10	2	2
Rössing	Namibia	Rio Tinto (69%)	Conventional	2583	3449	6	8	5	3
Olympic Dam	Australia	BHP Billiton	By-product (copper)	3388	3344	8	8	3	4
Priargunsky	Russia	ARMZ	Conventional	3037	3050	7	7	4	5
Arlit	Niger	Areva	Conventional	1790	1743	4	4	6	6
Rabbit Lake	Canada	Cameco	Conventional	1544	1368	4	3	7	7
Akouta	Niger	Areva	Conventional	1403	1289	3	3	8	8
McClean Lake	Canada	Areva	Conventional	734	1249	2	3	П	9
Akdala	Kazakhstan	Uranium One	ISL	1000	1034	2	2	9	10
World total from top ten mines			27 297	27 436	64	62			

World uranium production, 2008

Leading uranium mining companies

Company	2008 production			
,	Actual (tU)	World share (%)		
Rio Tinto	7975	18		
Cameco	6659	15		
Areva	6318	14		
KazAtomProm	5328	12		
ARMZ	3688	8		
BHP Billiton	3344	8		
Navoi	2338	5		
Uranium One	1107	3		
Paladin	917	2		
General Atomics	636	I		
Sub total	38 310	87		
World total	43 930	100		

Yellowcake

Mineralogy and ore grade

• **Uraninite** is the most common primary uranium mineral: others of economic interest include coffinite and brannerite. The most common form of uraninite is **pitchblende**, which is sometimes associated with colourful secondary uranium minerals derived from weathering.

• The average abundance of uranium in the Earth's crust is 2.7 parts per million, making it more common than tin.

• The concentration of uranium needed to form an economic mineral deposit varies widely depending on its geological setting and physical location. Average ore grades at operating uranium mines range from 0.03% U to as high as 24% U, but are most frequently less than 1% U. These figures do not apply to by-product operations.

Mining methods

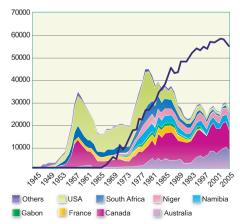
• **Open pit:** used to mine relatively shallow deposits. Economics depend on the ratio of ore to waste, higher grade ores being able to produce higher ratios.

• **Underground:** used to mine deposits too deep for open pit mining. For mining to be viable, these deposits must be comparatively high grade.

• In situ leach: this method is applicable only to sandstone-hosted uranium deposits located below the water table in a confined aquifer. The uranium is dissolved in a mildly alkaline or acidic solution that is injected into and recovered from the aquifer by means of wells. The geology remains undisturbed.

• **By-product:** uranium often occurs in association with other minerals such as gold (Witwatersand), phosphate (United States and elsewhere) and copper (Australia).

Processing and extraction


• **Crushing and grinding:** breaks down the ore to sand/ silt sized particles, thereby freeing the uranium minerals.

• Leaching: acid or alkali dissolves the freed uranium, allowing the uranium-bearing solution to be separated from the leached solids by solid-liquid separation device, resulting in a clarified uranium-bearing solution.

• **Extraction:** ion exchange or solvent extraction methods are used to separate the dissolved uranium from the aqueous solution.

• **Precipitation and drying:** uranium is precipitated from solution using one of several chemicals. Dewatering, filtration and drying complete the process. The final product is sometimes known as yellowcake, although it is typically khaki.

Western world historic uranium production

