Appendix B

Instruction Set Principles
and Examples

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family

(B5000 196&)\ / (IBM 360 1964)

General Purpose Register Machines

Load/Store Architecture
(CDC 6600, Cray 1 1963-76)
|

Complex Instruction Sets
(Vax, Intel 432 1977-80)

RISC
(Mips,Sparc,HP-PA,|BM RS6000,PowerPC . . .1987)

LIW/"EPIC"? (IA-64. . .1999)

Computer Architecture’s
Changing Definition

* 1950s to 1960s:
Computer Architecture Course = Computer Arithmetic

* 1970s to mid 1980s:
Computer Architecture Course = Instruction Set
Design, especially ISA appropriate for compilers
* 1990s:
Computer Architecture Course = Design of CPU,
memory system, I/O system, Multiprocessors

Instructions Can Be Divided into
3 Classes (I)

» Data movement instructions

— Move data from a memory location or register to another
memory location or register without changing its form

Load—source is memory and destination is register
— Store—source is register and destination is memory
* Arithmetic and logic (ALU) instructions
— Change the form of one or more operands to produce a result
stored in another location
Add, Sub, Shift, etc.
* Branch instructions (control flow instructions)

— Alter the normal flow of control from executing the next
instruction in sequence
Br Loc, Brz Loc2,—unconditional or conditional branches

Instruction Set Architecture
(ISA)

/
f ~—]
software ~ g\/

hardware

Classifying ISAs

Accumulator (before 1960):

1 address add A acc <— acc + mem[A]
Stack (1960s to 1970s):
0 address add tos <— tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] <— mem[A] + mem[B]
3 address add A, B, C mem[A] <— mem[B] + mem[C]

Register-Memory (1970s to present):
2 address addR1, A R1 <-R1 + mem[A]
load R1, A R1<_mem[A]

Register-Register (Load/Store) (1960s to present):
3 address add R1,R2,R3 R1<-R2+R3
load R1, R2 R1 <- mem[R2]
store R1, R2 mem[R1] <- R2

Classifying ISAs

) Stack

Precems:

) Accuradater 1 Pagpater-mammaey 19 lagh sagiasen Wiadt axcen

52000 Evmrvaee Siciance (LA}, AR rights seservad.

Registers:
Advantages and Disadvantages

« Advantages
— Faster than cache (no addressing mode or tags)
— Deterministic (no misses)
— Can replicate (multiple read ports)

— Short identifier (typically 3 to 8 bits)
— Reduce memory traffic

« Disadvantages

— Need to save and restore on procedure calls and context
switch

— Cant take the address of a register (for pointers)
— Fixed size (can't store strings or structures efficiently)
— Compiler must manage

Load-Store Architectures

¢ Instruction set:

General Register Machine and
Instruction Formats

cPU

Instruction formats
Memory Registers

load load R8, Op1 (R8 <~ Op1)

OplAddr: [Op1 RS
[ons [o | ovanser]

R6

'
t/ R4 add R2, R4, R6 (R2 <~ R4 + R6)
.

Nexti Program
counter

add R1, R2,R3 sub R1, R2, R3 mul R1, R2, R3
load R1, R4 store R1, R4

« Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
load R4, R1
load R5, R2
load R6, R3
mul R7, R6, R5 I* c*B *
add R8, R7, R4 I* A+C*B *
mul R9, R4, R5 I* A*B */
sub R10, R9, RS I A*B - (A+C*B) ¥/

Load-Store:

* Pros

Pros and Cons

—Simple, fixed length instruction encoding
—Instructions take similar number of cycles
—Relatively easy to pipeline

« Cons

—Higher instruction count
—Not all instructions need three operands
—Dependent on good compiler

General Register Machine and
Instruction Formats

* It is the most common choice in today’s
general-purpose computers

» Which register is specified by small
“address” (3 to 6 bits for 8 to 64 registers)

* Load and store have one long & one short
address: One and half addresses

* Arithmetic instruction has 3 “half”
addresses

Real Machines Are Not So
Simple
¢ Most real machines have a mixture of 3, 2, 1, O,
and 1- address instructions
* A distinction can be made on whether arithmetic
instructions use data from memory
» If ALU instructions only use registers for
operands and result, machine type is load-store
— Only load and store instructions reference memory

* Other machines have a mix of register-memory
and memory-memory instructions

Register indirect

Summary of Use of Addressing
Modes

Immediate

Displacemant

Froquancy of e addeusaing mod

© 2003 Elsovior Science (USA), AN riahls resenved

Alignment Issues

If the architecture does not restrict memory accesses to be
aligned then
— Software is simple
— Hardware must detect misalignment and make 2 memory accesses
— Expensive detection logic is required
— All references can be made slower
Sometimes unrestricted alignment is required for backwards
compatibility
If the architecture restricts memory accesses to be aligned then
— Software must guarantee alignment
— Hardware detects misalignment access and traps
— No extra time is spent when data is aligned

Since we want to make the common case fast, having restricted

alignment is often a better choice, unless compatibility is an
issue

Pascentage of |
[l

Distribution of Displacement
Values

Flesting-poin ---n- ."\

o ' /
" i\/ \“‘- ‘ A
0 o o2 13 s

Bumer o bits of dsplacement

©:2000 Elsevier Science [LISA). Al rights reserved

Types of Addressing Modes
. . (VAX) memory
1.Register direct Ri

2.Immediate (literal) #n
3.Displacement ~ M[Ri + #n]
4.Register indirect M[Ri]

5.Indexed M[Ri + Rj]

6.Direct (absolute) M[#n]

7.Memory Indirect M[M[Ri]] reg. file
8.Autoincrement M[Ri++]
9.Autodecrement MJRi - -]
10. Scaled M[Ri + Rj*d + #n]

Frequency of Immediate
Operands

1B Floating-point average

e W Integer average
Loads s

2003 Elsvier Science (USAL All ights resarved.

Types of Operations

Arithmetic and Logic: AND, ADD

Data Transfer: MOVE, LOAD, STORE

Control BRANCH, JUMP, CALL
System OS CALL, VM

Floating Point ADDF, MULF, DIVF
Decimal ADDD, CONVERT
String MOVE, COMPARE
Graphics (DE)COMPRESS

Relative Frequency of
Control Instructions

Callreturn

Conditional branch

Frequency of branch instructions

© 2003 Elsevier Science (USA). All rights reserved.

Distribution of Data Accesses
by Size

Double word
(64 bits)

Word
(32 bits)
Half word
(16 bits) 5% W Floating-point average
O Integer average
Byte | 19 °9 u
(8 bits) 10%
0% 20% 40% 60% BO0%

@ 2003 Elsevier Science (USA). All rights reserved.

Control instructions (cont’d)

+ Addressing modes
— PC-relative addressing (independent of program load
& displacements are close by)
« Requires displacement (how many bits?)
* Determined via empirical study. [8-16 works!]
— For procedure returns/indirect jumps/kernel traps, target
may not be known at compile time.
+ Jump based on contents of register

+ Useful for switch/(virtual) functions/function ptrs/dynamically
linked libraries etc.

80x86 Instruction Frequency
(SPECint92, Fig. B.13)

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%

Total 96%

Branch Distances (in terms of
number of instructions)

- i T S,
0t 2 3 4 5 6 7T B 8 Wom @1 oWsow U WWE
5t ¢ rarch dapiacerart

© 2000 Elsaviar Scinrce (USA)L Al righty resrvec

Frequency of Different Types of
Compares in Conditional
Branches

© 2003 Elnevier Science (LISAL Al rights resenad

Compilers and ISA

* Compiler Goals

— All correct programs compile correctly

— Most compiled programs execute quickly

— Most programs compile quickly

— Achieve small code size

— Provide debugging support
e Multiple Source Compilers

— Same compiler can compiler different languages
e Multiple Target Compilers

— Same compiler can generate code for different
machines

Encoding an Instruction set

* a desire to have as many registers and
addressing mode as possible

+ the impact of size of register and addressing
mode fields on the average instruction size
and hence on the average program size

* a desire to have instruction encode into
lengths that will be easy to handle in the
implementation

Compilers Phases

Jependencios Funation
anguage doperdont: Transtoem langussge 1o
s coveran T orm
e —
[
Bamewhal Innguags depandee; Far sxamgile, koop
asgely machine independent ol translommations and
joptmiraiba Procedurs mning

(atso called

procedure rtegraton)
Smal language < Inchuding global and local
v ———] Gisbal Eptrrisalions + regater
.0, regisior coumMBRyTos) or e allocation
Aighly machine depondent; Dotasnd instructon selocton
g indeponont Code gonarator [e ————

© 2003 Elsavior Scionca [USA}L. AN rights resarved

Three choice for encoding the
instruction set

Operason ad | Addreas Accrwas v oo [Adrens Ackirans
no. of operands | specifier 1 e 1 Bpaciar Nt

) Viariabie (oG, VAX. intel B0x86)

Operason Jrr— r——y Adddroan
ek 1 tiokd 2 2 F]
i) Fiond f0.9.. Alpha. ARM, MIPS, PowarPC, SPARC, SuparH)

Dperason Adeeaa =
swcitiar ot

perason Ficwan Firan Avrnan
spocitior 1 spocitior 2 ot

‘Oparnson Adcinss. Addeass. | Addross
specilior ok 1 bt 2

b Pyt (0., MEM DO0T0, MIES1E, Thum, TI TMEIZ0CSAx)

© 2003 Etsevier Science (LIEAL Al rahts ressned

Compiler Based Register
Optimization

* Assume small number of registers (16-32)

» Optimizing use is up to compiler

» HLL programs have no explicit references to registers
— usually — is this always true?

+ Assign symbolic or virtual register to each candidate
variable

* Map (unlimited) symbolic registers to real registers

» Symbolic registers that do not overlap can share real
registers

+ If you run out of real registers some variables use memory
» Uses graph coloring approach

Designing ISA to Improve
Compilation
Provide enough general purpose registers to ease

register allocation (more than 16).

Provide regular instruction sets by keeping the
operations, data types, and addressing modes
orthogonal.

Provide primitive constructs rather than trying to
map to a high-level language.

Simplify trade-off among alternatives.

Allow compilers to help make the common case
fast.

MIPS Registers

¢ Main Processor (integer manipulations):
— 32 64-bit general purpose registers — GPRs (R, — Rj,);
R, has fixed value of zero. Attempt to writing into R is not
illegal, but its value will not change;
— two 64-bit registers — Hi & Lo, hold results of integer
multiply and divide
— 64-bit program counter — PC;
» Coprocessor 1 (Floating Point Processor — real numbers
manipulations):
— 32 64-bit floating point registers — FPRs (f;— f3,);
— five control registers;
Coprocessor 0 — CPO is incorporated on the MIPS CPU chip
and it provides functions necessary to support operating
system: exception handling, memory management scheduling
and control of critical resources.

ISA Metrics

* Orthogonality
— No special registers, few special cases, all operand
modes available with any data type or instruction type
* Completeness
— Support for a wide range of operations and target
applications
* Regularity
— No overloading for the meanings of instruction fields
 Streamlined Design
— Resource needs easily determined. Simplify tradeoffs.

» Ease of compilation (programming?), Ease of
implementation, Scalability

MIPS Registers (continued)

« Coprocessor 0 (CP0) registers (partial list):
(CPOregl12) — processor status and control;

(CPOreg13) — cause of the most recent
exception;

(CPOregl4) — program counter at the last
exception;
(CPOreg08) — the address for the most
recent address related exception;
(CPOreg09) — acts as a timer, incrementing
at a constant rate that is a function of the pipeline clock;

- (CPOregl1) — used in conjunction with
Count register;

- (CPOreg25);

MIPS Processor

Main Processar Coprocessor 1 (FPU)

Registers Registers

S0 S0

MIPS Data Types

* MIPS64 operates on:
— 64-bit (unsigned or 2’s complement) integers,

— 32-bit (single precision floating point) real numbers,
— 64-bit (double precision floating point) real numbers;

« 8-bit bytes, 16-bit half words and 32-bit words loaded into
GPRs are either zero or sign bit expanded to fill the 64 bits.

« only 32- or 64-bit real numbers can be loaded into FPRs.

* 32-bit real number loaded into FPRs is zero-appended.

MIPS Addressing Modes

register addressing;

immediate addressing;

register indexed is the only memory data addressing;
(in MIPS terminology called base addressing):

— memory address = register content plus 16-bit offset
since R, always contains value 0:

— R, + 16-bit offset > absolute addressing;

— 16-bit offset = 0 > register indirect;

branch instructions use PC relative addressing:

— branch address = [PC] + 4 + 4x16-bit offset

jump instructions use:

— pseudo-direct addressing with 28-bit addresses (jumps
inside 256MB regions),

— direct (absolute) addressing with 64-bit addresses.

MIPS Instruction

« Instructions that move data:
— load to register from memory (only base addressing),
— store from register to memory (only base addressing),
— move between registers in same and different coprocessors.

» ALU integer instructions; register — register and register-
immediate computational instructions.
* Floating point instructions; register — register computational
instructions and floating point to/from integer conversions.
Control-related instruction:
— (simple) branch instructions use PC relative addressing
— jump instructions with 28-bit addresses (jumps inside
256MB regions), or absolute 64-bit addresses.
Special control-related instructions.

Instruction Layout for MIPS

I-type instruction

N N ae——

Encodes: Loads and stores of byles, hall words, words,
doutse words. Al i

Conditional Branch INetructicns (e is register, rd wnused)
Jdurnp register, jumgs aocd link register
(rdl = O, ru = destination, immaediste = 0)

Pty Inmtruction

o 5 85 s 3 L
[Opeoda i = | n [rel [-n-m-l funat
Fagistarrogister AL operationa: rd - ra funet i
LnClion ancodes the data path operetion: Add. Subs, .

it Bpecial (egIsTers Ko Mmoves

Atype Instruction

= T

dusrmp and jurmg and fink
Trap and rowm from exception

200D Elsevier Schence (LSA) All ights resened.

Load/Store Instructions

Inatraction name

Meaning

Figure B.23 The kaud and stien
e be abgned Of course, b

" addressing modde and reduine that the mem
soes ave available for 8l the dass types shewn

MIPS Alignment

« MIPS supports byte addressability:
— it means that a byte is the smallest unit with its own address;
« MIPS restricts memory accesses to be aligned as follows:

— 64-bit word has to start at byte address which is multiple of 8;
thus, 64-bit word at address 8x includes eight bytes with
addresses 8x, 8x+1, 8x+2, ... 8x+6, 8x+7.

— 32-bit word has to start at byte address that is multiple of 4;
thus, 32-bit word at address 4n includes four bytes with
addresses: 4n, 4n+1, 4n+2, and 4n+3.

— 16-bit half word has to start at byte address that is multiple
of 2; thus, 16-bit word at address 2n includes two bytes with
addresses: 2n and 2n+1.

* MIPS supports 64-bit addresses:
— it means that an address is given as 64-bit unsigned integer;

Sample ALU Instructions

Example instruction Instruction name Meaning

Add immediate

Load upper immedi

Set hess than g5 [R3])
1]«1 slise Regs[RL]«0

Figure B.24 Examples of arithmetic/logical instructions on MIPS, both with and
without immediates,

Control Flow Instructions

Example

instruction Instruction name Meaning

3 mame Jemp Poy gename

JAL name Furnp and link Regs [RI1]e=POvd; Plyg ge—name;
- [{FC+4)—27) < mame < [{PC+4)427)

JALR R2Z Jump and fink regisser Regs [RI1]e=FCrd; PL%:9¢95{P2!

) S reaHeT Plo-Regs (R3]

BEQE A#,name Branch equal zen if {Regs[R4]==0) PCe—nane; .

[(pe+4}-21") < mame < ({PC+d)e2™)
BNE R3,R4,name Hranch not eiquol zero 7 {Regs{R3]1= Regs[R4]) Ple-name:

{pCea) 217} <

ame < [(PCHA)4EY)

Conditional mave
if zero

MOVE R1,RE,R3

TT (Regs[R3]==0) RegsiRlle-Regs[#2]

Figure B.25 Typical control flow instructions in MIPS. Al control instructions, except

Jumps 10 an address in a

et, are PCrelative. Note that the branch distances are

longer than the address field would suggest; since MIPS instructions are all 32 bits long.

the byte branch address is multiplied by 4 o get a longer distance.

[L e —————

