
1

Appendix B

Instruction Set PrinciplesInstruction Set Principles
and Examples

Computer Architecture’s
Changing Definition

• 1950s to 1960s:
Computer Architecture Course = Computer Arithmetic

• 1970s to mid 1980s:
Computer Architecture Course = Instruction Set
Design, especially ISA appropriate for compilers

• 1990s:
Computer Architecture Course = Design of CPU,
memory system, I/O system, Multiprocessors

Instruction Set Architecture
(ISA)

software

instruction set

hardware

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)

Instructions Can Be Divided into
3 Classes (I)

• Data movement instructions
– Move data from a memory location or register to another

memory location or register without changing its form
– Load—source is memory and destination is register
– Store—source is register and destination is memory

• Arithmetic and logic (ALU) instructions
– Change the form of one or more operands to produce a result

stored in another location
– Add, Sub, Shift, etc.

• Branch instructions (control flow instructions)
– Alter the normal flow of control from executing the next

instruction in sequence
– Br Loc, Brz Loc2,—unconditional or conditional branches

Classifying ISAs
Accumulator (before 1960):

1 address add A acc <− acc + mem[A]

Stack (1960s to 1970s):
0 address add tos <− tos + next

Memory-Memory (1970s to 1980s):
2 address add A B mem[A] < mem[A] + mem[B]2 address add A, B mem[A] <− mem[A] + mem[B]
3 address add A, B, C mem[A] <− mem[B] + mem[C]

Register-Memory (1970s to present):
2 address add R1, A R1 <− R1 + mem[A]

load R1, A R1 <_ mem[A]

Register-Register (Load/Store) (1960s to present):
3 address add R1, R2, R3 R1 <− R2 + R3

load R1, R2 R1 <− mem[R2]
store R1, R2 mem[R1] <− R2

2

Classifying ISAs

Load-Store Architectures
• Instruction set:

add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, R4 store R1, R4

• Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
load R4, R1
load R5, R2
load R6, R3
mul R7, R6, R5 /* C*B */
add R8, R7, R4 /* A + C*B */
mul R9, R4, R5 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

Load-Store:
Pros and Cons

• Pros
– Simple, fixed length instruction encoding
– Instructions take similar number of cycles

R l ti l t i li– Relatively easy to pipeline

• Cons
– Higher instruction count
– Not all instructions need three operands
– Dependent on good compiler

Registers:
Advantages and Disadvantages

• Advantages
– Faster than cache (no addressing mode or tags)
– Deterministic (no misses)
– Can replicate (multiple read ports)

– Short identifier (typically 3 to 8 bits)
– Reduce memory traffic

• Disadvantages
– Need to save and restore on procedure calls and context

switch
– Can’t take the address of a register (for pointers)
– Fixed size (can’t store strings or structures efficiently)
– Compiler must manage

General Register Machine and
Instruction Formats

Memory

Op1Addr: Op1
load load R8, Op1 (R8 <− Op1)

CPU

Registers

R8

R6

Instruction formats

R8load Op1Addr

Nexti Program
counter

R4

R2

add R2, R4, R6 (R2 <− R4 + R6)

R2add R6R4

• It is the most common choice in today’s
general-purpose computers

• Which register is specified by small

General Register Machine and
Instruction Formats

g p y
“address” (3 to 6 bits for 8 to 64 registers)

• Load and store have one long & one short
address: One and half addresses

• Arithmetic instruction has 3 “half”
addresses

3

Real Machines Are Not So
Simple

• Most real machines have a mixture of 3, 2, 1, 0,
and 1- address instructions

• A distinction can be made on whether arithmetic
instructions use data from memoryinstructions use data from memory

• If ALU instructions only use registers for
operands and result, machine type is load-store

– Only load and store instructions reference memory
• Other machines have a mix of register-memory

and memory-memory instructions

Alignment Issues
• If the architecture does not restrict memory accesses to be

aligned then
– Software is simple
– Hardware must detect misalignment and make 2 memory accesses
– Expensive detection logic is required
– All references can be made slower

• Sometimes unrestricted alignment is required for backwards
compatibilitycompatibility

• If the architecture restricts memory accesses to be aligned then
– Software must guarantee alignment
– Hardware detects misalignment access and traps
– No extra time is spent when data is aligned

• Since we want to make the common case fast, having restricted
alignment is often a better choice, unless compatibility is an
issue

Types of Addressing Modes
(VAX)

1.Register direct Ri
2.Immediate (literal) #n
3.Displacement M[Ri + #n]
4.Register indirect M[Ri]
5 Indexed M[Ri + Rj]

memory

5.Indexed M[Ri + Rj]
6.Direct (absolute) M[#n]
7.Memory IndirectM[M[Ri]]
8.Autoincrement M[Ri++]
9.Autodecrement M[Ri - -]
10. Scaled M[Ri + Rj*d + #n]

reg. file

Summary of Use of Addressing
Modes

Distribution of Displacement
Values

Frequency of Immediate
Operands

4

Types of Operations

• Arithmetic and Logic: AND, ADD
• Data Transfer: MOVE, LOAD, STORE
• Control BRANCH, JUMP, CALL, ,
• System OS CALL, VM
• Floating Point ADDF, MULF, DIVF
• Decimal ADDD, CONVERT
• String MOVE, COMPARE
• Graphics (DE)COMPRESS

Distribution of Data Accesses
by Size

80x86 Instruction Frequency
(SPECint92, Fig. B.13)

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%

9

9 call 1%
10 return 1%

Total 96%

Relative Frequency of
Control Instructions

Control instructions (cont’d)

• Addressing modes
– PC-relative addressing (independent of program load

& displacements are close by)
R i di l t (h bit ?)• Requires displacement (how many bits?)

• Determined via empirical study. [8-16 works!]

– For procedure returns/indirect jumps/kernel traps, target
may not be known at compile time.

• Jump based on contents of register
• Useful for switch/(virtual) functions/function ptrs/dynamically

linked libraries etc.

Branch Distances (in terms of
number of instructions)

5

Frequency of Different Types of
Compares in Conditional

Branches

Encoding an Instruction set

• a desire to have as many registers and
addressing mode as possible

• the impact of size of register and addressing p g g
mode fields on the average instruction size
and hence on the average program size

• a desire to have instruction encode into
lengths that will be easy to handle in the
implementation

Three choice for encoding the
instruction set

Compilers and ISA
• Compiler Goals

– All correct programs compile correctly
– Most compiled programs execute quickly
– Most programs compile quickly
– Achieve small code size
– Provide debugging support

• Multiple Source Compilers
– Same compiler can compiler different languages

• Multiple Target Compilers
– Same compiler can generate code for different

machines

Compilers Phases

Compiler Based Register
Optimization

• Assume small number of registers (16-32)
• Optimizing use is up to compiler
• HLL programs have no explicit references to registers

– usually – is this always true?
• Assign symbolic or virtual register to each candidateAssign symbolic or virtual register to each candidate

variable
• Map (unlimited) symbolic registers to real registers
• Symbolic registers that do not overlap can share real

registers
• If you run out of real registers some variables use memory
• Uses graph coloring approach

6

Designing ISA to Improve
Compilation

• Provide enough general purpose registers to ease
register allocation (more than 16).

• Provide regular instruction sets by keeping the
operations, data types, and addressing modesoperations, data types, and addressing modes
orthogonal.

• Provide primitive constructs rather than trying to
map to a high-level language.

• Simplify trade-off among alternatives.
• Allow compilers to help make the common case

fast.

ISA Metrics
• Orthogonality

– No special registers, few special cases, all operand
modes available with any data type or instruction type

• Completeness
– Support for a wide range of operations and target

applicationsapplications
• Regularity

– No overloading for the meanings of instruction fields
• Streamlined Design

– Resource needs easily determined. Simplify tradeoffs.
• Ease of compilation (programming?), Ease of

implementation, Scalability

MIPS Processor

Main Processor

R e g is t e r s

$ 0

$ 3 1

C o p r o c e s s o r 1 (F P U)

R e g is t e r s

$ 0

$ 3 1

M e m o r y

33

$ 3 1

A r i t h m e t ic M u lt ip ly
d iv id e

L o H i

$ 3 1

A r it h m e t ic
u n it

R e g is t e r s

B a d V A d d r

C o p r o c e s s o r 0 (t r a p s a n d m e m o r y)

S t a t u s

C a u s e

E P C

Prog. Counter

Logic unit

Control

MIPS Registers

• Main Processor (integer manipulations):

– 64-bit program counter – PC;

– two 64-bit registers – Hi & Lo, hold results of integer
multiply and divide

– 32 64-bit general purpose registers – GPRs (R0 – R31);
R0 has fixed value of zero. Attempt to writing into R0 is not
illegal, but its value will not change;

34

– five control registers;

p g ;
• Coprocessor 1 (Floating Point Processor ─ real numbers

manipulations):
– 32 64-bit floating point registers – FPRs (f0 – f31);

• Coprocessor 0 – CP0 is incorporated on the MIPS CPU chip
and it provides functions necessary to support operating
system: exception handling, memory management scheduling
and control of critical resources.

MIPS Registers (continued)

• Coprocessor 0 (CP0) registers (partial list):
– Status register (CP0reg12) – processor status and control;
– Cause register (CP0reg13) – cause of the most recent

exception;
– EPC register (CP0reg14) – program counter at the last

exception;
B dVAdd i t (CP0 08) th dd f th t

35

– BadVAddr register (CP0reg08) – the address for the most
recent address related exception;

– Count register (CP0reg09) – acts as a timer, incrementing
at a constant rate that is a function of the pipeline clock;

– Compare register (CP0reg11) – used in conjunction with
Count register;

– Performance Counter register (CP0reg25);

MIPS Data Types

• MIPS64 operates on:
– 64-bit (unsigned or 2’s complement) integers,
– 32-bit (single precision floating point) real numbers,
– 64-bit (double precision floating point) real numbers;

• 8-bit bytes 16-bit half words and 32-bit words loaded into

36

• 8-bit bytes, 16-bit half words and 32-bit words loaded into
GPRs are either zero or sign bit expanded to fill the 64 bits.

• only 32- or 64-bit real numbers can be loaded into FPRs.

• 32-bit real number loaded into FPRs is zero-appended.

7

MIPS Addressing Modes

• immediate addressing;
• register addressing;

• register indexed is the only memory data addressing;
(in MIPS terminology called base addressing):
– memory address = register content plus 16-bit offset

• since R0 always contains value 0:
– R0 + 16–bit offset absolute addressing;

37

– 16-bit offset = 0 register indirect;
• branch instructions use PC relative addressing:

– branch address = [PC] + 4 + 4×16-bit offset
• jump instructions use:

– pseudo-direct addressing with 28-bit addresses (jumps
inside 256MB regions),

– direct (absolute) addressing with 64-bit addresses.

Instruction Layout for MIPS

MIPS Alignment

• MIPS restricts memory accesses to be aligned as follows:

– 32-bit word has to start at byte address that is multiple of 4;

• MIPS supports byte addressability:
– it means that a byte is the smallest unit with its own address;

thus, 64-bit word at address 8x includes eight bytes with
addresses 8x, 8x+1, 8x+2, … 8x+6, 8x+7.

– 64-bit word has to start at byte address which is multiple of 8;

39

y p ;
thus, 32-bit word at address 4n includes four bytes with
addresses: 4n, 4n+1, 4n+2, and 4n+3.

– 16-bit half word has to start at byte address that is multiple
of 2; thus, 16-bit word at address 2n includes two bytes with
addresses: 2n and 2n+1.

– it means that an address is given as 64-bit unsigned integer;
• MIPS supports 64-bit addresses:

MIPS Instruction
• Instructions that move data:

– load to register from memory (only base addressing),
– store from register to memory (only base addressing),
– move between registers in same and different coprocessors.

• ALU integer instructions; register – register and register-
immediate computational instructions.

40

p
• Floating point instructions; register – register computational

instructions and floating point to/from integer conversions.
• Control-related instruction:

– (simple) branch instructions use PC relative addressing
– jump instructions with 28-bit addresses (jumps inside

256MB regions), or absolute 64-bit addresses.
• Special control-related instructions.

Load/Store Instructions

Figure B.23

Sample ALU Instructions

Figure B.24

8

Control Flow Instructions

Figure B.25

Figure B.26

