Sample Scoring Materials for Parts A, B, and C

Scoring Key for Multiple-Choice Questions in Parts A and B-1

Part A

(1)	1	(10)	1	(19)	2	(28)
(2)	4	(11)	3	(20)	1	(29)
(3)	1	(12)	1	(21)	2	(30)
1						
(4)	2	(13)	3	(22)	4	(31)
(5)	4	(14)	1	(23)	2	(32)
(6)	2	(15)	4	(24)	3	(33)
(7)	3	(16)	4	(25)	1	(34)
(8)	2	(17)	1	(26)	1	(35)
(9)	1	(18)	2	(27)	4	

Part B-1

(36)	1	(41)	1	(46)
(37)	4	(42)	4	(47)
(38)	1	(43)	4	(48)
(39)	4	(44)	1	
(40)	3	(45)	1	

Scoring Criteria for Calculations

For each question requiring the student to show all calculations, including the equation and substitution with units, apply the following scoring criteria:

- Allow one credit for the equation and substitution of values with units. If the equation and/or substitution with units is not shown, do not allow this credit.
- Allow one credit for the correct answer (number and unit). If the number is given without the unit, do not allow this credit.
- Penalize a student only once per equation for omitting units.
- Allow full credit even if the answer is not expressed with the correct number of significant figures.

Scoring Guide for Parts B-2 and C Part B-2

Allow 1 credit for $20 . \mathrm{N}$ or 20 N .

Rating Instructions for Questions 50, 51, and 52:
Allow 1 credit for plotting the data correctly.
Allow 1 credit for drawing a line of best fit.
Allow 1 credit for correctly sketching a line representing an object decelerating uniformly in a straight line (accept any straight line with a negative slope).

Example of an appropriate graph:

Allow 1 credit for indicating that the acceleration of the object is $1.2 \mathrm{~m} / \mathrm{s}^{2}$ or an answer that is consistent with the student's graph.

Allow 1 credit for R, U, Y.
Allow 1 credit for W, X, Z.

Allow 1 credit for 6 V .

Allow 1 credit for $1.2 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$.

Allow 1 credit for $4.6 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$.

Allow 1 credit for indicating that the wavelength would decrease.
Allow 1 credit for 4.

Allow a total of 2 credits. Refer to Scoring Criteria for Calculations in this scoring key.

Example of Acceptable Response

$$
\begin{aligned}
& E=\frac{h c}{l} \\
& E=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{6.58 \times 10^{-17} \mathrm{~m}}
\end{aligned}
$$

$$
E=3.02 \times 10^{-19} \mathrm{~J}
$$

Allow 1 credit for 1.89 eV or an answer consistent with the student's response to question 61.

Allow 1 credit for 3 and 2 or an answer consistent with the student's response to question 62 .

Allow 1 credit for indicating that it cannot be an x-ray because the wavelength is too long.

Part C

Allow a total of 3 credits, 1 for each correct charge as indicated in the chart below.

Sphere	Charge
R	neutral
T	positive
U	positive

Allow a total of 3 credits.

Allow 1 credit for each vector correctly drawn with an arrowhead at the end and appropriately labeled.
Allow 2 credits for all three vectors correctly drawn but missing one or more labels.
Subtract 1 credit for one or more additional vectors that are not of the correct three (but do not give the student a score of less than zero).

Do not penalize the student if vectors are not drawn to scale.

Example of Acceptable Response

Allow a total of 2 credits, 1 credit for indicating kinetic energy when the block is in position A and 1 credit for indicating potential energy when the block is in position B. Appropriate responses include, but are not limited to:

Position A: kinetic or KE, or energy of motion
Position B: elastic or potential, or energy of position

Allow a total of 2 credits, 1 credit for $m g \Delta h=\frac{1}{2} k x^{2}$ or $\Delta P E=P E_{S}$ and 1 credit for solving k.

Example of Acceptable Response

$\Delta P E=m g \Delta h$
$P E_{S}=\frac{1}{2} k x^{2}$
$\frac{1}{2} k x^{2}=m g \Delta h$
$k=\frac{2 m g \Delta h}{x^{2}}$

Do not allow this credit if the student only lists formulas from the reference tables without indicating their equality.

Allow a total of 3 credits, allocated as follows:

- 1 credit for R_{1} and R_{2} connected in parallel with the battery
- 1 credit for the ammeter connected in series with R_{1}, only
- 1 credit for the voltmeter connected in parallel with R_{1} or equivalent position

Example of Acceptable Response

Allow 1 credit for 2.0 V or 2 V .

Allow a total of 2 credits. Refer to Scoring Criteria for Calculations in this scoring key.

Example of Acceptable Responses

$$
\begin{aligned}
& \frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{R_{e q}} \\
& \frac{1}{R_{1}}=\frac{1}{R_{e q}}-\frac{1}{R_{2}} \\
& \frac{1}{R_{1}}=\frac{1}{2.0 \Omega}-\frac{1}{3.0 \Omega} \\
& \frac{1}{R_{1}}=\frac{1}{6.0 \Omega} \\
& R_{1}=6 \Omega \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{12 \mathrm{~V}}{3.0 \Omega}=4.0 \mathrm{~A} \\
& I_{1}=6.0 \mathrm{~A}-4.0 \mathrm{~A}=2.0 \mathrm{~A} \\
& R_{1-} \frac{V_{1}}{I_{1}}=\frac{12 \mathrm{~V}}{2.0 \mathrm{~A}}=6 \Omega
\end{aligned}
$$

Allow 1 credit for 10^{-8}.

Allow 1 credit for 10^{-47}.

Allow a total of 2 credits for explaining why gravitational interaction is negligible for the hydrogen atom by using responses to questions 72 and 73 .

Appropriate responses include, but are not limited to:

- The electrostatic force is 10^{39} stronger than the gravitational force.
- The gravitational force is smaller than the electromagnetic interaction.

Allow credit for an answer that is consistent with the student's answers to questions 72 and 73 .

THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234

2002 Editiono Reference Tables for Physical Setting/Physics

List of Physical Constants		
N ame	Symbol	Value
U niversal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	C	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of sound in air at STP		$3.31 \times 10^{2} \mathrm{~m} / \mathrm{s}$
M ass of E arth		$5.98 \times 10^{24} \mathrm{~kg}$
M ass of the M oon		$7.35 \times 10^{22} \mathrm{~kg}$
M ean radius of E arth		$6.37 \times 10^{6} \mathrm{~m}$
M ean radius of the M oon		$1.74 \times 10^{6} \mathrm{~m}$
M ean distance-E arth to the M oon		$3.84 \times 10^{8} \mathrm{~m}$
M ean distance-E arth to the Sun		$1.50 \times 10^{11} \mathrm{~m}$
E lectrostatic constant	k	$8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
1 elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 \times 10^{-19} \mathrm{~J}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
1 universal mass unit (u)		$9.31 \times 10^{2} \mathrm{M} \mathrm{eV}$
Rest mass of the electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Rest mass of the proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Rest mass of the neutron	m_{n}	$1.67 \times 10^{-27} \mathrm{~kg}$

Prefixes for Powers of $\mathbf{1 0}$		
Prefix	Symbol	N otation
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	m	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Approximate Coefficients of Friction		
	Kinetic	Static
Rubber on concrete (dry)	0.68	0.90
Rubber on concrete (wet)	0.58	
Rubber on asphalt (dry)	0.67	0.85
Rubber on asphalt (wet)	0.53	
Rubber on ice	0.15	
Waxed ski on snow	0.05	0.14
Wood on wood	0.30	0.42
Steel on steel	0.57	0.74
Copper on steel	0.36	0.53
Teflon on Teflon	0.04	

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

Absolute Indices of Refraction $\left(f=5.09 \times 10^{14} \mathrm{~Hz}\right)$	
Air	1.00
Corn oil	1.47
Diamond	2.42
E thyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
L ucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Energy Level Diagrams

Energy Levels for the Hydrogen Atom

Classification of Matter

Level
Energy (eV)

A Few Energy Levels for the Mercury Atom

Particles of the Standard Model
Quarks
$\left.\begin{array}{c|cc|}\begin{array}{l}\text { Name } \\ \text { Symbol } \\ \text { Charge }\end{array} & \begin{array}{c}\text { up } \\ u \\ +\frac{2}{3} e\end{array} & \begin{array}{cc}\text { charm } \\ c \\ +\frac{2}{3} e\end{array}\end{array} \begin{array}{c}\text { top } \\ \mathrm{t} \\ +\frac{2}{3} \mathrm{e}\end{array}\right]$

Leptons

Note: F or each particle there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$F_{e}=\frac{k q_{1} q_{2}}{r^{2}}$
$E=\frac{F_{e}}{q}$
$V=\frac{W}{q}$
$I=\frac{\Delta q}{t}$
$R=\frac{V}{I}$
$R=\frac{\rho L}{A}$
$P=V I=I^{2} R=\frac{V^{2}}{R}$
$\mathrm{W}=\mathrm{Pt}=\mathrm{VIt}=\mathrm{I}^{2} \mathrm{Rt}=\frac{\mathrm{V}^{2} \mathrm{t}}{\mathrm{R}}$

Series Circuits

$I=I_{1}=I_{2}=I_{3}=\ldots$
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots$
$R_{e q}=R_{1}+R_{2}+R_{3}+\ldots$

A = cross-sectional area
$E=$ electric field strength
$F_{e}=$ electrostatic force
I = current
$\mathrm{k}=$ electrostatic constant
$\mathrm{L}=$ length of conductor
P = electrical power
q = charge
$\mathrm{R}=$ resistance
$R_{e q}=$ equivalent resistance
$r=$ distance between centers
$\mathrm{t}=$ time
$\mathrm{V}=$ potential difference
W = work (electrical energy)
$\Delta=$ change
$\rho=$ resistivity

Parallel Circuits

$I=I_{1}+I_{2}+I_{3}+\ldots$
$\mathrm{V}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\ldots$
$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots$

Circuit Symbols

$\stackrel{\perp}{\perp}$ cell
$\stackrel{\perp}{\mp}$ battery
_- switch
-(V)- voltmeter
-(A)- ammeter
W resistor
variable resistor

Resistivities at $\mathbf{2 0}^{\circ} \mathbf{C}$	
M aterial	Resistivity $(\Omega \cdot \mathrm{m})$
Aluminum	2.82×10^{-8}
Copper	1.72×10^{-8}
Gold	2.44×10^{-8}
Nichrome	$150 . \times 10^{-8}$
Silver	1.59×10^{-8}
Tungsten	5.60×10^{-8}

Waves and Optics

$v=f \lambda$
$\mathrm{c}=$ speed of light in a vacuum
$T=\frac{1}{f}$
$\theta_{i}=\theta_{r}$
$\mathrm{n}=\frac{\mathrm{C}}{\mathrm{V}}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\mathrm{f}=$ frequency
$\mathrm{n}=$ absolute index of refraction
T = period
$\mathrm{v}=$ velocity
$\lambda=$ wavelength
$\theta=$ angle
$\frac{n_{2}}{n_{1}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$
$\theta_{\mathrm{i}}=$ incident angle
$\theta_{r}=$ reflected angle

Modern Physics

$E_{\text {photon }}=h f=\frac{h c}{\lambda}$	$c=$ speed of light in a vacuum
$E_{\text {photon }}=E_{i}-E_{f}$	$E=$ energy
$E=m c^{2}$	$f=$ frequency
	$h=$ Planck's constant
	$m=$ mass
	$\lambda=$ wavelength

Geometry and Trigonometry

Rectangle

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Right Triangle

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \sin \theta=\frac{a}{c} \\
& \cos \theta=\frac{b}{c} \\
& \tan \theta=\frac{a}{b}
\end{aligned}
$$

A = area
b = base
C = circumference
$\mathrm{h}=$ height
$r=$ radius
a

Mechanics

	$\mathrm{a}=$ acceleration
$\nabla=\mathrm{t}$	$\mathrm{a}_{\mathrm{C}}=$ centripetal acceleration
$a=\underline{\Delta v}$	A = any vector quantity
	d = displacement/distance
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{at}$	$\mathrm{E}_{\mathrm{T}}=$ total energy
$d=v_{i} t+\frac{1}{2} a t^{2}$	F = force
	$\mathrm{F}_{\mathrm{C}}=$ centripetal force
$\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{ad}$	$\mathrm{F}_{\mathrm{f}}=$ force of friction
$A_{y}=A \sin \theta$	$\mathrm{F}_{\mathrm{g}}=$ weight/force due to gravity
$\mathrm{A}_{\mathrm{X}}=\mathrm{A} \cos \theta$	$\mathrm{F}_{\mathrm{N}}=$ normal force
$\mathrm{A}_{\mathrm{X}}=\mathrm{A} \cos \theta$	$\mathrm{F}_{\text {net }}=$ net force
$=\frac{F_{\text {net }}}{m}$	$\mathrm{F}_{\mathrm{S}}=$ force on a spring
$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{N}}$	$\mathrm{g}=$ acceleration due to gravity or gravitational field strength
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$	$\begin{aligned} & \mathrm{G}=\text { universal gravitational constant } \\ & \mathrm{h}=\text { height } \end{aligned}$
F_{g}	$\mathrm{J}=$ impulse
m	$\mathrm{k}=$ spring constant
$\mathrm{p}=\mathrm{mv}$	$\mathrm{KE}=$ kinetic energy
	$\mathrm{m}=$ mass
${ }_{\text {before }}$ - $P_{\text {after }}$	$\mathrm{p}=$ momentum
$J=F t=\Delta \mathrm{p}$	$\mathrm{P}=$ power
$\mathrm{F}_{\mathrm{S}}=\mathrm{kx}$	$\mathrm{PE}=$ potential energy
$\mathrm{PE}_{S}=\frac{1}{2} k x^{2}$	$\mathrm{PE}_{S}=$ potential energy stored in a spring Q = internal energy
$\mathrm{F}_{\mathrm{C}}=\mathrm{ma}_{\mathrm{C}}$	$r=$ radius/distance between centers
$\mathrm{a}_{\mathrm{c}}=\frac{\mathrm{v}^{2}}{r}$	$\mathrm{t}=$ time interval
	v = velocity/speed
$\Delta \mathrm{PE}=\mathrm{mg} \Delta \mathrm{h}$	$\nabla=$ average velocity/average speed
$K E=\frac{1}{2} m v^{2}$	W = work
$\mathrm{W}=\mathrm{Fd}=\Delta \mathrm{E}_{\mathrm{T}}$	$x=$ change in spring length from the equilibrium position
$\mathrm{E}_{\mathrm{T}}=\mathrm{PE}+\mathrm{KE}+\mathrm{Q}$	$\Delta=$ change
	$\theta=$ angle
$P=\frac{W}{t}=\frac{\mathrm{Fd}}{\mathrm{t}}=\mathrm{F} \nabla$	$\mu=$ coefficient of friction

Appendix I

Examination Blueprint

Content Standard 4	
Performance Indicator	Approximate Weight (\%)
4.1	$30-40$
4.3	$15-25$
5.1	$35-45$
5.3	$5-15$

Process Skills	Percentage of Examination
Standard 1	$75-85$
Standard 2	$0-5$
Standard 6	$5-15$
Standard 7	$0-5$

Approximately $35-55 \%$ of the questions will be related to Key Idea 4 and 5 process skills.

Appendix II

Mapping the Core Curriculum to the Sampler

Question Number	Content Standard 4	Process Skills Standard 4	Process Skills Standards 1,2,6,7
1	5.1 a		
2	5.1 d		St 1:M1.1
3	5.1 d	St 1:M1.1	
4	5.1 e		
5	5.1 f		St 1:M1.1
6	5.1 j		St 6:5.1
7	5.1 k		
8	5.11		St 1:M1.1
9	5.1 n	St 1:M1.1	
10	5.1 n		
11	5.1 r		St 6:5.1
12	5.1 k		St 1:M Key Idea 1
13	5.1 q		St 1:M1.1
14	5.1 u		St 1:M1.1, St 1:S3.1
15	5.1 s		St 1:M1.1
16	5.1 u		St 1:M1.1
17	4.1 g		St 1:M1.1
18	4.1 g		St 1:M Key Idea1
19	4.1 i		
20	4.1 j		St
21	4.1 p		St 1:S3.1, St 1:M1.1
22	4.1 p		St 1:S3.1
23	5.3 f		
24	4.1 n		
25	4.3 c		
26	4.3 c		
27	4.3 k		
28	4.31		
29	4.3 m		
30	5.1 i		
31	5.3 b		
32	5.3 j		
33			
34			

35	5.3 e		St 1:S 3.1, St 6:5.1
36	5.1a		St 6:3.2
37	5.1c	5.1iv	St 1:M1.1
38	5.1b	5.1vi	
39	5.1 m		St 1:M3.1, ST 1:M2.1
40	5.3 g		St 1:M1.1
41	5.1s	4.1xv	St 1:S3.1
42	4.1d		St 1:M2.1
43	4.1e	4.1i	St 1:S3.1
44	4.1 m		St 6:5.1
45	4.3 e		St 1:S1
46	4.3 i	4.3ix	St 1:S3.1, St 1:M1.1
47	4.3 m	4.3 vi	St 1:S3.1
48	4.3h	4.3vii	Intro., St 1:M1.1
49	5.10	5.1viii	St 1:S3.1, St 1:M1.1
50	5.1d	5.1i	St 1:M1.1, St 1:S3.1
51	5.1d	5.1i	St 1:M1.1, St 1:S3.2
52	5.1d	5.1i	
53	5.1d	5.1ii	St 1:M2.1, St 6:5.1
54		4.1iv	St 1:S2.1, St 6:1.1
55		4.1iv	St 1:S2.1, St 6:1.1
56	4.11	4.1xiii	St 1:S3.1, St 1:M1.1
57	3c Intro.,		St1:S3.1
58	4.3c Intro.,		St1:S3.1
59	4.3 m	4.3 i	
60	4.3 m	4.3iii	St 1:S3.1
61	5.3d		St 1:M3.1
62	5.3d		Intro.
63	5.3d	5.3 i	
64	4.3 g	4.3i, reference table	
65	5.1t		St 1:S2
66	5.1j	5.1viiii	St 6: Key Idea 4
67	4.1a,	4.1c, 4.1d, 4,1e	4.1v, 4.1i St 1:S3.1
68	4.1a, 4.1c, 4.1d,	4.1i, 4.1ii, 4.1iii 4,1e, 5.1 m	St 1:M1.1
69	4.10, 4.1n	4.1iii St 1:S3.1	
70	4.10, 4.11		St 1:M1.1
71	4.10, 4.11		St 1:M1.1
72	5.3h, 5.1u		St 2:1.3, St 6:3.2
73	5.3h, 5.1u		St 2:1.3, St 6:3.2
74	5.3h, 5.1u		St 2:1.3, St 6:3.2

Appendix III

Mapping the Sampler to the Core Curriculum Content Standard			
Content Standards	Test Sampler Question Numbers		
	Part A	Part B	Part C
4.1a	34		67, 68
4.1 b			
4.1c			$(67,68)$
4.1d		42	$(67,68)$
4.1e		43	$(67,68)$
4.1f			
4.1 g	17, 18		
4.1h			
4.1 i	19, 30		
4.1j	20		
4.1k			
4.11		56	$(70,71)$
4.1 m		44	
4.1 n	24		(69)
4.10			69, 70,71
4.1p	21, 22		
4.3a			
4.3b			
4.3c	25, 26	57, 58	
4.3d			
4.3 e		45	
4.3 f			
4.3 g		64	
4.3h		48	
4.3 i		46	
4.3 j			
4.3 k	27		
4.31	28		
4.3 m	29	59, 60	

$4.3 n$		47	
5.1a	1	36	
5.1 b		38	
5.1c		37	
5.1 d	2, 3	50, 51, 52, 53	
5.1e	4		
5.1f	5		
5.1 g		40	
5.1h			
5.1 i			
5.1 j	6		66
5.1 k	7,12		
5.11	8		
5.1 m		39	
5.1 n	9,10		
5.10		49	
5.1p			
5.1 q	13		
5.1r	11		
5.1s	15	41	
5.1t			65
5.1 u	14,16		(72, 73, 74)
5.3a			
5.3 b	31, 32		
5.3c			
5.3 d		61, 62, 63	
5.3 e	35		
5.3 f	23		
5.3 g			
5.3 h			72, 73, 74
5.3 i			
5.3j	33		

Appendix IV

Mapping Sampler to the Core Curriculum Process Skills			
Process Skills	Test Sampler Question Numbers		
	Part A	Part B	Part C
Standard 4			
4.1 i		43	68, (67)
4.1ii			(68)
4.1iii			69 (68)
4.1iv		54, 55	
4.1v			67
4.1vi		47	
4.1vii	28	48	
4.1viii	30		
4.1ix		46	
4.1 x			
4.1xi			
4.1xii			
4.1xiii		56	
4.1xiv			
4.1 xv		41	
4.3 i		59, 64	
4.3ii			
4.3iii		60	
4.3iv			
4.3 v			
4.3 vi			
4.3vii			
4.3 viii			
4.3 ix			
5.1 i		50, 51, 52	
5.1ii		53	

5.1iii			
5.1iv		37	
5.1 v			
5.1vi		38	
5.1vii			
5.1 viii			66
5.1ix			
5.1x			
5.1xi			
5.1xii			
5.1xiii			
5.3 i		63	
5.3ii			
Introduction		48, 57, 58, 62	
Standard 1			
St 1:M1	15, 22		
St 1:M1.	$\begin{aligned} & 12,3,7,11,12, \\ & 17,18,19,20, \\ & 21,25,27 \end{aligned}$	$\begin{aligned} & \hline 37,40,46,48, \\ & 49,50,51,56 \end{aligned}$	68, 70, 71
St 1:M2			
St 1:M2.1		39, 42,53	
St 1:M3			
St 1:M3.1		39, 61	
St 1:S1		45	
St 1:S2			65
St 1:S2.1		54, 55	
St 1:S2.2			
St 1:S2.3			
St 1:S2.4			
St 1:S3			
St 1:S3.1	$\begin{aligned} & 18,25,26,28, \\ & 30,34,35 \end{aligned}$	$\begin{aligned} & 41,43,46,47, \\ & 49,50,56,57, \\ & 58,60 \end{aligned}$	67, 69
St 1:S3.2	33	51	
St 1:S3.3			

St 1:S3.4			
St 1:T1			
St 1:T1.1			
Standard 2			
St 2:1			
St 2:1.1			
St 2:1.2			
St 2:1.3			
St 2:1.4			
St 2:1.5			
St 2:2			
St 2:3			
Standard 6			
St 6:1			
St 6:1.1			
St 6:2			
St 6:2.1			
St 6:2.2			
St 6:2.3			
St 6:2.4			
St 6:3			
St 6:3.1			
St 6:3.2			
St 6:4			
St 6:4.1			
St 6:4.2			
St 6:5 7.2			
St 6:5.1			
St 6:5.2			
St 6:6			
Standard 7			
St			

Physical Setting/Physics Regents Examination Test Sampler Draft Fall 2001 Comment Sheet

Please circle "Yes" or "No" and share your comments for each question below.

1. Content-Are the questions generally appropriate in content? Comments:

YES
NO
2. Difficulty—Are the questions generally appropriate in difficulty? Comments:
3. Directions-Are the directions clear and easy for students to follow?

YES
NO
Comments:
4. Scoring Materials—Are the scoring materials for Parts B and C clear and easy for teachers to follow? Comments:
5. Time-Would most of the students be able to complete this test within the time allotted (3 hours)?

YES
NO Comments:

6. Additional Comments:

Please fax this sheet to (518) 473-0858 or mail it to the New York State Education Department at the above address.

