Sample Scoring Materials for Parts A, B, and C

Scoring Key for Multiple-Choice Questions in Parts A and B-1

Part A

(1)	1	(10)	1	(19)	2	(28)	2
(2)	4	(11)	3	(20)	1	(29)	2
(3)	1	(12)	1	(21)	2	(30)	1
(4)	2	(13)	3	(22)	4	(31)	2
(5)	4	(14)	1	(23)	2	(32)	2
(6)	2	(15)	4	(24)	3	(33)	2
(7)	3	(16)	4	(25)	1	(34)	2
(8)	2	(17)	1	(26)	1	(35)	3
(9)	1	(18)	2	(27)	4		

Part B-1

(36)	1	(41)	1	(46)	4
(37)	4	(42)	4	(47)	2
(38)	1	(43)	4	(48)	2
(39)	4	(44)	1		
(40)	3	(45)	1		

Scoring Criteria for Calculations

For each question requiring the student to *show all calculations*, *including the equation and substitution with units*, apply the following scoring criteria:

- Allow one credit for the equation and substitution of values with units. If the equation and/or substitution with units is not shown, do not allow this credit.
- Allow one credit for the correct answer (number and unit). If the number is given without the unit, do not allow this credit.
- Penalize a student only once per equation for omitting units.
- Allow full credit even if the answer is not expressed with the correct number of significant figures.

Scoring Guide for Parts B-2 and C

Part B-2

49 Allow 1 credit for 20. N or 20 N.

Rating Instructions for Questions 50, 51, and 52:

- 50 Allow 1 credit for plotting the data correctly.
- 51 Allow 1 credit for drawing a line of best fit.
- 52 Allow 1 credit for correctly sketching a line representing an object decelerating uniformly in a straight line (accept any straight line with a negative slope).

Example of an appropriate graph:

- Allow 1 credit for indicating that the acceleration of the object is 1.2 m/s^2 or an answer that is consistent with the student's graph.
- 54 Allow 1 credit for R, U, Y.
- 55 Allow 1 credit for W, X, Z.
- 56 Allow 1 credit for 6V.

- 57 Allow 1 credit for $1.2 \text{ cm} \pm 0.2 \text{ cm}$.
- 58 Allow 1 credit for $4.6 \text{ cm} \pm 0.2 \text{ cm}$.
- 59 Allow 1 credit for indicating that the wavelength would decrease.
- 60 Allow 1 credit for 4.
- 61 Allow a total of 2 credits. Refer to Scoring *Criteria for Calculations* in this scoring key.

Example of Acceptable Response

$$E = \frac{hc}{1}$$

$$E = \frac{6.63 \text{ x } 10^{-34} \text{J} \cdot \text{s} (3.00 \text{ x } 10^8 \text{m/s})}{6.58 \text{ x } 10^{-17} \text{m}}$$

$$E = 3.02 \text{ x } 10^{-19} \text{J}$$

- 62 Allow 1 credit for 1.89 eV or an answer consistent with the student's response to question 61.
- Allow 1 credit for 3 and 2 or an answer consistent with the student's response to question 62.
- 64 Allow 1 credit for indicating that it cannot be an x-ray because the wavelength is too long.

Part C

Allow a total of 3 credits, 1 for each correct charge as indicated in the chart below.

Sphere	Charge
R	neutral
Т	positive
U	positive

66 Allow a total of 3 credits.

Allow 1 credit for each vector correctly drawn with an arrowhead at the end and appropriately labeled. Allow 2 credits for all three vectors correctly drawn but missing one or more labels.

Subtract 1 credit for one or more additional vectors that are not of the correct three (but do not give the student a score of less than zero).

Do not penalize the student if vectors are not drawn to scale.

Example of Acceptable Response

67 Allow a total of 2 credits, 1 credit for indicating kinetic energy when the block is in position *A* and 1 credit for indicating potential energy when the block is in position *B*. Appropriate responses include, but are not limited to:

Position *A*: kinetic or KE, or energy of motion Position *B*: elastic or potential, or energy of position

68 Allow a total of 2 credits, 1 credit for $mg\Delta h = \frac{1}{2}kx^2$ or $\Delta PE = PE_S$ and 1 credit for solving k.

Example of Acceptable Response

$$\Delta PE = mg\Delta h$$

$$PE_S = \frac{1}{2}kx^2$$

$$\frac{1}{2}kx^2 = mg\Delta h$$

$$k = \frac{2mg\Delta h}{x^2}$$

Do not allow this credit if the student only lists formulas from the reference tables without indicating their equality.

- 69 Allow a total of 3 credits, allocated as follows:
 - 1 credit for R_1 and R_2 connected in parallel with the battery
 - 1 credit for the ammeter connected in series with R_1 , only
 - 1 credit for the voltmeter connected in parallel with R_1 or equivalent position

Example of Acceptable Response

70 Allow 1 credit for $2.0 \vee$ or $2 \vee$.

Allow a total of 2 credits. Refer to *Scoring Criteria for Calculations* in this scoring key.

Example of Acceptable Responses

$$\frac{1}{R_{1}} + \frac{1}{R_{2}} = \frac{1}{R_{eq}}$$

$$\frac{1}{R_{1}} = \frac{1}{R_{eq}} - \frac{1}{R_{2}}$$

$$\frac{1}{R_{1}} = \frac{1}{2.0\Omega} - \frac{1}{3.0\Omega}$$

$$\frac{1}{R_{1}} = \frac{1}{6.0\Omega}$$

$$R_{1} = 6\Omega$$
or
$$I_{2} = \frac{V_{2}}{R_{2}} = \frac{12V}{3.0\Omega} = 4.0\text{A}$$

$$I_{1} = 6.0A - 4.0A = 2.0\text{A}$$

$$R_{1=} \frac{V_{1}}{I_{1}} = \frac{12V}{2.0A} = 6\Omega$$

- 72 Allow 1 credit for 10^{-8} .
- Allow 1 credit for 10^{-47} .
- Allow a total of 2 credits for explaining why gravitational interaction is negligible for the hydrogen atom by using responses to questions 72 and 73.

Appropriate responses include, but are not limited to:

- The electrostatic force is 10^{39} stronger than the gravitational force.
- The gravitational force is smaller than the electromagnetic interaction.

Allow credit for an answer that is consistent with the student's answers to questions 72 and 73.

2002 Edition Reference Tables for Physical Setting/Physics

List of Physical Constants				
Name	Symbol	Value		
Universal gravitational constant	G	$6.67 imes 10^{-11} \ { m N} \cdot { m m}^2/{ m kg}^2$		
Acceleration due to gravity	g	9.81 m/s ²		
Speed of light in a vacuum	С	$3.00 imes 10^8$ m/s		
Speed of sound in air at STP		$3.31 imes 10^2$ m/s		
Mass of Earth		$5.98 imes10^{24}~\mathrm{kg}$		
Mass of the Moon		$7.35 imes10^{22}~\mathrm{kg}$		
Mean radius of Earth		$6.37 imes 10^6 \mathrm{~m}$		
Mean radius of the Moon		$1.74 \times 10^6 \text{ m}$		
Mean distance—Earth to the Moon		$3.84 imes 10^8 \text{ m}$		
Mean distance—Earth to the Sun		$1.50\times 10^{11}~m$		
Electrostatic constant	k	$8.99\times10^9~\mathrm{N}{\bullet}\mathrm{m}^2/\mathrm{C}^2$		
1 elementary charge	е	$1.60\times 10^{-19}~{\rm C}$		
1 coulomb (C)		$6.25 imes 10^{18}$ elementary charges		
1 electronvolt (eV)		$1.60\times 10^{-19}~J$		
Planck's constant	h	$6.63 imes 10^{-34}~{ m J}ullet { m s}$		
1 universal mass unit (u)		$9.31 imes 10^2 \text{ MeV}$		
Rest mass of the electron	m _e	$9.11 \times 10^{-31} \text{ kg}$		
Rest mass of the proton	m _p	$1.67 imes 10^{-27}$ kg		
Rest mass of the neutron	m _n	$1.67 imes 10^{-27} m kg$		

Prefixes for Powers of 10				
Prefix	Symbol	Notation		
tera	Т	10 ¹²		
giga	G	10 ⁹		
mega	М	10 ⁶		
kilo	k	10 ³		
deci	d	10 ⁻¹		
centi	С	10 ⁻²		
milli	m	10 ⁻³		
micro	μ	10 ⁻⁶		
nano	n	10 ⁻⁹		
pico	р	10 ⁻¹²		

Approximate Coefficients of Friction

Rubber on concrete (dry) Rubber on concrete (wet)	Kinetic 0.68 0.58	Static 0.90
Rubber on asphalt (dry) Rubber on asphalt (wet)	0.67 0.53	0.85
Rubber on ice Waxed ski on snow	0.15 0.05	0.14
Wood on wood Steel on steel Copper on steel Teflon on Teflon	0.30 0.57 0.36 0.04	0.42 0.74 0.53

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

Absolute Indices o $(f = 5.09 \times 10^{14})$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Energy Level Diagrams

Hydrogen

Energy Levels for the Hydrogen Atom

Classification of Matter

Mercury

A Few Energy Levels for the Mercury Atom

Particles of the Standard Model

Note: For each particle there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$$F_{e} = \frac{kq_{1}q_{2}}{r^{2}}$$

$$E = \frac{F_{e}}{q}$$

$$V = \frac{W}{q}$$

$$I = \frac{\Delta q}{t}$$

$$R = \frac{V}{I}$$

$$R = \frac{\rho L}{A}$$

$$P = VI = I^{2}R = \frac{V^{2}}{R}$$

$$R = \frac{V^{2}}{R}$$

 $W = Pt = VIt = I^2Rt = -\frac{V^2t}{R}$

Series Circuits $I = I_1 = I_2 = I_3 = \dots$ $V = V_1 + V_2 + V_3 + \dots$ $R_{eq} = R_1 + R_2 + R_3 + \dots$

Circuit Symbols

A = cross-sectional area E = electric field strength F_e = electrostatic force I = current k = electrostatic constant L = length of conductorP = electrical power q = chargeR = resistanceR_{eq}= equivalent resistance r = distance between centers t = time V = potential difference W = work (electrical energy) $\Delta = change$ $\rho = resistivity$

Parallel Circuits $I = I_1 + I_2 + I_3 + \dots$ $V = V_1 = V_2 = V_3 = \dots$ $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

Resistivities at 20°C		
Material	Resistivity ($\Omega \bullet m$)	
Aluminum	$2.82 imes 10^{-8}$	
Copper	$1.72 imes 10^{-8}$	
Gold	$2.44 imes 10^{-8}$	
Nichrome	$150. \times 10^{-8}$	
Silver	1.59×10^{-8}	
Tungsten	$5.60 imes10^{-8}$	

Waves and Optics

c = speed of light in a vacuum
f = frequency
n = absolute index of refraction
T = period
v = velocity
$\lambda = wavelength$
$\theta = angle$
θ_i = incident angle
θ_{r} = reflected angle

Modern Physics

$E_{photon} = hf = \frac{hc}{\lambda}$	c = speed of light in a vacuum
$E_{\text{photon}} = E_{\text{i}} - E_{\text{f}}$	E = energy
1	f = frequency
$E = mc^2$	h = Planck's constant
	m = mass
	$\lambda = wavelength$

Geometry and Trigonometry

Rectangle	A = area	
A = bh	b = base	
Triangle	C = circumference	
$A = \frac{1}{2}bh$	$\mathbf{h} = \mathbf{height}$	
Circle	r = radius	
$A = \pi r^2$ C = $2\pi r$		
Right Triangle		
$c^2 = a^2 + b^2$	\sim	
$\sin \theta = \frac{a}{c}$	a	
$\cos \theta = \frac{b}{c}$		
$\tan \theta = \frac{a}{b}$	<u>90°</u> θ	

Mechanics

d	a = acceleration
$\overline{\mathbf{v}} = \frac{\mathbf{d}}{\mathbf{t}}$	$a_{c} = centripetal acceleration$
Δv	A = any vector quantity
$a = \frac{\Delta v}{t}$	d = displacement/distance
$v_{f} = v_{i} + at$	E_{T} = total energy
$d = v_i t + \frac{1}{2} a t^2$	F = force
- 2	$F_c = centripetal force$
$v_{f}^{2} = v_{i}^{2} + 2ad$	F_{f} = force of friction
$A_y = A \sin \theta$	Fg = weight/force due to gravity
5	$\vec{F_N}$ = normal force
$A_{X} = A \cos \theta$	F _{net} = net force
$a = \frac{F_{net}}{m}$	F_{S} = force on a spring
$F_f = \mu F_N$	g = acceleration due to gravity or gravitational field strength
$F_g = \frac{Gm_1m_2}{r^2}$	G = universal gravitational constant
$rg = \frac{r^2}{r^2}$	h = height
$g = \frac{F_g}{m}$	J = impulse
$g = \frac{m}{m}$	k = spring constant
$\mathbf{p} = \mathbf{m}\mathbf{v}$	KE = kinetic energy
$p_{before} = p_{after}$	m = mass
	p = momentum
$\mathbf{J} = \mathbf{F}\mathbf{t} = \Delta \mathbf{p}$	P = power
$F_s = kx$	PE = potential energy
$PE_{s} = \frac{1}{2}kx^{2}$	PE_{S} = potential energy stored in a spring
$\Gamma \Gamma_{S} = \frac{1}{2} \Lambda \Lambda$	Q = internal energy
$F_c = ma_c$	r = radius/distance between centers
$a_c = \frac{v^2}{r}$	t = time interval
1	v = velocity/speed
$\Delta PE = mg\Delta h$	$\overline{\mathbf{v}}$ = average velocity/average speed
$KE = \frac{1}{2}mv^2$	W = work
$W = Fd = \Delta E_T$	x = change in spring length from the equilibrium position
$E_{T} = PE + KE + Q$	$\Delta = \text{change}$
-	$\theta = angle$
$\mathbf{P} = \frac{\mathbf{W}}{\mathbf{t}} = \frac{\mathbf{F}\mathbf{d}}{\mathbf{t}} = \mathbf{F}\mathbf{\overline{v}}$	μ = coefficient of friction

Appendix I

Examination Blueprint

Content Standard 4			
Performance Indicator	Approximate Weight (%)		
4.1	30-40		
4.3	15-25		
5.1	35-45		
5.3	5-15		

Process Skills	Percentage of Examination
Standard 1	75-85
Standard 2	0-5
Standard 6	5-15
Standard 7	0-5

Approximately 35-55% of the questions will be related to Key Idea 4 and 5 process skills.

Appendix II

Mapping	the Core C	urriculum to	the Sampler
Question Number	Content	Process Skills	Process Skills
	Standard 4	Standard 4	Standards 1,2,6,7
1	5.1a		
2	5.1d		St 1:M1.1
3	5.1d		St 1:M1.1
4	5.1e		
5	5.1f		
6	5.1j		
7	5.1k		St 1:M1.1
8	5.11		St 6:5.1
9	5.1n		
10	5.1n		
11	5.1r		St 1:M1.1
12	5.1k		St 1:M1.1
13	5.1q		
14	5.1u		St 6:5.1
15	5.1s		St 1:M Key Idea 1
16	5.1u		St 6:5.1
17	4.1g		St 1:M1.1
18	4.1g		St 1:M1.1, St 1:S3.1
19	4.1i		St 1:M1.1
20	4.1j		St 1:M1.1
21	4.1p		St 1:M1.1
22	4.1p		St 1:M Key Idea1
23	5.3f		
24	4.1n		
25	4.3c		St 1:S3.1, St 1:M1.1
26	4.3c		St 1:S3.1
27	4.3k		St 1:M1.1
28	4.31	4.3 <i>vii</i>	St 1:S3.1
29	4.3m		
30	4.1i	4.3 <i>viii</i>	St 1:S3.1
31	5.3b		
32	5.3b		St 6:2.4
33	5.3j		St 1:S 3.2, St 6:3.2
34	4.1a		St 1:S 3.1, St 6:5.1

35	5.3e		St 1:S 3.1, St 6:5.1
36	5.1a		St 6:3.2
37	5.1c	5.1iv	St 1:M1.1
38	5.1b	5.1vi	
39	5.1m		St 1:M3.1, ST 1:M2.1
40	5.3g		St 1:M1.1
41	5.1s	4.1xv	St 1:S3.1
42	4.1d		St 1:M2.1
43	4.1e	4.1i	St 1:S3.1
44	4.1m		St 6:5.1
45	4.3e		St 1:S1
46	4.3i	4.3ix	St 1:S3.1, St 1:M1.1
47	4.3m	4.3vi	St 1:S3.1
48	4.3h	4.3vii	Intro., St 1:M1.1
49	5.10	5.1viii	St 1:S3.1, St 1:M1.1
50	5.1d	5.1i	St 1:M1.1, St 1:S3.1
51	5.1d	5.1i	St 1:M1.1, St 1:S3.2
52	5.1d	5.1i	
53	5.1d	5.1ii	St 1:M2.1, St 6:5.1
54		4.1iv	St 1:S2.1, St 6:1.1
55		4.1iv	St 1:S2.1, St 6:1.1
56	4.11	4.1xiii	St 1:S3.1, St 1:M1.1
57	3c Intro.,		St1:S3.1
58	4.3c Intro.,		St1:S3.1
59	4.3m	4.3i	
60	4.3m	4.3iii	St 1:S3.1
61	5.3d		St 1:M3.1
62	5.3d		Intro.
63	5.3d	5.3i	
64	4.3g	4.3i, reference table	
65	5.1t		St 1:S2
66	5.1j	5.1viiii	St 6: Key Idea 4
67	4.1a,	4.1c, 4.1d, 4,1e	4.1v, 4.1i St 1:S3.1
68	4.1a, 4.1c, 4.1d,	4.1i, 4.1ii, 4.1iii	St 1:M1.1
		4,1e, 5.1m	
69	4.1o, 4.1n	4.1iii St 1:S3.1	
70	4.10, 4.11		St 1:M1.1
71	4.10, 4.11		St 1:M1.1
72	5.3h, 5.1u		St 2:1.3, St 6:3.2
73	5.3h, 5.1u		St 2:1.3, St 6:3.2
74	5.3h, 5.1u		St 2:1.3, St 6:3.2

Appendix III

Content Standards	Test Sampler Question Numbers			
	Part A	Part B	Part C	
4.1a	34		67, 68	
4.1b				
4.1c			(67, 68)	
4.1d		42	(67, 68)	
4.1e		43	(67, 68)	
4.1f				
4.1g	17, 18			
4.1h				
4.1i	19, 30			
4.1j	20			
4.1k				
4.11		56	(70, 71)	
4.1m		44		
4.1n	24		(69)	
4.10			69, 70, 71	
4.1p	21, 22			
.3a				
4.3b				
4.3c	25, 26	57, 58		
4.3d				
4.3e		45		
4.3f				
4.3g		64		
4.3h		48		
4.3i		46		
4.3j				
4.3k	27			
4.31	28			
4.3m	29	59, 60		

4.3n		47	
5.1a	1	36	
5.1b		38	
5.1c		37	
5.1d	2, 3	50, 51, 52, 53	
5.1e	4		
5.1f	5		
5.1g		40	
5.1h			
5.1i			
5.1j	6		66
5.1k	7, 12		
5.11	8		
5.1m		39	
5.1n	9, 10		
5.10		49	
5.1p			
5.1q	13		
5.1r	11		
5.1s	15	41	
5.1t			65
5.1u	14,16		(72, 73, 74)
5.3a			
5.3b	31, 32		
5.3c			
5.3d		61, 62, 63	
5.3e	35		
5.3f	23		
5.3g			
5.3h			72, 73, 74
5.3i			
5.3j	33		

Appendix IV

Mapping Sampler	to the Core Curric	ulum Process	s Skills		
	Test S	Test Sampler Question Numbers			
Process Skills					
	Part A	Part B	Part C		
Standard 4					
4.1i		43	68, (67)		
4.1ii			(68)		
4.1iii			69 (68)		
4.1iv		54, 55			
4.1v			67		
4.1vi		47			
4.1vii	28	48			
4.1viii	30				
4.1ix		46			
4.1x					
4.1xi					
4.1xii					
4.1xiii		56			
4.1xiv					
4.1xv		41			
4.3i		59, 64			
4.3ii					
4.3iii		60			
4.3iv					
4.3v					
4.3vi					
4.3vii					
4.3viii					
4.3ix					
5.1i		50, 51, 52			
5.1ii		53			

5.1iii			
5.1iv		37	
5.1v			
5.1vi		38	
5.1vii			
5.1viii			66
5.1ix			
5.1x			
5.1xi			
5.1xii			
5.1xiii			
5.3i		63	
5.3ii			
Introduction		48, 57, 58, 62	
Standard 1			
St 1:M1	15, 22		
St 1:M1.	1 2, 3,7, 11, 12,	37, 40, 46, 48,	68, 70, 71
	17, 18, 19, 20,	49, 50, 51,56	
	21, 25, 27		
St 1:M2			
St 1:M2.1		39, 42,53	
St 1:M3			
St 1:M3.1		39, 61	
St 1:S1		45	
St 1:S2			65
St 1:S2.1		54, 55	
St 1:S2.2			
St 1:S2.3			
St 1:S2.4			
St 1:S3			
St 1:S3.1	18, 25, 26, 28,	41,43,46, 47,	67, 69
	18, 25, 26, 28, 30, 34, 35	41,43,46, 47, 49, 50, 56,57,	67, 69
			67, 69
		49, 50, 56,57,	67, 69

St 1:S3.4			
St 1:T1			
St 1:T1.1			
Standard 2			
St 2:1			
St 2:1.1			
St 2:1.2			
St 2:1.3			72, 73, 74
St 2:1.4			
St 2:1.5			
St 2:2			
St 2:3			
Standard 6			
St 6:1			
St 6:1.1		54, 55	
St 6:2			
St 6:2.1			
St 6:2.2			
St 6:2.3			
St 6:2.4	2		
St 6:3			
St 6:3.1			
St 6:3.2	33	36	72, 73, 74
St 6:4			66
St 6:4.1			
St 6:4.2			
St 6:5			
St 6:5.1	14, 16, 34, 35	53	
St 6:5.2			
St 6:6			
Standard 7			
St 7.1			
St 7.2			

Physical Setting/Physics Regents Examination Test Sampler Draft Fall 2001 Comment Sheet

Please circle "Yes" or "No" and share your comments for each question below.

1.	Content —Are the questions generally appropriate in content? <i>Comments:</i>	YES	NO
2.	Difficulty —Are the questions generally appropriate in difficulty? <i>Comments:</i>	YES	NO
3.	Directions —Are the directions clear and easy for students to follow? <i>Comments:</i>	YES	NO
4.	Scoring Materials —Are the scoring materials for Parts B and C clear and easy for teachers to follow? <i>Comments:</i>	YES	NO
5.	Time —Would most of the students be able to complete this test within the time allotted (3 hours)? <i>Comments:</i>	YES	NO

6. Additional Comments:

Please fax this sheet to (518) 473-0858 or mail it to the New York State Education Department at the above address.