
Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots

Robert Fitch, Zack Butler and Daniela Rus

Department of Computer Science, Dartmouth College
{rfitch, zackb, rus}@cs.dartmouth.edu

Abstract

Current research in self-reconfiguring robots focuses pre-
dominantly on systems of identical modules. However, al-
lowing modules of varying types, with different sensors,
for example, is of practical interest. In this paper, we
propose the development of an algorithmic basis for het-
erogeneous self-reconfiguring systems. We demonstrate
algorithmic feasibility by presentingO(n2) time central-
ized andO(n3) time decentralized solutions to the re-
configuration problem forn non-identical modules. As
our centralized time bound is equal to the best published
homogeneous solution, we argue that space, as opposed
to time, is the critical resource in the reconfiguration
problem. Our results encourage the development both of
applications that use heterogeneous self-reconfiguration,
and also heterogeneous hardware systems.

1 Introduction

The promise of self-reconfiguring (SR) robotics is to en-
dow systems with the ability to change shape to match
structure to task. Thereconfiguration problem, which
asks how to compute these shape changes, is thus a cen-
tral research question. Reconfiguration has been studied
extensively in systems where all modules are identical,
known ashomogeneoussystems, but theheterogeneous
version of the reconfiguration problem, where modules
are allowed to be unique, has not received the same at-
tention and appears to be more difficult. However, no
published analysis exists. We believe that the heteroge-
neous reconfiguration problem is an important research
question both practically (useful in even primarily homo-
geneous systems) and theoretically. In this paper we pro-
pose solutions to heterogeneous self-reconfiguration with
running times matching their homogeneous counterparts.

Although the elegance of a purely homogeneous system
is appealing, practical issues suggest some degree of het-
erogeneity is desirable. Design tradeoffs exist between
homogeneous and heterogeneous systems. Castano and
Will [3] characterize the issue as a balance between the
hardware complexity of increasing the functionality of
the base module in a homogeneous system and the soft-
ware complexity, and loss of redundancy, of a system

that uses specialized modules. Certainly it is difficult to
argue in favor of using thousands of cameras or expen-
sive sensors to maintain homogeneity when one or two
would suffice. Note that the addition of even one special
module to a homogeneous system violates the assump-
tions of current reconfiguration algorithms. The “soft-
ware complexity” of the resulting system is assumed to
be increased, but this has not been proven. We are inter-
ested in addressing this question.

The challenge in developing heterogeneous reconfigura-
tion algorithms is that modules can no longer substitute
for each other. Consider the case of a 2D system of square
modules with unique identifiers to model the presence
of cameras, radios, or other capabilities. This problem
seems strongly related to theWarehouse Problem, which
was proved intractable even in the 2D case with rectan-
gular objects [5]. Although the reconfiguration problem
imposes connectivity and other constraints not present in
the Warehouse Problem, this similarity indicates that het-
erogeneous self-reconfiguration is also very difficult.

Our approach relies on the availability of free space in the
reconfiguration problem. In fact, the Warehouse Prob-
lem has been shown to be polynomial-time solvable given
sufficient free space [13]. The main contribution of this
paper is the surprising result that heterogeneous self-
reconfiguration can be solved in lattice-based systems us-
ing asymptotically no more time than the homogeneous
problem requires. We present both centralized and de-
centralized 3D solutions that assume arbitrary free space,
which we define asout-of-placesolutions. Developing
in-placesolutions, where free space is limited, as well as
determining exactly how much free space is required by
in-place solutions, is left to future work.

The paper is organized as follows. In the following sec-
tion, we review related work. We then describe the model
under which we developed our algorithms, called the
Sliding Cubemodel. Centralized and decentralized algo-
rithms are presented in Section4, followed by discussion
and future work.

Figure 1: Simulation of chair-to-table reconfiguration with two module types. Light modules forming legs of the chair
map to legs of the table. Dark modules in the chair form the top of the table. This reconfiguration was planned with the
out-of-place MeltSortGrow algorithm presented in this paper.

2 Related Work

The algorithms presented in this paper focus on lattice-
based systems. Several such systems have been designed
and constructed in hardware [10, 6, 18, 7, 9, 15, 11].

Planning and control for self-reconfiguration in homo-
geneous systems has been studied by numerous groups.
One approach is to develop centralized algorithms [17,
7, 11, 19]. Alternatively, work in decentralized planning
begins with the Fracta system, using precompiled sets of
rules [8, 14]. A similar algorithm is given by Hosokawa
et al. [6]. Yim, Duff and Roufas [18] present a dis-
tributed controller for Proteo modules that achieves ar-
bitrary shapes. A later approach in distributed planners is
the use of message-passing. Salemi, Shen and Will [12]
propose a control system for CONRO using a message-
passing scheme calledDigital Hormones. The problem
of distributed reconfiguration for unit-compressible mod-
ules was solved by a combination of thePacmanalgo-
rithm developed by the Dartmouth group [1] and later
modifications and analysis by Vassilvitskii, Yim and Suh
[16]. Decentralized algorithms that use reconfiguration
as part of locomotion are presented in [2].

All previous work in reconfiguration planning assumes
primarily homogeneous or bipartite systems. The algo-
rithms we propose, in contrast, are the first to support
module uniqueness.

3 Sliding Cube Model

We would like to design algorithms not for one specific
robot, but for a class of module hardware. We will extend
a model we introduced in our previous work [2] that was
shown to be easily instantiated to several module types
[2, 4, 6] and define theSliding Cube. The module is a
cube with connectors on all faces. Modules connect face-
to-face to any other module, and have two motion primi-
tives: sliding across another modules, and making a con-
vex transition. These primitives allow a single module to
move across the surface of a robot shape, or through the
robot’s volume using tunnelling techniques. All modules

are of the same size, but to support simple heterogeneity
we assign each module a type, orclass ID.

Systems of Sliding Cubes have properties similar to Crys-
tal [11] or Telecube Robots [16] using metamodules, a
group of modules treated as a single unit with additional
motion capabilities. In particular, any Sliding Cube robot
has at least onemobilemodule, where a module is mobile
if it can move without disconnecting the structure of the
robot. This is shown by the following lemma:

Lemma 1. Any Sliding Cube robot contains at least one
mobile module on its surface.

Proof. We prove this based on induction on the number
of modules in the robot, similar to that given by [11].
Details of the proof are omitted for space considerations.

Although the level of heterogeneity in the Sliding Cube
only consists of unique labels, it is possible to extend
the model to encompass a greater degree of heterogene-
ity. Each module can be given connectivity constraints
to model different types of connectors, more complicated
motion primitives can be defined, or modules can vary in
size. In the future, we would like to develop reconfigura-
tion algorithms for models with these extensions.

4 Heterogeneous Reconfiguration Planning

The reconfiguration problemis central to research in SR
robots. The problem is to compute a feasible plan that
when executed from an initial configurationC results in
a specified goal configurationC ′. A plan is feasibleif
it maintains the property of connectivity and consists of
valid primitive motions for the module actuation model
specified. Currently we do not consider dynamics of the
intermediate steps. An example reconfiguration is shown
in Figure1.

Existing reconfiguration algorithms rely heavily on mod-
ule interchangeability. Instead of physically moving a

certain module from one point to another, it can be relo-
cated virtually by shifting the original module out of posi-
tion and shiftinganyother module into the goal position.
This technique is efficient since no one module needs to
move very far. Virtual module relocation becomes re-
stricted in heterogeneous systems, however, since not all
modules are identical. This seems to indicate that het-
erogeneous reconfiguration is much more difficult than
homogeneous reconfiguration, but the complexity of het-
erogeneous reconfiguration has not been studied in depth.

It turns out that in both the Warehouse and heterogeneous
reconfiguration problems, the main issue is not running
time, but free space [13]. Like the Warehouse problem,
we show in this paper that heterogeneous reconfiguration
is solvable in polynomial time given sufficient space. We
define a solution asout-of-placeif the quantity of space
available in which to move modules is assumed to be un-
bounded. Conversely, in anin-placesolution the space
available in which to move modules is constrained to the
union of the start and goal configurations plus a constant-
sized crust of space around this union. Both in-place and
out-of-place algorithms exist for homogeneous reconfig-
uration.

In this section we describe an out-of-place solution,Melt-
SortGrow. We present both centralized and decentralized
versions of the algorithm, analyze correctness and run-
ning time, and describe its implementation.

4.1 MeltSortGrow Algorithm

We developed the algorithmMeltSortGrowas an out-of-
place solution to the heterogenous reconfiguration plan-
ning problem with the Sliding Cube actuation model. The
planner takes two robot configurations as inputs, and out-
puts a sequence of module motion primitives that trans-
form the start configuration into the goal. Centralized
MeltSortGrow runs inO(n2) time and generates a plan
of lengthO(n2), wheren is the number of modules in
the robot.

Our approach is based on an early solution to homoge-
neous reconfiguration,MeltGrow [11]. As in MeltGrow,
rather than transforming from the initial configuration di-
rectly to the goal configuration we generate an interme-
diate configuration that is easy to reach from any initial
condition, and easy to transform into the goal configura-
tion. In this case we choose a single line, or chain, as a
simple intermediate configuration. We first plan a recon-
figuration from the start configuration to the intermediate
structure. Then we sort the modules in the intermediate
structure to prepare for the final step, where we plan a
reconfiguration from the sorted intermediate structure to
the goal shape. This algorithm outline is listed in Al-
gorithm1. We now formally present the algorithm, prove
correctness, completeness and running time, and describe
results in simulation.

Algorithm 1 Generic centralized out-of-place algorithm
for heterogeneous self-reconfiguration.

1: “Melt” configuration into 1D linear chain
2: Compute feasible assembly order for goal shape
3: Sort chain by assembly order
4: while Reconfiguration is not completedo
5: Move next module into final position

Melt. The objective of the Melt step is to compute a
plan that reconfigures the initial configuration into the in-
termediate configuration, a line. As in MeltGrow, we re-
peatedly choose a module in the initial configuration and
move it to a free position in the intermediate structure.
To choose a module in the initial configuration, we iden-
tify all mobile modules using standard graph search tech-
niques. Then we find a path from any mobile module to
the end of the chain, called thetail.

Algorithm 2 Melt algorithm builds intermediate struc-
ture (1D chain).

1: Intermediate configurationI
2: while Modules remain in initial configurationdo
3: Find articulation points
4: Find pathp from root ofI to non-articulation point

modulem using breadth-first search
5: Movem to end ofI usingp

The melt step is specified in Algorithm2. To begin, we
choose one leftmost module from the initial structure and
label this theroot. We will grow the intermediate struc-
ture to the left of the root (since by our choice of root we
know there are no other modules to its left). A module
is mobile if it is not an articulation point in the module
connectivity graph, and if it is on the surface of the struc-
ture. In line 3 we compute articulation points, and line 4
chooses a surface module from the set of non-articulation
points. If we begin at the tail, and search all possible
module paths, then any module we reach must be on the
surface. Observe that in the Sliding Cube model, the
only reachable positions are adjacent to existing mod-
ules. We call thesepath positions. In line 4 of the al-
gorithm, we search through path positions using breadth-
first-search (BFS), starting from the tail position and ter-
minating when we reach a non-articulation point module.
The resulting path is transformed into a motion plan and
executed in line 5 by reconstructing the motion primitives
used in the BFS path. We repeat this procedure until all
modules have been moved, which is once per module.
See Figure2 for an illustration of this step.

Sort. The next phase of the algorithm is to modify the
intermediate structure such that it is possible to easily
grow the new configuration in the final phase. Assembly
order is important since specific modules must be moved
into their assigned positions. We approach this problem

(a) (b)

(c)

Figure 2: Illustration of Melt step. In (a), the root module
(lower-left) is darkened and mobile modules are shown in
light grey. The state after two modules have been moved
is shown in (b), with modules in the intermediate struc-
ture shown in medium grey. The complete intermediate
structure is drawn in (c).

by sorting the modules in the intermediate chain, where
the sorting corresponds to a feasible assembly order of the
goal configuration. Therefore we must compute a feasi-
ble assembly order and then physically sort the modules
according to this sequence.

Algorithm 3 Compute feasible assembly order and sort
chain.

1: Intermediate configurationI
2: for counterc = 1 ton do
3: Find articulation points in goal configurationC ′

4: Find pathp from root to non-articulation point
modulem in C ′ using BFS

5: Labelm with c and mark as deleted
6: Move left half of I on top of right half, forming rows

a andb
7: while a is not emptydo
8: Find modulem in a with minimum label
9: Movem to leftmost unoccupied position in row be-

low b
10: Repeat for rowb
11: Merge rowsa andb into one sorted row abovea, in

the style of MergeSort.

The sort step is specified in Algorithm3. First, in lines
2-5, we compute the (dis)assembly order of the goal
configuration using the melt technique described earlier,
although instead of computing a path for each module
we simply label it with its assembly order and mark it
deleted. This can be thought of as a virtual melt. Revers-
ing the resulting disassembly order yields a total order-
ing on the modules in the intermediate chain, assuming
all modules have unique types. The case where modules
share types can be handled by artificially labelling mod-
ules as convenient.

(a) (b) (c)

Figure 3: Steps of the sort phase. Modules next to move
are greyed. Construction of the double row is shown in
(a). In (b), SelectionSort is in progress. The final sorted
order is assembled in (c) by merging the two sorted rows.

In order to physically sort the chain, we use the simple
quadratic-time sorting algorithm SelectionSort, and also
one step of MergeSort. Clearly, removing a module from
the middle of the line violates connectivity constraints,
but the same operation on a double line is permissible.
Therefore in line 6 we create a double line by moving half
of the modules from the end of the line to form a second
row alongside the original row. Now we are free to use
SelectionSort to move modules in the top line into sorted
position in a new row below the bottom line. Continuing
in this way, we obtain two sorted rows. Now we sim-
ply merge these two as in MergeSort into a final sorted
line adjacent to the double row. By carefully choosing
where the new rows are created, the final sorted line is
assembled at the same position as the original intermedi-
ate structure. See Figure3 for an illustration of this phase
of the algorithm. The following Lemma shows that is al-
ways possible to perform sorting:

Lemma 2. An intermediate configuration with arbitrary
module ordering can be reconfigured into a configuration
with the same shape and a designated module ordering.

Proof. Consider the specification of Algorithm3. The
double row can be assembled without disconnecting the
structure since modules always move from the end of the
top row, which can not be an articulation point since it
has only one neighbor. The selection sort step maintains
connectivity since all modules at all times are connected
to a module in the lower row, and correctly assembles
the sorted row since modules are chosen in order. The
merge step is correct since we merge two sorted chains,
and the three rows are always connected by the rightmost
modules. Thus the sorting algorithm is correct.

Grow. In the final phase of the algorithm we build the
goal configuration from the sorted intermediate configu-
ration. Due to the sorting step, it is guaranteed that at any
time, there exists a path from the tail module to its unique
position in the goal configuration. Therefore we repeat-
edly find such a path and execute it for each module in
the intermediate configuration.

Pseudocode for this phase is listed in Algorithm4. Line
3 finds a path from the tail to its position in the goal con-

(a) (b) (c)

Figure 4: Steps of the grow phase. Shading indicates module type. In (a), a path is found from the module at the left end
of the intermediate structure to its final position in the goal configuration, shown in (b). This repeats until the complete
goal shape is assembled in (c).

Algorithm 4 Grow goal configuration.
1: Intermediate configurationI
2: while Reconfiguration is not completedo
3: Find pathp from tail of I to goal position using

BFS
4: Execute pathp

figuration using the same BFS technique described in the
melt phase. A motion plan based on the returned path
is computed in line 4, and this process repeats for each
module. See Figure4 for an example of this step.

Analysis. Using results from previous sections, we now
show that MeltSortGrow is correct and complete. We also
show the running time as claimed.

Theorem 1. The algorithm MeltSortGrow computes a
feasible reconfiguration plan of lengthO(n2) for all start
and goal configurations inO(n2) time, wheren is the
number of modules in the system.

Proof. By the specification of Algorithm4, each posi-
tion in the goal configuration is filled only by a module
of appropriate type. Therefore, the goal configuration is
assembled correctly. It remains to prove completeness.
We will show that any start configuration can be recon-
figured into the intermediate configuration, and that the
intermediate configuration can be reconfigured into any
goal configuration.

Recall Lemma1, which showed that in any configuration
at least one surface module is mobile. Using the primi-
tive motions, this mobile module can reach any other po-
sition on the surface. By repeatedly relocating mobile
modules, we can therefore form the intermediate config-
uration from any start configuration. This argument also
applies to computing the (dis)assembly sequence, since
the same melt procedure is used. The intermediate con-
figuration can be sorted by the assembly sequence due to
Lemma2. Now consider the module at the left end of
the intermediate configuration, the tail. The tail is clearly
mobile, and can move to any position on the surface of
the structure without disconnection. Due to the assembly

order, the destination position of the tail in the goal is un-
filled and is reachable, and therefore the tail can success-
fully be relocated. Continuing in this way, we can relo-
cate all modules in the intermediate structure and the goal
configuration is assembled. Therefore MeltSortGrow is
correct and complete for all start and goal configurations.

Running time is easy to see as each of the algorithm’s
three phases requiresO(n2) time. First, one step of the
melt phase requiresO(n) time for articulation point find-
ing andO(n) time for BFS, orO(n2) in total forn mod-
ules. Sorting requiresO(n2) time each for selection sort
and merge sort. Finally the grow phase performs BFS
O(n) times orO(n2) total. Overall, the algorithm re-
quiresO(n2)+O(n2)+O(n2) = O(n2) time. No more
than one primitive move is generated during each time
step, so the length of the resulting path is alsoO(n2).

Simulation. We designed and implemented a simula-
tion environment calledSRSim(self-reconfiguring robot
simulator) in which to implement and animate algorithms
for self-reconfiguring robots. SRSim is written in the
Java programming language using the Java3D API for 3D
graphics. It is designed as a set of base classes that are ex-
tended by the implementation of a specific algorithm. We
implemented MeltSortGrow using SRSim, with screen-
shots shown in Figures1 and 5. The simulation reads
the start and goal configurations from a file specification,
although we are currently designing a graphical tool to
make configuration specification easier. SRSim animates
all module motions and also search paths as desired.

4.2 Decentralized MeltSortGrow

A centralized solution to heterogeneous reconfiguration
planning is a good start in understanding the problem, but
it is not sufficient for general use since self-reconfiguring
systems are designed to include large numbers of mod-
ules. The goals of scalability and redundancy lead us to
seek decentralized planners for SR robots. In this section,
we extend centralized MeltSortGrow to run in a decen-
tralized manner.

As in our previous work in decentralized algorithms,
we adopt the message-passing model of communication;

Figure 5: Screenshots from MeltSortGrow implementation in SRSim simulation. Module shading indicates unique
labels. Cube-shape reconfigures from light-to-dark ordering in upper-left to dark-to-light ordering in lower-right.

modules can communicate only with their immediate
neighbors. The main approach is to retain the overall
structure of the algorithm, but replace centralized com-
putation with message-passing as necessary. We assume
that at the beginning, a single module receives a message
to start running the algorithm. Further, we assume that all
modules have a copy of the goal configuration in their lo-
cal memories. If only one module knows the goal shape,
then it can propagate this data to the rest of the system.

Melt. Previously, to perform the melt step we identi-
fied a root by choosing a leftmost module, and then re-
peatedly found mobile modules and moved them to the
end of the chain formed from the root. Now, since only
one module,mstart, receives the signal to begin the al-
gorithm, we can find the root by propagating a message
depth-first style frommstart that computes a relative lat-
tice position for each module. We use depth-first search
(DFS) since it is easier to distribute than BFS. Starting at
mstart (0, 0, 0), each module computes positions for its
children and passes this information in a message. In this
way, the leftmost coordinate can be returned by compar-
ing the return values of a module’s children. Eventually
mstart will receive the answer and propagate this infor-
mation to the rest of the system. To melt, think of the
root as the initial tail. At any time, there exists exactly
one tail. To find a mobile module, the tail initiates a dis-
tributed articulation-point labelling algorithm. This is the
same as the centralized version except recursive calls are
replaced by message-passing to children. The tail then
initiates distributed DFS to find the first non-articulation
point, which then follows the path back to the tail and
becomes the new tail. This ends when DFS fails. Pseu-
docode is shown in Algorithm5.

Algorithm 5 Distributed Melt. Pseudocode for single
module.

State:
articulationPoint, am I an articulation point

Messages:
start, sent to exactly one module to begin algorithm

Action: determine root, root executes meltOneModule()
labelArticulationPoints, labels articulation point modules

Action: DFS-send(labelArticulationPoints), settingartic-
ulationPointas result

findMobileModule, search to find non-articulation point
Action: if I am mobile, follow path to tail and execute
meltOneModule(), else DFS-send(findMobileModule)

Procedures:
meltOneModule()

DFS-sendlabelArticulationPoints
DFS-sendfindMobileModule
if result is false, signal start of sort phase

DFS-send(message)
sendmessageto first child, wait for response
repeat for all children and compute result
send result in return message to parent

Sort. The next step is to sort the intermediate struc-
ture. We first need to determine the sort order by virtu-
ally disassembling the goal configuration and then physi-
cally sorting the modules. Disassembly in a decentralized
manner can be handled in different ways, but the simplest
solution is for each module to perform the computation
itself to discover its own order. This solution is accept-
able due to our assumption that all modules know the goal
configuration. Next, the single chain must fold in half to
form a double row. The tail module initiates this by mov-

ing around to its final position below the root. Other mod-
ules follow until all top row modules have lower neigh-
bors. The last module in the top row signals its row to
begin sorting, using distributed BubbleSort. When one
pair has finished their comparison, they signal the next
pair. This happens back and forth down the row until no
more swaps are made. Then the top row signals the bot-
tom row to performs the same sort operation. The two
then merge to complete the intermediate configuration.
See pseudocode in Algorithm6.

Algorithm 6 Distributed Sort. Pseudocode for single
module.

State:
goal, goal configuration
sortLabel, my order in assembly sequence
swapCount, counter to detect bubble sort termination

Messages:
sort, sent to start sort phase

Action: propagatesort, execute computeSortOrder(), exe-
cute formDoubleRow()

bubbleSort, sent to do swap test
Action: execute handleBubbleSort()

bubbleSortDone, sent to signal bubble sort termination
Action: if top row, sendbubbleSortto bottom row. if bot-
tom row, execute merge()

Procedures:
computeSortOrder()

disassemblegoal to determinesortLabel
formDoubleRow()

move around structure to form double row
if I am last module, execute bubbleSort()

bubbleSort()
compare sortLabel with neighbor and swap if necessary
sendbubbleSort(swapCount) to neighbor

handleBubbleSort()
if swapCount=0 then propogatebubbleSortDone
otherwise if I am at the end of the line, sendbubbleSortin
opposite direction

merge()
tails of sorted rows propagatesortLabel
tail with minimum moves to final row and signals next tails
when complete, grow phase begins

This specification handles the case when all modules are
uniquely identified. The modification to remove this as-
sumption is simple, but requires extra memory. Instead
of computing a unique sort position, the modules keep an
array of all positions for their class ID. Then when the
single chain is assembled, the unique position is resolved
by passing a counter down the chain.

Grow. The grow phase reconfigures the intermediate
configuration into the final shape. The basic step is that
the tail module finds a path, executes it, and signals the
new tail. Path planning is done using distributed DFS.
When the root module becomes the tail, the algorithm

terminates. See Algorithm7 for pseudocode.

Algorithm 7 Distributed Grow. Pseudocode for single
module.

State:
goalPosition, my position in goal configuration
root, am I the root

Messages:
grow, sent to signal start of grow phase

Action: if I am the current tail, execute moveToGoal()
nextModule, sent to grow next module

Action: if I am the current tail, and I am root, signal com-
pletion. else execute moveToGoal()

findPath(goalPosition), sent to find path
Action: if I am adjacent togoalPosition, return true. else
DFS-send(findPath(goalPosition))

Procedures:
moveToGoal()

DFS-sendfindPath(goalPosition)
follow path
propagatenextModule

DFS-send()
specified in Algorithm5

Analysis. Theorem1 proved correctness and complete-
ness for the centralized algorithm. Here we note that the
decentralized version operates equivalently. In the melt
phase, a path is found by searching free positions adjacent
to modules. Because the system is connected, we visit all
free spaces eventually and a path will be found. Contin-
uing in this way, the intermediate structure is assembled.
Sorting is performed in the style of bubble-sort until both
halves of the double row are sorted. Because each half is
sorted sequentially, connectivity is maintained. Finally,
the grow phase assembles the goal shape using search
techniques as in the melt phase.

The running time bound is shown by observing that each
atomic step in the centralized version is replaced by a step
in the decentralized version bounded byO(n), the time
to propagate a message. Equating message-passing steps
with other atomic steps, the overall running time is thus
O(n2n) = O(n3), with O(n2) moves generated.

Simulation. We have implemented this algorithm in
the SRSim simulator described earlier. Each module runs
in a separate thread to approximate asynchronous com-
munication.

5 Discussion and Future Work

While previous work in reconfiguration planning in SR
systems has assumed homogeneity, this paper promotes
the development of planners for heterogeneous systems.
We describe a system model that incorporates hetero-
geneity and models a class of existing SR modules. We

developed algorithms that solve the reconfiguration prob-
lem in this model, and present both centralized and de-
centralized out-of-place solutions. We show that in the
out-of-place case, the running time of the heterogeneous
planner is equivalent to the fastest published homoge-
neous solution.

The significance of this paper is that it challenges the
presumption that heterogeneous reconfiguration is inher-
ently more difficult than the homogeneous version. Based
on the characteristics of the related Warehouse Problem,
we conjecture that free space is the resource in con-
tention, instead of the usual metric of running time as a
measure of complexity. It is surprising that the heteroge-
neous problem is not intractable, as previously thought,
but is no more difficult than homogeneous reconfigura-
tion given enough free space. This contradicts the intu-
ition that module interchangeability is the most important
factor in efficient reconfiguration.

Given these results, a few interesting theoretical ques-
tions arise. If heterogeneous reconfiguration is solv-
able inO(n2) time, can homogeneous reconfiguration be
solved any faster? What is the lower bound? If space
is indeed the critical issue, then is an in-place heteroge-
neous solution possible in polynomial time? Finally, if
this is so, what is the minimum amount of free space re-
quired by the in-place solution? We are currently investi-
gating these questions.

Practically speaking, it is our hope that these algorithmic
results provide the basis for more advanced applications
of SR robots. Immediately, it should be possible to add
different sensors to existing systems without loss of re-
configurability. It is also interesting to consider multi-
ple modes of actuation, such as unactuated battery mod-
ules, or modules such as wheels to increase locomotion
capabilities. We would also like to develop algorithms
that support more types of heterogeneity, such as varying
module geometry or connection constraints. We are now
developing these types of applications, and also continu-
ing our algorithmic work as outlined.

Acknowledgments

Support for this work was provided through NSF awards
IRI-9714332, EIA-9901589, IIS-9818299, IIS-9912193,
EIA-0202789 and 0225446, and ONR award N00014-01-
1-0675.

References

[1] Z. Butler, S. Byrnes, and D. Rus. Distributed motion plan-
ning for modular robots with unit-compressible modules. In
Proc. of the Int’l Conf. on Intelligent Robots and Systems,
2001.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decen-
tralized control for a class of self-reconfigurable robots. In
Proc of IEEE ICRA, 2002.

[3] A. Castano and P. Will. A polymorphic robot team. In
T. Balch and L. Parker, editors,Robot Teams: From Diver-
sity to Polymorphism. A K Peters, Ltd., 2002.

[4] C.-H. Chiang and G. Chirikjian. Modular robot motion
planning using similarity metrics. Autonomous Robots,
10(1):91–106, 2001.

[5] J. Hopcroft, J. Schwartz, and M. Sharir. On the complex-
ity of motion planning for multiple independent objects;
pspace−hardness of the “warehouseman’s problem”.The
International Journal of Robotics Research, 3(4):76–88,
1984.

[6] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama,
Y. Koruda, and I. Endo. Self-organizing collective robots
with morphogenesis in a vertical plane. InProc. of IEEE
ICRA, pages 2858–63, 1998.

[7] K. Kotay and D. Rus. Locomotion versatility through
self-reconfiguration. Robotics and Autonomous Systems,
26:217–32, 1999.

[8] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling
machine. InProc. of IEEE ICRA, pages 442–8, 1994.

[9] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa,
A. Kamimura, and S. Kokaji. Hardware design of modu-
lar robotic system. InProc. of the Int’l Conf. on Intelligent
Robots and Systems, pages 2210–7, 2000.

[10] A. Pamecha, C-J. Chiang, D. Stein, and G. Chirikjian. De-
sign and implementation of metamorphic robots. InProc.
of the 1996 ASME Design Engineering Technical Conf. and
Computers in Engineering Conf., 1996.

[11] D. Rus and M. Vona. Crystalline robots: Self-
reconfiguration with unit-compressible modules.Au-
tonomous Robots, 10(1):107–24, 2001.

[12] B. Salemi, W.-M. Shen, and P. Will. Hormone-controlled
metamorphic robots. InProc. of IEEE ICRA, 2001.

[13] R. Sharma and Y. Aloimonos. Coordinated motion plan-
ning: The warehousman’s problem with constraints on free
space.IEEE Transactions on Systems, Man, and Cybernet-
ics, 22(1):130–141, 1992.

[14] K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and
S. Kokaji. Self-assembly and self-repair method for a dis-
tributed mechanical system.IEEE Trans. on Robotics and
Automation, 15(6):1035–45, Dec. 1999.

[15] Cem Ünsal and Pradeep Khosla. Mechatronic design of
a modular self-reconfiguring robotic system. InProc. of
IEEE ICRA, pages 1742–7, 2000.

[16] S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and
parallel reconfiguration algorithm for cube style modular
robots. InProc. of IEEE ICRA, 2002.

[17] M. Yim. New locomotion gaits. InProc. of IEEE ICRA,
pages 2508–2514, 1994.

[18] M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed
control for 3D shape metamorphosis.Autonomous Robots,
10(1):41–56, 2001.

[19] E. Yoshida, S. Murata, A. Kaminura, K. Tomita,
H. Kurokawa, and S. Kokaji. Motion planning of self-
reconfigurable modular robot. InProc. of Int’l Symposium
on Experimental Robotics, 2000.

	Introduction
	Related Work
	Sliding Cube Model
	Heterogeneous Reconfiguration Planning
	MeltSortGrow Algorithm
	Melt
	Sort
	Grow
	Analysis
	Simulation

	Decentralized MeltSortGrow
	Melt
	Sort
	Grow
	Analysis
	Simulation

	Discussion and Future Work

