
APPLICATION NOTE : ZC001

Using the Valid-Ready pipeline protocol
Rev. 1.1

Introduction

In order to facilitate the flow of data in a pipeline, many of our IP cores
use a simple valid-ready pipeline protocol. The protocol is fully
synchronous, and makes use of 4 basic signals: clk, data, valid and
ready. The signal clk is the system clock, data is the data to be
transferred and valid/ready perform a simple handshake.

A module in a pipeline may have any number of valid-ready interfaces,
but typically it will have two - an upstream interface and a downstream
interface. The IP core 'PIPELINE REGISTER' is an example of a module
with two valid-ready interfaces.

The fundamental rule of the pipeline protocol is as follows:

“Data is transferred at a pipeline interface on a rising clock-edge
when valid and ready are both active high”

This is the basic rule that must be adhered to for all elements in the
pipeline. Even with this simple rule in place, there are many types of
scenarios in which data can flow and be stalled. The next sections
attempt to address some of these situations in more detail.

Valid-Ready Signalling

Normally, a module in a pipeline will have at least one input and one
output interface. In this table, a module with two such interfaces is
described: an upstream interface (prefixed 'datain') and a downstream
interface (prefixed 'dataout').

Signal Name I/O Description Active state

clk in Synchronous system clock rising-edge

datain in Input data word data

datain_val in Indicates that the module
upstream has valid data to
transfer

high

datain_rdy out Indicates that the module is
ready to accept data

high

dataout out Output data word data

dataout_val out Indicates that the module has
valid data at it's output

high

dataout_rdy in Indicates that the module
downstream is ready to
accept data

high

Valid-Ready using FIFO Naming Conventions

Another way of looking at the valid-ready protocol is in terms of common
FIFO naming conventions. The signals datain and dataout are equivalent
to the data paths into and out of the FIFO. The signal datain_val would
be the WRITE strobe of the FIFO. Likewise, dataout_val would be an
inverted version of the EMPTY flag. The READ strobe of the FIFO is
equivalent to dataout_rdy while datain_rdy would be an inverted version
of the FULL flag. Figure 1 below shows this connectivity in more detail.

Valid-Ready Functional Timing Examples

Ready-before-Valid Signalling

Ready-before-valid signalling (Figure 2) occurs when an interface asserts
ready high before there is valid data available. This would occur when a
pipeline element has the capacity to absorb data before any data arrives.
An example of this would be a FIFO or a buffer with a number of empty
pipeline stages available. Generally it's good design practise to use
ready-before-valid signalling (if the architecture permits) as it ensures
maximum throughput down a pipeline. If ready-before-valid signalling is
used throughout a pipeline then the pipeline will be self flushing.

Valid-before-Ready Signalling

With valid-before-ready signalling (Figure 3), a pipeline element asserts
the valid signal first before the downstream element responds with a
ready signal. In some designs, it may be necessary to use this type of
signalling. An example would be an arbitration between various data
paths where the selection of a particular data path is dependent on the
type of data (E.g. an MPEG transport stream). In this case, a particular
data path may not be routed until there's valid data at it's input.

Copyright © 2009 ZIPcores.com Page 1 of 3

Figure 2: Ready-before-Valid signalling

Figure 1: Valid-Ready signalling in terms of
FIFO nomenclature

APPLICATION NOTE : ZC001

Using the Valid-Ready pipeline protocol
Rev. 1.1

Valid-Ready protocol 'Stalemate' situations

In some scenarios, a 'stalemate' situation may arise between elements in
a pipeline using the valid-ready protocol. This occurs when the upstream
element uses ready-before-valid and the downstream interface uses
valid-before-ready. In this situation, the upstream interface will wait
indefinitely for a ready before asserting it's valid and likewise, the
downstream will wait indefinitely for valid before asserting it's ready. The
result is a stalemate with the pipeline locked.

Care must be taken to match valid-ready interfaces correctly. If possible,
modules within a pipeline should be designed to assert both ready and
valid without 'snooping' the condition of the upstream or downstream
interfaces (i.e. adopt a valid-before-ready and ready-before-valid
approach). In this way, data throughput is maximized and stalemate
situations are avoided.

Stalled Pipeline

Figure 4 demonstrates a situation where the data path is initially stalled
waiting for a ready signal. The ready is asserted for one clock-cycle
resulting in a single data transfer. The pipeline is subsequently stalled,
waiting for a ready signal. The upstream pipeline element is using valid-
before-ready signalling.

Empty Pipeline

Figure 5 demonstrates the transfer of a single data item down the
pipeline. After data transfer, the pipeline becomes empty. The
downstream element is using ready-before-valid signalling and asserts
ready high for the duration.

Valid-Ready Connectivity

The following block diagrams give examples of connectivity between
pipeline elements that use the valid-ready protocol.

Copyright © 2009 ZIPcores.com Page 2 of 3

Figure 3: Valid-before-Ready signalling

Figure 4: Full pipeline with stalling

Figure 5: Pipeline empty

Figure 6: Pipeline elements connected in series

Figure 7: Pipeline 2:1 Mux

Figure 8: Pipeline 1:2 De-mux

APPLICATION NOTE : ZC001

Using the Valid-Ready pipeline protocol
Rev. 1.1

Conclusion

The valid-ready pipeline protocol is a versatile protocol used to manage
the data-flow in a pipeline. The protocol is used by many of the IP Cores
within the ZIPcores library. It uses four basic signals: a synchronous
clock, data, valid and ready. With these four signals, any number of
pipeline elements may be connected together and in various
configurations.

We have seen that there are different methods of implementing the valid-
ready handshake signals such as the valid-before-ready and ready-
before-valid implementations. Careful design of the interfaces between
pipeline elements will ensure maximum data throughput and will avoid
potential pipeline stalemate situations.

Revision History

Revision Change description Date

1.0 Initial revision 30/06/08

1.1 Added FIFO naming convention example 10/06/09

Copyright © 2009 ZIPcores.com Page 3 of 3

