
The Movitz development platform

As of December 2003

Frode V. Fjeld
frodef@cs.uit.no

May 27, 2004

$Id: movitz.tex,v 1.1.1.1 2004/01/13 11:05:04 ffjeld Exp $

1 Introduction

Movitz consists of a Common Lisp compiler1, a run-time environment, a library
of operating system-related functionality, and debugging and monitoring tools.
Movitz is, among other things, an attempt to bring exploratory programming
and easy prototyping and development to embedded and kernel-level program-
ming.

This document provides a technical overview of the Movitz platform, and is
expected to evolve with the software project.

2 The Movitz run-time environment

The Movitz run-time environment is the core software components and the
regime of conventions that are in effect on the target machine. It is designed for
the x86 PC architecture, running in 32-bit protected mode. It is self-sufficient,
in the sense that it relies on no software services other than those implemented
as part of Movitz itself, and aims to support kernel-level software. The primary
design goal for the run-time environment is to be as efficient and flexible as
possible, without imposing unnecessary burdens or restrictions on any direction
of application-level design that might be built over it. To this end, it defines a
“run-time context” that holds all computational state that does not fit naturally
on the control stack, and a flexible and efficient procedure call protocol that
conforms to the Common Lisp specification.

1Movitz implements a growing subset of the ANSI Common Lisp standard (X3.226-1994),
a hypertext version of which is on-line at http://www.lispworks.com/reference/HyperSpec/.

1

mailto:frodef@cs.uit.no
http://www.lispworks.com/reference/HyperSpec/

2.1 Run-time context

The “run-time-context” is the most central data structure of the Movitz run-
time environment. The CPU’s edi register is designated to always point to this
structure. The same pointer value also constitutes the nil value, so that this
often-used lisp value is always immediately available from the edi register. Var-
ious aspects of the run-time environment, as outlined in the following sections,
are located in the run-time-context, and that way they are readily available
through the edi register. A visual representation of the run-time-context is
shown in figure 5 on page 20.

2.1.1 Primitive functions

Primitive functions are assembly-level sub-routines that implement certain often-
used functionalities. These functions do not follow neither the standard function-
call protocol (section 2.4) nor function result protocol (section 2.5). Conse-
quently, the compiler must know how to invoke each primitive function. This
knowledge is typically embedded in a compiler-macro2. For example, the car
function has a compiler-macro that expands into assembly-code that calls the
primitive function “fast-car”, which implements the car operation. Also, lookup
of dynamic variables is performed by a primitive function.

The performance gain from primitive functions, as compared to normal func-
tions, stems from the immediate availability of their code-vector through edi
(rather than having to go through a symbol and funobj), and the freedom to
use a tailor-made function-call protocol.

2.1.2 Global constants

Certain lisp objects are of such a nature that they are assigned a slot in the
“run-time-context”, in order to be readily available to code anywhere. These
include e.g. the symbol t, and the unbound value (which must be compared
against at every reference to a potentially unbound slot).

2.1.3 Dynamic environment

The dynamic environment consists of dynamic variable bindings, active catch
tags and unwind-protections. These are implemented in an (intertwined) linked
list structure (i.e. not a standard lisp list), that is located on the stack. This
list’s head is kept in the “run-time-context”. Thus, the dynamic environment
is captured entirely by the stack and the “run-time-context”. Hence, the ba-
sic Movitz run-time environment adds very little (if any) overhead to context-
switching mechanisms built on top of it.

2Section 3.2.2.1 of the Hyperspec describes compiler-macros.

2

2.2 Multiple run-time contexts

Any form of multi-tasking (threads, processes, or SMP) requires the ability to
change between execution contexts. This involves, at least, switching the stack
and the “run-time-context”. However, a new value cannot simply be loaded into
edi, since this register is assumed to hold the nil value, whose identity must
be preserved. This means that the value in edi must be truly constant, even
across threads, processes, and CPUs.

The x86 architecture includes a segmented memory architecture. The com-
piler can ensure that every reference to the run-time-context is using a desig-
nated segment register. Thus the switching between different run-time-contexts
can be implemented by loading the proper value into this segment register.
The downside to this strategy is that overriding the segment for a particular
instruction incurs a certain performance penalty each time3.

A similar approach would be to utilize a different part of the x86 memory
management subsystem, namely the paging virtual memory system. The idea
is conceptually the same as that of the segment register mechanism: Switch-
ing the run-time-context by mapping different physical memory pages to the
global run-time-context memory address range. This mechanism has at least
two downsides, however: First, there is a substantial performance overhead in-
volved in changing the virtual memory layout. Second, dealing with virtual
memory is complex, and might interfere with kernel applications use of virtual
memory. On the other hand, in some applications a context switch might in-
volve a remapping of virtual memory remapping anyway, such that integrating
a switch of run-time-context can be easily integrated, at little extra cost.

An alternative strategy for implementing multiple execution contexts would
be to install a run-time-context by simply copying it into the “active” run-time-
context memory area. This copying operation may be substantially optimized by
noting that most of the elements of the run-time-context will indeed be constant,
and expectedly only a handful of elements are actually required to capture the
dynamic context. This scheme has the advantage of being conceptually very
simple, and doesn’t make use of any “exotic” CPU features. However, in a
multi-CPU environment where true concurrency is involved, each CPU will still
require a private constant block. This can be accomplished using either the
segment register or virtual memory, as described above.

2.3 Function objects

Much like the run-time-context constitutes the global (or at least thread-wide)
running context, each function has a local object, which we call a “funobj”,
that holds contextual information local to the function. The current function’s
funobj is always loaded in the esi register (We say about the use of this register

3The exact quantification of this penalty is unclear and specific to the CPU model. The
Pentium 4 Optimization Reference Manual states simply: “Do not use many segment regis-
ters”, so there may in fact be no associated performance penalty. But at the very least there
is the cost of 1 extra byte in the instruction encoding for overriding the segment register.

3

in section 2.4). The funobj includes a reference to the function’s code-vector
(actually, several code-vectors, as explained in section 2.4.2), and the function’s
name, if any. A code-vector is a vector with element-type (unsigned-byte 8)
whose contents is the machine-code that implements the function. A function’s
name is typically a symbol, but can also be a list such as (setf my-accessor)
or (method my-gf (my-class t)).

The funobj is also a variable-sized, vector-like container for various objects
that the function’s code may reference. Most importantly, this includes every
non-immediate value (i.e. heap objects) that the function references explicitly,
such as strings and symbols. This traditional lisp compilation technique facil-
itates the work of the garbage collector, which otherwise would have to parse
the function’s machine code in order to find and modify its heap references.
For funobjs that are lexical closures, the code references closed-over variables4

indirectly through slots in the funobj’s vector. Finally, the funobj vector may
contain so-called “jumpers”. These are raw instruction pointers (i.e. not lisp
values) that point to somewhere inside the code-vector, typically corresponding
to assembly-level labels. Jumpers are used to implement computed gotos, and
require support by the garbage collector because these pointers must be updated
whenever the code-vector is moved to another address.

2.3.1 Local functions

Local functions are created with operators such as lambda, flet, or labels.
Local functions are represented by the same funobj data-type as normal func-
tions. However, while normal functions have the same extent (life-time) as any
other lisp object, there are four types of extent for local closures, listed here in
exclusive-to-inclusive and inexpensive-to-expensive order:

Null extent An unused local function has null extent, because it will never be
created.

Lexical extent When a local function is known to only be called, meaning it is
never captured with the function operator and passed of to somewhere
outside the current lexical scope, it has lexical extent.

Dynamic extent The local functions that are known to exist only in the dy-
namic scope of its defining form, have dynamic extent.5

Indefinite extent Otherwise, the default is for local functions to have indefi-
nite extent, just like any other normal, heap-allocated lisp object.

Because lexical-extent closures need never exist as lisp objects, the compiler
is free to utilize more efficient representations than funobjs. Also, the standard
function-call protocol (section 2.4) does not have to be obeyed. For example,

4These are termed “borrowed bindings” when seen from the viewpoint of the closure that
references the bindings, or “lended bindings” when seen from the viewpoint of whoever estab-
lish such bindings.

5See the CLHS entry for the dynamic-extent declaration.

4

lexical-extent closures could be inlined, or implemented as assembly-level sub-
routines.

2.4 Function-call protocol

The Movitz function-call protocol implements the full semantics of Common
Lisp function calls. This includes the dynamic, late-binding behavior that en-
ables the redefinition of functions at run-time, and the ability to pass and receive
an arbitrary number of arguments.

All registers are caller-save, with two exceptions: edi is constant, so it does
not need to be saved nor restored. Secondly, esi (which always points to the
current function’s funobj) is saved by the caller as it enters its stack-frame, but
it is the responsibility of the callee to restore it.

Table 1 sketches the details of the function-call protocol. The syntax (ebp-4)
denotes the contents of the address that is contained in the register ebp, offset
by minus four.

Register Meaning
ecx Number of arguments, non-linear.
esi Callee’s function object

(ebp-4) Caller’s function object
eax First argument
ebx Second argument

(esp) Return address
(esp-4) Third argument
(esp-8) Fourth argument, etc.

edx Callee’s name (a symbol), when available.

Table 1: Register usage during function calls.

The edx register is not a strictly required part of the function-call protocol,
but it will often contain the function name, a fact that is exploited for debugging
purposes. The Movitz compiler extends function lambda-lists with the &edx
keyword, which names a variable that will be bound to the value of edx as the
function is called.

Figure 1 shows the stack layout right after a function-call has occurred. The
stack is depicted as growing downwards. The two first arguments, a0 and a1, are
not required to be present on the stack, as they are assigned to the registers eax
and ebx, respectively. However, in practice (because the compiler must observe
Lisp’s left-to-right evaluation rule) they will sometimes be present above a2, a
situation that can be detected and exploited in debugging.

2.4.1 Non-linear encoding of ecx

The register ecx holds the number of arguments during a function call (with a
few exceptions, as explained in the next sections). With the x86 instruction-set,

5

...
ebp↑ ← (ebpf)

funobjf ← (ebpf − 4)
local0f ← (ebpf − 8)
local1f . . .

...
a2 ← (ebpg + 4(n− 1))
a3 ← (ebpg + 4(n− 2))
... . . .

an−2 ← (ebpg + 12)
an−1 ← (ebpg + 8)
eipf

ebpf ← (ebpg)
funobjg ← (ebpg − 4)
local0g . . .

...

Figure 1: A map of the stack, including f and g’s stack-frames, after f has called
g with the n arguments a0 – an−1. eipf denotes the return-address, whereas
ebp↑ denotes the stack-frame pointer of the function that called f .

it is relatively expensive, in terms of code-size, to load a 32-bit immediate value
into a register. It is much cheaper to load an eight-bit value into the lower eight
bits of a register. Whereas the vast majority of function calls will be with fewer
than 256 arguments, we do not want to impose this as a hard limit for call-
arguments-limit. Our best-of-both-worlds solution is to employ a non-linear
coding of the argument count in ecx.

The non-linear encoding separates the argument-counts into two ranges: The
small range and the big range. The small range fits in eight bits, and is loaded
into the lower eight bits of ecx (which with x86 are directly accessible as the cl
register), with complete disregard of the upper 24 bits. For big-range argument-
counts, an escape value (255) is loaded in the lower eight bits of ecx, and the
actual count in the upper 24 bits. Because the escape value is greater than
any other small-range value, this encoding preserves the values’ ordering, such
that a single eight-bit compare is sufficient to establish whether the call-count
is equal to or below some number within the small range.

n ecx bits 8–31 ecx bits 0-7
0–127 don’t care n

128–224 n 255

Figure 2: The non-linear encoding of argument-count n in ecx.

6

The penalty incurred by this scheme is that any function that can accept
more arguments than what fits in the small range, must spend a few instructions
to normalize ecx. This includes any function with an &rest parameter.

2.4.2 Optimized function-calls

Bot static and dynamic examination of programs shows that more than 90% of
all function-calls involve 1, 2, or 3 arguments. Therefore, these cases have been
specially optimized with modified function-call protocols.

Lambda-list %1 %2 %3
(x) X
(x &optional y) X X
(x y) X
(x y &optional z) X X
(x y z) X

Table 2: The combinations of lambda-lists and call-counts that are currently
being automatically optimized by the compiler. NB: After a compiler re-write,
the lambda-lists involving &optional are no longer actually optimized. These
optimizations will hopefully be added again later.

Every function’s funobj contains a reference to that function’s code-vector.
This code-vector holds the machine-code that implements the function, obeying
the function-call protocol as described in section 2.4. However, if the argument-
count is 1, 2, or 3, each of these cases have a separate code-vector entry-point
associated with them. The function-call protocol for these entry-points is identi-
cal to the normal protocol, except that ecx is not used, since the argument-count
is implied. Not only does this save the caller the overhead of loading ecx, but
the callee may now also save at least one compare and branch operation, since
there is no need to examine ecx.

There is also support for manual implementation of optimization of the dis-
patch on a function’s number of arguments. This is provided by the special
operator numargs-case, which may only appear as the first form in a func-
tion. This operator allows the programmer to associate completely independent
procedures with each of the function’s four different entry-points. Still, although
the procedures are independent, they are eventually merged into the same code-
vector and the same funobj, so that apart from the separate entry-pointers, such
functions look exactly the same as any other function to the run-time system.
This feature is intended for “under-the-hood” optimizations, not user-level pro-
grams.

For functions that don’t implement such optimized code-vector entry-points
(that is, functions whose lambda-list the compiler has not been taught how to
optimize, and do not employ numargs-case), these special-case code-vectors
will point to global code-stubs that load ecx with the correct value, and then
jump to the function’s normal entry-point. One of these code-stubs is shown

7

(defun find-if (predicate sequence &key from-end (start 0)
end (key ’identity))

(numargs-case
(2 (predicate sequence)

#| Code for the simplest case of finding an element
matching <predicate> in <sequence>. |#)

(t (predicate sequence &key from-end (start 0)
end (key ’identity))

#| Code for the full-fledged find-if. |#)))

Figure 3: An example use of numargs-case taken from the implementation
of the find-if function. Here, the entry-point for two arguments may skip
all keyword parsing, and assume the default values for the keyword arguments
when performing the search.

in figure 4. Note that while this re-direction certainly represents a performance
overhead, it is something that is expected to happen relatively rarely.

(define-primitive-function trampoline-funcall%2op ()
"Call a function with 2 arguments"
(with-inline-assembly (:returns :nothing)
(:movb 2 :cl)
(:jmp (:esi -6))))

Figure 4: The function-call trampoline stub function for functions that don’t
implement the two-arguments optimized protocol. This code is located in the
file losp/cl/run-time.lisp.

2.5 Function result protocol

Functions may return any number of values. However, the majority of func-
tions return one value, and—even more importantly—most function calls are
evaluated for their primary value exclusively6. The function result protocol
takes these facts into consideration. The CPU’s carry flag (i.e. the CF bit in
the eflags register) is used to signal whether anything other than precisely one
value is being returned. Whenever CF is set, ecx holds the number of values
returned. When CF is cleared, a single value in eax is implied. A function’s
primary value is always returned in eax. That is, even when zero values are
returned, eax is loaded with nil. This way, a function-call’s primary value is
always found in eax, without further ado on the caller’s part.

6Common Lisp defines the primary value of an form to be the first value it returns, or, if
it returns zero values, the value nil.

8

n CF eax ebx ecx edi
0 1 nil - 0 -
1 0 v0 - - -
2 1 v0 v1 2 -

3, 4, 5, . . . 1 v0 v1 n (edi+z) → v2

(edi+z+4) → v3

(edi+z+8) → v4

...

Table 3: Register and carry-flag usage in the function result protocol for re-
turning the n values v0 to vn−1. The offset of the “values” section of the
run-time-context is denoted by z.

As can be seen from table 3, the register ebx is used to hold the function’s
secondary value when two or more values are being returned. From the ternary
value onwards, the values are placed in thread-local storage, which is to say a
designated section of the run-time-context.

2.6 Dynamic typing

Common Lisp is a dynamically typed language, meaning that type is attached
to values rather than variables, and that any value’s type is available at run-
time. Movitz implements the full dynamic semantics of Common Lisp’s type
system, as documented in this section.

The traditional lisp approach of assigning a few bits of the machine word is
employed. Movitz uses the three least significant bits of x86’s 32-bit words to
encode type information, according to table 4.

Tag Tag2 Type
0 000 even fixnum
1 001 cons
2 010 character
3 011 not assigned
4 100 odd fixnum
5 101 null
6 110 other heap object
7 111 symbol

Table 4: Type tags.

The tag value 3 is not being used, and is available for use e.g. by a scheme for
garbage collection. The fixnum and character types are immediates, meaning
their value is encoded in the 32-bit word per se. For the non-immediate types,
the word is a pointer to the memory location that holds the object’s information.

9

2.7 Memory management

2.7.1 Dynamic memory allocation

The one major shortcoming of the current run-time environment, is the lack of
decent memory management, and in particular a garbage collector. One reason
why this has been put off, is the fact that memory management is an area that
is expected to overlap with many kernel applications. That is, a kernel design
might include concepts and mechanisms that put specific requirements on the
run-time environment’s memory management strategy.

We expect to address this problem in the following way: Memory man-
agement will nominally be left out of the core Movitz run-time environment.
However, the hooks required for implementing memory management modules
will be provided, as well as example implementations that will provide basic
memory management for applications that do not have special requirements.

Currently, a very simple allocation scheme provides for dynamic memory
allocation. A pointer is initialized to the start of the free heap at boot-time,
and objects are simply allocated sequentially from this heap. No provision is
made for what happens when the heap runs out of space, or any form of garbage
collection. The room function reports how far the heap allocation-pointer has
proceeded.

3 The compiler

The Movitz compiler targets the x86 instruction architecture, and the Movitz
run-time environment. The compiler is implemented in Common Lisp, and has
not been designed to be retargetable to other CPU architectures.

3.1 Movitz images

The Movitz compiler is a cross-compiler. While the compiler qua lisp program
lives in the normal lisp world of whatever Common Lisp implementation it is
running, it targets a virtual lisp world that is a symbolic representation of a
native Movitz lisp world. This is called a Movitz “image”. The current Movitz
image is bound to the special variable *image*. This object defines all the
aspects of the target lisp world, including references to all its objects, such as
symbols, functions, lists, etc.

There are several kinds of images. The compiler usually works with a par-
ticular kind, called a “symbolic image”, which is implemented purely as a lisp
data-structure. Other kinds of images are mostly used for inspection and debug-
ging. This includes “file images” (interfacing finalized bootable kernel images in
a file), and—more interestingly—”bochs images” that interfaces (via the unix
procfs mechanism) a Bochs PC emulator7 running a Movitz image.

One important aspect of any image is that it defines an address space. When
an object is loaded into a symbolic image (“interned” is the term being used),

7http://bochs.sourceforge.net

10

http://bochs.sourceforge.net

it is given an address in this address space. The address-space mapping is two-
way, meaning that either an object’s address, or the object at a given address
can be requested. Symbolic images simulate the address-space using two hash-
tables, whereas file images translate addresses to file positions, and bochs images
interface the emulated machine’s address-space.

Symbolic images may be “dumped”, a process that transforms the sym-
bolic representation to binary form and saves it to a bootable kernel image.
The compiler can work incrementally with a symbolic image, so that individ-
ual functions may be recompiled (or new functions added) before the symbolic
image is dumped again for a new test-run. Also, functions and other objects
may be transported from one image to another, for example from a symbolic
image to an image running on a machine or emulator, thus providing true dy-
namic compilation. This has in fact been tried, using a simple (IPv6 UDP over
Ethernet) network protocol for communication.

3.2 Compiler internals

This section provides an introduction to the implementation details of the
Movitz compiler. It is expected to be useful primarily to anyone who wishes to
study the source-code for the compiler, and is not essential for those who wish
to just use the Movitz system.

The Movitz compiler ultimately produces x86 assembly code, suitable for
input to an assembler that generates machine-code. However, the compiler
mostly works with what we will call “extended assembly”, which is normal
x86 assembly extended with a few pseudo-instructions that facilitate symbolic
references and code analysis at later stages in the compiler.

The compiler is implemented in three conceptually separated modules: The
compiler protocol, the core compiler, and the special operator compilers, each
detailed below.

3.2.1 The compiler protocol

The compiler protocol is meta-code that is concerned with managing the in-
formation flow in the compiler8. That is, it defines a scheme for passing the
current (downstream) compilation context (the form to be compiled, the cur-
rent lexical environment, etc.) around. Similarly, there is a scheme for the
(upstream) return values, which consists of compiled code and its meta-data,
such as the types and whereabouts of the results from the code. These two
schemes are primarily what is referred to as the “compiler protocol”. The
compiler protocol is supported by macros for defining (define-compiler and
define-special-operator) and calling compiler functions (compiler-call),
and for returning and binding their return values (compiler-values and
compiler-values-bind, respectively).

One important aspect of the compiler protocol is the downstream “result-
mode” and upstream “returns” values. Whenever a form is compiled, a result-

8Source-code file compiler-protocol.lisp.

11

mode parameter must be provided. This expresses a wish for where the result of
the compiled code should end up, and must be one of a finite set of result-mode
designators that the compiler knows about, for example denoting a machine reg-
ister, a stack push, a lexical binding, or the full-fledged function result protocol
described in section 2.5. The result-mode may also indicate that the form’s
result is to be ignored, and compiled for side-effects only. However, the result-
mode is merely a request, and the actual code-producing function is at liberty
to ignore it. Every code-producing function must also return a “returns” pa-
rameter, which declares where the code actually produces a value. A special
“nothing” value indicates that the code produces no values anywhere.

The result-mode and return-mode designators are overlapping, but not equal
sets. One special result-mode designator, “function”, is used also to recognize
when the compiler context is at the function’s tail position. This piece of in-
formation is useful for various optimizations. For example, there is no need to
restore the stack-pointer after a function call if we are about to exit the current
stack-frame anyway. The transformation of (recursive) tail-calls to jumps is
another optimization technique that requires discovery of the tail position, but
this is not yet implemented. “Function” is not a legal return-mode designator,
but is normally matched by the “multiple-values” designator, which denotes the
function result protocol that is described in section 2.5.

In addition to specifying what amounts to storage slots for lisp values, more
abstract modes can be specified both upstream and downstream. Particularly
useful are the boolean modes, because it is quite common that forms are eval-
uated not for their value per se, but rather for their boolean status9. There
are two downstream boolean modes: “branch on true” and “branch on false”,
both of which take an assembly label as parameter. For example, the function
that produces code for the nil object10 knows how to deal with the “branch on
false” result-mode: Generate an unconditional branch to that label. Upstream,
code-producers may specify that the code is boolean true given a certain x86
eflags status, such as “true when ZF=1”. This translates directly to a corre-
sponding branch instruction, and is thus easily glued with a “branch on true”
or “branch on false” request.

In general, the result/return-mode part of the compiler protocol determines
to a large extent the quality of the code produced by the compiler. For ex-
ample, a (hypothetical) very primitive, stack-based compiler would know only
one result-mode, namely “push”, and one return-mode, “pop”, and thus pro-
duce rather inefficient code. On the other hand, a very clever compiler would
know about most every kind of source and destination, every combination of
how to move values from one to the other, and all this while taking type and
control information from the compilation environment into account. While the
Movitz compiler is currently considerably smarter than a simple push-and-pop
compiler, it is still expected to improve in this area.

9Common Lisp specifies that nil is boolean false, while any other value is boolean true.
10That function is compile-self-evaluating.

12

3.2.2 The core compiler

The core compiler implements the basic compilation control and code-generation11.
The functions here can be roughly divided into four categories: First, dispatch-
ing compilers that examine the form or other aspects of the current compilation
context, and forwards this to a more specialized function. Second, there are
code-producing functions that actually produce assembly-code. These two cat-
egories of functions both adhere to the compiler protocol. Third, there are code-
producing helper functions, usually with a name on the form make-compiled-<foo>.
These functions do not follow the compiler protocol. Finally, there are miscel-
laneous helper functions.

One central function that fall into the “miscellaneous helper functions” cat-
egory, is the function make-result-and-returns-glue. This function is used
to match a compiler-protocol result-mode (as desired by the compiler caller)
value with a returns mode (as provided by the code producer). That is, this
function knows which modes are compatible, which are not, and how to generate
the glue code that is required for a particular match. Another interesting func-
tion in this category, is optimize-code, which implements an assembly-level
peephole optimizer.

There are two functions which are normally used to invoke the compiler on a
form: compile-form and compile-form-unprotected. They differ in that

compile-form

compile-form-
unprotected

the former is guaranteed to honor the requested result-mode (by adding some
glue code if necessary), whereas the latter is not.

The compilation of a function’s symbolic definition to assembly code is per-
formed in two passes, where the first pass produces extended assembly code.
The second pass translates the extended assembly code to a code-vector and
finalizes the funobj and other objects that are part of the function’s represen-
tation.

3.2.3 The compiler’s first pass

For each function, the following occurs:

1. Compile initialization code for “complicated” function arguments. That is,
make-function-
arguments-initall arguments that are not required arguments. This code checks whether

the argument is provided, and if not arranges for the default init-form to
be evaluated.

2. The function’s body forms are compiled, with compile-form, to extended
assembly code.

This process is recursive, in the sense that whenever a local function is
created (i.e. with lambda, flet, or labels), the first-pass compiler is ap-
plied to the local function. Hence, the result of the first-pass compilation is—
conceptually—a tree of functions.

11Source-code file compiler.lisp.

13

The functions that are involved in the first-pass compilation process, are (or
should be) strictly functional. That is, they should not side-effect the funobj
or other such objects they receive from “upstream” in the compiler. This is
because it should be safe to apply any of the compiler functions12 to the same
form more than once (with different parameters), so as to chose the better code
produced. This would not work properly if one of the compilations that in the
end wasn’t chosen to be included modified the funobj or lexical environment.

3.2.4 The compiler’s second pass

1. The first-pass input is analyzed for its use of local functions in order to
determine their type and extent. Local functions that don’t close over
any aspect of the lexical environment become simply “local funobjs” that
behave just like any other self-evaluating object. Proper local closures,
however, require more complex handling, depending on their extent, as
described in section 2.3.1.

2. The code produced so far is analyzed for its use of lexical variables. Local
funobj-assign-bindings

variables are assigned slots in the function’s stack-frame. Non-local lex-
ical variables (i.e. closed-over variables that are “borrowed¨ from some
lexically enclosing function) are recognized and remembered. Also, the

code-constants-and-
jumperssets of non-immediate objects and jumper tables used by the code are

determined.

3. The funobj’s tail vector is laid out, in the following sequential pattern (see
finalize-funobj

section 2.3 for details about the contents of funobjs):

(a) Jumper tables.

(b) Slots for borrowed bindings.

(c) Constants.

The number of jumpers is encoded in the funobj, so that the run-time
system (i.e. the garbage collector) may recognize the jumpers as such.

4. At this point, all the symbolic references in the extended assembly-code
produced so far should be resolved. This extended assembly code is now

finalize-code

translated to actual assembly code.

3.2.5 Special forms

The compilation of special operators is dispatched to the function that is re-
sponsible for compiling that operator. These functions adhere to the compiler
protocol. Also, they are registered in a special name-space such that the com-
piler can automatically dispatch to the correct special operator compiler when
it encounters a special form. The macro define-special-operator is thus a
thin layer over define-compiler that registers the function in this name-space.

12I.e. the operators defined with define-compiler.

14

The special operators defined in Common Lisp are located in a separate file
from other Movitz-specific special operators13. The special operator compiler
functions work in precisely the same manner as the core compiler. They are
only distinguishable from the core compiler in the way they are automatically
hooked into the compiler’s form dispatch.

Among the Movitz-specific special operators, probably the most interesting
is with-inline-assembly. This operator provides a short-cut for inserting as-
sembly code directly in a lisp form. This is particularly useful in conjunction
with compiler-macros. Arguably, a substantial part of the Movitz compiler con-
sists of compiler-macros that expand to assembly code by way of this operator.
The with-inline-assembly special operator takes declarative parameters that
enables the compiler to glue the provided assembly code with the current com-
pilation context, according to the compiler protocol. Note that the assembly
code injected with this operator is not considered “foreign” code. That is, the
assembly code must observe all the rules of the Movitz run-time system.

3.3 The file compiler and the boot process

The file compiler is still rather primitive, and has not been implemented with
much regard to the standard compile-file semantics. Multi-file systems are
currently defined by way of require and provide forms, which also have ex-
tended semantics wrt. the standard.

Basically, the file compiler makes each file into a function, with a name com-
puted from the file’s pathname. That function’s forms consists of the top-level
forms in the file. Also, the function is registered as a file function with the
current image (section 3.1). When the image is dumped, a function named
toplevel-function is automatically constructed, which simply calls each of
the file functions in turn, according to their priority (the provide form is ex-
tended to allow a file priority to be specified). The dump process arranges for
toplevel-function to be called when the image is booted.

4 Libraries

The Movitz system includes many lines of library code, some of which are briefly
described here. By “library” we mean a collection of related functions and
macros.

4.1 The Common Lisp library

The Common Lisp language defines an extensive library of functions and macros.
This library is implemented in lisp itself, resorting occasionally to inline as-
sembly in order to achieve improved efficiency or to express something that is
otherwise inexpressible. The work on implementing the Common Lisp library
is not completed. However, what has been implemented tries hard to comply

13In files special-operators-cl.lisp and special-operators.lisp, respectively.

15

with the ANSI specification. We document here the most obvious shortcomings
that currently exists. This can also be regarded as an (incomplete) todo-list for
further development.

4.1.1 Numbers

Of Common Lisp’s many numeric system classes, only fixnums of 30 bits have
been implemented so far. This means that only integer numbers in the range
−(229) to (229 − 1) can currently be represented as lisp values. Overflows are
detected, and cause an exception, for which there is currently no remedy as
there are no bignums. We expect to implement at least bignums and ratios, and
possibly some floating-point type as well.

4.1.2 Sequences

Common Lisp defines numerous sequence operators, and many of these also have
rather complex definitions. That is, these operators must accept both lists and
vector objects, operate forwards or backwards (via the from-end keyword),
etc. Implementing all this is a major undertaking, and while most operators are
currently included, many of these are limited: Some functions only work with
lists or vectors, and some do not accept from-end.

4.1.3 Eval

The current eval implementation has one major shortcoming, in that it does
not support macros. Currently, macro definitions are not packaged into dumped
images. However, certain macros are implemented as special operators, includ-
ing the setf operator, so that functions named (setf <foo>) still work14.
Additionally, eval does not implement every special operator. In short, eval
is currently mostly useful for executing function calls interactively.

4.1.4 CLOS

The Common Lisp Object System is supported, including working defclass,
defgeneric, and defmethod macros. This is work in progress, but we intend
to include strong support for CLOS, and do not regard it as an after-thought
addition to the system, but rather a central part of it. Device drivers and
much other OS functionality is expected to make extensive use of the powerful
abstraction mechanisms provided by CLOS.

Movitz’ CLOS implementation is based on the Closette implementation from
the book “The Art of the Metaobject Protocol”, by Kiczales, Rivières, and
Bobrow.

More details about Movitz’ CLOS implementation are provided in section 4.2.
14The cross-compiler implements setf fully, however.

16

4.1.5 File-system related functions

Because Movitz targets a bare-bones kernel environment, there is no file-system,
and thus no related functions, such as open and close, or any pathname func-
tionality. This may be implemented as part of a particular kernel application.

4.1.6 Conditions

Condition objects are implemented atop CLOS. Condition signaling is fully
implemented.

4.1.7 Reader

The current reader, while adhering to the most important aspects of Common
Lisp standard syntax, is incomplete in that it is “hard-coded”. That is, it does
not take *read-table* or other reader customization context into account,
with the sole exception of *read-base*.

4.2 CLOS details

4.2.1 Method dispatch

The manner in which method dispatch is implemented affects heavily the per-
formance of any CLOS implementation. When a generic function is called,
control is transferred to the function that has been set with the MOP operator
set-funcallable-instance-function. That function must transfer control
to the appropriate method function.

Normally (that is, currently always) generic functions are initialized to initial-
discriminating-function. This function will inspect the generic function’s
methods and number of required arguments, and based on this information
it will install a new funcallable-instance-function, and invoking this by calling
the generic function anew with the same arguments. This new discriminating
function will perform method lookup according to the CLOS specification, and
(typically) cache the result for later invocations.

The information that initial-discriminating-function seeks for a generic
function is a “specializer bitmap”, often referred to as “map” in the relevant
code. The bitmap is an integer where bit 0 is set if any method specializes on
argument 0, and so on. Thus, if the specializer-bitmap is 0, the generic func-
tion has precisely one method that specializes on no arguments, in which case
that method’s method-function is used as the generic function’s discriminating-
function (although there’s no actual discriminating going on) . A map of #b1
means that all methods specialize on the first argument (if any), and the map
#b101 means all methods specialize on the first and/or third arguments (if any),
and so on.

The system is now in a position to install discriminating functions that
are specialized to different specializer-maps. This helps performance in two
important respects. Firstly, any zero-bit in the specializer-map means that

17

argument can be disregarded in the cache lookup process, and for which the
dispatcher doesn’t have to perform class-of (or even more, if eql-specializers
are involved), or one compare for each entry in the cache lookup. Secondly, and
perhaps most importantly, each argument that can be disregarded in the lookup
might drastically reduce the size of the cache. To see this, consider the case of
slot writers: They take two arguments, and are typically only specialized on the
second one (the object). If the first argument (the new value for the slot) is not
disregarded, one entry will have to be saved in the cache for each combination
of object and value classes, which is clearly going to hurt lookup performance
and increase memory footprint.

All discriminator functions currently cache method dispatches using (ap-
proximately) assoc-lists. This is the most efficient approach when the number
of entries in the caches are below some number (that is expectedly in the area
of 15–40). When bigger systems happen, it might be worthwhile to implement
hash-table caching or some other caching strategy approaching O(1) lookup.

4.3 Miscellaneous libraries

4.3.1 Read-line

The read-line library provides a mechanism for entering text interactively. Sim-
ple line-editing key-strokes are supported, and a history buffer.

4.3.2 IPv6 networking

A library of functions related to implementing the IPv6 networking protocols.
Most of the functions are packet accessors, that provides read/write access to
for example a packet’s destination field. Packets are represented by vectors.
There are also functions for managing IPv6 addresses.

A very minimal IPv6 stack is also implemented, mostly as an example of
how to use the accessors. This stack can perform rudimentary neighborhood
discovery, reply to ping requests, and receive UDP packets.

TCP (or anything else really interesting) is not implemented yet.

4.3.3 IPv4 networking

There is now also an IPv4 library, similar to the IPv6 one.

4.4 x86 CPU library

This library contains functionality related to interfacing certain aspects of the
x86 CPU. This includes a low-level memory interface, and hardware I/O-ports
for interfacing hardware devices. Also, functionality for determining the brand
and model of CPU currently running, and access to special CPU features such
as the performance counters is available.

18

4.5 x86 PC drivers library

This library contains drivers to various parts of the de-facto PC standard, and
for different peripheral hardware devices. Currently included are a drivers for
a simple text-mode screen driver, the PC/AT keyboard, the NE2000 network
interface card, and the PC interrupt and timer controllers.

5 Debugging and monitoring tools

5.1 Image browser

A graphical browser tool has been implemented, using the CLIM GUI system.
This enables the user to inspect an image at a low detail level. The tool displays
a graphical representation of the image’s lisp objects, and any references it
contains may be opened or closed by clicking with the mouse. A screen-shot
can be seen in figure 5.

The browser tool requires only the most fundamental aspects of images to
be supported (section 3.1 introduces images). This means that the browser can
attach to all the existing forms of images, even including Movitz running in a
Bochs emulator. However, currently the emulator is suspended for the duration
of a browser session. Integrating and synchronizing the browser seamlessly with
a truly running image is a topic to be researched.

5.2 Bochs emulator interface

As previously mentioned, one of the image implementations interfaces a running
Bochs emulator, using the Unix procfs IPC mechanism. In addition to providing
access to the emulated address space, the entire state of the emulated CPU is
also made available. This enables for example the developer to obtain a stack-
trace of the running program. This has proved to be a valuable debugging
tool.

6 Summary

We have introduced the Movitz system, and described some of its most impor-
tant concepts, some technical details, and some of its current shortcomings with
respect to the Common Lisp standard.

Figure 6 shows a screen-shot of the Bochs PC emulator running a Movitz
image. The image has just been booted (the minus signs in parens are the boot-
loaders progress indicator), and a short interactive session showing off some of
Movitz’ features is displayed.

19

Figure 5: A screen-shot of the Movitz image browser tool. The root object to
the left is the global “run-time-context”, a.k.a the nil object.

20

Figure 6: A screen-shot of Bochs running Movitz.

21

Contents

1 Introduction 1

2 The Movitz run-time environment 1
2.1 Run-time context . 2

2.1.1 Primitive functions . 2
2.1.2 Global constants . 2
2.1.3 Dynamic environment . 2

2.2 Multiple run-time contexts . 3
2.3 Function objects . 3

2.3.1 Local functions . 4
2.4 Function-call protocol . 5

2.4.1 Non-linear encoding of ecx . 5
2.4.2 Optimized function-calls . 7

2.5 Function result protocol . 8
2.6 Dynamic typing . 9
2.7 Memory management . 10

2.7.1 Dynamic memory allocation . 10

3 The compiler 10
3.1 Movitz images . 10
3.2 Compiler internals . 11

3.2.1 The compiler protocol . 11
3.2.2 The core compiler . 13
3.2.3 The compiler’s first pass . 13
3.2.4 The compiler’s second pass . 14
3.2.5 Special forms . 14

3.3 The file compiler and the boot process 15

4 Libraries 15
4.1 The Common Lisp library . 15

4.1.1 Numbers . 16
4.1.2 Sequences . 16
4.1.3 Eval . 16
4.1.4 CLOS . 16
4.1.5 File-system related functions 17
4.1.6 Conditions . 17
4.1.7 Reader . 17

4.2 CLOS details . 17
4.2.1 Method dispatch . 17

4.3 Miscellaneous libraries . 18
4.3.1 Read-line . 18
4.3.2 IPv6 networking . 18
4.3.3 IPv4 networking . 18

4.4 x86 CPU library . 18
4.5 x86 PC drivers library . 19

22

5 Debugging and monitoring tools 19
5.1 Image browser . 19
5.2 Bochs emulator interface . 19

6 Summary 19

23

Symbol index

image, 10
read-base, 17
read-table, 17
&edx, 5
&rest, 7

call-arguments-limit, 6
car, 2
class-of, 18
close, 17
code-constants-and-jumpers, 14
compile-file, 15
compile-form, 13
compile-form-unprotected, 13

defclass, 16
defgeneric, 16
define-compiler, 14
define-special-operator, 14
defmethod, 16
dynamic-extent, 4

eval, 16

finalize-code, 14
finalize-funobj, 14
find-if, 8
flet, 4, 13
from-end, 16
function, 4
funobj-assign-bindings, 14

initial-discriminating-function, 17

labels, 4, 13
lambda, 4, 13

make-function-arguments-init, 13

nil, 2, 3, 8, 9, 12, 20
numargs-case, 7, 8

open, 17

provide, 15

require, 15
room, 10

set-funcallable-instance-function, 17
setf, 16

t, 2
toplevel-function, 15

unsigned-byte, 4

with-inline-assembly, 15

24

	Introduction
	The Movitz run-time environment
	Run-time context
	Primitive functions
	Global constants
	Dynamic environment

	Multiple run-time contexts
	Function objects
	Local functions

	Function-call protocol
	Non-linear encoding of ecx
	Optimized function-calls

	Function result protocol
	Dynamic typing
	Memory management
	Dynamic memory allocation

	The compiler
	Movitz images
	Compiler internals
	The compiler protocol
	The core compiler
	The compiler's first pass
	The compiler's second pass
	Special forms

	The file compiler and the boot process

	Libraries
	The Common Lisp library
	Numbers
	Sequences
	Eval
	CLOS
	File-system related functions
	Conditions
	Reader

	CLOS details
	Method dispatch

	Miscellaneous libraries
	Read-line
	IPv6 networking
	IPv4 networking

	x86 CPU library
	x86 PC drivers library

	Debugging and monitoring tools
	Image browser
	Bochs emulator interface

	Summary

