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ATI 5800 Series (Cypress) GPU Architecture

 Peak values:

– 2.72 Teraflops Single 
Precision

– 544 Gigaflops Double 
Precision

– 153.6 GB/s memory 
bandwidth

– 20 SIMDS

– Each SIMD has

 Local (shared) memory

 Cached (texture) memory
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SIMD Engine

Each SIMD:

– Includes 16 VLIW Thread Processing Units, each with 5 scalar 
stream processing units + 32KB Local Data Share

– Has its own control logic and runs from a shared set of threads 

– Has dedicated texture fetch unit w/ 8KB L1 cache
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Wavefront

All threads in a “Wavefront” execute the same instruction

– 16 Thread Processing Units in a SIMD * 4 batches of threads

= 64 threads on same instruction (Cypress)

What if there is a branch?

1. First, full wavefront executes left branch, threads supposed to 
go to right branch are masked

2. Next, full wavefront executes right branch, left branch 
threads are masked

OpenCL workgroup = 1 to 4 wavefronts on same SIMD

– Wavefront size less than 64 is inefficient!
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OpenCL View of AMD GPU
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OpenCLTM Memory space on AMD GPU
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Convolution algorithm

Input image

3x3 Filter or mask (weights)

Output image

Output Image value

=

Weighted Sum

of neighboring

Input Image values
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FOR every pixel:

float sum = 0;

for (int r = 0; r < nFilterWidth; r++)

{

for (int c = 0; c < nFilterWidth; c++)

{

const int idxF = r * nFilterWidth + c; 

sum += pFilter[idxF]*pInput[idxInputPixel];

}

} //for (int r = 0...

pOutput[ idxOutputPixel ] = sum;

 For a 3x3 filter: 9+9 reads (from input and filter) for every write (to output)

 For large filters such as 16x16, 256+256 reads for every write

 Notice read overlap between neighboring output pixels!

Convolution algorithm
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OpenCL Convolution on multi-core CPU

 CPU implementation:

– Automatic multi-threading!

 One CPU-thread per CPU-core

– Highly efficient implementation

 Each CPU-thread runs one or more OpenCL work-groups

 Use large work-groups (max on CPU is 1024)

 Optimization 1

– Unroll loops

– Pass #defines at run-time (compile option for OpenCL kernels)

– Use vector types to transparently enable SSE in the backend

 Can be faster than simple OpenMP multi-threading!

 Image Convolution Using OpenCL™ - A Step-by-Step Tutorial

http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
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OpenCL Convolution on multi-core CPU
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__kernel void Convolve(   const __global  float * pInput,

__global float * pFilter,

__global  float * pOutput,

const int nInWidth,

const int nFilterWidth)

• All data is in global (uncached) buffers

• Filter (float * pFilter) is 16x16

• Output image (float * pOutput) is 4096x4096

• Input image (float * pInput) is (4096+15)x(4096+15)

• Work-group size is 8x8 to correspond to wavefront size of 64 on 
AMD GPUs

• Convolution time: 1511 ms on Radeon 5870

Convolution on GPU (naïve implementation)
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• Previously, all data was in global (uncached) buffers

• Did not reuse common data between neighboring pixels

• Input items fetched per output pixel = 16x16 = 256

• Can share input data within each work-group (SIMD)

• Preload input data into local memory (LDS), and then access it

• For a work-group of 8x8, if you pre-load input data into LDS

• Filter is 16x16

• Output image (per work-group) is 8x8 = 64

• Input image that is loaded onto LDS is (8+15)x(8+15) = 529

• Input items fetched per output pixel = 529/64 = 8.3 !

• Convolution time: 359 ms !

Convolution on GPU (Optimization 1)
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 You may have deduced by now that if you have a larger work-group, 
there is more data reuse.

 Largest work-group size on CPU = 1024 = 32x32

 Largest work-group size on GPU = 256  = 16x16

• For a work-group of 16x16, if you pre-load input data into LDS

• Filter is 16x16

• Output image (per work-group) is 16x16 = 256

• Input image that is loaded onto LDS is (16+15)x(16+15) = 961

• Input items fetched per output pixel = 961/256 =  3.7 !!

• Convolution time: 182 ms !!

 Be aware: Increasing work-group size and increasing LDS memory usage will reduce 

the number of concurrent wavefronts running on a SIMD, which can lead to slower 
performance. There is a trade-off that may nullify the advantages, depending on the 
kernel.

Convolution on GPU (Optimization 2)
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 Previously, we used local memory (LDS)

 You can imagine that to be a user-managed cache

 What if the developer does not want to manage the cache

 Use the hardware texture cache that is attached to each SIMD

 Why use texture cache instead of LDS?

 Easier and cleaner code

 Sometimes faster than LDS

 How to use the cache?

 OpenCL image buffers = cached 

 OpenCL  buffers = uncached

 For the previous example

Convolution on GPU (Optimization 3)

Workgroup size LDS Texture

8x8 359 ms 346 ms

16x16 182 ms 207 ms
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 Let us go back and start from the naïve implementation to check 
other possible optimizations.

 What about the filter array? (uncached in the naïve kernel)

 It is usually a small array that remains constant 

 All work-items (threads) in the work-group (SIMD) access the same 
element of the array at the same instruction

 Options: Image (Texture) buffer or constant buffer

 Constant buffer: cached reads as all threads access same element

__kernel void Convolve(const __global  float * pInput,

__constant float * pFilter __attribute__((max_constant_size(4096))),

__global  float * pOutput, …)

 Naïve implementation time: 1511 ms

 __constant buffer optimization: 1375 ms

Convolution on GPU (Optimization 4)
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 Let us again go back to the naïve implementation to check other 
possible optimizations.

 This time, we will try unrolling the inner loop.

 Unroll by 4

 Reduces control flow overhead

 Fetch 4 floats at a time instead of a single float

 Since we are accessing uncached data (in the naïve kernel), fetching 
float4 instead of float will give us faster read performance.

 In general, accessing 128-bit data (float4) is faster than accessing 
32-bit data (float).

 Naïve implementation time:                            1511 ms

 Unroll-by-4 and float4 input buffer fetch:           401 ms

 Unroll-by-4 and float4 input + float4 filter fetch: 389 ms

Convolution on GPU (Optimization 5)
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 What if we combine optimizations 4 and 5 to the naïve kernel?

 Mark the filter as __constant float* buffer

 Unroll by 4 and float4 input buffer fetch

 Unroll-4, float4 input fetch + __constant float* filter: 680 ms!!

 Why did the time increase?!

 Be aware: Using __constant float* increases the ALU usage in the 
shader as the compiler has to add instructions to extract a 32-bit 
data from a 128-bit structure.

 Instead, use a __constant float4* buffer

 Naïve implementation time:                                    1511 ms

 Unroll-by-4 and float4 input buffer fetch:                   401 ms

 Unroll-by-4 and float4 input + float4 filter fetch:         389 ms

 Unroll-4, float4 input fetch + __constant float4* filter: 346 ms

Convolution on GPU (Optimization 6)
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 We can now combine the previous optimizations to the caching 
optimizations (LDS and textures)

 For a 16x16 work-group, same input and filter sizes as before:

Convolution on GPU (All combined)

Optimization LDS Texture

Naïve implementaion 1511 ms 1511 ms

Data reuse (#1,2,3) 182 ms 207 ms

__constant float* filter(#4) 190 ms 160 ms

Unroll4, float4 input (#5) 90 ms 130 ms

Unroll4, float4 input, float4 filter (#5) 83 ms 127 ms

All above, __constant float* (#6 bad) 88 ms 158 ms

All above, __constant float4* (#6 good) 71 ms ! 93 ms !
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 Pass #defines to the kernel at runtime:

 When an OpenCL application runs, it can 

 Load binary kernels, or, compile kernels from source at runtime

 When compiling at runtime, runtime parameters (such as filter sizes, 
work-group sizes etc.) may be available.

 When possible, pass these values to the OpenCL compiler when 
compiling the kernel using the “-D” option.

 The GPU compiler is able to plug these known parameter values and 
produce highly optimized code for the GPU

Convolution on GPU (Optimization 7)
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 For a 16x16 work-group, same input and filter sizes as before:

 At runtime, if we pass the filter-width, work-group size etc values to 
the kernel compilation:

Convolution on GPU (Optimization 7)

Optimization LDS Texture

Naïve implementaion 1511 ms 1511 ms

Data reuse (#1,2,3) 69 ms 128 ms

__constant float* filter(#4) 25 ms 127 ms

Unroll4, float4 input (#5) 68 ms 127 ms

Unroll4, float4 input, float4 filter (#5) 66 ms 127 ms

All above, __constant float* (#6 bad) 26 ms 127 ms

All above, __constant float4* (#6 good) 25 ms !! 63 ms !!
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Questions and Answers

Visit the OpenCL Zone on developer.amd.com

http://developer.amd.com/zones/OpenCLZone/

 Tutorials, developer guides, and more

 OpenCL Programming Webinars page includes:

 Schedule of upcoming webinars

 On-demand versions of this and past webinars

 Slide decks of this and past webinars

http://developer.amd.com/zones/OpenCLZone/
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