
Optimization Techniques: Image Convolution

Udeepta D. Bordoloi| December 2010

| Optimization Techniques – Image Convolution | December 20102

AMD GPU architecture review

OpenCL mapping on AMD hardware

Convolution Algorithm

Optimizations (CPU)

Optimizations (GPU)

Contents

| Optimization Techniques – Image Convolution | December 20103

ATI 5800 Series (Cypress) GPU Architecture

 Peak values:

– 2.72 Teraflops Single
Precision

– 544 Gigaflops Double
Precision

– 153.6 GB/s memory
bandwidth

– 20 SIMDS

– Each SIMD has

 Local (shared) memory

 Cached (texture) memory

| Optimization Techniques – Image Convolution | December 20104

SIMD Engine

Each SIMD:

– Includes 16 VLIW Thread Processing Units, each with 5 scalar
stream processing units + 32KB Local Data Share

– Has its own control logic and runs from a shared set of threads

– Has dedicated texture fetch unit w/ 8KB L1 cache

| Optimization Techniques – Image Convolution | December 20105

Wavefront

All threads in a “Wavefront” execute the same instruction

– 16 Thread Processing Units in a SIMD * 4 batches of threads

= 64 threads on same instruction (Cypress)

What if there is a branch?

1. First, full wavefront executes left branch, threads supposed to
go to right branch are masked

2. Next, full wavefront executes right branch, left branch
threads are masked

OpenCL workgroup = 1 to 4 wavefronts on same SIMD

– Wavefront size less than 64 is inefficient!

| Optimization Techniques – Image Convolution | December 20106

OpenCL View of AMD GPU

Constants

(cached global)

Workgroups

Image cache

Global memory

(uncached)

Local memory

(user cache)

L2 cache

| Optimization Techniques – Image Convolution | December 20107

OpenCLTM Memory space on AMD GPU

Compute Unit 1

Private

Memory

Private

Memory

Work Item 1
Work Item

M

Compute Unit N

Private

Memory

Private

Memory

Work Item 1
Work Item

M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

Compute Device

Compute Device Memory

Registers/LDS

Thread Processor Unit

SIMD

Local Data Share

Board Mem/Constant Cache

Board Memory

| Optimization Techniques – Image Convolution | December 20108

AMD GPU architecture review

OpenCL mapping on AMD hardware

Convolution Algorithm

Optimizations (CPU)

Optimizations (GPU)

Contents

| Optimization Techniques – Image Convolution | December 20109

Convolution algorithm

Input image

3x3 Filter or mask (weights)

Output image

Output Image value

=

Weighted Sum

of neighboring

Input Image values

| Optimization Techniques – Image Convolution | December 201010

FOR every pixel:

float sum = 0;

for (int r = 0; r < nFilterWidth; r++)

{

for (int c = 0; c < nFilterWidth; c++)

{

const int idxF = r * nFilterWidth + c;

sum += pFilter[idxF]*pInput[idxInputPixel];

}

} //for (int r = 0...

pOutput[idxOutputPixel] = sum;

 For a 3x3 filter: 9+9 reads (from input and filter) for every write (to output)

 For large filters such as 16x16, 256+256 reads for every write

 Notice read overlap between neighboring output pixels!

Convolution algorithm

| Optimization Techniques – Image Convolution | December 201011

OpenCL Convolution on multi-core CPU

 CPU implementation:

– Automatic multi-threading!

 One CPU-thread per CPU-core

– Highly efficient implementation

 Each CPU-thread runs one or more OpenCL work-groups

 Use large work-groups (max on CPU is 1024)

 Optimization 1

– Unroll loops

– Pass #defines at run-time (compile option for OpenCL kernels)

– Use vector types to transparently enable SSE in the backend

 Can be faster than simple OpenMP multi-threading!

 Image Convolution Using OpenCL™ - A Step-by-Step Tutorial

http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx
http://developer.amd.com/gpu/atistreamsdk/imageconvolutionopencl/pages/imageconvolutionusingopencl.aspx

| Optimization Techniques – Image Convolution | December 201012

OpenCL Convolution on multi-core CPU

0%

50%

100%

150%

200%

250%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
im

e
 (

lo
w

e
r
 i

s
 b

e
tt

e
r
)

Filter Width

OMP(4-core)

Float4If

Def_Float4

| Optimization Techniques – Image Convolution | December 201013

AMD GPU architecture review

OpenCL mapping on AMD hardware

Convolution Algorithm

Optimizations (CPU)

Optimizations (GPU)

Contents

| Optimization Techniques – Image Convolution | December 201014

__kernel void Convolve(const __global float * pInput,

__global float * pFilter,

__global float * pOutput,

const int nInWidth,

const int nFilterWidth)

• All data is in global (uncached) buffers

• Filter (float * pFilter) is 16x16

• Output image (float * pOutput) is 4096x4096

• Input image (float * pInput) is (4096+15)x(4096+15)

• Work-group size is 8x8 to correspond to wavefront size of 64 on
AMD GPUs

• Convolution time: 1511 ms on Radeon 5870

Convolution on GPU (naïve implementation)

| Optimization Techniques – Image Convolution | December 201015

• Previously, all data was in global (uncached) buffers

• Did not reuse common data between neighboring pixels

• Input items fetched per output pixel = 16x16 = 256

• Can share input data within each work-group (SIMD)

• Preload input data into local memory (LDS), and then access it

• For a work-group of 8x8, if you pre-load input data into LDS

• Filter is 16x16

• Output image (per work-group) is 8x8 = 64

• Input image that is loaded onto LDS is (8+15)x(8+15) = 529

• Input items fetched per output pixel = 529/64 = 8.3 !

• Convolution time: 359 ms !

Convolution on GPU (Optimization 1)

| Optimization Techniques – Image Convolution | December 201016

 You may have deduced by now that if you have a larger work-group,
there is more data reuse.

 Largest work-group size on CPU = 1024 = 32x32

 Largest work-group size on GPU = 256 = 16x16

• For a work-group of 16x16, if you pre-load input data into LDS

• Filter is 16x16

• Output image (per work-group) is 16x16 = 256

• Input image that is loaded onto LDS is (16+15)x(16+15) = 961

• Input items fetched per output pixel = 961/256 = 3.7 !!

• Convolution time: 182 ms !!

 Be aware: Increasing work-group size and increasing LDS memory usage will reduce

the number of concurrent wavefronts running on a SIMD, which can lead to slower
performance. There is a trade-off that may nullify the advantages, depending on the
kernel.

Convolution on GPU (Optimization 2)

| Optimization Techniques – Image Convolution | December 201017

 Previously, we used local memory (LDS)

 You can imagine that to be a user-managed cache

 What if the developer does not want to manage the cache

 Use the hardware texture cache that is attached to each SIMD

 Why use texture cache instead of LDS?

 Easier and cleaner code

 Sometimes faster than LDS

 How to use the cache?

 OpenCL image buffers = cached

 OpenCL buffers = uncached

 For the previous example

Convolution on GPU (Optimization 3)

Workgroup size LDS Texture

8x8 359 ms 346 ms

16x16 182 ms 207 ms

| Optimization Techniques – Image Convolution | December 201018

 Let us go back and start from the naïve implementation to check
other possible optimizations.

 What about the filter array? (uncached in the naïve kernel)

 It is usually a small array that remains constant

 All work-items (threads) in the work-group (SIMD) access the same
element of the array at the same instruction

 Options: Image (Texture) buffer or constant buffer

 Constant buffer: cached reads as all threads access same element

__kernel void Convolve(const __global float * pInput,

__constant float * pFilter __attribute__((max_constant_size(4096))),

__global float * pOutput, …)

 Naïve implementation time: 1511 ms

 __constant buffer optimization: 1375 ms

Convolution on GPU (Optimization 4)

| Optimization Techniques – Image Convolution | December 201019

 Let us again go back to the naïve implementation to check other
possible optimizations.

 This time, we will try unrolling the inner loop.

 Unroll by 4

 Reduces control flow overhead

 Fetch 4 floats at a time instead of a single float

 Since we are accessing uncached data (in the naïve kernel), fetching
float4 instead of float will give us faster read performance.

 In general, accessing 128-bit data (float4) is faster than accessing
32-bit data (float).

 Naïve implementation time: 1511 ms

 Unroll-by-4 and float4 input buffer fetch: 401 ms

 Unroll-by-4 and float4 input + float4 filter fetch: 389 ms

Convolution on GPU (Optimization 5)

| Optimization Techniques – Image Convolution | December 201020

 What if we combine optimizations 4 and 5 to the naïve kernel?

 Mark the filter as __constant float* buffer

 Unroll by 4 and float4 input buffer fetch

 Unroll-4, float4 input fetch + __constant float* filter: 680 ms!!

 Why did the time increase?!

 Be aware: Using __constant float* increases the ALU usage in the
shader as the compiler has to add instructions to extract a 32-bit
data from a 128-bit structure.

 Instead, use a __constant float4* buffer

 Naïve implementation time: 1511 ms

 Unroll-by-4 and float4 input buffer fetch: 401 ms

 Unroll-by-4 and float4 input + float4 filter fetch: 389 ms

 Unroll-4, float4 input fetch + __constant float4* filter: 346 ms

Convolution on GPU (Optimization 6)

| Optimization Techniques – Image Convolution | December 201021

 We can now combine the previous optimizations to the caching
optimizations (LDS and textures)

 For a 16x16 work-group, same input and filter sizes as before:

Convolution on GPU (All combined)

Optimization LDS Texture

Naïve implementaion 1511 ms 1511 ms

Data reuse (#1,2,3) 182 ms 207 ms

__constant float* filter(#4) 190 ms 160 ms

Unroll4, float4 input (#5) 90 ms 130 ms

Unroll4, float4 input, float4 filter (#5) 83 ms 127 ms

All above, __constant float* (#6 bad) 88 ms 158 ms

All above, __constant float4* (#6 good) 71 ms ! 93 ms !

| Optimization Techniques – Image Convolution | December 201022

 Pass #defines to the kernel at runtime:

 When an OpenCL application runs, it can

 Load binary kernels, or, compile kernels from source at runtime

 When compiling at runtime, runtime parameters (such as filter sizes,
work-group sizes etc.) may be available.

 When possible, pass these values to the OpenCL compiler when
compiling the kernel using the “-D” option.

 The GPU compiler is able to plug these known parameter values and
produce highly optimized code for the GPU

Convolution on GPU (Optimization 7)

| Optimization Techniques – Image Convolution | December 201023

 For a 16x16 work-group, same input and filter sizes as before:

 At runtime, if we pass the filter-width, work-group size etc values to
the kernel compilation:

Convolution on GPU (Optimization 7)

Optimization LDS Texture

Naïve implementaion 1511 ms 1511 ms

Data reuse (#1,2,3) 69 ms 128 ms

__constant float* filter(#4) 25 ms 127 ms

Unroll4, float4 input (#5) 68 ms 127 ms

Unroll4, float4 input, float4 filter (#5) 66 ms 127 ms

All above, __constant float* (#6 bad) 26 ms 127 ms

All above, __constant float4* (#6 good) 25 ms !! 63 ms !!

| Optimization Techniques – Image Convolution | December 201024

Questions and Answers

Visit the OpenCL Zone on developer.amd.com

http://developer.amd.com/zones/OpenCLZone/

 Tutorials, developer guides, and more

 OpenCL Programming Webinars page includes:

 Schedule of upcoming webinars

 On-demand versions of this and past webinars

 Slide decks of this and past webinars

http://developer.amd.com/zones/OpenCLZone/

| Optimization Techniques – Image Convolution | December 201025

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies,

omissions and typographical errors.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES

NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT,

SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED

HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2010 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI, the ATI logo, AMD Opteron, Radeon,

FirePro, FireStream and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoft, Windows, Windows

Vista, and DirectX™ are registered trademarks of Microsoft Corporation in the United States and/or other jurisdictions. OpenCL

and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Other names are for informational purposes

only and may be trademarks of their respective owners.

Disclaimer and Attribution

