

Threads and DragonFly BSD

Improving Thread Performance on DragonFly BSD

● Concurrency

A property that allows several vessels of execution to
be run without a predefined order.

● Parallelism

A property that allows vessels of execution to be run
simultaneously.

Conduits for program execution

Conduits for program execution

Improving Thread Performance on DragonFly BSD

Process Thread

PID & parent PID
signal state

tracing information
timers

process group id
user credentials
VM management

file descriptors
resource accounting

process statistics
syscall() vectors

signal actions
thread list

thread state
machine state

user & kernel state
scheduling statistics

da
ta

st
r u

ct
s

Conduits for program execution

Improving Thread Performance on DragonFly BSD

Kernel Thread User Thread

Provided by
the kernel

has a kernel-stack

scheduled by
the kernel

Provided by a
system library

has a user-stack

scheduled by
the user

views kernel threads
as execution contexts

Conduits for program execution

Improving Thread Performance on DragonFly BSD

M:1
process wide contention

Contention Scope of Threading Models

1:1
system wide contention

M:N
flexible in theory

U
S

E
R

K
E

R
N

E
L

Hypothesis

Improving Thread Performance on DragonFly BSD

Thread performance in DragonFly could potentially be
Improved using an M:N threading model.

●Threads are faster than processes in context switches

●No need to dive into kernel for scheduling

●Pluggable schedulers through libraries linked at runtime

●Flexible contention scopes

Hypothesis

Improving Thread Performance on DragonFly BSD

Kernel support for user-mode threading could be done
using a variant of 'unstable threads'. [Inohara et al]

●Kernel creates and terminates kernel-threads

●Shared memory communication areas

●Event notifier threads carrying information

●Asynchronous user-thread scheduler

Attempts at M:N Threading

Improving Thread Performance on DragonFly BSD

-- SORT OF SUCCESSFUL --

Tru64 David Butenhof implemented a solid M:N system using a shared memory
communication area for upcalls called “mxn”.
Unfortunately it is closed source and phased out by HP-UX.

Attempts at M:N Threading

Improving Thread Performance on DragonFly BSD

-- NOT AS SUCCESSFUL --

AIX Used a proprietary M:N system for a long time but due to high customer
demand it now defaults to 1:1

Solaris Used M:N through SA (Scheduler Activations) for many years
but bureaucracy forced a switch to 1:1

Linux NGPT was about to offer M:N through SA but Ulrich Drepper and
Ingo Molnar wrote the 1:1 NPTL and included it in glibc.

NetBSD Nathan Williams implemented SA, but it was never “finished”

FreeBSD Implemented a very sophisticated M:N system called
Kernel Scheduled Entities, but it was never “finished”

Windows Singularity only works with type-checked (.NET) programs

OS X Never tried (publicly)

Notable Attempts at Pure User-Mode Threading

Improving Thread Performance on DragonFly BSD

Erlang A programming language which offers extremely cheap M:1 threads.
Utilizes statistics to migrate them across CPU's and uses
message passing for synchronization.

Pros: Language support makes synchronization easy for the programmer.

Facilitates use of concurrency for problem solving

Cons: Message passing is bottleneck on SMP systems.

Performs poorly on file I/O

Co-operative thread can block the CPU scheduler

Can't do real-time

Not all problems are best solved by opening a million TCP sockets

Notable Attempts at Pure User-Mode Threading

Improving Thread Performance on DragonFly BSD

Capriccio A Ptherad library written at Berkeley. Achieves massive scaling by using
Edgar Toernig's co-routine library, and co-operative scheduling.

Pros: Easily juggles hundreds of thousands of user-threads

Very very low context switching overhead

Cons: Never implemented support for SMP systems.

Performs poorly on file I/O

Programs need to be “optimized” for co-operative scheduling.

Improving Thread Performance on DragonFly BSD

Development

Thread Thread Interaction

User threads were consistently

faster by a few microseconds in

every synthetic benchmark.

Improving Thread Performance on DragonFly BSD

Development

Kernel User Interaction

System calls take a few hundred nanoseconds

Diving into the kernel is slower than...
not diving into the kernel.

Improving Thread Performance on DragonFly BSD

Development

Kernel User Interaction

Thread Thread Interaction

Problems

CPU bound workloads did not perform enough context
switches to take advantage of user-threads

Many workloads exhibited significant delays that overshadowed
the advantages of user-mode context switches.

Simple tasks that could be solved in the kernel
followed complicated code paths.

Improving Thread Performance on DragonFly BSD

Development

Handling Input / Output

"Upcall" to the user-thread scheduler, in true M:N style

Make all I/O non-blocking and asynchronous by using kqueue

Use shared memory FIFO TX/RX queues

Problem: All upcall mechanisms require many switches between
 kernel and user mode, which defeats the point of M:N.

Problem: It performs poorly during low concurrency or high cache misses.
 This is because of the many syscalls required of the mechanism.

Problem: It performs poorly during bursting I/O because the kernel needs to
 be kicked back on when there is a new entry on the FIFO.

Development

Improving Thread Performance on DragonFly BSD

Interacting with the MMU

 My computer's 2.6Ghz Core 2 Duo processor:

●Needs 2500 cycles to process a TCP packet.
●Needs 14 cycles for an L3 cache lookup. (0.5% performance hit)
●Needs 470 cycles after a basic cache miss. (19% performance hit)
●Needs 1040 cycles after an invlpg instruction. (41% performance hit)
●Has 119 documented bugs

mmap() & munmap() operations needed for a shared memory mechanism
can be expensive and lead to "OS X" like performance penalties.

Ineffective decisions in schedulers result in a loss of cache-affinity.

Development

Improving Thread Performance on DragonFly BSD

Fine!!

We'll stick with 1:1

●Easiest to implement and maintain

●Easiest to debug

●Tried, tested, and proven

●Works now

Light Weight Kernel Threads

Improving Thread Performance on DragonFly BSD

K
E

R
N

E
L

U
S

E
R

Pthread with user-mode stack,
and struct containing thread
attributes, id, and more

LWP only contains scheduling
statistics, signal handler data,
and some pointers between
user-mode and kernel-mode.

Bound by proc struct which
contains PID, VM space, file
descriptors, and vnode

Light Weight Kernel Threads

Improving Thread Performance on DragonFly BSD

K
E

R
N

E
L

U
S

E
R LWKT's are scheduled

In a round-robin manner,
are bound to CPU's,
and can have priorities

There could be several
user-mode schedulers,
each of which assigns an
LWP to a LWKT

Improving Thread Performance on DragonFly BSD

Simplifying Synchronization

LWKTs can communicate using messages

Generally require only a short critical section on same CPU

Use IPI messages to notify threads on other CPU's

Are very light-weight
Do not track memory mappings / pointers like Mach

Improving Thread Performance on DragonFly BSD

Lockless Synchronization

Network stack is almost MP-safe

One TCP, UDP, ifnet, and netisr thread per CPU

Is nearly lock-free, with the exception of access from
user-threads (which could be further tuned in the future).

Signs point toward excellent performance characteristics,
but we have a few inter-process communication bugs to swat.

Improving Thread Performance on DragonFly BSD

DragonFly - more than just threads.

HAMMER we all use it (all 20 of us)

vkernel DragonFly kernel can run as a user-mode
 process. Excellent for deveopment.

mistakes survives USB flash-stick unplugging :-)

nimble small team can make quick changes

Thank You For Listening!

For more information:
http://www.dragonflybsd.org

