Printer-friendlyIncreaseDecrease

LATEST NEWS  |  BLOG  |  MEDIA ROOM  |  PRESS KITS  |  FACT SHEETS  |  PROFILES

Rocks and Stars with Amy: This Year I Saw the Universe

February 1st, 2011

By Amy Mainzer

Rocks and Stars with Amy

With WISE, I roamed the skies — seeing everything from the closest asteroids to the most distant galaxies. When I was a kid, maybe 6 or 7, I remember reading the encyclopedia about Andromeda, Mars and Jupiter. After that, I spent a lot of my free time (and a fair amount of gym class) wishing that I could be “out there” exploring the stars, imagining what it must be like to get close to a black hole or the lonely, cold surface of a moon. Fast-forwarding several decades, I’ve just spent a tremendously satisfying and delightful year using some of our most sophisticated technology to see “out there” for real. It’s pretty cool when your childhood dreams come true!

Today, the operations team sent the command to kill the survey sequence and put WISE into a deep sleep. While I’m sad to see the survey stop, the real voyage of discovery is just getting started as we unpack the treasures that our spacecraft beamed back to us. Although I’m going to miss waking up to see a new slew of pictures fresh from outer space, what I’ve looked at so far is only a tiny fraction of the millions of images we’ve garnered. My colleagues and I are working nonstop now to begin the decades-long process of interpreting the data. But I can already say for certain that we’re learning that the universe is a weirder, more wonderful place than any science fiction I’ve ever read. If I could go back in time to when I was kid, I’d tell myself not to worry and to hang in there through the tough parts — it was all worth it.

A cast of hundreds, maybe thousands, of people have worked on WISE and deserve far more credit than they get. The scientists will swoop in and write papers, but all those results are squarely due to the brilliance, stubborn persistence and imagination of the technicians, managers, engineers of all stripes (experts in everything from the optical properties of strange materials to the orbital perturbations of the planets), and administrative staff who make sure we get home safely from our travels. Although we may not be able to fly people around the galaxy yet, one thing Star Trek got right is the spirit of camaraderie and teamwork that makes projects like WISE go. For the opportunity to explore the universe with such fine friends and teammates, I am truly grateful.


Science Fact, Not Fiction: Isaac Asimov on the Greenhouse Effect

January 10th, 2011

By Amber Jenkins

I stumbled upon this video earlier today. It’s Isaac Asimov, famous science fiction writer and biochemist, talking about global warming — back in January 1989. If you change the coloring of the video, the facial hair style, and switch out Asimov for someone else, the video could pretty much have been made today.

Asimov was giving the keynote address at the first annual meeting of The Humanist Institute. “They wanted me to pick out the most important scientific event of 1988. And I really thought that the most important scientific event of 1988 will only be recognized sometime in the future when you get a little perspective.”

What he was talking about was the greenhouse effect, which, he goes on to explain, is “the story everyone started talking about [in 1988], just because there was a hot summer and a drought.” (Sound familiar, letting individual weather events drive talk of whether the Earth’s long-term climate is heating up or cooling down??)

The greenhouse effect explains how certain heat-trapping (a.k.a. “greenhouse”) gases in our atmosphere keep our planet warm, by trapping infrared rays that Earth would otherwise reflect back out into space. The natural greenhouse effect makes Earth habitable — without our atmosphere acting like an electric blanket, the surface of the earth would be about 30 degrees Celsius cooler than it is now.

The problem comes in when humans tinker with this natural state of affairs. Our burning of fossil fuels (coal, oil and gas) constantly pumps out carbon dioxide — a heat-trapping gas — into the atmosphere. Our cutting down of forests reduces the number of trees there are to soak up some of this extra carbon dioxide. All in all, our atmosphere and planet heats up, (by about 0.6 degrees Celsius since the Industrial Revolution) with the electric blanket getting gradually thicker around us.

“I have been talking about the greenhouse effect for 20 years at least,” says Asimov in the video. “And there are other people who have talked about it before I did. I didn’t invent it.” As we’ve stressed here recently, global warming, and the idea that humans can change the climate, is not new.

As one blogger notes, Asimov’s words are as relevant today as they were in 1989. “It’s almost like nothing has happened in all this time.” Except that Isaac Asimov has come and gone, and the climate change he spoke of is continuing.

Asimov’s full speech can be seen here.

This post was written for “My Big Fat Planet,” a blog hosted by Amber Jenkins on NASA’s Global Climate Change site.


Red, Red Moon and Other Lunar Eclipse Phenomena

December 20th, 2010

By Dr. David Diner

Total Lunar EclipseTiny airborne particles, or aerosols, can affect the appearance of the moon during a total lunar eclipse, sometimes giving it a reddish hue. Image credit: NASA/JPL-Caltech

A lunar eclipse occurs when the Earth is positioned between the sun and the moon. Although the Moon passes through the Earth’s shadow, the lunar disk remains partially illuminated by sunlight that is refracted and scattered by the Earth’s atmosphere.

Refraction is the bending of light that occurs when the rays pass through media of different densities (our atmosphere is more dense near the surface and less dense higher up). Scattering of sunlight by molecules of air also deflects the light into different directions, and this occurs with much greater efficiency at shorter (bluer) wavelengths, which is why the daylight sky appears blue. As we view the sun near sunrise or sunset the light traverses a longer path through the atmosphere than at midday, and when the air is relatively clear, the absence of shorter wavelengths causes the solar disk to appear orange.

Tiny airborne particles, also known as aerosols, also scatter sunlight. The relative efficiency of the scattering at different wavelengths depends on the size and composition of the particles. Pollution and dust in the lower atmosphere tends to subdue the color of the rising or setting sun, whereas fine smoke particles or tiny aerosols lofted to high altitudes during a major volcanic eruption can deepen the color to an intense shade of red.

If you were standing on the Moon’s surface during a lunar eclipse, you would see the Sun setting and rising behind the Earth, and you’d observe the refracted and scattered solar rays as they pass through the atmosphere surrounding our planet. Viewed from the Earth, these rays “fill in” the Earth’s shadow cast upon the lunar surface, imparting the Moon’s disk with a faint orange or reddish glow. Just as we sometimes observe sunrises and sunsets with different shades of orange, pink or red due to the presence of different types of aerosols, the color of the eclipsed lunar disk is also affected by the types of particles that are present in the Earth’s atmosphere at the time the eclipse occurs.


Lunar Eclipse, the Moon’s Interior, and the Holy GRAIL

December 15th, 2010

By Sami Asmar

Earth's moon

In addition to the awesome views they offer, lunar eclipses have always provided scientific clues about the moon’s shape, location and even surface composition. Although there will continue to be opportunities for observers to examine and reflect on fundamental concepts about the moon, such as its origin and interior structure, more modern tools are aiding these observations.

When it comes to understanding what a moon or a planet is made of remotely — short of touching it or placing seismometers on its surface or probes below the surface — classical physics comes to the rescue. By measuring the magnetic and gravitational forces that are generated on the inside and manifested on the outside of a planet or moon, we can learn volumes about the structure of its interior.

A spacecraft in the proximity of the moon can detect these forces. In the case of gravity, the mass of the moon will pull on the spacecraft due to gravitational attraction. If the spacecraft is transmitting a stable radio signal at the time, its frequency will shift by an amount exactly proportional to the forces pulling on the spacecraft.

This is how we weigh the moon and go further by measuring the detailed distribution of the densities of mountains and valleys as well as features below the moon’s surface. This collection of information is called the gravity field.

In the past, this has lead to the discovery mascons on the moon, or hidden, sub-surface concentrations of mass not obvious in images or topography. If not accounted for, mascons can complicate the navigation of future landed missions. A mission, human or robotic, attempting to land on the moon would need to have a detailed knowledge of the gravity field in order to navigate the landing process safely. If a spacecraft sensed gravitational pull higher than planned, it could jeopardize the mission.

GRAIL spacecraft

The Gravity Recovery and Interior Laboratory (GRAIL) mission, scheduled to launch in September, is comprised of twin spacecraft flying in formation with radio links between them to measure the moon’s gravity field globally. This is because a single spacecraft with a link to Earth would be obstructed when the spacecraft goes behind the moon, leaving us with no measurement for nearly half of the moon, since the moon’s far side never faces the Earth. The GRAIL technique may also reveal if the Moon has a core with a fluid layer.

So as you go out to watch the lunar eclipse on the night of Dec. 20, think about how much we’ve learned about the moon so far and what more we can learn through missions like GRAIL. Even at a close distance from Earth, the moon remains a mystery waiting be uncovered.


Unchained Goddess: Frank Capra Knew

December 6th, 2010

By Amber Jenkins

a screen grab from The Unchained Goddess

You might think from the amount of “climate science debate” that is given airtime in the U.S. media that it’s undiscovered territory. But it’s not. The science is very well established and goes back a long way. Global warming is not a new concept.

The Victorians knew about it. John Tyndall (born 1820) knew about it. So did Svante August Arrhenius. In April 1896, Arrhenius published a paper in the London, Edinburgh and Dublin Philosophical Magazine and Journal of Science entitled “On the influence of carbonic acid in the air upon the temperature of the ground.” (Arrhenius referred to carbon dioxide as “carbonic acid” in accordance with the convention of the time.)

Arrhenius’ paper was the first to quantify how carbon dioxide contributed to the greenhouse effect — carbon dioxide warms up the Earth by trapping heat near the surface, a bit like swaddling the planet in an extra blanket. Arrhenius was also the first to speculate about whether changes in the amount of carbon dioxide in the atmosphere have contributed to long-term variations in Earth’s climate. He later made the link between burning fossil fuels and global warming.

Another person who “knew” some time ago was Frank Capra. Graduating from Caltech in 1918, he went on to become a famous filmmaker responsible for “It’s a Wonderful Life” and other movies. But one that stands out, at least for nerds like me or people with an interest in climate change is “Meteora: The Unchained Goddess”, released in 1958:

Made for Bell Labs, this most awesome educational film speaks of “extremely dangerous questions”:

Dr. Frank C. Baxter: “Because with our present knowledge we have no idea what would happen. Even now, man may be unwittingly changing the world’s climate through the waste products of his civilization. Due to our release through factories and automobiles every year of more than six billion tons of carbon dioxide, which helps air absorb heat from the sun, our atmosphere seems to be getting warmer.”

Richard Carlson: “This is bad?”

Dr. Frank C. Baxter: “Well, it’s been calculated a few degrees rise in the Earth’s temperature would melt the polar ice caps. And if this happens, an inland sea would fill a good portion of the Mississippi valley. Tourists in glass bottom boats would be viewing the drowned towers of Miami through 150 feet of tropical water. For in weather, we’re not only dealing with forces of a far greater variety than even the atomic physicist encounters, but with life itself.”

In 1958, they knew about the effects of heating up the planet. In the 1800s they knew about it. Today, the biggest challenge facing climate scientists lies in predicting how much our climate will change in the future. It’s not a trivial task, given how complicated the climate system is — we can barely predict in detail more than a week’s worth of weather. We’re not viewing Miami through bottomed-glass boats yet, but we’re already beginning to see some of the predictions of global warming — melting sea and land ice, sea level rise, more extreme weather events, changes in rainfall and effects on plants and animals — be borne out.

Thanks to OSS and Discovery News for the tip.

This post was written for “My Big Fat Planet,” a blog hosted by Amber Jenkins on NASA’s Global Climate Change site.


Rocks and Stars with Amy: This Asteroid Inspected by #32

November 15th, 2010

By Amy Mainzer

Rocks and Stars with Amy

Over the course of the nine months we’ve been operating WISE, we’ve observed over 150,000 asteroids and comets of all different types. We had to pick all of these moving objects out of the hundreds of millions of sources observed all over the sky — so you can imagine that sifting through all those stars and galaxies to find the asteroids is not easy!

We use a lot of techniques to figure out how to distinguish an asteroid from a star or galaxy. Even though just about everything in the universe moves, asteroids are a whole lot closer to us than your average star (and certainly your average galaxy), so they appear to move from place to place in the WISE images over a timescale of minutes, unlike the much more distant stars. It’s almost like watching a pack of cyclists go by in the Tour de France. Also, WISE takes infrared images, which means that cooler objects like asteroids look different than the hotter stars. If you look at the picture below, you can see that the stars appear bright blue, whereas the sole asteroid in the frame appears red. That’s because the asteroid is about room temperature and is therefore much colder than the stars, which are thousands of degrees. Cooler objects will give off more of their light at longer, infrared wavelengths that our WISE telescope sees. We can use both of these unique properties of asteroids — their motion and their bright infrared signatures — to tease them out of the bazillions of stars and galaxies in the WISE images.

Image of the first near-Earth asteroid discovered by WISE
The first near-Earth asteroid discovered by WISE (red dot) stands out from the stars (blue dots). The asteroid is much cooler than the stars, so it emits more of its light at the longer, infrared wavelengths WISE uses. This makes it appear redder than the stars. Image credit: NASA/JPL-Caltech/UCLA |   › Full image and caption

 
Thanks to the efforts of some smart scientists and software engineers, we have a very slick program that automatically searches the images for anything that moves at the longer, infrared wavelengths. With WISE, we take about a dozen or so images of each part of the sky over a couple of days. The system works by throwing out everything that appears again and again in each exposure. What’s left are just the so-called transient sources, the things that don’t stay the same between snapshots. Most of these are cosmic rays — charged particles zooming through space that are either spat out by our sun or burped up from other high-energy processes like supernovae or stars falling into black holes. These cosmic rays hit our detectors, leaving a blip that appears for just a single exposure. Also, really bright objects can leave an after-image on the detectors that can persist for many minutes, just like when you stare at a light bulb and then close your eyes. We have to weed the real asteroid detections out from the cosmic rays and after-images.

The data pipeline is smart enough to catch most of these artifacts and figure out what the real moving objects are. However, if it’s a new asteroid that no one has ever seen before, we have to have a human inspect the set of images and make sure that it’s not just a collection of artifacts that happened to show up at the right place and right time. About 20 percent of the asteroids that we observe appear to be new, and we examine those using a program that we call our quality assurance (QA) system, which lets us rapidly sift through hundreds of candidate asteroids to make sure they’re real. The QA system pops up a set of images of the candidate asteroid, along with a bunch of “before” and “after” images of the same part of the sky. This lets us eliminate any stars that might have been confused for the asteroids. Finally, since the WISE camera takes a picture every 11 seconds, we take a look at the exposures taken immediately before the ones with the candidate asteroid — if the source is really just an after-image persisting after we’ve looked at something bright, it will be there in the previous frame. We’ve had many students — three college students and two very talented high school students — work on asteroid QA. They’ve become real pros at inspecting asteroid candidates!

This is a screenshot from the WISE moving-object quality assurance system, which helps weed out false asteroid candidates.
This is a screenshot from the WISE moving-object quality assurance system, which helps weed out false asteroid candidates. The top two rows show an asteroid candidate detected in 16 different WISE snapshots, at two different infrared wavelengths. The lower rows show the same patch of sky at different times — they let the astronomers make sure that stars or galaxies haven’t been confused for the asteroid. Image credit: NASA/JPL-Caltech/UCLA

 
Meanwhile, the hunt continues — we’re still trekking along through the sky with the two shortest-wavelength infrared bands, now that we’ve run out of the super-cold hydrogen that was keeping two of the four detectors operating. Even though our sensitivity is lower, we’re still observing asteroids and looking for interesting things like nearby brown dwarfs (stars too cold to shine in visible light because they can’t sustain nuclear fusion). Our dedicated team of asteroid inspectors keeps plugging away, keeping the quality of the detections very high so that we leave the best possible legacy when our little telescope’s journey is finally done.