

# CSI's Lunar Express<sup>SM</sup> System: A low-cost manned trip around the Moon in 3 years or less

| Briefing for: | NewSpace2006 Conference                   |  |
|---------------|-------------------------------------------|--|
| By:           | Benigno Muniz Jr./Chief Technical Officer |  |
| Date:         | 20 July 2006                              |  |

These charts are a visual aid meant to supplement, and not replace, an oral presentation. "LEO Express" and "Lunar Express" are Trademarks and Service Marks of Constellation Services International, Inc. Copyright ©2006 • Unpublished Work • All Rights Reserved • Constellation Services International, Inc.

#### Why Haven't We Returned to the Moon? CSi Constellation



- The only funded lunar missions since 1972:
  - Clementine: ~ \$25 million
  - Lunar Prospector: ~ \$80 million (including LV)
- Funding is the key to a return to the Moon
  - If it were free to go to the Moon, we would be there
  - If it will cost \$1 trillion, there will be no lunar missions
- Therefore, Cheaper is Better

# So don't ask for <u>MORE</u> money, ask for CHEAPER missions!

Keys to Early Return to the Moon



- One way to get *cheap* missions
  - Re-use existing hardware
    - That is already designed for lunar missions
  - Leverage hardware *already* in space
    - Pay "incremental" cost for mission
      - Like "piggyback" launch of many smallsats
- International or commercial partners
  - Involved where possible
  - "Commercial" doesn't mean "contractors"
    - Means companies with private capital at risk
- One commercial passenger may be sufficient
  - If costs are low enough

#### CSI Lunar Mission Architecture (Patent Pending)







- Can be done in < 3 years
- Low cost, using off-the-shelf flight hardware
  - Already-paid-for Soyuz spacecraft
  - Existing launch vehicles
- Avoids major modifications to Soyuz spacecraft
  - Most Lunar-specific hardware and logistics
    - Carried in the Lunar Logistics Container
- LLC launch from US is possible
  - Other launch vehicles may be cheaper

Benefits of *Lunar Express<sup>SM</sup>* Mission



- Could be done as 100% commercial mission
- Lower risk than similar alternatives
  - Avoids major modifications to Soyuz spacecraft
- Piggyback opportunity for other missions/customers
  - IMAX and or HD video imagery from the lunar vicinity
- Re-establishes human lunar operations quickly
  - Early results may be critical to "sustainability of VSE
  - Supports IP "functional redundancy" for VSE
  - Pathfinder for Crew Exploration Vehicle
    - As Gemini was to Apollo
  - Testbed for exploration technologies & mission issues
    - Radiation shielding, etc.
    - Human interplanetary return after 6-month spaceflight



- Lunar Polar flyby: 1<sup>st</sup> visit by humans
- Allows first EVA beyond LEO since 1972
- Tether (between spacecraft and upper stage)
  - Creates partial-g environment
  - Pathfinder for long duration Mars missions
  - Find "sweet spot" for minimum safe partial-G
    - Via multiple missions
- Opportunities for unique science

"Great artists steal" (Picasso, et al)



- Creative combination of 4 earlier ideas
- 1965 1967 McDonnell-Douglas Gemini proposals
  - (I) Dock with Titan III upper stage in LEO
  - Use upper stage engine for TLI, swingby orbit





Translunar Gemini with Transtage (Credit: McDonnell Douglas)

Translunar Gemini with Centaur (Credit: © Mark Wade)

- (II) Dock with orbital shelter on Agena
  - Extend LEO mission duration to several weeks



#### Can Soyuzes Really Fly to the Moon?



- (III) Soyuzes have flown to the Moon 4 times
  - Zond 5, 6, 7, 8 missions (1968-70)
  - Capsules were stripped down (for 2 vs. 3 crew)
    - Mods for current Soyuz: Zond heat shield + TBD





Zond 6 capsule Lunar Swing-by, November 1968 (Soyuz 3 capsule in background)

#### Lunar Logistics Container Inspiration



- (IV) CSI's patented *LEO Express<sup>SM</sup>* Architecture for ISS cargo delivery
  - Extension of Apollo-Soyuz Test Project concept (1975)
  - "Cargo Canister" launched w/ Upper Stage
  - Docked to "Soyuz-class" s/c
  - CSI's NEW step: Canister then docked to ISS



#### Lunar Logistics Container Functions



- Increase safety for Soyuz crew
  - Backup for critical Soyuz functions
  - Similar to Apollo 13 LM
- Provides lunar mission logistics
  - Food, water, oxygen, hygiene
- Lunar communications system
- Additional crew habitation volume
- Enables Soyuz to dock to upper stage
  - Kurs radar, docking system
- Does all this cheaply



Lunar Logistics Container derived from CSI LEO Express Cargo Container



Shuttle/Mir Docking Module Launched 12 Nov 1995 on STS-74



- ISS CC (hence LLC) can be built & launched in 18-24 months
  - RSC-E Feasibility Study & NASA Systems Design Review completed





- "Full-up" vs. "Piggyback" Lunar launchers
  - Soyuz spacecraft & LV \$ via "barter" w/ ISS Program
  - Lunar mission pays for LLC launch & ops

| Saturn V        | Launcher               | Proton/Breeze M               |
|-----------------|------------------------|-------------------------------|
| 102 m           | LV Length              | 57.2 m                        |
| 3,038,500 kg    | LV liftoff mass        | 691,270 kg                    |
| ~\$43.3 billion | Lunar Program          | \$ 0 to ?                     |
|                 | New Development        | (mods to existing h/w)        |
|                 | Cost (FY04)            | (e.g. Mir DM ~\$0.02 billion) |
| \$2.4 billion   | Launch Price<br>(FY04) | \$0.125 to ? billion          |



**n**.....

- No detailed mission analysis yet, but
  - Proton M/Breeze M meets 1st cut mission delta-V requirements
  - Likely compatible with Delta IV, Atlas V, Ariane V
  - Possible Angara, Aurora, GSLV, LM 3B, Sea Launch, etc.?

# Some Technical Issues



- Thickened Soyuz heat shield from Zond program
  - Re-certification required?
  - Mass penalty ~ 300 kg (per public data)
- Docking conditions for Soyuz ELV docking
  - Only ~ 3 TLI opportunities per month from ISS
  - Safety for Soyuz crew in case of mission abort
    - Prior & post-docking with Logistics Carrier
  - Lighting conditions, communications to ground
    - ISS requirements applied to non-ISS dockings: TBD
  - Scenarios for contingency docking
    - In case of initial docking failure
- 200 day qualified (210 design) on-orbit lifetime for Soyuz
  - 180 day typical ISS mission, 6 extra days needed

## System Analysis Needed



Soyuz toilet holding tank (in Orbital Module) note hand prints to provide scale



- Just one example of a small problem that can grow: crew toilet
- Original Soyuz could support multi-week missions
- Current "Ferry" Soyuz uses small 40 Watt toilet, designed for ~3 days
- Lunar Express<sup>SM</sup> system provides toilet in Logistics Carrier
  - Current ISS class 100 Watt toilet could be used
    - Added Power  $\rightarrow$  Added Mass  $\rightarrow$  etc.
    - System analysis must be performed



- Use Progress cargo vehicle instead of Soyuz
  - Supply depot at a L-1 could be developed
    - Allow early human controlled robotic missions
      With minimal time delays
      - With minimal time delays
    - Create a staging point for lunar landings
    - Possible spaceport for Mars missions

### L1 Mission Architecture







- Once human translunar capability is on hand
  - Missions beyond the Moon are possible
- Mars requires multiyear missions
- NEOs are infrequent
  - And often launch intervals are years apart
- What is needed is a place where:
  - Launch windows are frequent
  - Travel times are not much more than for the Moon
  - A reason to go

### Sun-Earth L2: A Place to Go



- L2: Often cited as a possible location,
  - There has never been a reason to send humans there
- But things have changed!
- Starting in 2007, a series of big expensive satellites
  - Will be flown to Sun-Earth L2

| Mission         | Sponsor | Year of Launch |
|-----------------|---------|----------------|
| Herschel        | ESA     | 2007           |
| Planck          | ESA     | 2007           |
| Eddington       | ESA     | 2007           |
| JWST            | NASA    | 2011           |
| Constellation-X | NASA    | 2012           |
| GAIA            | ESA     | 2012           |
| DARWIN          | ESA     | 2014           |
| TPF             | NASA    | 2015           |
| XEUS2           | ESA     | 2015           |

### Travel to Sun Earth L2



- L2 is 1.5 million kilometers from Earth
  - 3 4 times as far as the Moon
- Travel time depends on available rocket power
  - As low as 30 days via direct injection
    - Satellites can use fuzzy orbits over months
- L2 is not a stable Lagrange point
  - So all objects there must station-keep
  - Although the propellant requirement is very small

### **Thought Experiments**



- What if Soyuz or COTS spacecraft
  - Could not only reach the Moon but travel beyond?
- What if humans could repair satellites at L2?
  - What if the James Webb Space Telescope
    - Could be repaired as is Hubble, by astronauts?
  - Could the L2 point be next satellite servicing orbit?
- If we can go to the Moon and Mars:
  - Why is the L2 point too far or too dangerous?



- Commercial company could put deal together
- Russian pilot, ESA astronaut, 1 passenger
  - Russia brings 1 Proton launch (at discount)
    - Plus use of Soyuz after ISS mission
  - ESA astronaut & passenger each pay \$X
  - Or ESA could provide Ariane V launch of LC
    - With A5 ESV, lunar *orbit* mission may be possible
- Space Adventures & CSI have signed MOU
  - Assess Lunar & ISS cargo opportunities

## For More Information



Contact: Benigno Muniz bmuniz@constellationservices.com