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a b s t r a c t

There is an alarming increase in the number of cybercrime incidents through anonymous

e-mails. The problem of e-mail authorship attribution is to identify the most plausible au-

thor of an anonymous e-mail from a group of potential suspects. Most previous contribu-

tions employed a traditional classification approach, such as decision tree and Support

Vector Machine (SVM), to identify the author and studied the effects of different writing

style features on the classification accuracy. However, little attention has been given on en-

suring the quality of the evidence. In this paper, we introduce an innovative data mining

method to capture the write-print of every suspect and model it as combinations of features

that occurred frequently in the suspect’s e-mails. This notion is called frequent pattern,

which has proven to be effective in many data mining applications, but it is the first

time to be applied to the problem of authorship attribution. Unlike the traditional ap-

proach, the extracted write-print by our method is unique among the suspects and, there-

fore, provides convincing and credible evidence for presenting it in a court of law.

Experiments on real-life e-mails suggest that the proposed method can effectively identify

the author and the results are supported by a strong evidence.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
1. Introduction abused for committing infrastructure crimes by transmitting
E-mail is one of the most widely used ways of written commu-

nication over the Internet, and its traffic has increased expo-

nentially with the advent of World Wide Web. Trillions of

business letters, financial transactions, governmental orders

and friendly messages are exchanged through e-mail system

each year. The increase in e-mail traffic comes also with an in-

crease in the use of e-mails for illegitimate purposes (Teng

et al., 2004). Phishing, spamming, e-mail bombing, threaten-

ing, cyber bullying, racial vilification, child pornography, and

sexual harassments are common examples of e-mail abuses.

Terrorist groups and criminal gangs are using e-mail systems

as a safe channel for their communication. E-mail is also
.ca (F. Iqbal), hadjidj@enc
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worms, viruses, Trojan horses, hoaxes and other malicious

executables over the Internet. In many misuse cases, the

criminals attempt to hide their true identity. Likewise, in

phishing, a person may try to impersonate a manager or a fi-

nancial adviser to obtain clients’ secret information.

E-mail systems are inherently vulnerable to misuse for

three main reasons. First, an e-mail can be spoofed and the

meta data contained in its header about the sender and the

path along which the message has travelled can be forged or

anonymized. An e-mail can be routed through anonymous

e-mail servers to hide the information about its origin. Sec-

ond, e-mail systems are capable of transporting executables,

hyperlinks, Trojan horses, and scripts. Third, the Internet
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including e-mail services is accessible through public places,

such as net cafes and libraries, which further deteriorates

the anonymity issues. Presently, there is no adequate proac-

tive mechanism to prevent e-mail misuses, and merely in-

stalling filters and firewalls are insufficient. In this situation,

forensic e-mail analysis with special focus on authorship at-

tribution can help prosecute the offender of e-mail misuse

by means of law (Teng et al., 2004).

The problem of authorship attribution in the context of e-mail

forensics can be described as follows: a cyber forensic investi-

gator wants to determine the author of a given malicious

e-mail m and has to identify that the author is likely to be

one of the suspects {S1,., Sn}. The problem is to identify the

most plausible author from the suspects {S1,., Sn} and to

gather convincing evidence to support the finding in a court

of law. In forensic science, an individual can be uniquely iden-

tified by his/her fingerprint. Similarly, in cyber forensics, an

investigator would like to identify the ‘‘write-print’’ of an indi-

vidual from his/her e-mails and use it for authorship attribu-

tion. The key question is:

What exactly are the patterns that can represent the write-

print of an individual?

Our insight is that the write-print of an individual is the

combinations of features that occur frequently in his/her written

e-mails. The commonly used features are lexical, syntactical,

structural and content-specific attributes (see Section 2.1). By

matching the write-print with the malicious e-mail, the true

author can be identified. Most importantly, the matched

write-print should provide credible evidence for supporting

the conclusion. The research community (De Vel, 2000; Teng

et al., 2004; Zheng et al., 2006) has devoted a lot of efforts in

studying stylistic and structural features individually, but

very few of them has studied the combinations of features

that form a write-print and addressed the issue of evidence

gathering.

The classification models employed in previous contribu-

tions on authorship attribution have two broad categories: De-

cision tree (C4.5) (Quinlan, 1986) and Support Vector Machine

(SVM) (Cristianini and Shawe-Taylor, 2000). While building

a decision tree, a decision node is constructed by simply con-

sidering the local information of one attribute, therefore, it

fails to capture the combined effect of several features. In con-

trast, SVM avoids such problem by considering all features

when a hyperplane is created. However, SVM is a like

a black-box function which takes some input (the malicious

e-mail) and provides an output (the author). It fails to provide

intuitive explanation of how it arrives to a certain conclusion.

Therefore, SVM may not be the best choice in the context of e-

mail forensic investigation, where collecting credible evidence

is one of the primary objectives.

In this paper, we are introducing a novel approach of au-

thorship attribution in which the unique write-print of every

suspect is extracted. These write-prints are used to identify

the true author of a disputed e-mail, and to gather convincing

and credible evidence to support the finding. To concisely

model the write-print of an individual, we borrow the concept

of frequent pattern (a.k.a. frequent itemset) (Agrawal et al., 1993)

from data mining to capture the combinations of features that
frequently occurred in an individual’s e-mails. Frequent pat-

tern mining has been proven to be a very successful data min-

ing technique for finding hidden patterns in DNA sequences,

customer purchasing habits, security intrusions, and many

other applications of pattern recognition. To the best of our

knowledge, this is the first paper introducing the concept of

frequent pattern to the problem of authorship attribution.

Fig. 1 depicts an overview of our proposed method. We first

extract the set of frequent patterns independently from the

e-mails Ei written by suspect Si. Though the set of frequent

patterns captures the writing style of a suspect Si, it is inappro-

priate to use all the frequent patterns to form the write-print

of a suspect Si because an other suspect, say Sj, may share

some common writing patterns with Si. Therefore, it is crucial

to filter out the common frequent patterns and identify the

unique patterns that can differentiate the writing style of a sus-

pect from that of others. These unique patterns form the write-

print of a suspect. This approach has the following merits that

are not found in most of the existing works.

� Justifiable evidence: the write-print, represented as a set of

unique patterns, is extracted from the e-mails of a particular

suspect. Our method guarantees that the identified patterns

are frequent in the e-mails of one suspect only, and are not

frequent in others’ e-mails. It will be difficult for the accused

suspect to deny the validity of the findings. The results

obtained are traceable, justifiable, and can be presented

quantitatively with a statistical support.

� Flexible writing styles: the frequent pattern mining technique

can adopt all four types of commonly used writing style fea-

tures (described in Section 2.1). This flexibility is important

for determining the combined effect of different features.

This is much more flexible than the traditional decision

tree, which primarily relies on the nodes at the top of the

tree to differentiate the writing styles of all suspects.
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� Features optimization: unlike the traditional approaches

where it is hard to determine the contribution of each fea-

ture in the authorship attribution process (De Vel et al.,

2001a), the proposed technique is based on the distinctive

patterns, which are the combination of features. The sup-

port associated to each pattern in the write-print set deter-

mines the contribution of each pattern.

� Generic application: the dataset used in most of the existing

techniques are constrained by the number, size and topic

of e-mails. Our experiments on the real-life data, the Enron

e-mail corpus, suggest that the proposed approach is very

robust to these factors. This is crucial for the application

in real world investigations.

The rest of the paper is organized as follows. Section 2 re-

views the previous contributions. Section 3 formally defines

the problem and the notions of write-print. Section 4

describes our proposed approach. Section 5 evaluates our pro-

posed method on real-life e-mail dataset. Section 6 concludes

the paper.
2. Related work

Most previous contributions on authorship attribution are ap-

plications of text classification analysis (De Vel, 2000). The

process starts by identifying a set of writing style features of

a person that are relatively common in most of his works. A

classifier is trained on the collected writing style features to

build a model, which is then used to classify the disputed

e-mail to the most plausible author among the suspects. In

this section, we review the commonly employed writing style

features and summarize the techniques of e-mail authorship

attribution found in the literature of authorship attribution.

2.1. Writing style features

There is no predefined set of features that can be used to dif-

ferentiate the writing styles of different suspects. The writing

patterns usually contain the characteristics of words usage,

words sequence, composition and layouts, common spelling

and grammatical mistakes, vocabulary richness, hyphenation

and punctuation. Abbasi and Chen (2008) presented a compre-

hensive analysis on the stylistics features. Below, we provide

a summary of the common writing style features, namely, lex-

ical, syntactical, structural and content-specific attributes.

Lexical features are the characteristics of both characters

and words or tokens. In terms of characters, for instance, fre-

quency of letters, frequency of capital letters, total number of

characters per token and character count per sentence are the

most relevant metrics. Word-based lexical features may in-

clude word length distribution, words per sentence, and vo-

cabulary richness. Initially, researchers thought that

vocabulary richness (Yule, 1938, 1944) and word usage

(Holmes, 1998) are discriminating features to be used for au-

thorship attribution. Syntactic features include the distribution

of function words (such as ‘‘upon’’, ‘‘thus’’, ‘‘above’’) and

punctuation play a significant role in authorship attribution

(Burrows, 1989; Holmes and Forsyth, 1995; Tweedie and

Baayen, 1998). Structural features are used to measure the
overall layout and organization of text within documents.

For instance, average paragraph length, number of para-

graphs per document, presence of greetings and their position

within the e-mail are common structural features. Moreover,

the presence of sender signature including his contact infor-

mation is one of the special structural features of e-mail doc-

uments. Content-specific features are collection of certain

keywords commonly found in a specific domain and may

vary from context to context even for the same author. Zheng

et al. (2006) used 11 keywords from the cybercrime taxonomy

in authorship analysis experiments.

2.2. E-mail authorship analysis

Authorship analysis has been very successful in resolving au-

thorship attribution disputes over literary and conventional

writings (Mendenhall, 1887). However, e-mail authorship at-

tribution poses some special challenges due to its special

characteristics of size and composition, as compared to liter-

ary works (De Vel et al., 2001a). Literary documents are usually

large in size comprising of (at least) several paragraphs and

have a definite syntactic and semantic structure. In contrast,

e-mails are short in size and usually do not follow definite

syntactic or grammatical rules, therefore, it is hard to learn

from them about the writing patterns of their author. Ledger

and Merriam (1994), for instance, established that authorship

analysis results would not be significant for texts containing

less than 500 words. Moreover, e-mails are more interactive

and informal in style, and people are not couscous about the

spelling and grammatical mistakes particularly in informal

e-mails. Therefore, techniques which are very successful in

literary and traditional works are not applicable in the e-

mail authorship attribution.

Teng et al. (2004) and De Vel (2000) applied Support Vector

Machine (SVM) classification model over a set of stylistic and

structural features for e-mail authorship attribution. De Vel

et al. (2001b) and Corney et al. (2002) performed extensive ex-

periments and found that the classification accuracy decreases

when the size of training set decreases, the number of authors

increases, or the length of documents decreases. Recently,

Zheng et al. (2006, 2003) used a comprehensive set of lexical,

syntactical and structural features including 10–11 content-

specific keywords. Haltern (2007) used the same set of linguistic

features for authorship attribution of class essays. De Vel (2000)

further found that by increasing the number of function words

from 122 to 320, the performance of SVM worsened, which

weakens the argument that SVM supports high dimensional-

ity. This result also illustrates that adding more features does

not necessarily improve the accuracy. In contrast, in this paper

we focus on identifying the combinations of key features that

can differentiate the writing style of different suspects and fil-

tering out the useless features that do not contribute towards

the goal of authorship attribution.

In the current literature, each type of the four features’ sets

is applied independently from the other, which may other-

wise produce different results (De Vel, 2000). For instance

the word usage and composition style may vary from one

structural pattern to another. In our approach, the write-

prints could be the combination of all the four types of writing

style features. Moreover, the current literature of authorship
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attribution suffers from the problem of having too many fea-

tures. It is difficult to determine the set of features that should

be used for a given set of e-mails. Previous research (De Vel,

2000) has shown that adding useless features may decrease

the accuracy because a classifier may capture the useless fea-

tures as noise. Using those noisy features for classification di-

minishes the justification of evidence for supporting the

finding. Some studies identify some particular useful style

markers, but the identified style markers are data dependent

and may not be applicable to other data sets. Our approach

overcomes this limitation by flexibly extracting the evidence

(combinations of frequently occurred features) from the data

itself, provided the insignificant noisy features are filtered out.
3. Problem statement

Let {S1,., Sn} be the set of suspected authors of a malicious e-

mail m. We assume that there is a collection of e-mails,

denoted by Ei, for each suspect Si ˛ {S1,., Sn}. The problem of au-

thorship attribution is to identify the most plausible author Sa,

from the suspects {S1,., Sn}, whose collection of e-mails Ea

has the ‘‘best match’’ with the patterns in the malicious e-

mail m. Intuitively, a collection of e-mails Ei matches m if Ei

and m share similar patterns of vocabulary usage, structural

and/or stylometric features. The primary objective of a cyber

forensic investigator is to precisely extract the patterns of

each suspect, so he/she can use such patterns to identify the

author of the malicious e-mail m and present such patterns

as evidence to support his/her findings.

What are the patterns that can represent the ‘‘write-print’’

of a suspect Si? Specifically, we want to extract the patterns

that uniquely represent the writing style of a suspect Si, but

does not represent the writing style of any other suspect Sj,

where i s j. In the rest of this section, we discuss the pre-pro-

cessing of features and formally define the notions of frequent

pattern and write-print.
Table 1 – Feature vectors

E-mail Feature A Feature B Feature C

A1 A2 A3 A4 B1 B2 C1 C2

31 0 1 0 0 1 0 1 0

32 0 1 0 0 1 0 1 0

33 0 1 0 0 1 0 1 0

34 1 0 0 0 1 0 1 0

35 0 0 0 1 1 0 1 0

36 0 0 1 0 0 1 0 1

37 0 0 0 1 1 0 0 1

38 0 0 1 0 0 1 0 1

39 0 1 0 0 1 0 0 1

310 1 0 0 0 1 0 0 1
3.1. Pre-processing

Let Ei be a collection of e-mails written by suspect Si ˛ {S1,.,

Sn}. First, we extract the features from each e-mail in Ei. In

the rest of this section, the term ‘‘feature’’ refers to either a sty-

lometric feature described in Section 2.1 or a word appearing

in the e-mails. The spaces, punctuation, special characters

and blank lines are removed. Next, we discretize each normal-

ized word frequency into a set of intervals, for example,

[0–0.25], (0.25–0.5], (0.5–0.75], (0.75–1]. Each interval is called

a feature item. The normalized feature frequency is then

matched with these intervals. Then assign value 1 to the fea-

ture item if the interval contains the normalized feature

frequency; otherwise assign value 0. This will simplify the

procedure by determining the presence or absence of a pat-

tern. Common discretization techniques are:

� Equal-width discretization, where the size of each interval is

the same.

� Equal-frequency discretization, where each interval has ap-

proximately the same number of records assigned to it.
� Clustering-based discretization, where clustering is performed

on the distance of neighboring points.

Example 3.1. Consider Table 1, which contains 10 e-mails. We

extracted three features {A, B, C} from the 10 e-mails. We first

discretize each feature into feature items. For example, a stylo-

metric feature A having a normalized range of [0, 1] can be dis-

cretized into four intervals A1¼ [0, 0.25], A2¼ (0.25, 0.5],

A3¼ (0.5, 0.75], A4¼ (0.75, 1], representing four feature items.

Similarly, features B and C are discretized into B1¼ [0, 0.5],

B2¼ (0.5, 1], C1¼ [0, 0.5], and C2¼ (0.5, 1]. An e-mail 31 having

features A¼ 0.3, B¼ 0.25, and C¼ 0.25 can be represented as

feature vector C0, 1, 0, 0, 1, 0, 1, 0D.
3.2. Frequent pattern

Intuitively, the ‘‘writing pattern’’ or the ‘‘writing style’’ in an

ensemble of e-mails Ei (written by suspect Si) is a combination

of feature items that frequently occurs in Ei. We concisely

model and capture such frequently occurred patterns by the

concept of frequent itemset (Agrawal et al., 1993) described as

follows.

Let U¼ { f1,., fm} denote the universe of all feature items.

Let Ei be a set of e-mails where each e-mail 3 is represented

as a set of feature items such that 3 4 U. An e-mail 3 contains

a feature item fi if the numerical feature value of the e-mail 3

falls within the interval of fi. For example, e-mail 31 in Table 1

can be represented as a set of feature items 31¼ {A2, B1, C1}.

Table 2 shows the 10 e-mails from Table 1 in this format.

Let F 4 U be a set of feature items called a pattern. An e-mail

3 contains a pattern F if F 4 3. A pattern that contains k feature

items is a k-pattern. For example, the pattern F¼ { f1, f4, f6} is

a 3-pattern. The support of a pattern F is the percentage of

e-mails in Ei that contains F. A pattern F is a frequent pattern

in a set of e-mails Ei if the support of F is greater than or equal

to some user-specified minimum support threshold.

Definition 3.1 (Frequent pattern). Let Ei be the set of e-mails

written by suspect Si. Let support(FjEi) be the percentage of

e-mails in Ei that contain the pattern F, where F 4 U. A pattern

F is a frequent pattern in Ei if support(FjEi)�min_sup, where the

minimum support threshold min_sup is a real number in an

interval of [0, 1].



Table 2 – Feature items

E-mail

31¼ {A2, B1, C1}

32¼ {A2, B1, C1}

33¼ {A2, B1, C1}

34¼ {A1, B1, C1}

35¼ {A4, B1, C1}

36¼ {A3, B2, C2}

37¼ {A4, B1, C2}

38¼ {A3, B2, C2}

39¼ {A2, B1, C2}

310¼ {A1, B1, C2}
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The writing pattern of a suspect Si is represented as a set of

frequent patterns, denoted by FP(Ei)¼ {F1,., Fk}, extracted

from his/her e-mails Ei.

Example 3.2. Consider Table 2. Suppose the user-specified

threshold min_sup¼ 0.3, which means that a pattern

F¼ {f1,., fk} is frequent if at least 3 out of the 10 e-mails con-

tain all feature items in F. {A1} is not a frequent pattern be-

cause it has support 2/10¼ 0.2. {A2} is a 1-frequent pattern

because it has support 0.4. {A2, B1} is a 2-frequent pattern be-

cause it has support 0.4. {A2, B1, C1} is a 3-frequent pattern be-

cause it has support 0.3. Example 4.1 will show how to

efficiently compute all frequent patterns.
3.3. Write-print

In forensic science, an individual can be uniquely identified

by his/her fingerprint. In cyber forensics, can we identify

the ‘‘write-print’’ of an individual from his/her e-mails?

We do not claim that the identified write-print in this paper

can uniquely distinguish every individual in the world, but

the identified write-print is accurate enough to uniquely

identify the writing pattern of an individual among the sus-

pects {S1,., Sn} because common patterns among the sus-

pects are filtered out and will not become part of the

write-print.

The notion of frequent patterns in Definition 3.1 captures

the writing pattern of a suspect. However, two suspects Si

and Sj may share some similar writing patterns. Therefore, it

is important to filter out the common frequent patterns and

retain the frequent patterns that are unique to each suspect.

This leads us to the notion of write-print.

Intuitively, a write-print can uniquely represent the writ-

ing style of a suspect Si if its pattern is found only in the e-mails

written by Si, but not in any other suspect’s e-mails. In other

words, the write-print of a suspect Si is a pattern F that is

frequent in the e-mails Ei written by Si but not frequent in

the e-mails Ej written by any other suspect Sj where i s j.

Definition 3.2 (Write-print). A write-print, denoted by WP(Ei),

is a set of patterns where each pattern F has sup-

port(FjEi)�min_sup and support(FjEj)<min_sup for any Ej where

i s j, min_sup is a user-specified minimum threshold. In other

words, WP(Ei) 4 FP(Ei), and WP(Ei) X WP(Ej)¼B for any 1� i,

j� n and i s j.
Discussion: our notion of write-print has two special prop-

erties that make it different from the traditional notion of

write-print in the literature.

First, the combination of feature items that composes the

write-print of a suspect is dynamically generated based on

the embedded pattern in the e-mails. This flexibility allows

us to succinctly model the write-print of different suspects

by using different combinations of feature items. In contrast,

the traditional notion of write-print considers one feature at

a time without considering the combinations.

Second, every frequent pattern F in our notion of write-

print captures a piece of writing pattern that can be found

only in one suspect’s e-mails, but not in any other suspects’

e-mails. The cyber forensic investigator could precisely point

out such matched patterns in the malicious e-mail to support

his/her conclusion of authorship identification. In contrast,

the traditional classifier, e.g., decision tree, attempts to use

the same set of features to capture the write-print of different

suspects. It is quite possible that the classifier would capture

some common writing patterns and the investigator could un-

intentionally use those common patterns to draw the wrong

conclusion of authorship. Our notion of write-print avoids

such problem and, therefore, provides more convincing and

reliable evidence.

3.4. Refined problem statement

The problem of authorship attribution can be refined into

three subproblems: (1) to identify the write-print WP(Ei) from

each set of e-mails Ei ˛ {E1,., Em}. (2) To determine the author

of the malicious e-mail m by matching m with each of

{WP(E1),., WP(Em)}. (3) To extract evidence for supporting

the conclusion on authorship. The evidence has to be intuitive

enough for convincing the judge and the jury in the court of

law. These three subproblems summarize the challenges in

typical investigation procedure.

To solve subproblems (1) and (2), we can first extract the set

of frequent patterns FP(Ei) from Ei and then filter out the com-

mon frequent patterns that also appear in any other sets of e-

mails Ej. For subproblem (3), the write-print WP(Ea) could serve

the evidence for supporting the conclusion, where Ea is the set

of e-mails written by the identified author Sa.
4. Our method

Algorithm 1 presents a novel data mining method, called

AuthorMiner, for determining the authorship of a malicious

e-mail m from a group of suspects {S1,., Sn} based on the

extracted features of their previously written e-mails {Ei,.,

En}. In this section, an e-mail is represented by a set of feature

items. Below, we summarize the algorithm in three phases.

Sections 4.1–4.3 discuss each phase in detail.

Phase 1: Mining frequent patterns (lines 1–3). Extract the frequent

patterns FP(Ei) from each collection of e-mails Ei writ-

ten by suspect Si. The extracted frequent patterns

capture the writing pattern of a suspect.

Phase 2: Filtering common frequent patterns (lines 4–16). Though

FP(Ei) has captured the writing patterns of suspect



Algorithm 1: AuthorMiner

Require: The malicious e-mail m.

Require: A set of e-mail {E1,., En}, written by {S1,., Sn}.

/* Mining frequent patterns */

1: for each Ei ˛ {E1,., En} do

2: extract frequent patterns FP(Ei) from Ei;

3: End for

/* Filtering out common frequent patterns */

4: for each FP(Ei) ˛ {FP(E1),., FP(En)} do

5: for each FP(Ej) ˛ {FP(Eiþ1),., FP(En)} do

6: for each frequent pattern Fx ˛ FP(Ei) do

7: for each frequent pattern Fy ˛ FP(Ej) do

8: if Fx¼¼ Fy then

9: FP(Ei)¼ FP(Ei)� Fx;

10: FP(Ej)¼ FP(Ej)� Fy;

11: End if

12: End for

13: End for

14: End for

15: WP(Ei)¼ pattern(Ei);

16: End for

/* Identifying author */

17: highest_score¼�1.0;

18: For all WP(Ei) ˛ {WP(E1),., WP(En)} do

19: if Score(m z WP(Ei))> highest_score then

20: highest_score¼ Score(m z WP(Ei));

21: author¼ Si;

22: End if

23: End for author;

d i g i t a l i n v e s t i g a t i o n 5 ( 2 0 0 8 ) S 4 2 – S 5 1 S47
Si, FP(Ei) may contain frequent patterns that are com-

mon to other suspects. Therefore, Phase 2 is to

remove the common frequent patterns. Specifically,

a frequent pattern F in FP(Ei) is removed if any other

FP(Ej) also contains F, where i s j. The remaining fre-

quent patterns in FP(Ei) form the write-print WP(Ei) of

suspect Si. When this phase completes, we have a set

of write-prints {WP(E1),., WP(En)} of suspects {S1,.,

Sn}. Fig. 1 illustrates that the write-print WP(E2) comes

from FP(E2) and filters out the common patterns by

comparing with FP (E1) and FP(E3).

Phase 3: Identifying author (lines 17–24). Compare the malicious

e-mail m with each write-print WP(Ei) ˛ {WP(E1),.,

WP(En)} and identify the most similar write-print

that matches m. Intuitively, a write-print WP(Ei) is

similar to the e-mail m if many frequent patterns in

WP(Ei) can be found in m. Our insight is that the fre-

quent patterns are not equally important. Their im-

portance is reflected by their supprt(FjEi); therefore,

we derive a score function Score(m z WP(Ei)) to mea-

sure the weighted similarity between the e-mail m

and the frequent patterns in WP(Ei). The suspect Sa

of write-print WP(Ea), which has the highest

Score(m z WP(Ei)), is classified to be the author of the

malicious e-mail m.
4.1. Mining patterns (lines 1–3)

Lines 1–3 mine the frequent patterns FP(Ei) from each collec-

tion of e-mail Ei ˛ {E1,., En}, for 1� i� n}. There are many

data mining algorithms for extracting frequent patterns, for

example, Apriori (Agrawal et al., 1993), FP-growth (Han and
Pei, 2000), and ECLAT (Zaki, 2000). Below, we provide an over-

view of the Apriori algorithm which has been previously ap-

plied to various text mining tasks (Fung et al., 2003; Holt and

Chung, 1999).

Apriori is a level-wise iterative search algorithm that uses

frequent k-patterns to explore the frequent (kþ 1)-patterns.

First, the set of frequent 1-patterns is found by scanning the e-

mail Ei, accumulating the support count of each feature item,

and collecting the feature item f’s that has support({f}jEi)�min_

sup. The resulting frequent 1-patterns are then used to find

frequent 2-patterns, which are then used to find frequent 3-pat-

terns, and so on, until no more frequentk-patternscan be found.

The generation of frequent kþ 1-pattern from frequent k-pat-

terns is based on the following Apriori property.

Property 4.1 (Apriori property). All nonempty subsets of a fre-

quent pattern must also be frequent.

By definition, a pattern F0 is not frequent if sup-

port(F0jEi)<min_sup. The above property implies that adding

a feature item f to a non-frequent pattern F0 will never make

it more frequent. Thus, if a k-pattern F0 is not frequent, then

there is no need to generate (kþ 1)-pattern F0 W f because

F0 W f is also not frequent. The following example shows

how the Apriori algorithm exploits this property to efficiently

extract all frequent patterns. Refer Agrawal et al. (1993) for

a formal description.

Example 4.1. Consider Table 2 with min_sup¼ 0.3. First, iden-

tify all frequent 1-patterns by scanning the database once to

obtain the support of every item. The items having

support� 0.3 are frequent 1-patterns, denoted by L1¼ {{A2},

{B1}, {C1}, {C2}}. Then, join L1 with itself, i.e. L1 ) L1, to generate

the candidate set C2¼ {{A2, B1}, {A2, C1}, {A2, C2}, {B1, C1}, {B1,

C2}, {C1, C2}} and scan the database once to obtain the support

of every pattern in C2. Identify the frequent 2-patterns,

denoted by L2¼ {{A2, B1}, {A2, C1}, {B1, C1}, {B1, C2}}. Similarly,

perform L2 ) L2 to generate C3 scan the database once to iden-

tify the frequent 3-pattern which is L3¼ {{A2, B1, C1}}. The find-

ing of each set of frequent k-patterns requires one full scan of

the e-mail feature items in Table 2.
4.2. Filtering common patterns (lines 4–16)

This phase filters out the common frequent patterns among

{FP(E1),., FP(En)}. Lines 4–16 in Algorithm 1 describe the filter-

ing procedure. The general idea is to compare every frequent

pattern Fx in FP(Ei) with every frequent pattern Fy in all other

FP(Ej), and to remove them from FP(Ei) and FP(Ej) if Fx and Fy

are the same. The computational complexity of this step is

O(jFP(E )jn), where jFP(E )j is the number of frequent patterns

in FP(E ) and n is the number of suspects. The remaining

frequent patterns in FP(Ei) form the write-print WP(Ei) of

suspect Si.

Example 4.2. Suppose there are three suspects S1, S2, and S3

having three sets of e-mails E1, E2, and E3 respectively, as

depicted in Fig. 1. Let FP(E1)¼ {{A1}, {B1}, {C2}, {A1, B1}, {A1, C2},

{B1, C2}, {A1, B1, C2}} be the frequent patterns of S1. Let
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FP(E2)¼ {{A2}, {B1}, {C1}, {C2}, {A2, B1}, {A2, C1}, {B1, C1}, {B1, C2},

{A2, B1, C1}} be the set of frequent patterns from Example 4.1

of S2. Let FP(E3)¼ {{A1}, {B3}, {C2}, {A1, B3}, {A1, C2}, {B3, C2}, {A1,

B3, C2}} be the set of frequent patterns of S3. Then, we discard

{A1}, {B1}, {C2}, {A1, C2}, {B1, C2} because more than one set of fre-

quent patterns contains them. The remaining frequent pat-

terns form the write-print of the suspect: WP(E1)¼ {{A1, B1},

{A1, B1, C2}}, WP(E2)¼ {{A2}, {C1}, {A2, B1}, {A2, C1}, {B1, C1}, {A2,

B1, C1}}, and WP(E3)¼ {{B3}, {A1, B3}, {B3, C2}, {A1, B3, C2}}.
1 http://www.cs.cmu.edu/wenron/.
4.3. Identifying author (lines 17–24)

Lines 17–24 determine the author of the malicious e-mail m by

comparing m with each write-print WP(Ei) ˛ {WP(E1),., WP(En)}

and identifying the most similar write-print to m. Intuitively,

a write-print WP(Ei) is similar to m if many frequent patterns

in WP(Ei) matches the style in m. Formally, a frequent pattern

F matches m if m contains every feature item in F.

Eq. (1) shows the score function that quantifies the similar-

ity between the malicious e-mail m and a write-print WP(Ei).

The frequent patterns are not equally important, and their im-

portance is reflected by their support in Ei, i.e., the percentage

of e-mails in Ei sharing such combination of features. Thus,

the score function accumulates the support of a frequent pat-

tern and divides the result by the number of frequent patterns

in WP(Ei) to normalize the factor of different sized WP(Ei).

ScoreðmzWPðEiÞÞ ¼
Pp

j¼1 support
�
MPj

��Ei

�

jWPðEiÞj
(1)

where MP¼ {MP1,., MPp} is a set of matched patterns between

WP(Ei) and the malicious e-mail m. The score is a real number

within the range of [0, 1]. The higher the score means the

higher similarity between the write-print and the malicious

e-mail m. The suspect having the write-print with the highest

score is the author of the malicious e-mail m.

Example 4.3. Let thepatternsfound inthemaliciouse-mailm be

{A2, B1, C1} and {A1, B1, C2}. Comparing them to the write-prints

in Example 4.2, we notice that the first pattern matches to a pat-

tern in WP(E2) while the second pattern matches to a pattern in

WP(E1). The score calculated according to Eq. (1) is higher for

WP(E1) because jWP(E1)j< jWP(E2)j. As a result, the malicious e-

mail m is most similar to WP(E1), suggesting that S1 is the author.
In an unlikely case where multiple suspects have the same

highest score, we return all of them to the user.
5. Experimental evaluation

Our goals in this section are to evaluate the proposed method,

AuthorMiner, in terms of authorship identification accuracy

and to verify if the extracted write-print exhibits strong evi-

dence for supporting the conclusion on authorship. We

employed the Enron E-mail Dataset,1 which contains 200,399

real-life e-mails from 158 employees of the Enron corporation

after cleaning. As a pre-processing step, we removed the

empty spaces, special characters, and blank lines and toke-

nized the e-mails as described in Section 3.1. Unlike the ordi-

nary text mining application which aims at extracting the

general trends in the text, our goal is to differentiate the writ-

ing style of different suspects. Therefore, we keep all the func-

tion words and short words.

To evaluate the authorship identification accuracy of our

method, we randomly select n employees from the Enron E-

mail Dataset, representing n suspects {S1,., Sn}. For each sus-

pect Si, we choose m of Si’s e-mails, where 2/3 of the m e-mails

are for training and the remaining 1/3 of the m e-mails are for

testing. We then applied our method, AuthorMiner, to extract

the write-prints from {S1,., Sn} from the training set and then

determine the author of each e-mail in the testing set. The au-

thorship identification accuracy is measured by the percent-

age of correctly matched authors in the testing set.

Fig. 2 depicts the authorship identification accuracy for

n¼ 6 and m¼ 20 (i.e., a total of 120 e-mails) on different num-

ber of discretized intervals. The accuracy spans from 86% to

90% at min_sup¼ 0.1, 0.3 and 0.5, suggesting that our proposed

method can effectively identify the author of an e-mail based

on the extracted write-prints when a reasonable min_sup is

specified. As min_sup increases, the number of extracted fre-

quent patterns, i.e. jFP(Ei)j, decreases and the extracted fre-

quent patterns tend to capture the general writing style that

is common to other suspects, thus, are likely to be eliminated

by the filtering process of our method. As a result, the write-

print becomes less effective for authorship identification and

the accuracy decreases.

http://www.cs.cmu.edu/%7E
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Fig. 2 illustrates that the accuracy spans from 70% to 90%

for 2 intervals, from 66% to 90% for 4 intervals, and from

73% to 90% for 6 intervals. Though we are testing a broad range

of min_sup, the accuracy is relatively stable. These results sug-

gest that our method is very robust to different user-specified

min_sup. In the effort to study the effect of how the number of

discretized intervals could on the accuracy, we measure the

authorship identification accuracy with respect to the number

of intervals. Fig. 3 also suggests that our method is very robust

to different number of intervals.

Fig. 4 depicts the authorship identification accuracy for

n¼ 10 and m¼ 10 (i.e., a total of 100 e-mails) on different num-

ber of discretized intervals. The accuracy spans from 80% to

90% at min_sup¼ 0.1 and 0.3, suggesting that our proposed

method can effectively identify the author of an e-mail based

on the extracted write-prints when a reasonable min_sup is

specified. As min_sup increases, the accuracy decreases as

explained before.

Fig. 4 illustrates that the accuracy spans from 66% to 83%

for 2 intervals, from 63% to 83% for 4 intervals, and from

66% to 90% for 6 intervals. Though we are testing a broad range
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of min_sup, the accuracy is relatively stable. These results sug-

gest that our method is very robust to different user-specified

min_sup. In the effort to study the effect of how the number of

discretized intervals could on the accuracy, we measure the

authorship identification accuracy with respect to the number

of intervals. Fig. 5 also suggests that our method is very robust

to different number of intervals.

Comparing Figs. 2 and 4, we notice that the authorship

identification accuracy drops from the average of 80.5% in

Fig. 2 to the average of 77% in Fig. 4. Though there is a drop

in accuracy, the drop is relatively small compared to the in-

crease of suspects from 6 to 10. Most of traditional classifiers

would have a very significant drop as the number of target

classes (suspects) increases.

In additional to measuring the quality of write-print using

authorship identification accuracy, we also manually exam-

ined the extracted write-print and found that frequent pat-

terns can succinctly capture combinations of features that

occur frequently in the suspect’s e-mails. Many of those hid-

den patterns are not obvious. Due to the fact that all the

matched frequent patterns can be found in the anonymous

(malicious) e-mail, the frequent patterns themselves serve

as a strong evidence for supporting the conclusion on

authorship.
6. Conclusion

In this paper, we formally define the problem of authorship at-

tribution and refine the problem into three subproblems: (1) to

identify the write-print of each suspect. (2) To determine the

author of the malicious e-mail. (3) To extract evidence for sup-

porting the conclusion on authorship. Generally, the same

three phased methodology is applied in the court of law for re-

solving the attribution issue. Most previous contributions fo-

cused on improving the classification accuracy of authorship

identification, but only very few of them study how to gather

strong evidence for the court of law.

We introduce a novel approach of authorship attribution

and formulate a new notion of write-print based on the con-

cept of frequent patterns. Unlike the write-prints in previous

literature that are a set of predefined features, our notion of

write-print is dynamically extracted from the data as combi-

nations of features that occur frequently in a suspect’s
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e-mails, but not frequently in other suspect’s e-mails. The

experimental results on real-life e-mail dataset suggest that

the identified write-print does not only help identify the

author of an anonymous e-mail, but also presents intuitive

yet strong evidence for supporting the authorship finding.

This novel approach opens up a new promising direction of

authorship attribution. We will further extend our tool to

adopt different types of stylometric features and utilize the

concept of frequent pattern to identify hidden write-print of

individuals for the purpose of e-mail forensics. Similarly,

more interesting results can be obtained by using the pro-

posed approach on real e-mail traffic containing malicious e-

mails.
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