THE COLLECTOR:

Know Your

Wea pOn Part 1

rading options is War! For an

option trader a pricing or hedging

formula is just like a weapon. A

solider who has perfected her pis-

tol shooting® can beat a guy with a

machine gun that doesn’t know
how to handle it. Similarly, an option trader
knowing the ins and outs of the Black-Scholes-
Merton (BSM) formula can beat a trader using a
state-of-the-art stochastic volatility model. It
comes down to two rules, just as in war. Rule
number one: Know your weapon. Rule number
two: Don’t forget rule number one. In my ten+
year as a trader I have seen many a BSD? option
trader getting confused with what the computer
was spitting out. They often thought something
was wrong with their computer system/imple-
mentation. Nothing was wrong, however, except
their knowledge of their weapon. Before you
move on to a more complex weapon (like a sto-
chastic volatility model) you should make sure
you know conventional equipment inside-out. In
this installment I will not show the nerdy quants
how to come up with the BSM formula using some
new fancy mathematics—you don’t need to know
how to melt metal to use a gun. Neither is it a
guideline on how to trade. It is meant rather like
a short manual of how your weapon works in
extreme situations. Real war (trading)—the pain,
the pleasure, the adrenaline of winning and loos-

ing millions of dollars—can only be learned
through real action. Now, the manual:

BSD trader “Solider, welcome to our trading
team, this is your first day and I will instruct
you about the Black-Scholes weapon.”

New hired Trader “Hah, my Professor
taught me probability theory, Itd calculus,
and Malliavin calculus! I know everything
about stochastic calculus and how to come
up with the Black-Scholes formula.”

BSD trader “Solider, you may know how to
construct it, but that doesn’t mean you know
a shit about how it operates!”

New hired Trader “I have used it for real trad-
ing. Before my Ph.D. I was a market maker in
stock options for a year. Besides, why do you call
me solider? Iwas hired as an option trader.”

BSD trader “Solider, you have not been in
real war. In real war you often end up in
extreme situations. That’s when you need to
know your weapon.”

New hired Trader “I have read Liar’s Poker,
Hull’s book, Wilmott on Wilmott, Taleb’s
Dynamic Hedging, Haug’s formula collec-
tion. I know about Delta Bleed and all that
stuff. I don’t think you can tell me much
more. I have even read Fooled by Ran ...”

BSD trader “SHUT UP SOLIDER! If you want
to survive the first six months on this trading

floor you better listen to me. On this team we
don’t allow any mistakes. We are warriors,
trained in war!”

New hired Trader “Yes Sir!”

BSD trader “Good, let’s move on to our busi-
ness. today I will teach you the basics of the
Black-Scholes weapon.”

1 Background on the BSM formula
Let me shortly refresh your memory of the BSM
formula

c=Se" N(d;) — Xe 'N(dy)
p =Xe "N(—dy) — Se" "N (—d,),

where
In(S/X) + (b +0%/2)T
dl = )
o~T
dz = dl - O'\/T,
and

S = Stock price.

X = Strike price of option.

r = Risk-free interest rate.

b = Cost-of-carry rate of holding the underlying
security.

T = Time to expiration in years.

To this article | got a lot of ideas from the Wilmott forum. Thanks! And especially thanks to Jgrgen Haug and James Ward for useful comments on this paper.
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o = Volatility of the relative price change
of the underlying stock price.
N(x) = The cumulative normal distribution

function.

2 Delta Greeks

2.1 Delta

As you know, the delta is the option’s sensitivity
to small movements in the underlying asset
price.

ac
Aan = 35 = e”IN(d;) > 0
d
B = 55 = —e"N(=d1) < 0

Delta higher than unity I have many times over
the years been contacted by confused commodi-
ty traders claiming something is wrong with
their BSM implementation. What they observed
was a spot delta higher than one.

As we get deep-in-the-money N(d,) approach-
es one, but it never gets higher than one (since
it’s a cumulative probability function). For a
European call option on a non-dividend-paying
stock the delta is equal to N(d,), so the delta can
never go higher than one. For other options the
delta term will be multiplied by e®~"T. If this
term is larger than one and we are deep-in-the-
money we can get deltas considerable higher
than one. This occurs if the cost-of-carry is larger
than the interest rate, or if interest rates are neg-
ative. Figure 1 illustrates the delta of a call
option. As expected the delta reaches above
unity when time to maturity is large and the
option is deep-in-the-money.

2.2 Delta mirror strikes and asset

For a put and call to have the same absolute delta
value we can find the delta symmetric strikes as
X — geabwzﬁ

P =X . :

2
X, = S_e(2b+oZ)T.
That is
2 )
A(S, X, T, r,b,0) = Ay(S, )Te@b*“ T T, 1, b, o).
C

where X, is the strike of the call and X, is the
strike of a put. These relationships are useful to
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Figure 1. Spot Delta

determine strikes for delta neutral option strate-
gies, especially for strangles, straddles, and but-
terflies. The weakness of this approach is that it
works only for a symmetric volatility smile. In
practice, however, you often only need an approx-
imately delta neutral strangle. Moreover, volatili-
ty smiles often are more or less symmetric in the
currency markets.

In the special case of a straddle-symmetric-
delta-strike, described by Wystrup (1999), the for-
mulas above can be simplified further to

Xe = X, = St /2T,

Related to this relationship is the straddle-
symmetric-asset-price. Given the identical strikes
for a put and call, for what asset price will they
have the same absolute delta value? The answer is

S = Xe(*b*UZ/Z)T.

At this strike and delta-symmetric-asset-price the
delta is ©-~ for a call, and —“5 for a put. Only
for options on non-dividend paying stocks® (b = 1)

can we simultaneously have an absolute delta of
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0.5 (50%) for a put and a call. Interestingly, the
delta symmetric strike also is the strike given the
asset price where the gamma and vega are at their
maximums, ceteris paribus. The maximal gamma
and vega,* as well as the delta neutral strikes, are
not at-the-money forward as I have noticed
assumed by many traders. Moreover, an in-the-
money put can naturally have absolute delta
lower than 50% while an out-of-the-money call
can have delta higher than 50%.

For an option that is at the straddle-symmetric-
delta-strike the generalized BSM formula can be
simplified to

Geb—nT

c= — Xe "N(=o/T),

and

Seb—nT
5

p= XefﬁN(aﬁ) —

At this point the option value will not change
based on changes in cost of carry (dividend yield
etc). This is as expected as we have to adjust the
strike accordingly.
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2.3 Strike from delta

In several OTC (over-the-counter) markets options
are quoted by delta rather than strike. This is a
common quotation method in, for example, the
OTC currency options market, where one typically
asks for a delta and expects the sales person to
return a price (in terms of volatility or pips) as well
as the strike, given a spot reference. In these cases
one needs to find the strike that corresponds to a
given delta. Several option software systems solves
this numerically using Newton-Raphson or bisec-
tion. This is actually not necessary, however. Using
an inverted cumulative normal distribution N=*(-)
the strike can be derived from the delta analytical-
ly as described by Wystrup (1999). For a call option

X. = Sexp[-N"" (A" "o /T + (b + 02 /2)T],
and for a put we have
X, = Sexp[N~1 (= A,e" "o VT + (b + 02/2)T].

To get a robust and accurate implementation of
this formula it is necessary to use an accurate
approximation of the inverse cumulative nor-
mal distribution. I have used the algorithm of
Moro (1995) with good results.

2.4 DdeltaDvol and DvegaDvol

DdeltaDvol: ";—ﬁ which mathematically is the
same as DvegaDspot: E)vaesga’ a.k.a. Vanna,® shows
approximately how much your delta will change
for a small change in the volatility, as well as
how much your vega will change with a small

change in the asset price:

ap —e®=nTg,

c
DdeltaDvol = = =
0Sdo 0Sdo

n(dy),

where n(x) is the standard normal density

1 2
n(X) = 76796 /Z.
T

One fine day in the dealing room my risk manag-
er asked me to get into his office. He asked me
why I had a big outright position in some stock
index futures—I was supposed to do “arbitrage
trading”. That was strange as I believed I was delta
neutral: long call options hedged with short
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index futures. I knew the options I had were far
out-of-the-money and that their DdeltaDvol was
very high. So I immediately asked what volatili-
ty the risk management used to calculate their
delta. As expected, the volatility in the risk-man-
agement-system was considerable below the mar-
ket and again was leading to a very low delta for
the options. This example is just to illustrate how
a feeling of your DdeltaDvol can be useful. If you
have a high DdeltaDvol the volatility you use to
compute your deltas becomes very important.®

Figure 2 illustrates the DdeltaDvol. As we can
see the DdeltaDvol can assume positive and neg-
ative values. DdeltaDvol attains its maximal
value at

S, = Xebefa«/i/HTaZ/z
and attains its minimal value when

Sy = XebT+o VTVa+To? )2

Similarly, given the asset price, options with
strikes X; have maximum negative DdeltaDvol at

X, = SebT—a«/f«/4+T02/2

Asset price

and options with strike Xy have maximum posi-
tive DdeltaDvol when

Xy = SebT+o VTV4+To?/2

One naturally can ask if these measures have any
meaning? Black and Scholes assumed constant
volatility, or at most deterministic volatility.
Despite being theoretically inconsistent it might
well be a good approximation. How good an
approximation it is I leave up to you to find out or
discuss at the Wilmott forum, www.wilmott.com. For
more practical information about DvegaDspot or
Vanna see Webb (1999).

2.5 DdeltaDtime, Charm

DdeltatDtime, a.k.a. Charm (Garman 1992) or
Delta Bleed (a term used in the excellent book by
Taleb 1997), is delta’s sensitivity to changes in
time,

A,

b4
_ S/ Lb-nT d v
aT ¢ ["( 1)(gﬁ 2T>

+ (- r)N(dl)} <>0,
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Figure 3. Charm

and

I [n(dl) (i - d—z)
oT ovT 2T

- (- r)N(—d1)] <> 0.

This Greek gives an indication of what happens
with delta when we move closer to maturity.
Figure 3 illustrates the Charm value for different
values of the underlying asset and different time
to maturity.

As Nassim Taleb points out one can have both
forward and backward bleed. He also points out
the importance of taking into account how
expected changes in volatility over the given
time period will affect delta. I am sure most read-
ers already have his book in their collection (if
not, order it now!). I will therefore not repeat all
his excellent points here.

All partial derivatives with respect to time
have the advantage over other Greeks in that we
know which direction time will move. Moreover,
we know that time moves at a constant rate. This
is in contrast, for example, to the spot price,
volatility, or interest rate.”
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2.6 Elasticity

The elasticity of an option, a.k.a. the option lever-
age, omega, or lambda, is the sensitivity in per-
cent to a percent movement in the underlying
asset price. It is given by

S S
At = At — = e"IN(d) — > 1
call call

S S
Aput = Ayt — = —e""N(=dy)— <0
put put put ( 1)put <

The options elasticity is a useful measure on its
own, as well as to estimate the volatility, beta,
and expected return from an option.

Option volatility The option volatility o, can be
approximated using the option elasticity. The
volatility of an option over a short period of time
is approximately equal to the elasticity of the
option multiplied by the stock volatility o8

o, ~ o|Al.
Option Beta The elasticity also is useful to com-

pute the option’s beta. If asset prices follow geo-
metric Brownian motions the continuous-time

capital asset pricing model of Merton (1971)
holds. Expected asset returns then satisfy the
CAPM equation

E[return| = r + E[r,, — 1|B;

where r is the risk free rate, 1, is the return on the
market portfolio, and g; is the beta of the asset. To
determine the expected return of an option we
need the option’s beta. The beta of a call is given
by (see for instance Jarrow and Rudd 1983)

S
/3( = _AcﬁSs

call

where fs is the underlying stock beta. For a put
the beta is

S
IBp = —Apﬁs-

N put
For a beta neutral option strategy the expected
return should be the same as the risk-free-rate (at
least in theory).

Option Sharpe ratios As the leverage does not
change the Sharp (1966) ratio, the Sharpe ratio
of an option will be the same as that of the
underlying stock,

Ho =1  HUs—T
o, o

where pu, is the return of the option, and us is
the return of the underlying stock. This rela-
tionship indicates the limited usefulness of the
Sharpe ratio as a risk-return measure for
options (?). Shorting a lot of deep out-of-the-
money options will likely give you a “nice”
Sharpe ratio, but you are almost guaranteed to
blow up one day (with probability one if you
live long enough). An interesting question here
is if you should use the same volatility for all
strikes. For instance deep-out-of-the-money
stock options typically trade for much higher
implied volatility than at-the-money options.
Using the volatility smile when computing
Sharpe ratios for deep out-of-the-money
options also possibly can make the Sharpe
ratio work better for options. McDonald (2002)
offers a more detailed discussion of option
Sharpe ratios.
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3 Gamma Greeks
3.1 Gamma

Gamma is the delta’s sensitivity to small move-
ments in the underlying asset price. Gamma is
identical for put and call options, ceteris paribus,
and is given by

9%c _9%p  n(dy)e® T
852 882 T So /T
This is the standard gamma measure given in

most text books (Haug 1997, Hull 2000, Wilmott
2000).

Cean put = >0

3.2 Maximal gamma and the illu-
sions of risk

One day in the trading room of a former employ-
er of mine, one of the BSD traders suddenly got
worried over his gamma. He had a long dated
deep-out-of-the money call. The stock price had
been falling, and the further the out-of-the-
money the option went the lower the gamma he
expected. As with many option traders he
believed the gamma was largest approximately
at-the-money-forward. Looking at his Bloomberg
screen, however, the further out of the money
the call went the higher his gamma got. Another
BSD was coming over, and they both tried to
come up with an explanation for this. Was there
something wrong with Bloomberg?

In my own home-built system I often was
playing around with 3 and 4-dimensional
charts of the option Greeks, and I already knew
that gamma doesn’t attain its maximum at-
the-money forward (4 dimensions? a dynamic
3-dimensional graph). I didn’t know exactly
where it attained its maximum, however.
Instead of joining the BSD discussion, I did a
few computations in Mathematica. A few min-
utes later, after double checking my calcula-
tions, I handed over an equation to the BSD
traders showing exactly where the BSM gamma
would be at its maximum.

How good is the rule of thumb that gamma is
largest for at-the-money or at-the-money-forward
options? Given a strike price and time to maturi-
ty, the gamma is at maximum when the asset
price is®

Sf — Xe(7b73az/2)rl
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Given the asset price and time to maturity,
gamma is maximal when the strike is

Xp = gelb+a?/2)T

Confused option traders are bad enough, con-
fused risk-management is a pain in the behind.
Several large investment firms impose risk limits
on how much gamma you can have. In the equity
market it is common to use the standard text-
book approach to compute gamma, as shown
above. Putting on a long term call (put) option
that later is deep-out-of-the money (in-the-
money) can blow up the gamma risk limits, even
if you actually have close to zero gamma risk.
The high gamma risk for long dated deep-out-of-
the-money options typically is only an illusion.
This illusion of risk can be avoided by looking at
percentage changes in the underlying asset
(gammaP), as is typically done for FX options.

Saddle Gamma Alexander (Sasha) Adamchuk
was the first to make me aware of the fact that
gamma has a saddle point.!° The saddle point is
attained for the time

1

Tg = ——
s 2(c2+Db)’

X =100, r =5%, b =5%, c = 80%,

el

Asset price © o

Figure 4. SaddleGamma

and at asset price
Sf- — Xe(*b*BGZ/Z)TS.

The gamma at this point is given by

e(b—r)T\/g /:%—i-l

[y =T (g, Ts) = X

Many traders get surprised by this feature of
gamma—that gamma is not necessary decreas-
ing with longer time to maturity. The maximum
gamma for a given strike price is first decreasing
until the saddle gamma point, then increasing
again, given that we follow the edge of the maxi-
mal gamma asset price.

Figure 4 shows the saddle gamma. The saddle
point is between the two gamma “mountain”
tops. This graph also illustrates one of the big
limitations in the textbook gamma definition,
which is actually in use by many option systems
and traders. The gamma increases dramatically
when we have long time to maturity and the
asset price is close to zero. How can the gamma
be larger than for an option closer to at-the-
money? Is the real gamma risk that big? No, this
is in most cases simply an illusion, due to the
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above unmotivated definition of gamma.
Gamma is typically defined as the change in
delta for a one unit change in the asset price.
When the asset price is close to zero a one unit
change is naturally enormous in percent of the
asset price. In this case it is also highly unlikely
that the asset price will increase by one dollar in
an instant. In other words, the gamma measure-
ment should be reformulated, as many option
systems already have done. It makes far more
sense to look at percentage moves in the under-
lying than unit moves. To compare gamma risk
from different underlyings one should also
adjust for the volatility in the underlying.

3.3 GammaP

As already mentioned, there are several prob-
lems with the traditional gamma definition. A
better measure is to look at percentage changes
in delta for percentage changes in the underly-
ing,'! for example: a one percent point change in
underlying. With this definition we get for both
puts and calls (gamma Percent)

LI (1)
= — >
"~ 100

GammaP attains a maximum at an asset price of
. — Xe(*b*dZ/Z)T
I

Alternatively, given the asset price the maximal
I'p occurs at strike

Xp = Se(b+a2/z)T
» .

Interestingly, this also is where we have a strad-
dle symmetric asset price as well as maximal
gamma. This implies that a delta neutral strad-
dle has maximal T'p. In most circumstances
going from measuring the gamma risk as I'p
instead of gamma we avoid the illusion of a high
gamma risk when the option is far out-of-the-
money and the asset price is low. Figure 5 is an
illustration of this, using the same parameters as
in Figure 4.

If the cost-of-carry is very high it is still possi-
ble to experience high I'p for deep-out-of-the-
money call options with a low asset price and a
long time to maturity. This is because a high cost-
of-carry can make the ratio of a deep-out-of-the
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money call to the spot close to the at-the-money-
forward. At this point the spot-delta will be close
to 50% and so the I'p will be large. This is not an
illusion of gamma risk, but a reality. Figure 6
shows I'p with the same parameters as in Figure 5,
with cost-of-carry of 60%.

To makes things even more complicated the
high I') we can have for deep-out-of-the-money
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calls (in-the-money puts) is only the case when
we are dealing with spot gammaP (change in
spot delta). We can avoid this by looking at
future/forward gammaP. However if you hedge
with spot, then spot gammaP is the relevant
metric. Only if you hedge with the future/for-
ward the forward gammaP is the relevant met-
ric. The forward gammaP we have when the

Days to maturity
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cost-of-carry is set to zero, and the underlying
asset is the futures price.

3.4 Gamma-symmetry

Given the same strike the gamma is identical for
both put and call options. Although this equality
breaks down when the strikes differ, there is a
useful put and call gamma symmetry. The put-
call symmetry of Bates (1991) and Carr and Bowie
(1994) is given by

X (SeP)?

C(S, X, T, T, b, O') = SQWP(S’ T, T, T, b, 0)
This put-call value symmetry yields the gamma
symmetry, however the gamma symmetry is more
general as it is independent of wether the option
is a put or call, for example, it could be two calls,
two puts, or a put and a call.

X (SebT)Z
IS, X, T,r,b,0) = 3671_‘(57 X T,7,b,0).
Interestingly, the put-call symmetry also gives us
vega and cost-of-carry symmetries, and in the
case of zero cost-of-carry also theta and rho sym-
metry. Delta symmetry, however, is not obtained.

3.5 DgammaDvol, Zomma

DgammaDvol, a.k.a. Zomma, is the sensitivity of
gamma with respect to changes in implied
volatility. In my view, DgammaDvol is one of the
more important Greeks for options trading. It is
given by

ar
call,put = %

o

DgammaDvol

For the gammaP we have DgammaPDvol
dl dz -1
DgammaPDvol . ,,, = Tp | ——— ) <> 0
o

where T is the text book Gamma of the option.
For practical purposes, where one typically
wants to look at DgammaDvol for a one unit
volatility change, for example from 30% to 31%,
one should divide the DGammaDVol by 100.
Moreover, DgammaDvol and DgammaPDvol are
negative for asset prices between S; and Sy and
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positive outside this interval, where
S, = Xe—bT—a\/T«/‘PrTaZ/Z

Sy = Xe—bT+m/TJ4+T(72/z

For a given asset price the DgammaDvol and
DgammaPDvol are negative for strikes between

X, = S0 VTV4+To2/2

Xy = SebT+a\/T\/4+TUZ/2

and positive for strikes above Xy or below X,
ceteris paribus. In practice, these points will
change with other variables and parameters.
These levels should, therefore, be considered
good approximations at best.

In general you want positive DgammaDvol—
especially if you don’t need to pay for it (flat
volatility smile). In this respect DgammaDvol
actually offers a lot of intuition for how stochas-
tic volatility should affect the BSM values (?).
Figure 7 illustrates this point. The DgammaDvol
is positive for deep-out-of-the-money options,
outside the S; and Sy interval. For at-the money
options and slightly in- or out-of the money
options the DgammaDvol is negative. If the
volatility is stochastic and uncorrelated with the
asset price then this offers a good indication for
which strikes you should use higher/lower
volatility when deciding on your volatility smile.
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Figure 7. DgammaDvol

In the case of volatility correlated with the asset
price this naturally becomes more complicated.

3.6 DgammaDspot, Speed

I have heard rumors about how being on speed
can help see higher dimensions that are ignored
or hidden for most people. It should be of little
surprise that in the world of options the third
derivative of the option price with respect to
spot, known as Speed, is ignored by most people.
Judging from his book, Nassim Taleb is also a fan
of higher order Greeks. There he mentions
Greeks of up to seventh order.

Speed was probably first mentioned by Garman
(1992),'* for the generalized BSM formula we get

pe T(1+2)

s S
A high Speed value indicates that the gamma is
very sensitive to moves in the underlying asset.
Academics typically claim that third or higher
order “Greeks” are of no use. For an option
trader, on the other hand, it can definitely
make sense to have a sense of an option’s
Speed. Interestingly, Speed is used by Fouque,
Papanicolaou, and Sircar (2000) as a part of a
stochastic volatility model adjustment. More to
the point, Speed is useful when gamma is at its

255

Days to maturity

55




‘ ESPEN GAARDER HAUG

X =100, r =5%, b = 0%, c =30%,

0.0006

0.0004

0.0002

7

—0.0002

%
o

—-0.0004

—-0.0006

[Te]
© [=]
Te]

Asset price

Figure 8. Speed

maximum with respect to the asset price.
Figure 8 shows the graph of Speed with respect
to the asset price and time to maturity.

For I'» we have an even simpler expression for
Speed, that is SpeedP (Speed for percentage
gamma)

dy
SpeedP = -I'—— .
P 1000 v/T

3.7 DgammaDtime, Colour

The change in gamma with respect to small
changes in time to maturity, DGammaDtime
a.k.a. GammaTheta or Colour (Garman 1992), is
given by (assuming we get closer to maturity):

ar e(bir)TTl(dl) ( bdl 1-— d1d2>
_ = " |r—- b+ + —
oT So /T ovT 2T
F( b+ bd, +l—d1d2><>0
= r— E—
it T )

Divide by 365 to get the sensitivity for a one day
move. In practice one typically also takes into
account the expected change in volatility with
respect to time. If you, for example, on Friday are
wondering how your gamma will be on Monday
you typically also will assume a higher implied
volatility on Monday morning. For I'r we have

DgammaPDtime
4 lnh _d1d2> <=0

al'p
aT

bd,
ovT

=TI r—>b
P( + 2T
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Figure 9 illustrates the DgammaDtime of an
option with respect to varying asset price and
time to maturity.

X=100, r =5%, b = 0%, c = 30%,

1.5 _L

0o 1n
ITIS3Q
- =y

1)
—
—

110
105
100

95
90
85
80

75
70
65
60
55
50

Asset price

Figure 9. DgammaDtime

4 Numerical Greeks

So far we have looked only at analytical Greeks. A
frequently used alternative is to use numerical
Greeks. Most first order partial derivatives can
be computed by the two-sided finite difference
method

c(S+AS, X, T,r,b,0) —c(S— AS, X, T,r,b,0)
2AS

In the case of derivatives with respect to time, we
know what direction time will move and it is
more accurate (for what is happening in the
“real” world) to use a backward derivative

o~ (8K T.rb.0) —c(S.X.T—AT.1.b.0)
- AT '

Numerical Greeks have several advantages over
analytical ones. If for instance we have a sticky
delta volatility smile then we also can change
the volatilities accordingly when calculating the
numerical delta. (We have a sticky delta volatility
smile when the shape of the volatility smile
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sticks to the deltas but not to the strike; in other
words the volatility for a given strike will move
as the underlying moves.)

A _C(S+AS. X, T,r,b,01)—c(S—AS, X, T, 7, b, 03)
‘ 2AS

Numerical Greeks are moreover model inde-
pendent, while the analytical Greeks presented
above are specific to the BSM model.

For gamma and other second derivatives, %
(for example DvegaDvol) we can use the central
finite difference method

b CSHAS ) =205 )+ S AS. )
~ AS?

If you are very close to maturity (a few hours) and
you are approximately at-the-money the analytical
gamma can approach infinity, which is naturally
an illusion of your real risk. The reason is simply
that analytical partial derivatives are accurate
only for infinite changes, while in practice one
sees only discrete changes. The numerical gamma
solves this problem and offers a more accurate
gamma in these cases. This is particularly true
when it comes to barrier options (Taleb 1997).

~ For Speed and other third order derivatives,
% we can for example use the following
approximation

1
Speed ~ E[C(S +2AS,..) —3c(S+ AS, ...
+3¢(S,...) —c(S— AS, ...

What about mixed derivatives, % for example

DdeltaDvol and Charm, this can be calculated
numerical by

DdeltaDvol
~———c(S+ AS, ..., A
4A5Aa[c( + o+ Ao)
—c(SH+AS,...,0—Ac)—c(S—AS,...,0+A0o)
+c(S—AS,...,0 — Ao)]

In the case of DdeltaDvol one would “typically”
divide it by 100 to get the “right” notation.

End Part 1

BSD trader “That is enough for today solider.”

New Hired Trader “Sir,Ilearned a few things
today. Can I start trading now?”

BSD trader “We don’t let fresh soldiers play
around with ammunition (capital) before
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they know the basics of a conventional
weapon like the Black-Scholes formula.”

New Hired Trader “Understood Sir!”

BSD trader “Next time I will tell you about
vega-kappa, probability Greeks and some
other stuff. Until then you are Dismissed!
Now bring me a double cheeseburger with a
lot of fries!”

New Hired Trader Yes Sir!

FOOTNOTES & REFERENCES

1. The author was among the best pistol shooters in
Norway.

2. If you don’t know the meaning of this expression, BSD,
then it’s high time you read Michael Lewis” Liar’s Poker.

3. And naturally also for commodity options in the special
case where cost-of-carry equals .

4. You have to wait for the next issue of Wilmott Magazine
for the details on vega.

5. | wrote about the importance of this Greek variable back
in 1992. It was my second paper about options, and my
first written in English. Well, it got rejected. What could |
expect? Most people totally ignored DdeltaDvol at that
time and the paper has collected dust since then.

6. An important question naturally is what volatility you
should use to compute your deltas. | will not give you an
answer to that here, but there has been discussions on this
topic at www.wilmott.com.

7. This is true only because everybody trading options at
Mother Earth moves at about the same speed, and are
affected by approximately the same gravity. In the future,
with huge space stations moving with speeds significant
to that of the speed of light, this will no longer hold true.
See Haug (2003a) and Haug (2003b) for some possible
consequences.

8. This approximation is used by Bensoussan, Crouhy, and
Galai (1995) for an approximate valuation of compound
options.

9. Rubinstein (1990) indicates in a footnote that this maxi-
mum curvature point possibly can explain why the greatest
demand for calls tend to be just slightly out-of-the money.
10. Described by Adamchuck at the Wilmott forum
www.wilmott.com February 6, 2002, http://www.
wilmott.com/310/messageview.cfm?catid=4&threa-
did=664&highlight_key=y&keywordT=vanna and even
earlier on his page http://finmath.com/Chicago/
NAFTCORP/Saddle_Gamma.html

11. Wystrup (1999) also describes how this redefinition of
gamma removes the dependence on the spot level S. He
calls it “traders gamma.” This measure of gamma has for a
long time been popular, particularly in the FX market, but
is still absent in options text books.

12. However he was too “lazy” to give us the formula so |
had to do the boring derivation myself.
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