Analysis of Common-Collector Colpitts Oscillator

H R Pota
May 20, 2005

Introduction

Murphy’s rule when paraphrased for oscillators reads [Anplifiers will oscillate but oscillators
won't” As we all know, Mr Murphy rules and Mr Newton doesnt #&'s sensible to understand well
when we can expect oscillators to really oscillate and attireguency. To be honest, all the different
conditions one can use to check for sustained oscillatiomslifferent versions of one solid criterion.
To apply that criterion we first derive a transfer functiorivibeen any initial condition based voltage
(Li(0) for inductors) or current(v(0) for capacitors) and the output voltage. Then to check for
oscillations we see if there exists a frequengysuch that the transfer function has polesat, i.e.,

the denominator of the transfer function has roots at.

Vi(s)
+<::}__* F(s)

Als) Velo)

\

Figure 1. Feedback System

The above idea can be illustrated with the help of the feddlsgstem shown in Figure 1. The
transfer function

Vo(s) _ F(s)A(s)

Vi(s) 1= F(s)A(s)
has a root attjwy if 1 = F(jwy)A(jwo) or if 1 — F(jwo)A(ywo) = 0. Obviously the two conditions
are equivalent; our first attempt is to sed€lifvy s.t. F'(ywy)A(ywo) = 1, but at times it's difficult to
separate a feedback circuit in terms of neat blocks #ik§) and A(S) and the feedback. In the latter
case we directly check for the roots bf- F'(s)A(s) (which we can obtain by a complete analysis, as
shown later) and see if they are on theaxis.

In this note the above mentioned three versions of the mitdor sustained oscillations are demon-
strated. In the first version a complete time domain analggierformed and we see that the output
voltage is a sinusoid. In the second version we break thebsdloop at a point in the circuit; set
up an input voltage source at that point and then see the towpiage at the break-point. If the gain
is unity for the input sinusoid at frequency then the circuit will oscillate at that frequency. In this
analysis one has to be sure that when the loop closes it ddead’the network, i.e., the gain doesn't
change. If it does load then the analysis in [2] can be usedttamgideal amplifier from the non-ideal
elements. Finally in the third version the complete tran&faction is derived and then conditions are
set such that there are poles on jleaxis.



Ideal LC Oscillator—Time Domain Analysis

An ideal LC oscillator is shown in Figure 2.

Figure 2: Idealised Colpitts Oscillator Analysis

Writing the KVL around the loop in Figure 2,
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whereC' = % The general solution to the differential equation (1) canbigen as,
i(t) = kievVic" + kyevic', )

constant$; andk2 depend on initial conditions. Let us assume that the cit@stthe initial conditions
i(0) =g and% = (0. With these initial conditions the general solution is,
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Now one can see that the voltagesandv, in Figure 2 can be written as,
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The ratio of the maximum values of andv,, can be written as:
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The gain in equation (6) is greater than one. The above asakews that in an idedlC circuit in
Figure 2 there will be sustained oscillations at the freawey%c and that the ratio of voltages and

v, IS greater than one. This fact (gain greater than 1) is notngmitant here but it will be important
to demonstrate that the common-collector Colpitts odoitlavill sustain oscillations even when the
cc-amplifier doesn't act as an ideal element. Note that fhasit will not have sustained oscillations if
any of the three elements is not ideal, i.e., if they have &efi@sistance. As one knows there doesn’t
exist an ideal inductor or capacitor so to obtain sustairsmillation an amplifier block is used with
LC circuits as discussed next.



Common-Collector Colpitts Oscillator—Breaking the Loop

Small-signal equivalent circuit of a common-collector @tk oscillator [3, Section 4-1] is shown in
Figure 3.

1

Figure 3: Common-collector Colpitts oscillator (smalissal equivalent)

A simple analysis can be performed on this circuit to seewfiitwork as an oscillator and if yes
then at what frequency. In a feedback system if the phasessbiind the loop i8 or 27 and the gain is
unity then it will have sustained oscillations. In practibe gain needs to be larger than unity (why?).
To do this analysis the feedback loop in Figure 3 is brokematase of the transistor as shown in
Figure 4 and a relationship betweenanduv, is dervied to investigate if the conditions for oscillation
are met or not.

Figure 4: Open-loop CC Colpitts oscillator (small-signglisvalent)

The analysis is considerably simplified if the common-czitke transistor in the dashed box in
Figure 4 is replaced by its Thevenin equivalent and we asdhatethe input impedance of the cc-
amplifier is infinity. The infinite input impedance assumptimeans that when the break point is
connected back it doesn't load the feedback network, he. gains calculated by breaking the loop
don’t change when the loop is connected.

A quick analysis of the common-collector hybridnodel shows that the Thevenin voltadey =

v; and the Thevenin resistance gy = r = —. After replacing the transistor with its Thevenin
equivalent, the circuit to analyse now is given?n Figure 5.



Figure 5: Open-Loop Colpitts Oscillator

Writing KCL at the nodd in Figure 5 we get,

M+%(3)CQS+M =0, (7)

r 1+ LC,s?
now simplifying equation (7) we get,

Va(s) 1+ LC;s?
V;(S) N 1 + LOlSz + Ts(LC’10232 + 01 + 02) '

(8)

Also note that,
Vo (s)LC s

‘/O(S) = 1 +L0182 ? (9)
putting together equations (8) and (9) we can write,
2
Vo(s) LCis (10)

V;(S) a 1+ L0182 + T’S(L010282 + 01 + 02)

The frequencyw at which the term in side the bracket in the denominator oféqn (10) is equal
to zero is called the resonant frequency. This is becausgaimeor the transfer functlor‘é— at the
resonant frequency should be a real number and this candertiy if all the co-effecients of the odd
powers ofs = jw are zero. The resonant frequency is then given as:

1
Cc1C2
V LC1+CQ

Substituting the value of the resonant frequency in the Bouél0) we get,

—L0102w2+01 +C=0=w=

Viw) _ —LOiTEE
Vi(w) - LO\ 252
01+02
= 11
o (11)

This shows that the phase-shift from to v, at the resonant frequency @sor 27 and the gain is

greater than unity. These two conditions are sufficient staso oscillations at the resonant frequency
1

w =

cic2

L01 +Co
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Figure 6: Colpitts Oscillator Analysis with Non-ideal Inctor

A General Analysis

In a general case where the resonant circuit is not a simpibic@ation of L, C;, andCs, the above
analysis can be repeated by replacing them with generaldemes”,, Z,, andZs.
Following an analysis similar to the one done for Figure 5Sttaasfer function for the circuit in
Figure 6 is given as,
Vo(s) ZZy (12)
Vi(s)  (Z421)Zy+1(Z + Z1 + Z)
Let us consider the case whén= Ls + R, i.e., a hon-ideal inductoy;; = C%S, andZ, = c%s The
transfer function with these values is:

Vo(s) (Ls+ R)Cys
V;(S) N 1+ s(R01 + T’(Cl + OQ + LClcQSQ)) + L0182 + TR010282

The conditions for sustained oscillation are satisfied i twal numberg andw can be found such
that,

(13)

Vo(s)
Vi(s)
The numberg andw can be found graphically or by solving the two nonlinear é¢quis (equating the
real and imaginary parts); is the frequency of oscillation anfdis the gain.

L —

s=jw

Loading on the LC' Tank—Complete Transfer Function

In the preceding analysis it has been assumed that the clifiantpas an infinite input impedance. In a
general analysis the loading due to the finite input impedarthe cc-amplifier also needs to be taken
into account. The analysis gets a little more complicatadhmiidea of breaking the loop and working
out the frequency at which the phase shift is @erand then testing if the gain at that frequency is
greater than unity works well. The analysis in [2, Sectids] 8hich shows how to consider the effect
of loading on feedback amplifiers can be used.

Here we analyse the entire circuit in one go and see what weRjease note that testing for the
frequency whemM (Jw) f(yw) = 1 is the same as getting the closed-loop transfer functiorchadking
if any of its poles are on thev-axis.

Figure 7 shows the transistor replaced by the hybridedel. The voltage sourde, is due to the
initial current in the inductor. The KVL at the two nodes canvritten as:

Vx_‘/o

™

(‘/a: — ‘/0)018 +

+VaCas = gn(Vo — Vi) (14)
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Figure 7. Complete Colpitts Oscillator

Vo—Liy  Vo—-V,
+ +
Ls Tr

(Vo—=Ve)Cis = 0 (15)

Solving the above two equations (14) and (15) simultangpua obtain:

V;, . 1+gm7’ﬂ+87“7r(01+02)
Liy 1+ gmry + s7:(Cy + Co) + 520, L + s3C1Cory L

(16)

There will be sustained oscillations if the denominatorhaf &bove transfer function has roots on the
Jw-axis (why?). Substituting = jw in the denominator of the transfer function (16) and equaitito
zero we havel = g,,7)

1+ 6 — Czsz + j(W’f’ﬂ(Cl + 02) — a}301027"7rL> =0 (17)
Equating the imaginary part to zero we get

, Ci+Cy
w- =
C1CyL

and with this value ol the real part of the equation is,

01 + 02 01 + 02
+ 4 Cy C ol c = Cy = BCy (18)

This implies that provided we choose the capacitors ap@tgby the oscillator will have a sustained

: : _ J(C1+C9)
oscillation atw = T

Lossy Inductor

When the inductor in Figure 7 is lossy the transfer functian be obtained by substitutirig + R for
Ls in equation (16). After the substitution the denominatothef transfer function can be written as:

1+ B+ 8(re(Cy + Cy) + RCY) + s*(LCy + C1CoryR) + s°C1Cor, L = 0 (19)

As before, to test if there will be sustained oscillation#wve lossy inductor, equation (19) should have
a solution fors = jw. Unless a full nonlinear analysis is done it’s a bit difficialtcheck this condition
but one can perform a simple Routh-Hurwitz test and see widha conditions for the denominator
to have roots in the right-half-plane (not on theaxis though). This condition turns out to be:

(LOQ + ClcQTﬂR)(Tﬂ(CH + 02) + ROQ) S (1 + ﬁ)C’ngrﬂL. (20)
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If the above inequality were to be an equality then a coupteats will lie on thejw axis. These roots
can be obtained by equating the denominator with jw to zero and solving fow. The imaginary

part of this identity gives:
2 rﬂ'<01 + 02) + RCQ

= 21
with this value ofw, inequality (20) can be written as:
1+ 05 L
Rr, < - —. 22
= w%(]l(]g 01 ( )

This gives a condition in which oscillations will start bttest for sustained oscillations a nonlinear
analysis needs to be performed. In general with most triamsig the above inequality (20) holds then
there will be sustained oscillations.

Mr James Webb’s Design

The oscillator circuit can be reduced to the following scaémin Figure 8 for the purposes of our

analysis here.
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Figure 8: Oscillator Designed by James Webb

The circuit in Figure 8 doesn’t show the capacitangeexplicitly because it is not negligible
then it can be just added t¢,. The capacitanceS; andC, represent the equivalent capacitances in
that particular section of the oscillator. The KVL at the twodes in the circuit in Figure 8 can be
written as:

Vx_‘/o
T'r

+(V,—V,)Cis = 0 (24)

(‘/a: — ‘/;,)018 +

‘/O—Lio ‘/;)+‘/o_vx
L5+C%45 Css T

+V,Cos = gn(V,—V,) (23)

The above two equations (23) and (24) can be simultaneooisiydusing the followingnaple script.

#H# Title:  pllfosc.ma
# Created: Fri Jun 22 16:58:14 2001
## Modified: Time-stamp: <2001-06-24 15:35:02 Himanshu>

H#Hit Author: Himanshu Pota <hrp@wattle.ee.adfa.edu.au>

#

## Description: Oscillation frequency for the VCO designed by James Webb.
#restart; read(‘C:/Hemanshu/courses/Electronics4/col pitts/plifosc.ma’);
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interface(echo=2);
eql:=(Vx-Vo) =*Clxs + (Vx-Vo)/rpi+Vx * C2x s=gm+ (V0-VX);

eq2:=(Vo-Li0)/(L *s+1/(C4 *s)) + (Vo-Vx)/rpi + (VO-VX) *Clxs + Vo=*C3xs=0;
sol:=solve({eql,eq2}{Vx,Vo}):
assign(sol):

tf:=collect(simplify(normal(Vo/Li0)),s);
dentf:=collect(denom(tf),s);

#dentf:=evalc(subs(s=I * omega,dentf));
#C4:=11e-9; C3:=45e-12; C1:=10e-12; C2:=33e-12; L:=40e- 9;
numerdentf:=subs({C4=11e-9, C3=45e-12, C1=10e-12, C2=3 3e-12,

L=40e-9,s=I *omega},dentf);
fosc:=evalf(sqgrt(-coeff(numerdentf,omega)/coeff(num erdentf,omega”3))/2/Pi);

tfsimple:=limit(tf, {C3=0,C4=infinity});

The ratio ofV,, and Li, gives the transfer function. For this transfer function épresent an
oscillator it should have poles on the-axis. That means for a particular valuse.oboth the real and
imaginary parts of the denominatorsat jw must go to zero.

Equating the imaginary part of the denominator witl jw to zero, we obtain:

o C10y + C1C5 + C1Cy + CoCs + Oy 0y

25
L(C1CyCy + C1C3C 4+ CoC3CY) (25)

Equating the real part of the denominator wite- jw to zero, we obtain:
—wWLC4(Cy + (1 4+ B)C3) 4+ (1 + B)(Cs + Cy) +Cy = 0 (26)

The expression ab from equation (25) needs to be substitued in the above equgb) to set values
for C; and(s.

With the values of the capacitances in one of James Weblssicldesign, we have; = 10 pF,
Cy, =33 pF,C3 =45 pF,C; =11 nF,andL = 40 nH, which gives:

fosc= 109.90 MHz.
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