
Sensors and Actuators in TCOZ

Brendan Mahony1Jin Song Dong2

1 Information Technology Division
Defence Science and Technology Organisation (DSTO)
Brendan.Mahony@dsto.defence.gov.au

2 School of Computing,
National University of Singapore,
dongjs@comp.nus.edu.sg

Abstract. Timed Communicating Object Z (TCOZ) combines Object-Z's
strengths in modeling complex data and algorithms with Timed CSP's strengths
in modeling real-time concurrency. TCOZ inherits CSP's channel-based com-
munication mechanism, in which messages represent discrete synchronisations
between processes. The purpose of most control systems is to observe and con-
trol analog components. In such cases, the interface between the control system
and the controlled systems cannot be satisfactorily described using the channel
mechanism. In order to address this problem, TCOZ is extended with continuous-
function interface mechanisms inspired by process control theory, the sensor and
the actuator. The utility of these new mechanisms is demonstrated through their
application to the design of an automobile cruise control system.

1 Introduction

The design of complex systems requires powerful mechanisms for modeling data, al-
gorithms, concurrency, and real-time behaviour; as well as for structuring and decom-
posing systems in order to control local complexity. In recognition of this, much recent
work in the development of specification and design notations has concentrated on the
blending of existing notations with strong mechanisms in one or the other of these
areas. An early examples of this trend are the LOTOS language, which blends process
algebras with algebraic modeling languages, and RAISE, which blends VDM, CSP, ML
with algebraic modeling languages. More recently there has been active investigation of
the integration of object-oriented data-structuring techniques with process description
languages. The blending of Z/Object-Z with either CSP [19, 6, 18, 21] or CCS [7, 22]
has been a popular approach. TCOZ lies in this last category. It is a blending of Object-
Z and Timed CSP that is aimed at providing a powerful design notation for real-time
and concurrent systems with digital components.

Many classes of complex digital systems are identified in the literature: concurrent,
real-time, hybrid, embedded to name a few. In fact, many of these systems are better
characterised as control systems [15]. Following Shaw [17], we contend that the ar-
chitecture of control systems is an important structuring mechanism for the efficient
design of complex digital systems. The (closed-loop) control architecture is depicted in
Figure 1 (which is borrowed with minor modifications from Raven [15, Fig. 1.3]).

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1166-1185, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Logic
Control

Feedfoward
Elements

Actuating
Signal Variables

Controlled
SetpointCommand

Elements

Signal
Sensor

Feedback
Elements

Command Variables
Manipulated

Variables
Uncontrolled

Controlled
Process

Fig. 1. Abstract control system architecture

Generally the controlled process is described by a differential or integral equation
involving the controlled, uncontrolled, and manipulated variables, which are best mod-
eled as continuous real-valued functions of real-valued time. The development of pre-
cise models for analog components is essentially beyond the scope of TCOZ, which
is restricted by its nature to the description of discrete models. (Even though TCOZ
adopts real-valued time, all of the events and quantities described in a TCOZ class re-
main essentially discrete in nature.) Higher level design languages such as the Timed
Refinement Calculus [14] or Duration Calculus [24] should instead be employed to
describe the behaviour of the analog components.

However, in a modern digital control system, the subsystem of Figure 1 enclosed
within the dashed rectangle is composed solely of digital components. The feedforward,
feedback, and command elements are generally digital-to-analog and analog-to-digital
converters as appropriate. The actuating signal is used to generate an analog quantity
and the sensor and setpoint signals are sampled from analog quantities. The control
logic is a non-terminating reactive process executing on a digital processing unit. All of
these elements should in theory be amenable to description within a discrete modeling
language such as TCOZ.

In drawing the digital subsystem boundary to encompass the conversion elements
of the control system, we present some challenges to the CSP channel-based commu-
nications mechanism used in TCOZ. The primary challenge lies in the analog nature of
the quantities which make up the interfaces. The discrete modeling mechanisms of CSP
and Object-Z cannot describe a continuously varying quantity. Another point is that the
digital system thus described becomes an open system. CSP channels are better suited
to describing closed systems because of CSP's view of communications as represent-
ing synchronisations between systems. A closed system is one in which all aspects of
system behaviour are fully described, with no need to refer to, nor interface to, other
systems. An open system is one which operates in the context of an environment which
is determined solely by the interface it presents. Since CSP communications require
synchronisation between processes, any system specified in CSP is subject to arbitrary

1167Sensors and Actuators in TCOZ

delay by an uncooperative environment. Such a system cannot usually be completely
decoupled from its environment because it relies on the co-operation of the environment
to make progress.

In order to address these shortcomings of the basic CSP communications mecha-
nism, we propose the introduction to TCOZ of two continuous-function interface mech-
anisms inspired by the control system architecture. The sensor provides a sampling
channel linked to a global continuous variable. The actuator provides a local-variable
linked to a global continuous variable. Sensors and actuators may appear either at the
system boundary (describing how global analog quantities are sampled from or gener-
ated by the digital subsystem) or else within the system (providing a convenient mech-
anism for describing local communications which do not require synchronisations).

Outline of paper

It is assumed that the reader has some familiarity with both Object-Z [4] and CSP, since
the mechanics of blending the two notations is considered only briefly in Section 2.
The continuous-function interface mechanisms, sensor and actuator, are introduced in
Section 3. Section 4 informally describes the high-level functionality of a standard case
study in automatic control, the automobile cruise control. The TCOZ specification of
the cruise control is presented and evaluated in Section 5.

2 Aspects of TCOZ

TCOZ is a blending of Object-Z [4] and Timed CSP [16], for the most part preserving
them as proper sub-languages of the blended notation. The essential elements of this
blending are the unification of the concepts of type, class, and process and the unifica-
tion of Object-Z operation specification schemas with terminating CSP processes. Thus
instances of process may be declared normally and occupy the same syntactic class as
objects. Operation schemas and CSP processes also occupy the same syntactic cate-
gory, operation schema expressions may appear wherever processes may appear in CSP
and CSP process definitions may appear wherever operation definitions may appear in
Object-Z. In this section we briefly consider the aspects of TCOZ which help to bring
the two notations together. A detailed introduction to TCOZ and its Timed CSP and
Object-Z features may be found elsewhere [12]. The semantics of TCOZ can be found
in [10].

2.1 Declaring channels

CSP channels are given an independent, first class role in TCOZ. This allows the com-
munications and control topology of a network of objects to be designed orthogonally
to their class structure.

In order to support the role of CSP channels, the state schema convention is ex-
tended to allow the declaration of communication channels. If c is to be used as a
communication channel by any of the operations of a class, then it must be declared
in the state schema to be of type chan. Channels are type polymorphic and may carry

1168 Brendan Mahony and Jin Song Dong

communications of any type. Being based on ZF set theory, Z is not technically speak-
ing a typed logic [20], so this presents no semantic challenge and prevents unnecessary
proliferation of channel names. Channel variables act in the role of `event constructors' .
A channel c may either appear alone in the role of an event (applied to the null-value)
or else be applied to a Z-value v like so c:v. The conventional usages c?v and c!v serve
solely as visual feedback to document the intention that an event act in the role of an
input or output respectively. They have no semantic implications.

Contrary to the conventions adopted for internal state variables, channels are viewed
as shared rather than as encapsulated entities. This is a consequence of their role as com-
munications interfaces between objects. The introduction of channels to TCOZ reduces
the need to reference other classes in class definitions, thereby enhancing the modularity
of system specifications.

2.2 A model of time and quantity

In TCOZ, all timing information is represented as real valued measurements in seconds.
Describing time and other physical quantities in terms of standard units of measurement
is an important aspect of ensuring the completeness and soundness of specifications of
real-time, reactive, and hybrid systems. In order to support the use of standard units of
measurement, extensions to the Z typing system suggested by Hayes and Mahony [8]
are adopted. Under this convention, time quantities are represented by the type Rs;
where R represents the real numbers and s is the SI symbol for the standard unit of
time. Time literals consist of a real number literal annotated with a symbol representing
a unit of time. For example, 3�s is a literal representing a period of three microseconds,
that is three millionths of the standard time unit, the second. All the SI standard units
symbols are supported and all the arithmetic operators are extended in the obvious way
to allow calculations involving units of measurement.

2.3 Deadlines and delays

In order to describe the timing requirements of operations and sequences of operations,
a deadline command along the lines described by Hayes and Utting [9] is introduced.
If OP is an operation specification (defined through any combination of CSP process
primitives and Object-Z operation schemas) then OP � DEADLINE t describes the pro-
cess which has the same effect as OP, but is constrained to terminate no later than t.

The WAITUNTIL operator is a dual to the deadline operator. The process

OP � WAITUNTIL t

performs OP, but will not terminate until at least time t.

2.4 Guards and preconditions

A novel CSP operator, the state-guard, is used to block or enable execution of an opera-
tion on the basis of an object' s local state. For example, the operation [a � 0] � [�(a) j
a � 0 ^ a0 =

p
a] will replace the state variable a with its square root if a is positive

1169Sensors and Actuators in TCOZ

otherwise it will deadlock, that is be blocked from executing. The blocking or enabling
of this operation is achieved by the state guard [a � 0] � and not by the precondition
a � 0 within the operation schema. If the operation schema alone is invoked with a
negative, it will diverge rather than block. The difference between deadlock and diver-
gence is that a divergence may be refined away by making an operation more robust,
while a deadlock can never be refined away.

An additional function of state guards is as a substitute for CSP's indexed external
choice operator. The process [n : N j 0 � n � 5] � c?n ! P(n) may input any value
of n between 0 and 5 (from channel c) as chosen by its environment. CSP's indexed
internal choice is replaced by the operation schema and sequential composition. The
process [n! : N j 0 � n! � 5]; c!n ! P(n) may output any value of n between 0 and 5
according to its own designs.

2.5 Active and passive objects

Active objects have their own thread of control, while passive objects are controlled
by other objects in a system. In TCOZ, an identifier MAIN (non-terminating process) is
used to determine the behaviour of active objects of a given class [3]. The MAIN process
is required to have neither input nor output parameters. If ob1 and ob2 are active objects
of the class C, then the independent parallel composition behaviour of the two objects
can be represented as ob1 jjj ob2, which means ob1:MAIN jjj ob2:MAIN

2.6 Complex network topologies

In TCOZ, a graph-based approach is adopted to describing network topologies [13]. For
example, consider that processes A and B communicate privately through the channel
ab, processes A and C communicate privately through the channel ca, and processes B
and C communicate privately through the channel bc. This network topology may be
described in TCOZ by the network topology expression

k(A ab
�- B; B bc

�- C; C ca
�- A):

Network topology expressions are a notation intended to mimic the graphical commu-
nicating structure. They consist of interface specifications of the form

P1; : : : ;Pn
c1;:::;cn
� - Q1; : : : ;Qn;

indicating that the channels c1; : : : ; cn are used to communicate from the processes
P1; : : : ;Pn to the processes Q1; : : : ;Qn:

3 Adding continuous-function interfaces to TCOZ

Integrating TCOZ specifications with traditional control theory system models presents
something of a challenge. The standard CSP communications interface is the channel,
which represents a sequence of discrete synchronisations between system and environ-
ment. The standard model for system interfaces in control theory is the continuous,

1170 Brendan Mahony and Jin Song Dong

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

screen

temp

nil

s

init on off on

19.0

20.0

21.0

22.0

23.0

C
o

Fig. 2. The office communication scenario.

differentiable function. One approach to this problem is to require the system designer
to resolve the mismatch at a higher-level of abstraction, handcrafting a translation from
the continuous-functionworld to TCOZ's discrete world. We reject this approach on the
grounds that, though it is very flexible, it constitutes a barrier to the ready acceptance
of TCOZ as design tool for digital components of control systems. Instead we adopt an
approach by which TCOZ takes it upon itself to become a `good corporate citizen' in
the world of control engineering by providing standardised mechanisms for converting
from the discrete to the continuous and vice versa, thus allowing TCOZ process classes
to present a continuous-function interface to their environments. This allows subsys-
tems specified in TCOZ to fit seamlessly into the overall design of a complex control
system.

3.1 The digital temperature display

As a simple demonstration in the use of continuous-function interfaces in TCOZ and
their interaction with CSP channels and Object-Z local variables, we consider the com-
munication scenario between a digital temperature display (DTD) and the occupant of
an office. The office occupant can turn on/off the DTD by pressing the `on' /`off' buttons
on the unit. If the DTD is turned on, then it will monitor the rooms current temperature
using its built-in thermometer and update the temperature display every 5 s to display
the current temperature to the nearest half a degree Celsius. If the DTD is turned off,
the temperature display goes blank. An example behaviour of the DTD is illustrated by
Figure 2.

The communications interfaces to the DTD fall into three distinct classes. The on/off
buttons of the unit are best represented using the channel mechanism, because they re-
quire explicit co-operation between the user and the DTD unit (that is a synchronisation)
and because they are discrete events. A continuous interface could be used, but consid-
erable effort would be required to ensure proper synchronisation. The temperature on
the other hand is best modeled as a continuous function of time and is not well suited

1171Sensors and Actuators in TCOZ

to being described as a CSP channel. Not only is the continuous function the standard
scientific and engineering model for analog quantities, it is also common engineering
practice to view digital signals as piece-wise continuous step-functions [14]. The tem-
perature display falls into an area between the truly continuous and the truly discrete,
either model may be preferred depending on the application. In this case, because the
display falls at the system boundary, the difficulties of using CSP channels to describe
open system interfaces mean that modeling the display as a CSP channel is not ideal.
For example, the requirement that the display be updated every 5 s cannot easily be
expressed if the display is a CSP channel which may be blocked by an uncooperative
environment.

The on/off buttons can be modeled by using CSP channels, one for on-events and
one for off-events. In order to describe the thermometer and the display we introduce
two new continuous-function interface mechanisms.

The thermometer is introduced by a declaration of the form

temp : R�C sensor;

which declares temp to be a continuous-function interface with public type Rs !
R
�C : Internally, temp takes the syntactic role of a CSP channel. The relationship be-

tween the public continuous-function variable and the internal channel is that whenever
a value v is communicated on the internal channel at a time t, that value must be equal
to the value of the continuous function at that time, that is temp(t) = v.

The temperature display is introduced by a declaration of the form

screen : Display actuator; where Display ::= TemphhN � 0:5�Cii j nil:

This declaration also introduces screen as a public continuous-function variable, but in
this case the internal role is that of the local state variable. Thus screen may appear in
the delta list of operations and any other place where a local variable may appear.

The TCOZ process class describing the DTD is below.

DTD

temp : R�C sensor
screen : Display actuator
on; off : chan

INIT

screen = nil

SetScreen
�(screen)
t? : R�C

9 dt : N � 0:5�C �
dt = t � 0:5�C ^
screen0 = Temp(dt)

Show b= ([t : R�C] � temp?t !
SetScreen � DEADLINE 5 s � WAITUNTIL 5 s; Show)
O off ! NoShow

NoShow b= screen := nil; on ! Show

MAIN b= on ! Show

A DTD object begins with the screen blanked (INIT), then when the on-button is pressed
it passes into Show mode.

1172 Brendan Mahony and Jin Song Dong

In Show mode it polls the temperature sensor and displays the result to the nearest
one half degree Celsius. This behaviour is repeated with periodicity 5 s : A repeated
activity with period T can be described by the CSP definition of the form

PA0 b= A; WAITUNTIL T; PA0;

provided the activity A is guaranteed to terminate before T. In order ensure this a dead-
line is placed on the activity giving a definition of the form

PA b= A � DEADLINE T � WAITUNTIL T; PA:

The definition of Show is of precisely this form, ensuring that the screen update occurs
once every 5 s : The fact that the temp channel is a sensor is important in ensuring
that the Show acts as expected. Since temp events do not represent synchronisations
with the environment they happen immediately they are offered. A simple CSP channel
could be blocked for an arbitrary time, making such a periodic behaviour impossible to
guarantee.

If the off-button is pressed with the DTD in Show mode, it immediately passes to the
NoShow mode by blanking the screen. This is expressed using the Timed CSP interrupt
operator (O), which shifts control to the interrupt routine as soon as an interrupt
event (in this case off) is enabled. The DTD remains in NoShow mode until the on-
button is once again pressed. Note that the expression screen := nil is a short form of
the schema [�(screen) j screen0 = nil]

3.2 The local virtues

The experienced CSP practitioner is probably not entirely convinced by the preceding
argument. After all the so-called `continuous-function interface' is really just an asyn-
chronous communications medium and it is well known how to model such things in
CSP. To a degree this criticism is valid, at least in a closed system. A local continuous-
function interface a of type A may be modeled by the following TCOZ process, pro-
vided that it appears in a context in which the channels la and ra are hidden from the
environment and therefore cannot be blocked.

loc a

la; ra : chan
a : A

MAIN b= � LA � ([i : A] � la?i ! a := i; LA) 2 (ra!a ! LA)

If B is a process which uses a as an actuator and C is a process that uses a as a sensor,
then

P b= kB a
�- C

has the same behaviour as

P�
b= kB� la

�- A; A ra
�- C�

;

1173Sensors and Actuators in TCOZ

where B� is B with a replaced by la and updates to a replaced by outputs to la; and C�

is C with a replaced by ra. This interfacing model is inferior in two ways.
Firstly it is only effective when used in closed systems. This means that processes

designed to interface with such a channel cannot be understood in isolation, leading to
a highly coupled system design. In the above examples, the processes B� and C� have
the correct timing behaviour only when placed in conjunction with A as in P�. Unless la
and ra are hidden, a hostile environment may interfere with their behaviour. In contrast
the sensor and actuator mechanism provide a truly localised model of an asynchronous
interface. Systems designed using these mechanisms are decomposed more easily be-
cause the individual components are more easily understood in isolation. In the DTD
specification there is no need to describe the behaviour of system environment at all,
only the interface it presents.

Secondly in the sensor/actuator mechanism the associated continuous function be-
comes a public interface to the TCOZ process. This means that TCOZ processes may
be treated transparently as normal components in a formal approach to analog systems
design. One such approach is being developed by Fidge and Hayes et al [5, 9], based
on Mahony's timed refinement calculus [11, 14]. In any case, describing digital compo-
nents as truly open subsystems seems preferable to requiring the designer to artificially
close a system design by providing unsatisfactory digital approximations to analog sys-
tem components.

3.3 Generating a real-time clock timer

As another example of the utility of continuous-function interfaces, consider the spec-
ification of a real-time system clock for a digital system. A real-time clock provides a
synchronisation signal for the various components in a system, in the form of a simple
square-wave which oscillates with a set frequency. Such clocks are generally rated in
terms of the number of cycles per second (hz) which they generate.

In TCOZ the signal from the real-time clock can be modeled by using a boolean
actuator and the square-wave generated by a periodic process.

RT Clock

freq : Rhz
per; gain : Rs

per � freq = 1 ^ gain < per=10

rtc : B actuator

MAIN b= �C � rtc := : rtc � DEADLINE gain � WAITUNTIL per=10; C

The parameters of the RT Clock represent the frequency freq and period per of the
clock; and the time taken to change state gain, which is much smaller than the period.

1174 Brendan Mahony and Jin Song Dong

3.4 Monitoring input signals

A number of the continuous-function interfaces in the cruise control specification in
Section 4 represent digital signals, that is signals of type boolean. In such cases it is
often of great interest to detect transitions in the signal, either from high to low or vice
versa. The following TCOZ class describes a process which monitors a digital signal
and raises events whenever it encounters a leading or a trailing edge.

Edges

signal : B sensor
up; dn : chan

High b= signal:false! dn ! Low

Low b= signal:true! up ! High

MAIN b= signal:false! Low 2 signal:true! High

It may seem strange to introduce a signal interface and then re-interpret it as events,
but this mechanism gives a more accurate local model of the situation than if the events
themselves were the interface. With a channel based interface, a failure of the system
to process the signal rapidly enough may simply result in the environment waiting till it
is finished. With the continuous-function interface the missing of a processing deadline
definitely results in the missing of an edge.

Sometimes we will be interested only in leading edges or else only in trailing edges.

Lead b= (Edges n dn)
Trail b= (Edges n up)

Both the RT Clock and the Edges classes will be reused extensively in the cruise
control specification.

4 Cruise control overview

The aim of a cruise control system for a car is to maintain the speed of the car even
over varying terrain. The high-level system structure of a cruise control system of a
car is illustrated in Figure 3. The Car is an analog system capable of moving forward,
changing direction, producing heat, and many other observable behaviours which we
represent as an abstract variable perf : The variable perf is a function of three inputs.
The driver provides control inputs by by turning the steering-wheel, applying the brake,
etc the aggregate of which we represent by the abstract variable driver inp: The throttle
setting, represented by throttle, controls the forward speed of the car. Finally, various
environmental factors including wind drag, road incline, etc (represented by env) can
affect the response of the system to the controlling variables.

The purpose of the Cruise class is to monitor the linear speed of the car and to
modulate the throttle setting so as to maintain the speed of the car at a point determined
by the driver inputs.

1175Sensors and Actuators in TCOZ

driver_inp

throttle

Carenv

perf

Cruise

Fig. 3. Block diagram of cruise system and car.

set

res

eng_on

sys_on

brake Set_Throttle

throttle

mode

Set_State

des_speed

speed

Set_Speedwheel_ang

Cruise

acc

1Mhz_Clock

Fig. 4. Block diagram of throttle control.

Notice that the structure of the cruise control system is precisely that of the ab-
stract control system presented in Figure 1. The controlled variable is perf , the uncon-
trolled variables are env and some components of driver inp, the manipulated variable
is throttle, and the command variables are the components of driver inp which deter-
mine the mode of behaviour of the Cruise class. This gives Cruise class itself the same
external interface as the subsystem enclosed by the dashed rectangle in Figure 1, sug-
gesting the structure of that subsystem as a suitable architecture for the Cruise class.
Section 5 is devoted to a formal TCOZ specification of the Cruise subsystem following
this control system architecture.

1176 Brendan Mahony and Jin Song Dong

5 TCOZ model of the cruise control system

The top-level design of the cruise control system, illustrated in Figure 4, follows the
basic structure of the digital subsystem from Figure 1. The command variables are
the components of driver inp (driver input) that are devoted to operating the cruise
control. These consist of the cruise-on/off button sys on, the set-cruise button set, the
resume-cruise button res, the accelerator pedal acc, and the brake pedal brake. The ex-
act function of these command variables is described in Section 5.3, but for the moment
it is sufficient to note that they are interpreted by the Cruise class command element
Set State: The setpoint signals are des speed, mode, and acc which is passed through
directly. The monitored components of the car are eng on which indicates when the en-
gine is running and wheel ang which measures the angular position of a reference point
on one of the wheels. The feedback element of the Cruise class is the Set Speed class,
which uses wheel ang to calculate the current speed. The control function is performed
by the Set Throttle class which determines the correct throttle setting according to the
current speed, mode, des speed, and accelerator heel pulses and (acceleration) acc. The
output from the cruise control is the throttle, which constitutes both the actuating sig-
nal and the manipulated variable. The feedforward element is the trivial process which
propagates throttle through to the Car system. The final class is the real-time clock
which is used to drive the activities of the other classes.

5.1 The clock

In order to drive the cruise control circuitry we introduce a 1Mhz clock, that is 1 cu =
1�s :

1Mhz Clock
RT Clock

per = 1 cu ^ gain < 0:1 cu

5.2 Car speed

The speed of the car is determined by counting clock signals between pulses from a
wheel sensor. This process consists of four components as shown in Figure 5: one to
generate the wheel pulses, one to detect wheel pulses, one to detect clock signals, and
one to actually count the clock signals in each period of revolution and calculate the
speed. The speed is calculated with a precision of 0:1 km hr�1

; that is in units of su ==

0:1 km hr�1
; and also to an accuracy of 0:1 km hr�1, under the assumptions that the

maximum speed of the car is maxs == 300 km hr�1 and the wheel circumference is
Cw == 3m : The period of revolution is calculated with a precision is �1 clock cycle,
the wheel pulse timings may be so as to allow a whole extra clock signal when the
time elapsed is a small fraction of a clock cycle or vice versa. To ensure that the overall
accuracy of the speed calculation is better than �1 su, the clock unit cu must satisfy
the condition

1 cu � Cw
maxs

� 0:5 su
maxs�0:5 su :

1177Sensors and Actuators in TCOZ

Cal_Sp

speed

up

up

p

cLead

LeadWheel_Sense pulses

rtc

wheel_ang

Set_Speed

Fig. 5. Block diagram of speed calculation.

The suggested clock rate of 1Mhz is adequate to ensure this condition.

The Wheel Sense process monitors the wheel ang variable and raises the pulse
signal while the angle is between 0 rad and �a : Rrad : In order to ensure the pre-
cision of �1 cu, we require that raising and dropping the signal take no longer than
�a == 0:1 cu :

Wheel Sense

wheel ang : Rradsensor
pulse : B actuator

INIT

pulse = false

MAIN b= �WS �
[a : Rrad j 0 rad � a � �a] � wheel ang?a !

pulse := true � DEADLINE �a;
[a : Rrad j �a � a] � wheel ang?a !

pulse := false � DEADLINE �a; WS

Between each wheel pulse the number of clock pulses is counted to determine the
period of rotation to the nearest clock unit. The speed is then calculated in speed units
by dividing the circumference (Cw) of the wheel by the period between pulses.

Cal Sp

upc; upp : chan
speed : N suactuator
per : N cu

INIT

speed = 0 cu ^ per = 0 cu

NewSpeed
�(speed)

per > Cw=maxs ^
speed = Cw

per � 0:5 su _
per � Cw=maxs ^ speed = maxs

1178 Brendan Mahony and Jin Song Dong

Count b=
[per < Cw=1 su] � (

(upc ! per := per + 1 cu � DEADLINE 0:1 cu; Count) 2
(upp ! (NewSpeed; per := 0 cu) � DEADLINE 0:1 cu; Count))

2

[per � Cw=1 su] �
(speed := 0 su; per := 0 cu) � DEADLINE 0:1 cu;

upp ! Count

MAIN b= upp ! Count

Two exceptional behaviours are considered. If the wheel is rotating very slowly, the
period calculation times out when the count exceeds Cw=maxs, the speed is set to 0 su
and the count is not restarted until the next wheel pulse is encountered. If the wheel is
rotating very fast then the speed is set to maxs.

Set Speed

pe : Lead[pulses
signal ;

upp

up]

ce : Lead[rtc
signal ;

upc

up]

cs : Cal Sp
ws : Wheel Sense

MAIN b= k(ws pulses
� - pe; pe

upp
�- cs; ce upc

�- cs)

5.3 Cruise modes

When operating, the cruise control can be in any of four modes of operation.

CM b= setpoint j accel j decel j rest

setpoint The speed of the car is maintained at the desired speed by manipulating the
throttle setting.

accel The speed of the car is increased by opening the throttle.
decel The speed of the car is decreased by closing the throttle.
rest No throttle manipulation is performed, but the desired speed is remembered.

The mode of operation of the cruise control is determined by the following input
signals.

eng on The cruise control cannot operate if the engine is off.
sys on The cruise control is switched on and off by this signal.
set While the cruise control is in any operating mode, briefly raising the set-signal sets

the desired speed to the current speed and initiates setpoint-mode. Holding the set-
signal high for longer than

th == 1 s

1179Sensors and Actuators in TCOZ

causes the car to enter the decel-mode. When the set-signal falls the desired speed
is set to the current speed, then control returns to setpoint-mode.

res While the cruise control is in any operating mode, briefly raising the res-signal
initiates setpoint-mode, but does not alter the desired speed. Holding the res-signal
high for longer than th causes the car to enter the accel-mode. When the res-signal
falls the desired speed is set to the current speed, then control enters the setpoint-
mode.

brake While the cruise control is in any operating mode, touching the brake causes the
control to enter rest-mode, but does not alter the desired speed.

speed If operating, the cruise control cannot be in setpoint-mode if the desired speed is
less than mind == 50:0 km hr�1

:

The purpose of the Set State process is to determine the correct operating mode and
to maintain the value of the desired speed.

In order to correctly interpret the control signals from the driver, especially in light
of the dual purpose nature of the set and res signals, monitors are placed on these sig-
nals to convert them to a sequence of driver events as depicted in Figure 6. The possible
events on the set signal are sp for enaging cruise control and dc for decelerating. The
possible events on the res signal are rs for resuming cruise control and ac for accelerat-
ing.

Set

se : Edges[set
signal]

sp; dc : chan

SetPt b= dn ! sp ! Interpret
Interpret b= up !

SetPt .fthg (dc ! SetPt)

MAIN b= k(Interpret up;dn
� - se)

Resume

re : Edges[res
signal]

sp; rs : chan

Res b= dn ! rs ! Interpret
SetPt b= dn ! sp ! Interpret
Interpret b= up !

Res .fthg (ac ! SetPt)

MAIN b= k(Interpret up;dn
� - re)

A simple edge monitor is used on the brake signal.
The normal behaviour of the cruise state is to set the mode and des speed signals in

accordance with driver cruise events and any brake events. However, this behaviour is
suppressed if the eng on or sys on signals go low. When both signal go high again the
mode is set to rest and the des speed to 0 su.

Cruise State

ac; sp; rs; dc; upb; dnb : chan
mode : CM actuator
des speed : N suactuator
speed : N susensor
eng on; sys on : B sensor

INIT

mode = rest
des speed = 0 su

1180 Brendan Mahony and Jin Song Dong

Set_State

set

res

brake

Resume
mode

des_speed

Set

Edges upb bdn

eng_on

sys_on

Cruise_State

rs

sp

dc

ac

speed

Fig. 6. Block diagram of cruise state determination.

SP b= sp ! [s : N su] � speed?s ! (
[s � mind] � des speed := s; mode := setpoint 2
[s < mind] � SKIP)

RS b= rs ! (
[des speed � mind] � mode := setpoint 2
[des speed < mind] � SKIP)

AC b= ac ! mode := accel

DC b= dc ! mode := decel

Normal b= (SP 2 RS 2 AC 2 DC); Normal

Active b= Normal O upb ! mode := rest; dnb ! Active

Sys Off b= sys on?true! Active
O sys on?false ! mode := rest; des speed := 0 su; Sys Off

Eng Off b= eng on?true ! Sys Off
O eng on?false ! mode := rest; des speed := 0 su; Eng Off

MAIN b= Eng Off

A Set State class then consists of monitors on the set, res, and brake signals; and a
Cruise State class communicating with each other as described in Figure 6.

1181Sensors and Actuators in TCOZ

upcrtc

mode

des_speed

speed

acc

ThrottleLead

Set_Throttle

Fig. 7. Block diagram of throttle determination.

Set State

sm : Set
rm : Resume
br : Edges[brake

signal ;
upb

up ;
dnb
dn]

cs : Cruise State

MAIN b= k(sm sp;dc
� - cs; rm sp;rs;ac

� - cs; br upb;dnb
� - cs)

5.4 Throttle

The final component of the cruise control determines the appropriate throttle setting
for all cruise modes. A block diagram of the Set Throttle component is depicted in
Figure 7. It is a clocked component which calculates a new throttle setting each clock
cycle, based on the current speed, the cruise mode, the accelerator pedal, and the desired
speed (in setpoint-mode). The throttle and accelerator pedal quantities are represented
abstractly by a unit symbol au.

Throttle
�th : N au
maxth;minth : N au
:::

sp : N su
speed; des speed : N susensor
mode : CM sensor
acc : N ausensor
throttle : N auactuator

::: [details omitted]

1182 Brendan Mahony and Jin Song Dong

The details of the above class are omitted due to the space limitation.
The Set Throttle class consists of a monitor on the clock signal and a Throttle class

for updating the throttle every clock cycle.

Set Throttle

ce : Lead[rtc
signal ;

upc

up]

th : Throttle

MAIN b= k(ce upc
�- th)

5.5 Cruise system

As stated in the introduction to this section, the Cruise class consists of a 1Mhz clock,
a speed monitor, a user input monitor, and a throttle actuator interacting as described in
Figure 4.

Cruise

c : 1Mhz Clock
ss : Set State
sd : Set Speed
st : Set Throttle

MAIN b= k(c rtc
�- sd; st; ss mode;des speed

� - st; sd speed
� - ss; st)

6 Conclusion

In this paper, Timed Communicating Object Z (TCOZ) has been extended with new
communications mechanism, the continuous-function interface. The basic idea is to
use a (usually real-valued) function of real-valued time as communications medium
between objects. The actuator and sensor mechanism differ only in the manner in
which the continuous-function interface is utilised by a class. A actuator takes on the
role of a local variable through which an object `controls' the value of the continuous-
function interface. A sensor takes on the role of a CSP channel through which the object
`monitors' the value of the continuous-function interface.

The standard method of communication between components in an object-oriented
architecture is the method invocation by which an object may request a service from
another object if it knows the appropriate method name and object identifier. This form
of communication leads to a high degree of coupling between object classes because
so much information is needed to set up communications. In CSP the standard commu-
nications mechanism is the channel which provides a more abstract interface between
processes. Each component interacts only with its channels and need have little detailed
knowledge about the structure of other components. However, because communications
on CSP channels represent explicit synchronisations between processes, each process

1183Sensors and Actuators in TCOZ

must obey the correct `protocol' for the channel in order to avoid deadlock situations.
Thus there remains a residual amount of coupling between processes linked by CSP
channels. This coupling is removed by the continuous-function interface mechanism
which does not require a synchronisation between processes for communication to oc-
cur. Through judicious use of channels where synchronisation is truly required (as for
service requests) and continuous-function interfaces where synchronisation is not re-
quired, it is possible to adopt a `open' approach to systems design with a minimum
of inter-module coupling. We believe the open systems approach to be essential to the
treatment of large-scale formal systems design.

The coupling problem with CSP channels has also been recognised by Davies [2],
who suggested the use of signal events as a means of addressing the problem. A signal
event is simply an event which cannot be blocked by its environment. However, if no
process is ready to accept the signal immediately, the information is lost forever. The
continuous-function interface is superior to the signal mechanism, because the infor-
mation transmitted on an actuator signal remains available to any other process until
overwritten by the controlling process.

The actuator and sensor metaphors are drawn from the theory of automatic con-
trol systems. Following Shaw [17], we advocate the control system as an important
architectural framework for the design of real-time, hybrid systems. In this paper we
have demonstrated the power of the control systems architecture by applying it to the
classic hybrid-system case-study, the automobile cruise control. Applying the control
system template of Figure 1 to the cruise control allowed us to identify and describe the
high-level components of the cruise control with a minimum of effort. By adopting the
`natural' architecture for the problem domain, we were able to produce a design with a
low degree of coupling between components; a factor that is likely to make later devel-
opment phases both cheaper and faster. The case study has also served as a vehicle for
demonstrating the power of the continuous-function interface as a means of support-
ing the description of `open' system components. The formal incarnation of the cruise
control design was able to reflect the elegance of the informal architecture because the
continuous-function interface does not bias the design toward higher coupling as would
the method invocation and channel communications mechanisms.

The shift from closed to open systems necessitates close attention to issues of con-
trol, an area where both Z and CSP are weak [23]. We believe that TCOZ with the
actuator and sensor can be a good candidate for specifying open control systems.

Acknowledgements

We would like to thank Neale Fulton, Ian Hayes and anonymous referees for many
useful comments. This work is supported in part by the DSTO/CSIRO Fellowship pro-
gramme.

References

1. K. Araki, A. Galloway, and K. Taguchi, editors. IFM'99: Integrated Formal Methods, York,
UK. Springer-Verlag, June 1999.

1184 Brendan Mahony and Jin Song Dong

2. J. Davies. Specification and Proof in Real-Time Systems. PhD thesis, Oxford University
Computing Laboratory, Programming Research Group, 1991.

3. J.S. Dong and B. Mahony. Active Objects in TCOZ. In J. Staples, M. Hinchey, and S. Liu, ed-
itors, the 2nd IEEE International Conference on Formal Engineering Methods (ICFEM'98),
pages 16–25. IEEE Press, December 1998.

4. R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advocated for the
Description of Standards. Computer Standards and Interfaces, 17:511–533, 1995.

5. C. J. Fidge, I. J. Hayes, A. P. Martin, and A. K. Wabenhorst. A set-theoretic model for
real-time specification and reasoning. In Mathematics of Program Construction, 1998.

6. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and J. Der-
rick, editors, Formal Methods for Open Object-Based Distributed Systems (FMOODS '97),
volume 2, pages 423–438. Chapman & Hall, 1997.

7. A. J. Galloway and W. J. Stoddart. An operational semantics for ZCCS. In M. Hinchey
and S. Liu, editors, the IEEE International Conference on Formal Engineering Methods
(ICFEM'97), pages 272–282, Hiroshima, Japan, November 1997. IEEE Press.

8. I. J. Hayes and B. P. Mahony. Using units of measurement in formal specifications. Formal
Aspects of Computing, 7(3), 1995.

9. I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter. In D. J. Duke and
A. S. Evans, editors, BCS-FACS Northern Formal Methods Workshop, Electronic Workshops
in Computing. Springer Verlag, 1997.

10. B. Mahony and J.S. Dong. Overview of the semantics of TCOZ. In Araki et al. [1].
11. B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis, University

of Queensland, 1991.
12. B. P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ.

In K. Futatsugi, R. Kemmerer, and K. Torii, editors, The 20th International Conference on
Software Engineering (ICSE'98), pages 95–104, Kyoto, Japan, April 1998. IEEE Press.

13. B. P. Mahony and J.S. Dong. Network topology and a case-study in TCOZ. In ZUM'98 The
11

th International Conference of Z Users. Springer-Verlag, September 1998.
14. B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE

Transactions on Software Engineering, 18(9):817–826, 1992.
15. F. H. Raven. Automatic Control Engineering. McGraw-Hill, second edition, 1968.
16. S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical Computer Science,

138, 1995.
17. M. Shaw. Beyond objects. ACM Software Engineering Notes, 20(1), January 1995.
18. A. Simpson, J. Davies, and J. Woodcock. Security management via Z and CSP. In J. Grundy,

M. Schwenke, and T. Vickers, editors, IRW/FMP'98. Springer-Verlag, 1998.
19. G. Smith. A semantic integration of Object-Z and CSP for the specification of concurrent

systems. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Proceedings of FME'97: Industrial
Benefit of Formal Methods, Graz, Austria, September 1997. Springer-Verlag.

20. J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics, Cam-
bridge University Press, 1988.

21. C. Suhl. RT-Z: An integration of Z and timed CSP. In Araki et al. [1].
22. K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z Specification. In

M. Hinchey and S. Liu, editors, the IEEE International Conference on Formal Engineering
Methods (ICFEM'97), pages 283–292, Hiroshima, Japan, November 1997. IEEE Press.

23. P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Trans. Soft-
ware Engineering and Methodology, 6(1):1–30, January 1997.

24. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information Processing
Letters, 40:269–276, 1991.

1185Sensors and Actuators in TCOZ

