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 FOREWORD 
 
The lack of a technical reference work on computer security has for years been a serious 
impediment to the growth of the field. Removing this obstacle required an author thoroughly 
conversant with the technology, skilled in writing, and fully dedicated to completion of a most 
difficult undertaking. Mr. Gasser has accepted this formidable challenge and has succeeded 
beyond what even we optimists would expect. Although I recognized that Mr. Gasser was 
unquestionably qualified, I was frankly skeptical about whether or not it was possible to produce 
a practical, understandable, and thoroughly accurate first book on the subject. As I started to read 
the book for the first time I found myself engrossed into the wee hours of the morning, and came 
away impressed that this singular effort had at long last given the field a definitive reference 
work for technical solutions to computer security problems. 

The field of computer security did not begin to emerge until the late 1960s, with the growing 
recognition by several groups in the government and private sector that computers were highly 
vulnerable. The landmark report by Willis Ware of RAND in 1969 alerted those within the 
Department of Defense to many of the technical weaknesses of computer security. The publicity 
associated with IBM’s commitment of forty million dollars to address computer security in the 
early 1970s brought the problem to the public’s attention as well. Unfortunately, many of those 
building computer systems took the position that internal computer controls (those that are 
embodied in software within the operating system) could effectively limit the access of users to 
authorized information only. For a number of years many were lulled into the belief that 
computer security was a  “people problem” that could be addressed by encouraging people to 
follow the “rules of the road”. A few organizations, especially in the military, formed “tiger 
teams” to simulate adversaries trying to obtain unauthorized access to information. 

These tiger teams consistently found that circumventing the internal computer control was an 
easy way to compromise security. Even when the system builder made a major and concerted 
effort the find and patch all the holes, the technical controls were usually penetrated with ease. In 
recent years the media coverage of the exploits of “hackers” have increased general awareness of 
such computer vulnerabilities. However, awareness that a problem existed did little to help the 
designers and builders of systems understand the underlying issues needing to be addressed in 
order to respond to the problem. This book brings together the problems and technical solutions 
in a balanced perspective that pinpoints constructive responses to some of the most significant 
aspects of the problem of computer security. 

Any computer system can only be secure with respect to some specific policy that defines 
what information people are authorized to read or modify. This book presents the two major 
classes of policies—discretionary and mandatory—and shows how the information contained in 
rules and regulations can be fine-tuned for use in building a specific computer system to meet a 
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desired policy. This is the first design step. Fortunately it is now understood that policy can be 
mathematically modeled abstractly, so that a wide range of end-user policies are represented by a 
single model. This means that a single system design can be used effectively for private and 
commercial as well as civil and military uses. 

The nub of the problem of secure computers is how to determine if a computer is in fact 
secure. In fact, in practical terms, one of the most serious and difficult impediments to 
widespread introduction of highly secure systems is the limited number of evaluators who can 
accurately and consistently judge the security of a computer. The key to this problem lies in 
specifying a chain of objective evidence that bridges the gap from policy to implemented system. 
Although the steps identified in this book fully support the Trusted Computer System Evaluation 
Criteria produced by the National Computer Security Center, the technical elements of an 
objective evaluation are not tied to any particular organization or class of users. Reproducible 
design steps that are carefully documented make it possible for a third party to objectively judge 
the efficacy of the builder’s use of the technology. Understanding and using these steps make it 
possible not only to build a secure computer, but also to have an evaluator confirm that you have 
succeeded. 

There can be little doubt that it is unusually difficult to build and understand a highly secure 
computer system. One of the most delightful aspects of this book is its readable style that 
presents difficult and subtle topics clearly, without excessive jargon or superficiality, while 
achieving the needed breadth of coverage. This book distinguishes the technical aspects of 
computer security, and identifies the significance of the vulnerabilities being addressed. If I had 
but one book that I could recommend to the computer professional on computer security, 
Building a Secure Computer System would be my unqualified choice. 

 
Dr. Roger Schell 

Vice President for Engineering 
Gemini Computers, Inc. 

Carmel, California 
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 PREFACE 
 
This book is for the practicing computer professional who wants to understand—and perhaps 
implement—technical solutions to computer security problems. It covers the state of the art of 
applied computer security technology developed over the last fifteen or twenty years. It is a 
guide to building systems, not an exhaustive academic study, and provides enough information 
about selected techniques to give you a well-rounded understanding of the problems and 
solutions. 

It is not possible in one book to treat all applications of security while retaining the technical 
depth needed to cover each topic adequately. I have concentrated on applications for which 
prevailing literature is weak: operating systems, hardware architecture, networks, and practical 
verification. Subjects about which books are already available, such as database security and 
cryptographic algorithms, receive less discussion here. 

In selecting techniques for discussion, I have given primary attention to demonstrable 
practicality. Many interesting techniques have been implemented in experimental systems but 
have never seen production use. Some sophisticated features appear in research systems that are 
used daily at universities, proving that the concepts are viable, but for various reasons (not the 
fault of the researchers) the systems remain one-of-a-kind. 

Important technological advances in computer security are only now beginning to see the 
light of day, as interest in security grows among computer system vendors and users. Experience 
with many sophisticated techniques is in its infancy, and examples are few and far between. 
Therefore, despite my attempt to stick to practical techniques, I have included some advanced 
concepts that are not quite ready for production use but follow logically from today’s technology 
and show reasonable promise. 

The technology of computer security is controversial. While everyone agrees that we have a 
serious computer security problem, few agree on the best response. Many would address the 
problem through better control of personnel, better administrative procedures, and more suitable 
laws; others believe that technical solutions are most appropriate. While this book concentrates 
solely on the technical approach, the ultimate answer will surely be a combination of many 
approaches. 

Even among those who agree that technology is the answer, there is some disagreement on 
the value of different techniques. While I wish to be fair to all points of view, I emphasize 
approaches in this book that I believe work, and I make only token mention of others. This 
manner of selection is not meant to discredit alternatives: there simple is not room to go into 
adequate detail about all reasonable approaches. In addition, some good techniques may have 
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been omitted because I am not aware of them; I apologize to any researchers and developers 
whose work may be shortchanged. 

Please note: this book does not teach you how to break into systems. If you are looking for a 
“hacker’s guide,” this is the wrong place. 

Part I of this book provides an overview of elementary concepts and serves as an introduction 
to the chapters in parts II and III that will enable you to read only the chapters of interest, without 
getting lost. 

I would like to express my sincere appreciation to those who have taken the time out of their 
busy schedules to review and comment on drafts of this book: Martha Branstad, Paul Karger, 
Richard Kemmerer, Steven Lipner, Jonathan Millen, John Parodi, Marvin Schaefer, Roger 
Schell, Joe Tardo, and John Woodward. I am especially grateful to my most critical reviewer: my 
wife, Kate, without whom this book would never have left the word processor. 
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 Chapter 1 

What is Computer
 Security? 

The meaning of the term computer security has evolved in recent years. Before the problem of 
data security became widely publicized in the media, most people’s idea of computer security 
focused on the physical machine. Traditionally, computer facilities have been physically 
protected for three reasons: 

• To prevent theft of or damage to the hardware 
• To prevent theft of or damage to the information 
• To prevent disruption of service 

Strict procedures for access to the machine room are used by most organizations, and these 
procedures are often an organization’s only obvious computer security measures. Today, 
however, with pervasive remote terminal access, communications, and networking, physical 
measures rarely provide meaningful protection for either the information or the service; only the 
hardware is secure. Nonetheless, most computer facilities continue to protect their physical 
machine far better than they do their data, even when the value of the data is several times 
greater than the value of the hardware. 

You probably are not reading this book to learn how to padlock your PC. Information 
security is the subject of this book. Furthermore, we are limiting our study to the insider 
problem: the security violations perpetrated (perhaps inadvertently) by legitimate users whom 
padlocks and passwords cannot deter. Most computer crimes are in fact committed by insiders, 
and most of the research in computer security since 1970 has been directed at the insider 
problem. 
 
1.1 SECRECY, INTEGRITY, AND DENIAL OF SERVICE 
 
Throughout this book, the discussion of computer security emphasizes the problem of protecting 
information from unauthorized disclosure, or information secrecy. You may find it disconcerting, 
as you read this book, that information integrity-protecting information from unauthorized 
modification or destruction-seems to be receiving no sustained attention. 

There are two reasons for this seemingly one-sided point of view, one historic and one 
technical. First, having been funded primarily by the United States government, most computer 
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security endeavors have concentrated on maintaining the secrecy of classified information. This 
tradition has persisted even in commercial applications, where classified information is not the 
concern and where integrity, not secrecy, is often the primary goal. And second, the information 
disclosure problem is technically more interesting to computer security researchers, and the 
literature reflects this bias. 

Fortunately, techniques to protect against information modification are almost always the 
same as (or a subset of) techniques to protect against information disclosure. This fact is 
consistently borne out in the technical measures we will discuss. In the rare cases where the 
techniques differ, that fact will be pointed out explicitly. 

While the definition of computer security used in this book does, therefore, include both 
secrecy and integrity, the closely related area termed denial of service is rarely discussed here. 
Denial of service can be defined as a temporary reduction in system performance, a system crash 
requiring manual restart, or a major crash with permanent loss of data. Although reliable 
operation of the computer is a serious concern in most cases, denial of service has not 
traditionally been a topic of computer security research. As in the case of data integrity, one 
reason for the lack of concern is historic: secrecy has been the primary goal of government-
funded security programs. But there is also an important technical reason. While great strides 
have been made since the early 1970s toward ensuring secrecy and integrity, little progress has 
been made in solving denial of service because the problem is fundamentally much harder: 
preventing denial of service requires ensuring the complete functional correctness of a system—
something unlikely to be done in the foreseeable future. 

If denial of service is your only concern, you should refer to such topics as structured 
development, fault tolerance, and software reliability. Most of the techniques for building secure 
systems, however, also help you build more robust and reliable systems. In addition, some 
security techniques do address certain denial-of-service problems, especially problems related to 
data integrity. This book will indicate when those techniques apply. 

To sum up, security relates to secrecy first, integrity second, and denial of service a distant 
third. To help you remember this, memorize the computer security researcher’s favorite (tongue-
in-cheek) phrase: “I don’t care if it works, as long as it is secure.” 

1.2 TRUSTED SYSTEM EVALUATION CRITERIA 
 
The U.S. Department of Defense has developed its own definition of computer security, 
documented in Trusted Computer System Evaluation Criteria (Department of Defense 1985), 
also called “the Orange Book” after the color of its cover /and hereafter shortened to “the 
Criteria”). The document employs the concept of a trusted computing base, a combination of 
computer hardware and an operating system that supports untrusted applications and users. The 
seven levels of trust identified by the Criteria range from systems that have minimal protection 
features to those that provide the highest level of security modern technology can produce (table 
1-1). The Criteria attempts to define objective guidelines on which to base evaluations of both 
commercial systems and those developed for military applications. The National Computer 
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Security Center, the official evaluator for the Defense Department, maintains an Evaluated 
Products List of commercial systems that it has rated according to the Criteria. 

The Criteria is a technical document that defines many computer security concepts and 
provides guidelines for their implementation. It focuses primarily on general-purpose operating 
systems. To assist in the evaluation of networks, the National Computer Security Center has 
published the Trusted Network Interpretation (National Computer Security Center 1987), that 
interprets the Criteria from the point of view of network security. The Trusted Network 
Interpretation identifies security features not mentioned in the Criteria that apply to networks 
and individual components within networks, and shows how they fit into the Criteria ratings. 

Class Title Key Features 

A1 Verified Design Formal top-level specification and 
verification, formal covert channel 
analysis, informal code correspondence 
demonstration 

B3 Security Domains Reference monitor (security kernel), 
“highly resistant to penetration” 

B2 Structured 
Protection 

Formal model, covert channels 
constrained, security-oriented architecture, 
“relatively resistant to penetration” 

B1 Labeled Security 
Protection 

Mandatory access controls, security 
labeling, removal of security-related flaws 

C2 Controlled 
Access 

Individual accountability, extensive 
auditing, add-on packages 

C1 Discretionary Discretionary access controls, protection 
against accidents among cooperating 
users 

D Minimal 
Protection 

Unrated 

 
Table 1-1. Trusted System Evaluation Criteria Ratings. In order for a system to be 
assigned a rating, it must meet all the technical requirements for its class in the four 
areas of security policy, accountability, assurance, and documentation. The 
requirements are cumulative, moving from class D to class A1. 
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You can be sure that a system rated high according to the Criteria (that is, at class Al or B3) 

has been subject to intense scrutiny, because such systems are intended to protect classified 
military information. In order to attain such a high rating, a system has to be designed with 
security as its most important goal. While systems rarely qualify for any rating without some 
changes, most commercial operating systems can achieve a C1 or C2 level with a few 
enhancements or add-on packages. The Evaluated Products List is short because the Criteria is 
relatively new and evaluations take a long time. Also, many vendors have not yet shown an 
interest in submitting their products for evaluation. 

While most of the technical concepts in the Criteria are covered in this book, we will pay 
little attention to its rating scale. If your interest is in developing a system for United States 
government use, the scale is important; for other applications, you will be more interested in 
specific features than in the ratings. 

 
REFERENCES 
 
Department of Defense. 1985a. DoD Trusted Computer System Evaluation Criteria. DOD 

5200.28-STD. Washington, D.C.: Department of Defense. (U.S. Government Printing Office 
number 008-000-00461-7.) 
The DoD criteria for evaluating and rating operating systems according to a scale based on 
security features and assurance. This document discusses many of the computer security 
concepts covered in this book. 

National Computer Security Center. 1987. Trusted Network Interpretation. NCSC-TG-005. Ft. 
George G. Meade, Md.: National Computer Security Center. 
An interpretation of the Trusted Computer System Evaluation Criteria for networks and 
network components. 
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 Chapter 2 

Why Systems Are
 Not Secure 
 

Despite significant advances in the state of the art of computer security in recent years, 
information in computers is more vulnerable than ever. Each major technological advance in 
computing raises new security threats that require new security solutions, and technology moves 
faster than the rate at which such solutions can be developed. We would be fighting a losing 
battle, except that security need not be an isolated effort: there is no reason why a new 
technology cannot be accompanied by an integrated security strategy, where the effort to protect 
against new threats only requires filling in a logical piece of a well-defined architecture. 

We probably cannot change the way the world works, but understanding why it works the 
way it does can help us avoid the typical pitfalls and choose acceptable security solutions. This 
chapter explores some of the classic reasons why the implementation of security lags behind its 
theory. 

2.1 SECURITY IS FUNDAMENTALLY DIFFICULT 
 
Why are computer systems so bad at protecting information? After all, if it is possible to build a 
system containing millions of lines of software (as evidenced by today’s large operating 
systems), why is it so hard to make that software operate securely? The task of keeping one user 
from getting to another user’s files seems simple enough—especially when the system is already 
able to keep track of each user and each file. 

In fact, it is far easier to build a secure system than to build a correct system. But how many 
large operating systems are correct and bug-free? For all large systems, vendors must 
periodically issue new releases, each containing thousands of lines of revised code, much of 
which are bug fixes. No major operating system has ever worked perfectly, and no vendor of an 
operating system has dared offer a warranty against malfunctions. The industry seems resigned 
to the fact that systems will always have bugs. Yet most systems are reasonably dependable, and 
most of them adequately (but not perfectly) do the job for which they were designed.  
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What is adequate for most functions, however, is not sufficient for security. If you find an 
isolated bug in one function of an operating system, you can usually circumvent it, and the bug 
will have little effect on the other functions of the system: few bugs are fatal. But a single 
security “hole” can render all of the system’s security controls worthless, especially if the bug is 
discovered by a determined penetrator. You might be able to live in a house with a few holes in 
the walls, but you will not be able to keep burglars out. 

As a result, securing a system has traditionally been a battle of wits: the penetrator tries to 
find holes, and the designer tries to close them. The designer can never be confident of having 
found all the holes, and the penetrator need not reveal any discoveries. Anyone entrusting 
sensitive. information to a large operating system or to a computer on a network has reason to be 
concerned about the privacy of that information. If the information is valuable enough to a 
penetrator to warrant the effort, there is little reason to assume that the penetrator will not 
succeed. 

But of course there is hope: with appropriate techniques, a system can be built that provides 
reasonably high assurance of the effectiveness of its security controls—a level of assurance 
much higher than that of the system’s overall correctness. The important factor is not the 
likelihood of a flaw (which is high), but the likelihood that a penetrator will find one (which we 
hope is very low). While we never can know whether a system is perfectly secure, we can build a 
system in a way that will make the penetrator’s job so difficult, risky, and costly that the value to 
the penetrator of successful penetration will not be worth the effort. 

The key to achieving an acceptable degree of security is the systematic use of proper 
techniques. Ad hoc security measures provide, at best, insignificantly increased protection that 
rarely justifies their expense. At worst, they provide a false sense of security that renders the 
users more susceptible than ever to the real threats. 

2.2 SECURITY IS AN AFTERTHOUGHT 
 
Despite the publicity about computer security in the press, computer and software vendors have 
rarely taken the trouble to incorporate meaningful security measures into their systems. Security, 
if considered at all, usually comes at the bottom of a list that looks something like this: 

Functions: What does it do? 
Price: What does it cost? 
Performance: How fast does it run? 
Compatibility: Does it work with earlier products? 
Reliability: Will it perform its intended function? 
Human Interface: How easy is it to use? 
Availability: How often will it break? 

• 
• 
• 

Security Functions: What protection features does it provide? 
Security Assurance: How foolproof are the protection features? 
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Based on past and current practice, you might say that this entire book is about two of the least 
important factors in the design of computer systems. 

It is unfair to fault vendors entirely for this lack of attention to security. While customers 
may want improved security, they usually have second thoughts when security features adversely 
affect other, “more important” features. Since few customers are willing to pay extra for security, 
vendors have had little incentive to invest in extensive security enhancements. 

A few vendors have taken steps to help the few security-conscious customers who are willing 
to invest in additional protection. These customers include not only the government but some 
banks, manufacturers, and universities. Several add-on security packages for major operating 
systems have been on the market for some time. The most notable of these are CGA Software 
Products Group’s TOP SECRET, Uccel Corporation’s ACF2, and IBM’s RACF, all for IBM’s MVS 
operating system. Stronger mandatory controls (a subject of chapter 6) designed to be integrated 
into the operating system appear in SES/VMS, an enhancement to VMS offered by Digital 
Equipment (Blotcky, Lynch, and Lipner 1986), and are under development in the Sperry (now 
Unisys) 1100 operating system (Ashland 1985). These packages and enhancements are 
commercially viable despite their significant purchase and administrative costs. Several vendors 
have made a considerable investment in internal security enhancements to their operating 
systems without cost add-ons. These systems include DEC’s VMS and Honeywell’s Multics 
(Organick 1972; Whitmore et al. 1973). Control Data has also incorporated security 
enhancements into its NOS operating system. Honeywell was the first to offer commercially a 
highly secure minicomputer, the SCOMP (Fraim 1983), based on a security kernel, (a subject of 
chapter 10). Gemini Computers offers the GEMSOS operating system, also based on a security 
kernel (Schell, Tao, and Heckman 1985). 

These and several other examples show that there has always been a certain demand for 
security features in the user community. But the examples also show that demand is fairly weak 
and can easily evaporate if the features should have an adverse impact on cost or any other 
functions. 

2.3 SECURITY IS AN IMPEDIMENT 
 
A common perception among users is that security is a nuisance. Security measures are supposed 
to thwart someone who tries to break the rules; but because of poorly integrated ad hoc solutions, 
security measures often interfere with an honest user’s normal job. 

Vendors often implement security enhancements in response to specific customer demands. 
Such enhancements, made to existing systems at minimal cost, often result in reduced 
convenience or poor performance. Vendors commonly adopt the attitude that a customer who 
wants security badly enough should be willing to live with the inconvenience. 

Many customers take it upon themselves to fix security problems at their own sites. Because 
of inherent limitations in the system, fixing security problems often requires restrictive 
procedural controls: limited access from remote terminals; restricted physical access to local 
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terminals. and printers; multiple passwords or logins; frequent password changes; automatic 
disconnect after periods of inactivity; and call-back devices. Many of these controls do not 
substantially increase the security of the system, but they do foster the notion that security is 
painful. Because users and managers do not see a way around the inconveniences, security is 
often employed only as a last resort, when a problem has already occurred or a clear threat exists. 

2.4 FALSE SOLUTIONS IMPEDE PROGRESS 
 
The computer industry, like other industries, is subject to fads. Fads in the computer security area 
can have a serious negative effect on the overall progress toward achieving good security, 
because progress stops when people think they have the answer. Since few people have a good 
understanding of security, security fixes are particularly subject to snake-oil salesmanship. 

One misconception (fortunately short-lived) involved data encryption; that is, encoding 
information using a password or secret key so that it cannot be deciphered by unauthorized 
individuals. Data encryption is indispensable for communications and is useful for protecting the 
media used to store files, but it does not address the general computer security problem. Few of 
the penetration techniques used by various “tiger teams” charged with finding security holes in 
systems would be thwarted by encryption. The primary problem with file encryption is that it 
does nothing to increase the level of trust in the operating system; and if you do not trust your 
operating system to protect your files, you cannot trust it to encrypt your files at all the right 
times or to protect the encryption keys properly. Nonetheless, simplistic statements are still 
occasionally encountered that claim that securing an operating system is unnecessary if all the 
files are encrypted. Section 13.2 discusses the legitimate role of encryption in communications 
and the relationship of encryption to computer security. 

A popular security device is the call-back modem. The idea is that you telephone a computer 
from your home or office terminal and identify yourself (via a password) to the modem on the 
remote computer through your terminal. The computer’s modem verifies that the password is 
correct and tells you to hang up. The modem then looks up your home telephone number in a list, 
and calls you back. Nobody can dial into the system and masquerade as you, even if that person 
knows your password, unless that person also uses your phone. Call-back devices are attractive 
because they do not require any modification to the system being protected—a classic example 
of add-on security. The danger in these devices is the risk of being lulled into complacency 
because you feel that only “good guys” can get to your system. You may decide that it is never 
necessary to change passwords or to enforce any control over the types of passwords people use. 
You may become lax about access control within your system, allowing too many of your users 
access to too much information. You may forget that half of your security problem is a matter of 
keeping your users isolated from each other—not keeping outsiders out. 

The worst problem with call-back modems, however, is that they may cause you to forget 
that there are other ways people can get into your system. Does your system have a connection to 
a commercial network from which users can log in? Can you trust all other systems with which 
your system communicates? If one of your users accesses your system via a modem on a 
personal computer, how do you ensure that the personal computer has not been penetrated by an 
outsider via that modem? Considering the problems that call-back modems cannot solve and 
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weighing the cost of these devices against simple measures such as better password control, it is 
hard to see their value.1 

An example involving the use of passwords shows how a security feature intended for one 
application can be applied inappropriately to another. Because passwords are so good at 
controlling a user's access to the system, they are often used for other types of access control 
access to certain applications in a system, access to certain files, or freedom to carry out certain 
operations. Password schemes are attractive because they are so easy to implement and to add 
onto existing systems. 

But passwords are inappropriate for many of these applications, especially when a single 
password is issued to several people (for access to a common file, for example. When one person 
in the group leaves the company, the password must be changed and the new password manually 
distributed. If a break-in by an insider occurs, it is impossible to tell who is at fault. And the 
greater the number of people who know the password, the greater the chance that it will be 
revealed accidentally. 

Another misuse of passwords involves the requirement on some systems that the user at a 
terminal reenter the password periodically—supposedly to ensure that the intended user and not 
an intruder is at the terminal. This feature is dangerous for two reasons. First, repeated entry of 
the password greatly increases the risk that someone will be looking over the user’s shoulder 
when the password is entered. Second, the prompt for a password, appearing at unexpected times 
during a session, is highly susceptible to spoofing by a Trojan horse (see chapter 7). Section 
6.2.1 lists additional ways in which passwords may be misused. 

The false sense of security created by inappropriate use of passwords weakens the impetus to 
seek better controls. The danger of using such ad hoc solutions to address isolated problems is 
that one can lose sight of the fundamental problems. 

2.5 THE PROBLEM IS PEOPLE, NOT COMPUTERS 
 
Many organizations believe that computer security technology is irrelevant to real-world 
problems because nearly all recorded cases of computer abuse and fraud are non-technical. 
Computer crime usually involves exploitation of weaknesses in procedural or personnel controls, 
not weaknesses in internal controls. Hence, as long as relatively easy, non-technical ways exist to 
commit a crime, technical controls will be viewed as superfluous. 

But these organizations often fail to recognize that the computer can protect against flawed 
procedural controls. As we shall discuss in section 3.1, technical controls can often be used to 
ease the burden of procedural controls. It is distressing, for example, to hear claims that attacks 
by former employees represent personnel problems that the computer cannot solve, when the 
system can easily be instrumented to defend itself against this threat. 

                                                 
1The idiosyncrasies of the telephone system provide a number of additional ways to defeat most call-back devices, 
but that is another story. 
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Consider, too, what will happen when procedural controls are strengthened to the point that 
technical penetration becomes the path of least resistance. Since many years are needed to make 
major security improvements to existing systems, a sudden explosion of technical crimes will be 
very difficult to counter. 

Probably because the computer industry is still in its infancy, sufficient knowledge of 
computers to exploit technical flaws seems to be rare among the dishonest. (On the other hand, 
perhaps they are so clever that they are not detected.) But as knowledge of computers becomes 
more common, we cannot assume that only a few honest citizens will possess the requisite skills 
to commit a major crime. Given the low risk of getting caught and the potentially high payoff, 
sophisticated computer crime is likely to become more attractive in the future, especially if the 
non-technical avenues to crime are sufficiently restricted. 

One of the primary arguments that computers cannot prevent most cases of abuse is based on 
the observation that computer crimes committed by insiders usually do not involve a violation of 
internal security controls: the perpetrator simply misuses information to which he or she 
normally has access during, the course of normal work responsibilities. Something akin to 
artificial intelligence would be required to detect such abuse automatically. But on closer 
inspection, we often find that people routinely gain access to more information than they need, 
either because the system’s security controls do not provide adequately fine-grained protection or 
because implementing such protection within the architectural constraints of the system is too 
inconvenient or costly. The problem appears to be solely one of people, but it is exacerbated by a 
technical deficiency of the system. The technical solutions are not apparent because an 
organization’s way of doing business is often influenced by the design (and limitations) of its 
computer system. 

2.6 TECHNOLOGY IS OVERSOLD 
 
There has long been the perception that true computer security can never be achieved in practice, 
so any effort is doomed to failure. This perception is due, in large part, to the bad press that a 
number of prominent government-funded secure computer development programs have received. 
The reasons for the supposed failure of these developments are varied: 

• Programs originally intended for research have been wrongly criticized for not fulfilling 
needs of production systems. 

• Vying for scarce funding, researchers and developers often promise more than they can 
deliver. 

• Funding for the programs has been unpredictable, and requirements may change as the 
programs are shuffled among agencies. Often the requirements ultimately expressed are 
inconsistent with the original goals of the program, leading to unfortunate design 
compromises. 

• Developments are often targeted to a specific model of computer or operating system, 
and inconsistent levels of funding have stretched out programs to the point where the 
original target system is technologically obsolete by the time the program is ready for 
implementation. 
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• The public does not realize that the first version of an operating system always performs 
poorly, requiring significant additional design and tuning before becoming acceptable. 
Vendors do not release such preliminary systems, postponing their “Version 1.0” 
announcement until the performance problems have been addressed. Government 
programs are highly visible, and any problems (even in early versions) tend to be viewed 
by critics as inherent characteristics. Worse, contracts are often written in such a way that 
the first version is the final product, and additional money is rarely available for 
performance tuning. 

• Several large government procurements have specified the use of security technology that 
was thought to be practical at the time but was in fact based on research still in the 
laboratory. When the research failed to progress fast enough to satisfy the needs of the 
program, security requirements were waived and the program lost its credibility. Industry 
has understood for a long time that developing a new operating system involves far more 
than a one-time expense to build it; rather, a high level of continuous support is required 
over the life of the system. The federal government seems to have realized this, as well. 
Not able to commit to open-ended support, the government has largely ceased direct 
funding for secure operating system development, concentrating instead on specific 
applications and various seed efforts. A few commercial vendors are now undertaking to 
fill the void. 
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 Chapter 3 

General Concepts 

This chapter introduces, at an elementary level, some general concepts of computer security that 
apply to all applications; it also introduces terms that will be used repeatedly in later chapters. 
Many of the topics discussed here will be covered later in more detail. 

3.1 INTERNAL AND EXTERNAL SECURITY 

Most of this book addresses internal security controls that are implemented within the hardware 
and software of the system. For these internal controls to be effective, however, they must be 
accompanied by adequate external security controls that govern physical access to the system. 

External controls cover all activities for maintaining security of the system that the system 
itself cannot address. External controls can be divided into three classes: 

• Physical security 
• Personnel security 
• Procedural security 

 
Physical security controls (locked rooms, guards, and the like) are an integral part of the 

security solution for a central computing facility, but they alone cannot address the security 
problems of multiuser distributed systems. As networking becomes a more and more pervasive 
part of computing, the role of physical security will continue to diminish. In a large 
heterogeneous network, it is probably impossible to guarantee (and risky to assume) that any 
system other than your own is physically protected. 

Personnel security covers techniques that an employer uses in deciding whom to trust with 
the organization’s system and with its information. Most governments have procedures whereby 
a level of security clearance is assigned to individuals based on a personal background 
investigation and (possibly) additional measures such as polygraph examinations. These 
procedures allow the government to assign different degrees of trust to different people, 
depending on the needs of their particular job and the depth of their investigation. Personnel 
screening in industry is far less formal than in government, and people are usually given “all or 
none” access. Where selective access to information is required, it is determined on a case-by-
case basis. 
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Procedural security covers the processes of granting people access to machines, handling 
physical input and output (such as printouts and tapes), installing system software, attaching user 
terminals, and performing countless other details of daily system administration. 

Internal and external controls go hand in hand, and it is possible to trade off a control in one 
area for a control in the other. For example, even the most primitive multiuser systems today 
have password protection. The password mechanism is an internal control that obviates the need 
for external controls such as locked terminal rooms. In designing a secure system, we generally 
strive to minimize the need for external controls, because external controls are usually far more 
expensive to implement. Procedural controls are also notoriously error-prone, since they rely on 
people each time they are invoked. 

3.2 THE SYSTEM BOUNDARY AND THE SECURITY PERIMETER 

A system is a vague entity that comprises the totality of the computing and communications 
environment over which the developers have some control. Everything inside the system is 
protected by the system, and everything outside it is unprotected (fig. 3-1). What is important is 
not the generic definition of the term system but the definition as it applies in each particular 
case. In any effort to plan for security features, it is crucial to establish a clear understanding of 
the system boundary and to define the threats (originating outside the boundary) against which 
the system must defend itself. You cannot construct a coherent security environment without 
understanding the threats. 

Identifying the system boundary hinges on precisely specifying the interface between the 
system and the outside world. External security controls enforce this interface; and as long as 
those controls are in place, the internal controls protect information within the system against the 
specified threats. All bets are off, however, if something that should not be there bypasses the 
external controls and enters the system or if the system is threatened from the outside in an 
unanticipated way. 

For example, a user might walk into the machine room and enter commands on the system 
console, or the system administrator might divulge a password to an outsider. These are failures 
of external controls that the system cannot defend against. It may, however, be able to defeat 
attempted incursions by unauthorized terminals, modems, or users who access the system 
remotely, as long as they are constrained to enter the system according to the rules of the system 
interface. 

The components inside the system are of two types: those responsible for maintaining the 
security of the system (those, in other words, that are security-relevant), and all others. The 
security-relevant components implement the internal controls. Separating the two types of 
components is an imaginary boundary called the security perimeter. The operating system and 
computer hardware usually lie within the security perimeter; outside the perimeter are user 
programs, data, terminals, modems, printers, and the items that the system controls and protects. 
The nature of all components within the security perimeter must be precisely defined, because a 
malfunction in any one can lead to a security violation; in contrast, the nature of the components 
outside the perimeter is rather arbitrary, subject only to constraints enforced at the time they 
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enter through the system boundary. A malfunction within the security perimeter has the effect of 
expanding the security perimeter to the system boundary, causing components previously outside 
the perimeter to become security-relevant. 

 

 
Figure 3-1. System Boundary and Security Perimeter. The entities collected inside 
the system are protected by the security-relevant portions within the security perimeter, 
as long as rules about access to the system from the outside are enforced by means of 
external security controls. Rules for access to the security perimeter interface are 
enforced by the internal controls implemented in the security perimeter. 

Just as a precise interface must be identified across the system boundary, a well-defined 
interface across the security perimeter is crucial, as well. This interface is enforced by the 
security-relevant components. For example, the list of system calls in an operating system or the 
electrical specifications of a communications line are interfaces into the security perimeter. As 
long as the system boundary is enforced externally, the security perimeter will be maintained by 
the security-relevant components. In order to implement the components within the security 
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perimeter, great care must go into defining a complete, consistent, and enforceable set of 
perimeter interface rules. 

3.3 USERS AND TRUST 

The user is the person whose information the system protects and whose access to information 
the system controls. A person who does not use the system, but who indirectly accesses the 
system through another user, is not a user as far as the system is concerned. For example, if your 
secretary is responsible for reading your electronic mail on your behalf, as well as the mail of 
others in your department, your secretary is the user and, as far as the system is concerned, this 
same user has access to all the mail in the department. You must trust your secretary, in addition 
to the system, to keep your mail separate from that of others. 

3.3.1 Protecting the User from Self-betrayal 

The system must assume that the user who owns a given piece of data or who has created that 
piece of data, is trusted not to disclose it willfully to another user who should not see it, nor to 
modify it in an inappropriate way. Of course, the user might be tricked into mishandling his data, 
but that’s a different threat. 

Though it may seem obvious, people often lose sight of the fact that computers cannot 
possibly protect information if the owner of the information wants to give it away.1 It is in fact 
possible to design a system that does not allow users to give others access to their data, 
intentionally or otherwise; but such a design would be silly, because a person determined to 
disclose information doesn’t need a computer to do so. The ability to read a file is tantamount to 
the ability to give that file to someone else. 

While it does not make sense to go to great lengths to prevent a user from giving away 
information, it does make sense to ensure that the user knows when he or she is doing so. The 
access controls on the system must have a well-engineered user interface to minimize accidental 
disclosures. 

3.3.2 Identification and Authentication 

In order for a system to make meaningful decisions about whether a user should be allowed to 
access a file, the system (and other users must have a means of identifying each user. A unique 
identifier is a name for each user such as a last name, initials, or account number) that everyone 
knows, that nobody can forge or change, and that all access requests can be checked against. The 
identifier must be unique because that is the only way the system can tell users apart. The 
identifier must be unforgeable so that one user cannot impersonate another. 

                                                 
1Various “copy protection” schemes attempt to prevent the user from copying a file (usually on a medium such as a 
floppy disk) in order to protect copyrighted software, but these schemes address an entirely different threat from the 
data protection threats that this book is about. (They also don’t work very well.) 
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The act of associating a user (or more accurately, a program running on behalf of a user) with 
a unique identifier is called authentication. The authentication process almost always requires 
the user to enter a password, but some more advanced techniques, such as fingerprint readers, 
may soon be available. The process of identification (associating a user ID with a program) is 
easy to confuse with authentication (associating the real user with the user ID), but it is important 
to maintain the distinction. The system must separate authentication information (passwords) 
from identification information (unique IDs) to the maximum extent possible, because passwords 
are secret and user IDs are public. The password need only be presented when the user first 
accesses the system. Once the unique ID is determined, the system need not refer to the password 
again. The unique ID, on the other hand, is used many times to make access decisions. Since the 
entire security of the system may be based on the secrecy of the passwords, the fewer times and 
fewer places they are used, the less the risk of exposure will be. 

Authentication and identification are general concerns that pertain to systems and programs 
as well as to users. Users may need to know which system or which programs on the system they 
are interacting with and they need to obtain this information in a way that cannot be forged by 
the system or the programs. Moreover, systems on a network may need to authenticate each 
other, as if each were a user of the other. In many cases, the ability of a program to impersonate 
another program—or of a system to impersonate another system—is a serious security concern. 
The authentication techniques for systems and programs are quite different from those for users. 
In particular, passwords make very poor authenticators for systems and programs because each 
use of a password results in disclosure to the recipient and (therefore) the potential for abuse. 
Section 10.4 describes ways that systems and programs identify themselves to users. Section 
13.2.2 discusses system-to-system authentication within a network. 

3.4 TRUSTED SYSTEMS 

Although users must be trusted to protect data to which they have access, the same is not true for 
the computer programs that they run. Everybody knows that computer programs are not 
completely trustworthy. And no matter how much we trust certain users, we cannot let the 
programs they use have total freedom with the data. The best programmers would agree that 
even their own programs can make mistakes. It would be nice (but it is usually impractical) to 
give programs limited access rights on a case-by-case basis, depending on what the programs 
need. 

We can group software into three broad categories of trust: 

1. Trusted – The software is responsible for enforcing security, and consequently the 
security of the system depends on its flawless operation. 

2. Benign – The software is not responsible for enforcing security but uses special privileges 
or has access to sensitive information, so it must be trusted not to violate the rules 
intentionally. Flaws in benign software are presumed to be accidental, and such flaws are 
not likely to affect the security of the system. 

3. Malicious – The software is of unknown origin. From a security standpoint, it must be 
treated as malicious and likely to attempt actively to subvert the system. 
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The quality of software that falls into each of these groups varies greatly from system to system. 
Most software we use daily is benign, whether the software was written by a good programmer 
or by an incompetent programmer, and whether that software is a system program or an 
application. The software is not trusted because it is not responsible for enforcing security of the 
system, and it is not malicious because the programmer did not intend to deceive the user. Some 
systems trust software that has received minimal scrutiny, while others consider anything not 
written by a trusted system programmer to be malicious. Hence, one system’s trusted software 
may be as unreliable as another system’s malicious software. 

Within a system, a fine line separates a malicious program from a benign program with many 
bugs: there is no guarantee that a buggy benign program will not give away or destroy data, 
unintentionally having the same effect as a malicious program. Lacking an objective way to 
measure the difference, we often (but not always) consider both benign and malicious software 
to be in a single category that we call untrusted. This interpretation is especially common in 
environments where extremely sensitive information is handled, and it constitutes a fundamental 
tenet of the security kernel approach to building a secure system. 

In most cases, the operating system is trusted and the user programs and applications are not; 
therefore, the system is designed so that the untrusted software cannot cause harm to the 
operating system, even if it turns out to be malicious. A few systems are secure even if 
significant portions of the operating system are not trusted, while others are secure only if all of 
the operating system and a great deal of software outside the operating system are trusted. 

When we speak of trusted software in a secure operating system, we are usually talking about 
software that first has been developed by trusted individuals according to strict standards and 
second has been demonstrated to be correct by means of advanced engineering techniques such 
as formal modeling and verification. Our standards for trust in a secure operating system far 
exceed the standards applied to most existing operating systems, and they are considerably more 
costly to implement. Trusting all the software in a large system to this extent is hopeless; hence, 
the system must be structured in a way that minimizes the amount of software needing trust. The 
trusted software is only the portion that is security-relevant and lies within the security perimeter, 
where a malfunction could have an adverse effect on the security of the system. The untrusted 
software is not security-relevant and lies outside the security perimeter: it may be needed to keep 
the system running, but it cannot violate system security. 

Within a single system, it is normally not useful to distinguish between different degrees of 
trusted software. Software either is responsible for security or is not. It does no good to assign 
more trust to some security-relevant programs than to others, because any one of them can do 
your system in. Similarly, we usually try to avoid establishing degrees of untrustworthiness. In 
most conventional systems where the security perimeter is not precisely defined, however, it is 
useful to distinguish between benign and malicious programs. In some instances, certain 
programs need not work correctly to maintain security of the system, but they nonetheless have 
the potential to cause damage if they are malicious. Such benign programs fall into a gray area 
straddling the security perimeter. 
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3.4.1 Trojan Horses 

Most people’s model of how malicious programs do their damage involves a user—the 
penetrator—writing and executing such programs from a remote terminal. Certainly systems do 
have to protect against this direct threat. But another type of malicious program, called the 
Trojan horse, requires no active user at a terminal. 

A Trojan horse is a program or subroutine that masquerades as a friendly program and is 
used by trusted people to do what they believe is legitimate work. A Trojan horse may be 
embedded in a wordprocessing program, a compiler, or a game. An effective Trojan horse has no 
obvious effect on the program’s expected output, and its damage may never be detected. A 
simple Trojan horse in a text editor might discreetly make a copy of all files that the user asks to 
edit, and store the copies in a location where the penetrator—the person who wrote the 
program—can later access them. As long as the unsuspecting user can voluntarily and 
legitimately give away the file, there is no way the system can prevent a Trojan horse from doing 
so, because the system is unable to tell the difference between a Trojan horse and a legitimate 
program. A more clever Trojan horse in a text editor need not limit itself to the file the user is 
trying to edit; any file potentially accessible to the user via the editor is accessible to the Trojan 
horse. 

The reason Trojan horses work is because a program run by a user usually inherits the same 
unique ID, privileges, and access rights as the user. The Trojan horse therefore does its dirty 
work without violating any of the security rules of the system—making it one of the most 
difficult threats to counter. Most systems not specifically designed to counter Trojan horses are 
able to do so only for limited environments. Chapter 7 presents a detailed discussion of the 
problem, along with some implications that may seem surprising. 

3.5 SUBJECTS, OBJECTS, AND ACCESS CONTROL 

All activities within a system can be viewed as sequences of operations on objects. You can 
usually think of an object as a file, but in general anything that holds data may be an object, 
including memory, directories, queues, interprocess messages, network packets, input/output 
(I/O) devices, and physical media. 

Active entities that can access or manipulate objects are called subjects. At a high level of 
abstraction, users are subjects; but within the system, a subject is usually considered to be a 
process, job, or task, operating on behalf of (and as a surrogate for) the user. I/O devices can be 
treated as either subjects or objects, depending on the observer’s point of view, as we will 
discuss in section 8.5. The concepts of authentication and identification, discussed in section 
3.3.2, apply to all types of subjects, although authenticating subjects internal to the computer 
may be implicit. It is particularly important that all subjects have an unforgeable unique 
identifier. Subjects operating as surrogates for users inherit the unique ID of the user, but in some 
cases users may invoke subjects possessing another user’s unique ID. 

A computer program residing in memory or stored on disk is treated as an object, like any 
other type of data. But when the program is run, it becomes part of a subject or process. 
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Distinguishing between the program and the process is important because the same program may 
be run simultaneously by different processes on behalf of different users, where each process 
possesses a different unique ID. Often we loosely identify a subject as a program rather than as 
the process in which the program executes, but it should usually be clear when we are talking 
about a running program as a subject versus a program as data. 

Like subjects, objects should have unique IDs. Not all systems implement explicit unique IDs 
for objects, but doing so is important for a secure system. Section 11.4.2 discusses this topic 
further. 

3.5.1 Access Control 

The primary purpose for security mechanisms in a computer system is access control, which 
consists of three tasks: 

• Authorization: determining which subjects are entitled to have access to which objects 
• Determining the access rights (a combination of access modes such as read, write, 

execute, delete, and append) 
• Enforcing the access rights 

 
In a computer system, the term access control applies only to subjects and objects within the 
system, not to access to the system by outsiders. Techniques for controlling access to the system 
from outside fall under the topics of user authentication and identification discussed in section 
3.3.2. Nonetheless, the access controls in a network of systems must deal with outsiders and 
remote systems, as well as with subjects inside the system. Network access control is covered in 
section 13.3.1. 

While systems may implement many types of access modes, security concerns usually center 
on the difference between read and write. In addition, it is occasionally useful to define access 
modes that distinguish between the ability to delete a file and the ability to write zeros into it (for 
example) or between the ability to write random data anywhere into a file and the ability to 
append information to the end of it only. 

Subjects grant or rescind access rights to objects. Usually, a subject that possesses the ability 
to modify the access rights of an object is considered the object’s owner, although there may be 
multiple owners. Not all systems explicitly identify an owner; and often subjects other than the 
owner (such as system administrators) have the ability to grant access. 

Associated with each object is a set of security attributes used to help determine authorization 
and access rights. A security attribute of an object may be something as simple as two bits of 
information—one for read and one for write—indicating the modes of access that all subjects 
have to the object. On the other hand, a security attribute may be complex, containing a lengthy 
access control list of individual subjects and their access rights to the object. Other examples of 
security attributes of objects are passwords, access bits, and security levels. 
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Some systems assign security attributes to subjects as well as to objects. These may consist 
of identifiers or security levels that are used, in addition to the subject’s unique ID, as the basis 
for authorization. 

Instead of using subject and object attributes as a basis for access control, some systems use 
capability lists. A capability is a key to a specific object: if a subject possesses the capability, it 
may access the object. Subjects may possess very long lists of capabilities. A more detailed 
discussion of capability lists is offered in section 6.2.2. 

In talking about how access controls are implemented, we need to distinguish between the 
granting of access rights (which happens in advance) and the exercising of rights (which happens 
at the time of access), because security violations do not occur until an improper access takes 
place. For example, placing confidential information into a public file does not cause any harm 
until an unauthorized user reads the file. This distinction may seem rather subtle, but the design 
of some systems forces us to apply certain controls at the time access is granted and certain 
different controls when the access occurs. 

3.5.2 Security Policy 

In the real world, a security policy describes how people may access documents or other 
information. In order for the policy to be reflected in a computer environment, we must rewrite it 
using terms such as subjects and objects that are meaningful to the computer. Strictly speaking, 
the computer obeys security properties, while people obey a security policy. We will, however, 
loosely talk about the computer’s security properties as if they were a policy of the computer 
system. In cases where the distinction between security policy and security properties is 
especially important (as when we discuss formal models), we will use more precise terminology. 

The computer’s version of the policy consists of a precise set of rules for determining 
authorization as a basis for making access control decisions. Authorization depends on the 
security attributes of users and information, unique IDs, and perhaps other information about the 
current state of the system. While all systems have security properties, the properties are not 
always explicit, and the policy on which they. are based may be difficult to deduce. Often the 
policy is a hodgepodge of ad hoc rules that have evolved over the years and are inconsistently 
enforced. Lack of a clear policy—and not programming errors—is a major reason why the 
security controls of many systems are flawed. Section 9.5.1 shows how a security policy is 
converted into security properties for a system. 
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 Chapter 4 

Design Techniques

This chapter provides an overview of the aspects of computer system design that are important to 
security. It discusses both the architectures of computer systems and the methods by which 
systems are designed and built, and it introduces terms that will be used and more thoroughly 
covered in subsequent chapters. 

4.1 SYSTEM STRUCTURES 

In the last chapter we introduced two important interfaces: the system boundary and the security 
perimeter. To understand better the design implications of these interfaces, it is necessary to look 
closely at how systems are built. We shall group systems into two types: a computer system 
consisting of a single machine or closely coupled multiprocessors; and a distributed system that 
resembles a single computer system from the outside but actually consists of multiple computer 
systems. 

The difference between a computer system and a distributed system is reflected in the 
internal system structure and may not be apparent to users on the outside. Indeed, some people 
insist that a good distributed system be indistinguishable from a computer system. It is 
sometimes difficult to decide whether a networked collection of computer systems should or 
should not be called a distributed system: the decision depends on the observer’s point of view, 
which differs for each application on the network. 

Our concern in identifying a distributed system is not so much with terminology as with the 
internal security architecture of its networking mechanisms. We view a computer system as a 
self-contained entity whose system boundary does not include other systems with which it might 
be communicating. Such a system must protect itself and does not rely on assistance from other 
systems; information that leaves the system is no longer protected. We view a distributed system 
as one whose system boundary includes physically separate and relatively autonomous 
processors that are cooperating in some way to present an integrated environment for at least 
some applications. Information passing from one processor to another remains within the system 
and is protected. 

The remainder of this section discusses the structure of computer systems, introducing 
concepts that are fundamental to an understanding of computer security. Chapter 13 covers 
concepts that pertain specifically to distributed systems and networks. 
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4.1.1 Structure of a Computer System 

The traditional decomposition of a computer system shows hardware, an operating system, and 
applications programs, as in figure 4-1.1 There may be multiple applications running 
simultaneously and independently, one or more for each active user of the system. The 
applications may be the same or entirely different. The users of the system generally interact 
only with the applications and not directly with the operating system, though there are important 
exceptions. Each application running on behalf of a user can loosely be thought of as a process. 

 

 
Figure 4-1. Generic Computer System Structure. Each layer uses the facilities of—
and is subject to rules and restrictions enforced by—the layer below it. The interface 
between a pair of layers specifies the functions in the lower layer that are available to 
the higher layer. The operating system and hardware are security-relevant, lying within 
the security perimeter. The applications access the operating system through the 
perimeter by means of a well-defined set of system calls. The users are outside the 
system. They access the system through the applications or, on occasion, communicate 
directly with the operating system. 

Years ago, the distinction between the hardware and the operating system was obvious: the 
operating system was implemented with bits in memory that could be easily changed, and the 
hardware was implemented with circuits that stayed fixed. With many machines containing 
microcode or firmware, however, the distinction is now blurred. While many agonize over 
spelling out the differences, the differences matter only when we talk about hardware or software 
verification—not when we discuss security mechanisms. For the most part, we will treat 
hardware in the conventional sense, as the term is applied to contemporary machines, regardless 
of whether that hardware is, in fact partially implemented in firmware or software. 

The division between the applications and the operating system software is usually more 
obvious (and more important, from our point of view) than the division between hardware and 
the operating system, although the nature of the software division may vary from system to 

                                                 
1Computer security enthusiasts seem to have a preference for drawing pictures that place the operating system 
underneath the applications, while much of the mainframe world puts the operating system above the applications. 
This book will adhere to the former, “top-down” tradition. 

Hardware  

Operating System     

Applications   

System interface 

Security perimeter interface 

Hardware interface 

Users   
Outside system 

Not security-relevant (untrusted) 
Outside security perimeter 

Security-relevant (trusted) 
Inside security perimeter 



 

 26

system. Most people think of an operating system as being distinct from the system applications 
or processes that are needed to support it. The latter include processes for handling login, 
backup, and network interfaces. For security purposes, whether or not such processes are 
implemented outside the operating system is unimportant: the processes still lie within the 
security perimeter and must be treated as logical parts of the operating system. 

A good test to use in deciding whether or not a piece of software should be viewed as part of 
the operating system is to ask whether it requires any special, privileges to do its job—hardware 
privileges necessary to execute certain instructions or software privileges needed to gain access 
to certain data. Although utilities such as compilers, assemblers, and text editors are commonly 
provided by the vendor of the system (and written by system programmers), such applications do 
not require any privileges, because unprivileged users with programming skills can write and use 
their own versions.2 Another common test is to check whether the software can have an adverse 
effect on the system if it misbehaves. 

The horizontal lines in figure 4-1 separating the users, applications, operating system, and 
hardware represent precisely defined interfaces. Usually the security perimeter or operating 
system interface is described as a set of functions, or system calls, offered by the operating 
system; the hardware interface is described in the machine-language instruction manual. The 
operating system, together with the hardware, ensures that the security perimeter interface is 
accessed only in accordance with the rules of that interface. The system interface, on the other 
hand, is enforced through physical controls external to the system. There are few (if any) 
controls on the information that passes across that interface. For example, users are allowed to 
communicate freely with the applications in the system, but they can do so only through 
permitted physical connections such as terminal ports. 

Database management systems, teleprocessing monitors, and other large applications often 
constitute mini-operating systems of their own, running on top of the basic operating system and 
controlling the execution of several user applications (fig. 4-2). From the perspective of the 
operating system, the DBMS is just another application or process without special privileges.3 
The DBMS may be responsible for enforcing its own security policy, or the operating system 
may do it all. In such a design, the designers must have a very precise definition of the security 
requirements in order to tell whether the DBMS is security-relevant. Section 11.3 discusses the 
security role of such subsystems. 

While most of the security features we will be discussing are intended for systems that 
support multiple users simultaneously, the features are usually applicable to single-user systems 
such as personal computers that allow serial access by multiple users. Sometimes, however, it is 
important to distinguish between a PC whose user has physical control over all of the hardware 
and software and a PC whose user does not have direct access to the operating system or 

                                                 
2This is not universally true, however—especially for machines whose native language is a higher-order language, 
necessitating use of interpreters to execute the source code. 
3Again, this is an idealized view and is not universally true, since some operating systems do not provide the 
facilities to support multiuser applications without special privileges. 
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hardware. This is because, without some physical security, no PC (or other computer) can protect 
itself and its data. 

 

 
Figure 4-2. DBMS Process Structure. To the operating system, the DBMS appears as 
just another user application process, while the DBMS controls its own set of 
applications running as individual processes within the DBMS process. 

4.1.2 System States 

A system with the structure shown in figure 4-1 or 4-2 requires some built-in support to enforce 
the layering and proper use of the interfaces. While it may be possible to build a system in which 
all the layering is enforced by software, the enforcement is tenuous, depending on correct 
implementation of the software on both sides of each interface. In order for the operating system 
to enforce constraints on the applications successfully, the operating system must have some help 
from the hardware. 

Most machines have at least two states, domains, or modes of operation: privileged, and 
unprivileged. The privileged mode may also be called executive, master, system, kernel, or 
supervisor mode; and the unprivileged mode may be called user, application, or problem mode. 
When the machine is running in privileged mode, software can execute any machine instruction 
and can access any location in memory. In unprivileged mode, software is prevented from 
executing certain instructions or accessing memory in a way that could cause damage to the 
privileged software or other processes. Once the operating system (running in privileged mode) 
loads certain registers, the machine runs applications software in unprivileged mode until that 
software makes a call into the operating system, at which time privileged mode is restored. 
Privileged mode is also entered when interrupts are serviced by the operating system. Without 
hardware-enforced modes of privilege, the only way the operating system can protect itself is to 
execute applications programs interpretively—a technique that slows the machine down by 
several orders of magnitude. 
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Many modern machines, including microprocessors, have more than two domains. Several 
members of DEC’s PDP-11 family for example, have three protection domains: user, supervisor, 
and kernel. The kernel mode has the most access to memory and to privileged instructions, and 
the user mode has the least. Having three hardware domains allows for efficient implementation 
of the types of system structures shown in figure 4-2. When a machine has more than three 
domains the domains may be numbered, with the lowest numbered domain having the most 
privilege. Because the domains are usually hierarchical-in the sense that each domain has more 
privileges than the domain above it—it is convenient to think of the domains as a series of 
concentric rings, a concept introduced in Honeywell’s Multics (Organick 1972). Multics once 
proposed as many as sixty-four rings, although in practice systems commonly do not use more 
than a handful. 

4.2 THE REFERENCE MONITOR AND SECURITY KERNELS 

The security of a system can be improved in many ways without fundamentally altering its 
architecture. There are also a number of ways to build a fairly secure system from scratch. But 
for maximum protection of extremely sensitive information, a rigorous development strategy and 
specialized system architecture are required. The security kernel approach is a method of 
building an operating system that avoids the security problems inherent in conventional designs 
(Ames, Gasser, and Schell 1983). Based on a set of strict principles that guide the design and 
development process, the security kernel approach can significantly increase the user’s level of 
confidence in the correctness of the system’s security controls. Though by no means universally 
accepted as the ideal solution, the security kernel approach has been used more times than any 
other single approach for systems requiring the highest levels of security. Following is a very 
brief overview of the security kernel approach; chapter 10 covers the topic much more 
thoroughly. 

The security kernel approach to building a system is based on the concept of a reference 
monitor-a combination of hardware and software responsible for enforcing the security policy of 
the system. Access decisions specified by the policy are based on information in an abstract 
access control database. The access control database embodies the security state of the system 
and contains information such as security attributes and access rights. The database is dynamic, 
changing as subjects and objects are created or deleted, and as their rights are modified. A key 
requirement of the reference monitor is the control of each and every access from subject to 
object. 

Fundamental to the security kernel approach is the theory that, in a large operating system, a 
relatively small fraction of the software is responsible for security. By restructuring the operating 
system so that all of the security-relevant software is segregated into a trusted kernel of an 
operating system, most of the operating system need not be responsible for enforcing security. 
The kernel must be suitably protected (tamperproof), and it must not be possible to bypass the 
kernel’s access control checks. The kernel must be as small as possible so that its correctness is 
easy to verify. 
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Compare figure 4-1 (showing hardware, software, and an operating system) to figure 4-3. 
The security kernel in the latter figure consists of hardware and a new layer of software inserted 
between the hardware and the operating system. The kernel’s software and the hardware are 
trusted and lie inside the security perimeter; in contrast, the operating system lies outside the 
security perimeter, along with the applications. 

 

 
Figure 4-3. Security Kernel in a Computer System. The kernel maintains security by 
controlling the actions of the operating system, while the operating system maintains a 
level of service by controlling the actions of the applications. 

In most respects, the security kernel is a primitive operating system. The security kernel 
performs services on behalf of the operating system much as the operating system performs 
services on behalf of the applications. And just as the operating system places constraints on the 
applications, the security kernel imposes constraints on the operating system. While the 
operating system plays no role in enforcing the security policy implemented by the kernel, the 
operating system is needed to keep the system running and to prevent denial of service due to 
errant or malicious applications. No error in either the applications or the operating system will 
lead to a violation of the kernel’s security policy. 

Building a security kernel does not require building an operating system above it: the security 
kernel could just as well implement all the functions of an operating system. But the more 
operating-system features a designer puts in a kernel, the larger the kernel becomes and the more 
it begins to look like a conventional operating system. In order for us to have any confidence that 
the kernel is more secure than an operating system, the kernel must be as small as possible. The 
smallness requirement must be ruthlessly enforced during design: the kernel should not contain 
any function not necessary to prevent a violation of the security, policy. Issues such as 
performance, features, and convenience lie below smallness on the list of kernel design priorities. 
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4.3 SYSTEM DEVELOPMENT PROCESS 

The development of any system involves several steps: 

• Requirements: establishing generic needs 
• Specification: defining precisely what the system is supposed to do, including 

specification verification, which involves demonstrating that the specification meets the 
requirements 

• Implementation: designing and building the system, including implementation 
verification, which involves demonstrating that the implementation meets the 
specification 

 
We also use the word correspondence as another name for the verification substeps at which two 
descriptions of a system are shown to be in agreement. Usually the more detailed description (for 
example, the specification) at a low level is said to correspond to the less detailed description 
(for example, the requirements) at a higher level. 

 

 
Figure 4-4. System Development Process for a Secure System. The security-
relevant aspects of the system development process are shown in two parallel paths. 
The informal path is conventional; the functional specifications and implementation are 
shown to meet the security requirements through correspondence steps involving 
demonstration and testing. The formal path, using mathematical techniques, is 
employed for systems where an extremely high level of assurance regarding the 
security controls is desired. 

The overall development of a system is guided by a system architecture. While most of us 
think of a system architecture as a description of the system as built, rather than thinking of it as 
a description of the process by which the system is built, a relationship exists between the result 
you want to achieve and the way you get there. Many of the desired characteristics of the system 
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that help dictate the architecture (such as reliability, maintainability, and performance) have a 
profound impact on the development strategy. The system architecture makes itself felt either 
directly (through explicit development guidelines) or indirectly (through system goals). 

A security architecture describes how the system is put together to satisfy the security 
requirements. If the security requirements specify that the system must attain a given level of 
assurance as to the correctness of its security controls, the security architecture must dictate 
many details of the development process. 

Security concerns do not add steps to the development process that are not part of 
conventional developments. Rather, the guidelines in the security architecture are a pervasive 
influence on all development steps. The left-hand (“informal”) side of figure 4-4 illustrates the 
conventional development process with one change: we have replaced system requirements at the 
top with the security requirements. The security requirements, a small extract of the total system 
requirements, are derived from the system’s security policy (not shown in the figure). The 
functional specification and the implementation shown in the figure are complete, not security-
specific extracts. Verification of the functional specification against the security requirements—a 
process we call demonstration because it is based on informal arguments—is a far simpler task 
than verification of the specification against all functional requirements, since many functions 
described in the specification have little effect on security. Clearly verification is made easier if 
the functional specification is structured to locate security-relevant functions in as few (and as 
isolated) places as possible. 

The bottom two phases in the informal path of figure 4-4, the implementation and its 
verification (testing), are conventional; there are no shortcuts to fully verifying the 
implementation against its specification, even if security is the only concern, because all 
functions must be examined or tested to be sure that they do not violate the security constraints. 

The development process we have just discussed is called informal because there is no proof, 
in the mathematical sense, that the steps are correctly carried out. Because requirements and 
specification are written in a natural language (English, French, Latin) that is prone to 
ambiguities and omissions, formal mathematics cannot be applied to any of the correspondence 
steps. 

The right-hand side of figure 4-4 shows a parallel formal development path that might be 
used to develop a highly secure system such as a security kernel. Each phase in the informal path 
has a formal equivalent. The implementation, consisting of computer programs and hardware, is 
unchanged because the programs and hardware are already formal.  

The natural-language security requirements are expressed as an abstract model, written in a 
mathematical notation, that is derived from exactly the same security policy as are the security 
requirements. The natural-language specification is expressed in a formal specification language 
amenable to computer processing. The correspondence steps of demonstration and testing are 
replaced by mathematical proofs. The horizontal arrows between parallel phases in the figure 
indicate equivalence, although no objective proof of that equivalence can be made. 



 

 32

The arrows between layers in the figure are upward, indicating that, in each case, the lower-
layer description of the system corresponds to, satisfies, or is an example of a system described 
in the higher layer. In the formal path, especially, all of the rules in the abstract model need not 
be expanded in the formal specification, and all of the functions in the formal specification need 
not exist in the implementation; it is only necessary that the lower layer avoid violating rules or 
requirements of its adjacent higher layer. 

The formal path for development is intended as a supplement to, not a replacement for, the 
informal path. It augments the informal process enough to provide the appropriate level of 
assurance dictated in the security requirements. Which phases of the formal path you carry out 
and how thoroughly you do so vary with that degree of assurance. 

When you are choosing a development strategy, it is most important that you avoid gaps in 
the correspondence process: the boxes in the figure must be connected. Although you can choose 
not to write a formal specification, it is a waste of time to develop either an abstract model or a 
formal specification without devoting proper effort to the correspondence process. For example, 
you may choose to use an abstract model as an adjunct to the security requirements, without a 
formal specification; but in that case, you must demonstrate informally that the functional 
specification corresponds to the model. Alternatively, you may want to develop both a model and 
a formal specification but omit the formal proofs; if so, you must then use informal arguments to 
demonstrate correspondence among the implementation, the formal specification, and the model. 

Be warned that figure 4-4 is a bit deceiving: in practice, you cannot hope to prove fully that 
the implementation meets the formal specification. Such a proof is a theoretical possibility, but it 
is not yet feasible. In other words, today’s technology does not permit the right-hand path to be 
entirely formal. Nonetheless, the existence of a formal specification allows you to make a much 
more convincing, semiformal argument for implementation correspondence than you could get 
by testing alone. 
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 Chapter 5 

Principles of a Security Architecture 

Building a computer system requires striking a balance among a number of requirements such as 
capability, flexibility, performance, ease of use, and cost. While there is nothing inherently 
conflicting about these requirements, features intended to satisfy them often work against each 
other and require you to make tradeoffs in the system design. Security is simply another 
requirement; and where they conflict, security features must likewise be traded off against other 
features, based on the importance of security to the system. 

As a purist whose primary goal is to make your system secure, you might not be willing to 
give up a single security feature in favor of any other. But with such an outlook you are likely to 
fail: others will treat you as a security fanatic who is ignorant of what it means to build a 
practical system. By being adamant about security to the detriment of other features, you will 
lose most arguments over system design alternatives, and the system you are trying to influence 
will probably end up with few meaningful security capabilities. You are more likely to succeed 
in your goal of establishing a secure system if you remain pragmatic, keeping the primary goals 
of the system in. mind and compromising on nonessential points at appropriate times. Even if 
you are building a security kernel for which everyone agrees that security is the most important 
goal, performance is almost always very close behind. 

If you approach the design of a system with the attitude that you are willing to give in when 
necessary, your strategy should be to steer the design of the system in a direction that will avoid 
conflicts where possible. Many security features need not adversely affect other features. You 
can achieve most of your security goals without conflicts if you establish ground rules or 
principles to guide the system design. Once everyone on the design team agrees to these 
principles, the design will naturally follow a secure path.  

The key to the control of the design process is the security architecture—a detailed 
description of all aspects of the system that relate to security, along with a set of principles to 
guide the design. The security architecture is not a description of the functions of the system; 
such detail belongs in a functional specification. A good security architecture is more like a 
design overview, describing at an abstract level the relationships between key elements of the 
system architecture in a way that satisfies the security requirements. The security architecture 
should also describe the aspects of the system development process (see section 4.3) through 
which adherence to the security requirements is assured. The architecture should not constrain 
the design in ways that do not affect security.  
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In the early conceptual stage of system development—even before requirements have been 
completely defined—a security architecture can be written that deals with high-level security 
issues: the system security policy, the degree of assurance desired, the impact of security on the 
development process, and overall guiding principles. A security architecture written at this early 
stage is generic, with few details about the specific system to be designed. 

When the system architecture is later solidified, the security architecture should be enhanced 
to reflect the structure of the system. As the design progresses through stages of more and more 
detail, the security architecture becomes increasingly specific. While the security architecture 
must evolve in parallel to the system development effort, the architecture must keep ahead of that 
effort so that it can help guide the work to be done. 

Of course, writing down a security architecture does no good unless people stick to it. The 
security architecture must play a dominant role in the development process, and all the 
developers must subscribe to it. Even during the implementation phase of a project, individual 
programmers will be affected by guidelines distilled from the architecture, through programming 
standards, code reviews, and testing. 
 
5.1 CONSIDER SECURITY FROM THE START 
 
Except in research projects, few systems are designed with security as the primary goal from the 
start. All too often the approach of the developers is “build it first, secure it later.” From such a 
beginning, security is unlikely to be well-integrated into the system. Most designers fail to 
appreciate the great cost of retrofitting security. 

You do not have to make security your number one goal in order to develop a secure system, 
but you do have to think about security from the beginning. Usually several ways are available to 
structure a system to satisfy a given set of requirements—some good for security, and some not. 
Without a security architecture to guide the early decisions, it is easy to choose a fundamentally 
flawed option, after which the cost of adding security controls is many times greater than would 
have been necessary had an equally sound alternative been selected.  

This book contains many examples of situations where adding security to an existing system 
is made difficult by unfortunate design decisions. Practical experience in developing large 
systems has shown that, unless security considerations have influenced the early stages of 
design, little meaningful security is achieved in the final system. It cannot be stressed too 
strongly that, if you have any intention to incorporate security into a system, regardless of the 
priority of that security requirement, you must begin to think about it on the first day.  

 
5.2 ANTICIPATE FUTURE SECURITY REQUIREMENTS 
 
The security architecture should attempt to be far-sighted, addressing potential security features 
even if there is no immediate plan to use them. Usually it costs little to allow for future security 
enhancements, and therefore little is lost if the anticipated security is never needed. 
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But you must not be overly specific about anticipating security enhancements. For example, 
you might allow for an additional field in a protocol header to handle a security label; but when 
the time comes to implement the security feature, you may find it necessary to implement a 
third-party connection authorization scheme in order to validate the label—a feature that requires 
a different protocol design and can affect all existing implementations of that protocol. Another 
example involves error handling: while you may have made it easy to add security checks in 
many places in the system, such checks may introduce the possibility of new combinations of 
failures that existing software does not expect and cannot gracefully handle. A classic example 
of a new kind of failure is the inability of software to read a file even though it recognizes that 
the file exists. 

The keys to incorporating the appropriate hooks for future security enhancements are to 
understand computer security requirements in general and to include those requirements 
explicitly as possible future needs in a security architecture. Sufficient detail in the handling of 
future security needs must be worked out, and such detail must be part of the design.  

Anticipating security requirements not only affects the level of effort needed to make the 
system more secure in the future, it may also determine whether security in the system can ever 
be improved. Experience has shown that the security of many systems cannot be improved 
because the functions of the system have been defined in such a way as to depend on 
fundamentally insecure characteristics of the system. If the characteristics are changed, the 
system will no longer work as expected. In many cases, plugging security holes fixes the 
operating system but breaks the applications. 

Consider a system that provides a scratchpad directory for use by applications programs that 
need to create temporary files, as is done by some versions of Unix. The directory will contain 
files belonging to many users on whose behalf the applications are running. But placing many 
users’ files in a single directory readable by all users might not be secure. Even the most 
rudimentary security enhancements require a separate directory per user, and yet making such a 
separation in a clean way could be a vast undertaking if it involves modifying all applications 
that use temporary files.1 

An area that demands particularly careful design planning is the definition of the security 
policy. A change in the security policy can have a catastrophic effect on previously good 
applications that violate the new policy, even when the change made in the operating system to 
implement the policy is simple. Had the applications been built with the new policy in mind 
(even if it were not enforced by the system at the time), the change would have been transparent. 
Of course, a documented but unenforced policy can easily be violated; you must exercise strong 
discipline over the applications developers. Among the applications that tend to be affected by a 
change in security policy are those that manage distributed information, those that maintain 
databases accessible to more than one user, and those that implement communications between 
users. Classic examples include electronic mail and database management systems. The most 

                                                 
1Solutions to this particular problem in Unix have been proposed that do not require modifying all applications, but 
the solutions are not clean. 
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serious problems for such applications are caused by mandatory access control policies (see 
section 6.3). 

5.3 MINIMIZE AND ISOLATE SECURITY CONTROLS 

To achieve a high degree of confidence in the security of a system, the designer should minimize 
the size and complexity of the security-relevant parts of the internal design. A major reason why 
operating systems are not secure is that their large size leads to overall incomprehensibility. Of 
course, size is also the reason why operating systems are never totally free of bugs, and so will 
always be liable to behave unpredictably. But given that complex functional needs outside your 
control require you to have a big system, you still have the freedom to structure the system so 
that at least some parts (those that have to do with security) are small and well-defined. 

If you are enhancing a system to add new security features, you may still follow this 
minimization principle, but constraints imposed by the existing architecture will certainly limit 
your flexibility. Needless to say, if improving the security of a system requires as much new 
mechanism as the system had in the first place, reliability of the new mechanism will be no 
higher than that of the original system (unless there are also significant improvements in the 
software engineering techniques used in those enhancements). You can always add new and 
useful security features, but the level of assurance may not change.  

The key to minimizing the security-relevant parts of an operating system is to design the 
system to use only a small number of different types of security enforcement mechanisms, 
thereby forcing security-relevant actions to be taken in a few isolated sections. This goal, 
sometimes called economy of mechanism (Saltzer and Schroeder 1975), is simply a matter of 
good software engineering, but it is hard to attain for security in an operating system. The reason 
for this difficulty is that security permeates many different functional areas of a system- file 
system handling, memory management, process control, input/ output, and a large number of 
administrative functions-so that you do not have a security module in a system as you do a 
device driver or scheduler.  

An example illustrating the proliferation of redundant security mechanisms typical in older 
systems that have evolved over the years is the control of file access. One set of applications may 
manage its files by requesting a password before opening a file, another may use an access 
control list for each file, and another may use a set of access rights assigned in advance to each 
user (see section 6.2). Granularity of access control may also differ between applications: a 
DBMS worries about access on the record level; a message-handling system worries about 
access at the message level; and a document-processing system worries about whole files. 
Access control software will therefore be sprinkled throughout these applications. Not only will 
the security-relevant software be difficult to find and isolate, each application will have its own 
definition of security. Even if all the security software can be isolated in some way, the variety of 
mechanisms makes it difficult to design a common security solution. There is little hope for 
substantially improving the security in such an environment without thoroughly reexamining 
large parts of the system.  
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All operating systems—even old and complex ones—have some security mechanisms that 
control access to basic objects such as files, but often the common mechanism is too inflexible to 
be useful for many applications. The message-handling system designed to control access to 
individual messages within a file must bypass the operating system’s access controls at the file 
level (by giving default read/write access to files for its users) and will provide its own security 
controls. If two such applications exist on the same system—for example, a data-base 
management system and a message-handling system-there will probably be two different 
approaches. Even systems such as Honeywell’s Multics, whose design is based on the economy-
of-mechanism principle, are forced to implement duplicative security controls to handle 
messages (Whitmore et al. 1973).  

There are other reasons why we find multiple security mechanisms that do almost the same 
thing. When new and more flexible mechanisms are introduced in an older system, they are often 
incompatible with existing mechanisms; nonetheless, the older mechanism must be retained for 
compatibility. Some newer sophisticated mechanisms needed for certain applications are too 
inefficient for general use, so they are implemented as optional features. (An optional feature is 
not going to receive widespread use: when users are allowed to choose among several 
mechanisms, the decision is more likely to be based on the sophistication of the user than on the 
dictates of security.)  

If the security-relevant mechanisms in the system are simple, easily identified, and isolated, it 
is usually possible to implement additional controls to protect them from damage by bugs in 
other portions of the system. Certainly the code that makes security decisions should be write-
protected so that it cannot be modified. The databases used to make the decisions should be 
isolated and, if possible, protected against modification by other parts of the system.  

Isolation of data should not be carried to an extreme, however. Security attributes of files, for 
example, are best stored along with other attributes of files, rather than in a separate database, 
because the synchronization mechanism needed to maintain the separate database may be 
complex and prone to error. In the ultimate effort to isolate security controls that is made in the 
security kernel approach, extreme care is devoted to separating the security-relevant mechanisms 
into a hardware-protected kernel of an operating system. Security kernel designers go to great 
lengths to minimize the size of the kernel, even if it vitiates performance or requires a 
significantly more complicated operating system outside the kernel. 
 
5.4 ENFORCE LEAST PRIVILEGE 
 
Closely related to the concept of isolating the security mechanisms is the principle of least 
privilege: subjects should be given no more privilege than is necessary to enable them to do their 
jobs. In that way, the damage caused by erroneous or malicious software is limited. A strictly 
enforced least-privilege mechanism is necessary if any reasonable degree of assurance in the 
security of a system is to be attained.  

The philosophy of least privilege has several dimensions. The usual meaning of privilege in a 
computer system relates to the hardware mechanism that restricts use of special instructions 
(such as input/output instructions) and access to certain areas of memory when the processor is 
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not operating in a privileged mode or domain. A system with only two domains (privileged and 
unprivileged) has a difficult time enforcing least privilege except at the coarsest level: the 
privileges accorded are either all or none. An architecture with three or more states provides 
finer” degrees of control, where each state has access to less memory than the previous state as 
you “move out” from the most privileged state. But the hierarchical nature of the domains does 
not always match the requirements of applications. A capability architecture with non 
hierarchical domains allows the finest degree of control but requires complex hardware support. 
Section 8.4 covers hardware protection features that support least privilege. 

Similar to the hardware privileges are the software privileges assigned to certain programs by 
the operating system. These privileges permit programs to bypass the normal access controls 
enforced on user programs, or to invoke selected system functions. There may be a number of 
such privileges, providing a fine granularity of control over what a program can and cannot do. 
For example, the system backup program may be allowed to bypass read restrictions on files, but 
it need not have the ability to modify files. The restore program might be allowed to write files 
but not to read them. 

While a system with many types of software privileges allows a fine degree of control over 
least privilege, privileges should not be used as a catch-all to make up for deficient and inflexible 
access controls. It is usually possible to design the normal access controls to accommodate most 
system functions without privileges. For example, Multics does not require the backup process to 
bypass any controls; the backup process is treated just as any other process is that is explicitly 
given read access to files to be backed up. Users can revoke the backup’s read access to a file if 
they choose, and thereafter the file will not be backed up. A system that relies on a bewildering 
variety of privileges to carry out routine system functions securely probably has poorly designed 
access controls. 

Another dimension of least privilege is enforced by the way in which the system is built 
through techniques such as modular programming and structured design. By establishing 
programming standards that restrict access by procedures to global data, for example, a system 
designer can minimize the possibility that an error in one area will affect another area. Such 
conventions amount to no more than good programming practice; but where security is 
concerned, the motivation for strict adherence to these standards must be greater. In particular, 
use of a layered architecture (discussed in section 11.1) can go a long way toward increasing the 
reliability of a secure operating system.  

A final dimension for least privilege involves actions of users and system administrators. 
Users and system managers should not be given more access than they need in order to do their 
jobs. Ensuring least privilege for a user means deciding exactly what the user’s job is and 
configuring the system to constrain the user to his or her duties. The system must provide the 
necessary support through flexible, fine-grained access controls and through its overall 
architecture. 

The area of administrative functions is a particularly good place to enforce least privilege. 
Many systems (Unix being the most notorious) have a single “superuser” privilege that controls 
all system administrative functions, whether they are security-relevant or not. 
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Examples of administrative functions that are not security-relevant include mounting tapes, 
taking dumps, starting and stopping printer queues, bringing up and bringing down various 
background system processes, reconfiguring hardware, and entering certain user attributes. The 
functions are privileged because a malicious user of them could wreak havoc on the system, but 
misuse is unlikely to compromise security.  

Administrative security functions include assigning and resetting passwords, registering new 
users, specifying security attributes of users and files, and breaking into someone’s account in 
emergency situations. Misuse of these functions (or even slight slips at the keyboard) could 
cause lasting security problems.  

By isolating day-to-day administrative functions from security administrative functions, and 
by using separate privileges for the different types of functions, a system would provide the 
capability for a site to give more people access to the administrative functions without risk of 
compromising security. Only a very determined malicious user of administrator privilege would 
be able to affect the security functions. in a system based on a security kernel, we often go so far 
as to make it impossible for a person with administrator privilege to affect security.  

 
5.5 STRUCTURE THE SECURITY-RELEVANT FUNCTIONS  
 
In discussing the system development process in section 4.3, we observed the need to 
demonstrate that the functional specification of the system satisfies its security requirements. If 
such a demonstration entails careful scrutiny of hundreds of functions in a large system, the 
demonstration is not only difficult but of dubious value. It is essential that the architecture of the 
system permit the security-relevant aspects of the system to be easily identified so that large 
sections of the system can be examined quickly. With a good security architecture, this simply 
requires good documentation: the security controls will be isolated and minimized, and there 
should be a clean and easily specifiable interface to the security-relevant functions.  

If we look at a description of system calls in an operating system, we usually find that many, 
if not most, functions have to make some security-relevant decisions. It is not possible to isolate 
all security-relevant activities in one place. Any function used to access an object has to 
determine access rights, and many functions must check their arguments for validity. 
Consequently, it is necessary to identify clearly which checks are security-relevant and which are 
courtesy checks for the programmer. In particular, many important checks to prevent denial of 
service are not relevant if the security requirements do not address denial of service. 

 
5.6 MAKE SECURITY FRIENDLY 
 
The following three principles should be kept in mind in any effort to design security 
mechanisms:  
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• Security should not affect users who obey the rules. 
• It should be easy for users to give access.  
• It should be easy for users to restrict access.  

The first principle means that, in the average case of a user doing an assigned job, security 
should be transparent. When security repeatedly gets in the way, users lose productivity and may 
seek a way to bypass the controls. The security controls must be flexible enough to accommodate 
a wide range of user activities while fully enforcing the principle of least privilege.  

No system can anticipate all possible user activities, so a user will occasionally need to 
understand and use the security mechanisms. In some systems the seemingly simple act of giving 
or restricting access to a file requires a system administrator action. Such systems view security 
as a concern only to system managers. Under such burdensome procedures, system 
administrators are likely to give out more access than is needed, and only the most highly 
motivated users are likely to take the action needed to protect their information.  

The second principle ensures that the user will provide access to information only when 
required and will not set up excessively permissive defaults to avoid complex procedures. The 
third principle increases the likelihood that the user will protect information when necessary.  

A fourth design principle can be identified to help satisfy the preceding three principles:  

• Establish reasonable defaults.  

This includes both system-defined defaults and a mechanism for user-definable defaults.  

A security administrator could argue that users of highly secure systems should constantly be 
made aware of their security responsibilities; otherwise, they might forget to take action to 
protect especially sensitive information when necessary. An obvious way to keep users on their 
toes is to configure the system so that the default action taken by the system is very restrictive 
(for example, arranging that nobody but the creator of a file can get access), while building in the 
option for a user to overrule the default when necessary. But if users are burdened with the need 
to override the default repeatedly in order to do their job, they will find a way to do so 
automatically; and an automatic override operates whether it is needed or not. 

Some people insist that overriding the default controls should be difficult, requiring 
extraordinary effort. The government, in handling classified information, wants to make it 
extremely difficult for a user with access to the information to expose that information 
voluntarily within the computer, despite the fact that the user is fully trusted not to expose the 
information outside the computer. The rationale is that information in a computer is more subject 
to careless exposure than information on a sheet of paper. But as has been noted, making 
disclosure of one’s own information extremely difficult only deters those who are not determined 
to make such a disclosure.  

An improperly implemented user-defined default can be dangerous. In some versions of 
Unix, for example, the user can specify a default set of access modes to be assigned to all newly 



 

 43

created files during a session. But the mechanism does not model the way people work: 
sometimes users operate on private files and sometimes they operate on public files, alternating 
between one and the other in the same session. A user who specifies a session default to make 
files publicly accessible is probably going to forget to turn off the default when creating private 
files.  

A better design, used in Multics and eventually added to DEC’s VMS, allows the user to 
specify default access modes for files based on the directory in which the file is located. Users 
are inclined to use different directories, rather than different sessions, for different aspects of 
their job. People can easily adapt their work habits to such a mechanism and are more likely to 
give access only where necessary.  

These arguments demonstrate that making security friendly requires a thorough 
understanding of the applications for which the system will be used. This is much easier to do in 
some systems than in others. Designers of general-purpose systems have a difficult time deciding 
what the users will do, and in an attempt to please everyone they are likely to offer multiple 
redundant mechanisms, thereby violating the economy-of-mechanism principle. 

 
5.7 DO NOT DEPEND ON SECRECY FOR SECURITY  
 
Except in the handling of passwords and encryption keys, a primary goal for the security 
architecture of a system is to avoid depending on the secrecy of any part of the system’s security 
mechanisms. In other words, it is unsafe to assume that users will not be able to break into a 
system because they do not have the manuals or source listings of the software. Of course, a 
penetration is certainly harder without the information, but you never know what information the 
penetrator has obtained, and the safest assumption is that the penetrator knows everything.  

Fortunately secrecy of design is not a requirement for even the most highly secure systems. If 
you are building a system from the ground up, you have the opportunity to incorporate the 
necessary mechanisms so that even a person who helped develop the system cannot break into it. 
But if you are enhancing an existing system, you do not have that freedom, and you may have to 
make a guess as to how clever the penetrator will be. In such a case, you might well avoid 
publicly describing exactly what security enhancements you have made.  

Revealing the internals of a system does not mean revealing ways to penetrate the system. 
Even the most secure systems have flaws, detected either as part of a penetration analysis or as a 
result of an actual penetration. No system will ever be free of all covert channels (see section 
7.2).  

Disclosing the design of a system’s security mechanisms can actually improve security 
because it subjects the system to scrutiny by a much larger audience. Vendors often find that 
their customers report security problems in their systems as bugs before any serious penetration 
takes place. Of course, proprietary designs must be appropriately protected, but such protection 
should not be a requirement for system security.  



 

 44

 
REFERENCES  
 
Saltzer, J. H., and Schroeder, M. D. 1975. “The Protection of Information in Computer 

Systems.” Proceedings of the IEEE 63(9):1278-1308. Reprinted in Advances in Computer 
System Security, vol. 1, ed. R. Turn, pp. 105-35. Dedham, Mass.: Artech House (1981).  
A set of principles for the design of protection features in computers- particularly those used 
in Multics. 

Whitmore, J.; Bensoussan, A.; Green, P.; Hunt, D.; Kobziar, A.; and Stem, J. 1973. “Design for 
Multics Security Enhancements.” ESD-TR-74-176. Hanscom AFB, Mass.: Air Force 
Electronic Systems Division. (Also available through National Technical Information 
Service, Springfield, Va., NTIS AD-A030801.) 
A description of the enhancements incorporated into Multics to support mandatory security 
controls. 

 



 

 45

 
 
 
 Chapter 6 

Access Control and 
 Multilevel Security 

The primary purpose of security mechanisms in a system is to control access to information. 
Until the early 1970s, it was not generally realized that two fundamentally different types of 
access controls exist. Discretionary access control is the most common: users, at their discretion, 
can specify to the system who can access their files. Under discretionary access controls, a user 
(or any of the user’s programs or processes) can choose to share files with other users. 

Under nondiscretionary or mandatory access control, users and files have fixed security 
attributes that are used by the system to determine whether a user can access a file. The 
mandatory security attributes are assigned administratively (such as by a person called the 
security administrator) or automatically by the operating system, according to strict rules. The 
attributes cannot be modified by users or their programs. If the system determines that a user’s 
mandatory security attributes are inappropriate for access to a certain file, then nobody—not 
even the owner of the file—will be able to make the file accessible to that user. 

 
6.1 ACCESS TO THE SYSTEM 
 
Before we worry about access to information within the system, we should pause to consider 
control of access to the system itself. For some systems, physical controls are entirely adequate, 
but most systems need to be accessible from locations that are not under the physical control of 
the site administration. 

A system can protect itself in two ways: 

1. It can limit who can access the system. 
2. It can limit what people can do once they access the system. 

The first way requires the system to implement a two-step process of identification (asking you 
who you are) and authentication (asking you to prove it), as we discussed in section 3.3.2. 

Until technology provides something better, the much-maligned password will continue to be 
the most common authentication technique. Despite their drawbacks, passwords, if properly 
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used, are very effective for user authentication. Following are some time-honored principles for 
password management: 

• Use passwords only for user authentication (see section 6.2.1), not for access control or 
system identification. 

• Encrypt passwords stored in the system database in such a way that someone reading 
system dumps or the database cannot read the passwords. Using a one-way cipher 
(National Bureau of Standards 1985) where, for example, the password is the key to its 
own encryption makes it impossible to decipher the database. 

• Assign a given password to no more than one person. 
• Minimize the number of times a password must be entered by the user (to limit its 

exposure). 
• Do not store passwords in programs or files that could be revealed by someone reading 

the program. 
• Minimize the number of different passwords a person has to remember. 
• Discourage users from using the same password on different machines. 
• Educate users who choose their own passwords about easy-to-guess passwords. Instead 

of allowing users to choose passwords, some systems (such as Honeywell’s Multics and 
DEC’s VMS) provide an automated password generator that assigns random 
pronounceable words (Gasser 1975). 

• Have users change passwords occasionally, but not so frequently that they need to write 
them down. 

• Change a user’s password the day that person leaves the organization. In a large 
organization with scores of machines of various sizes, this means keeping good enough 
records to be able to find all the systems on which the user has an account. 

The National Bureau of Standards and the National Computer Security Center have published 
comprehensive guidelines for the creation and management of passwords (Department of 
Defense 1985; National Bureau of Standards 1985). 

The second way for a system to protect itself is to make available a very limited and 
controlled set of functions for users whom it cannot identify. A transaction processing system, 
for example, might limit users to a specific set of menu options, with no opportunity for running 
arbitrary commands. While such limited service systems have their place, they should never be 
used in lieu of proper authentication. This cannot be stressed too strongly: the only appropriate 
use for a limited service system as a substitute for user authentication is where it is impractical to 
register users in advance, such as on a public terminal in an airport providing flight information 
and reservation services. 

If you think you can avoid a lot of implementation effort and password management 
headaches by implementing a limited service interface for a given application, you are thinking 
dangerously. Limiting what a user can do on a general-purpose operating system is 
extraordinarily difficult. Try as you might to close the loopholes, there always seems to be a way 
for a clever user to break out of the limited system and obtain access to the operating system’s 
underlying facilities. Even if you do succeed in containing the user, it may be nearly impossible 
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to prevent malicious misuse of the limited system, except in the case of extremely limited 
systems that provide read-only access to a small amount of data. If a security breach occurs and 
you have not taken steps to require proper identification, there is no way to track down the 
perpetrator. 

As dangerous as they are when used as a substitute for authentication, limited service 
systems make sense in cases where you need to limit what certain users (who have been properly 
identified and authenticated) can do. 
 
6.2 DISCRETIONARY ACCESS CONTROL 
 
Early systems had no internal access controls; any user could access any file simply by knowing 
its name. Access control consisted of an operator’s deciding whether to mount a tape or card 
deck for reading or writing. This decision was rarely reliable. For example, the operator might 
look at the user name punched on a special ID card at the head of a batch card deck to ensure that 
the job requesting a tape to be mounted belonged to the owner of the tape. These ID cards might 
contain colored stripes to make them more difficult to forge. Such systems worked despite their 
flaws because the value of the information that could be gained by a penetration was rarely worth 
the risk or effort. 

Access control became a more serious issue with the emergence of disk storage, on which 
files of many users could be stored online well before the days of networks or interactive 
computing. Indeed, controlling access to disk files was probably the first widespread computer 
security concern, because for the first time the system, rather than the operator, was required to 
enforce access control. 

6.2.1 Passwords for File Access 

Very simple password-based access control mechanisms were used to protect files at first; and 
even as technology changed from batch computing to online interactive computing, these 
password schemes remained the primary protection mechanism. 

In a password-based access scheme, each file is given a password. A user can access a file by 
providing to the system the password for that file. This password has nothing to do with any 
password the user might need to log into the system. Each new user who needs to access the, file 
must be notified of the file’s password. In some systems that use passwords on files, only system 
managers can assign the passwords; in others, the owner of a file can change the password at 
will. There usually must be at least two passwords per file: one to control reading, and one to 
control writing. 

While passwords are excellent for user authentication, they are unsuitable for file access 
control. The following problems (some of which were discussed in section 2.4) render such use 
highly dangerous: 
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• There is no way to revoke one user’s access to the file (by changing the password) 
without revoking everyone’s access. This problem is only partially corrected by using 
multiple passwords per file. 

• There is no way for the system to keep track of who has access to the file, since 
passwords are distributed manually without the system’s knowledge. 

• Passwords for file access tend to be embedded as character strings within programs that 
need to use the files; so one user’s program can be run by another person who does not 
necessarily know the passwords for all of the files the program needs in order to operate 
properly. Accidental and undetected exposure of passwords is greatly increased whenever 
passwords are written down in any form. 

• Requiring a user to remember a separate password for each file is an unreasonable 
burden. Most likely the user will end up writing down a list of the passwords on a sheet 
of paper and taping it to the terminal.  

In a large organization where users come and go daily, a password-based protection scheme 
for all files becomes impossible to manage. 

 
6.2.2 Capability List 
 

Another type of access control is the capability list or access list. A capability is a key to a 
specific object, along with a mode of access (read, write, or execute). A subject possessing a 
capability may access the object in the specified mode. At the highest levels in the system, where 
we are concerned with users and files, the system maintains a list of capabilities for each user. 
Users cannot add capabilities to this list except to cover new files they create. Users might, 
however, be allowed to give access to files by passing copies of their own capabilities to other 
users, and they might be able to revoke access to their own files by taking away capabilities from 
others (although revocation can be difficult to implement). 

This type of access control, while much better than passwords, suffers from a software 
management problem. The system must maintain a list for each user that may contain hundreds 
or thousands of entries. When a file is deleted, the system must purge capabilities for the file 
from every user’s list. Answering a simple question such as “who has access to this file?” 
requires the system to undergo a long search through every user’s capability list. 

The most successful use of capabilities is at lower levels in the system, where capabilities 
provide the underlying protection mechanism and not the user-visible access control scheme. We 
will discuss this lower-level use of capabilities by hardware in section 8.4.2 and by software in 
section 11.6. 

 
6.2.3 Owner/Group/Other 
 
A more effective, but simple and very common discretionary access control scheme 
(implemented in Unix, DEC’s RSX and VMS, and many other systems) uses only a few bits of 
access control information attached to each file: 
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These bits specify the access modes for different classes of users. There usually are no more than 
four classes: the owner of the file, users belonging to the owner’s group or project, special 
system users, and the rest of the world. In a large system where users are grouped by project or 
department, most access control needs are satisfied by this technique. The scheme falls apart 
when access across specific groups is required. A major drawback of the scheme is its inability 
to specify access rights for an individual user: there is no way for Smith to specify that only 
Jones, and nobody else, should have access to a file, unless there is a group defined in the system 
to which only Smith and Jones belong. This drawback usually results in users giving world 
access to their files, even though they only want to make the file accessible to specific users. 
 
6.2.4 Access Control Lists 
 
One of the most effective access control schemes, from a user’s perspective, is the access control 
list, or ACL (usually pronounced “ackle”), placed on each file (fig. 6-1). The access control list 
identifies the individual users or groups of users who may access the file. Because all the access 
control information for a file is stored in one place and is clearly associated with the file, 
identifying who has access to a file, and adding or deleting names to the list can be done very 
efficiently. 

 
Figure 6-1. Access Control List The scheme above, similar to that used in Multics and 
vms, employs a list of identifiers of the form USER. GR0UP, where a * is a wildcard 
symbol matching any user or group name. When a user opens a file, the list is scanned 
and the allowed access corresponds to the first match. In this example, user Jones in 
group CRYPTO has rew access to file ALPHA, while all others in group CRYPTO have 
re access. Green has no access (n) unless he is in the CRYPT0 group. All other users 
have r access. 
 

One alleged disadvantage of an access control list scheme is performance: the access control 
list has to be scanned each time any user accesses (or opens) a file. But with suitable defaults and 
grouping of users, access control lists rarely require more than a handful of entries. The only 
performance penalty might be due to there being an extra disk I/O required to fetch the ACL 
each time a file is opened. This could have a noticeable impact on systems where large numbers 
of files are opened in a relatively short time. Another disadvantage is storage management: 
maintaining a variable-length list for each file results in either a complex directory structure or 
wasted space for unused entries. This tends to be a problem only for systems having huge 
numbers of very small files (typical of the way in which Unix systems are used). 
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Largely because of the complex management required, only a few systems—such as 
Honeywell’s Multics, DEC’s VMS, and Data General’s AOS—provide the most general form of 
access control list. If performance is a problem, one approach is to employ a combination of 
owner/group/other and access control lists. The access control list is only used for files where the 
granularity of owner/group/other is insufficient to specify the desired set of users. (VMS uses this 
dual approach—but for compatibility with older programs, not for performance.) This approach 
is an example of a performance and compatibility trade-off that violates the principle of economy 
of mechanism discussed in section 5.3. 

 
6.2.5 Trojan Horse Threats 
 
Discretionary access controls have one major drawback, regardless of the specific 
implementation scheme used: they are, by their very nature, subject to Trojan horse attacks. With 
discretionary controls, programs acting on the user’s behalf are free to modify access control 
information for files that the user owns. The operating system cannot tell the difference between 
a legitimate request to modify access control information desired by the user and a request made 
by a Trojan horse that the user did not intend. By eliminating some flexibility, a system can limit 
the ability to modify access control information to special programs that have privileges. But 
there is still no general way, under discretionary controls, to prevent a Trojan horse in one 
process from transmitting information to another process via shared objects: files, messages, 
shared memory, and so on. See chapter 7 for a more complete discussion of the Trojan horse 
problem. 
 
 
 
6.3 MANDATORY ACCESS CONTROL 
 
Mandatory access controls prevent some types of Trojan horse attacks by imposing access 
restrictions that cannot be bypassed, even indirectly. Under mandatory controls, the system 
assigns both subjects and objects special security attributes that cannot be changed on request as 
can discretionary access control attributes such as access control lists. The system decides 
whether a subject can access an object by comparing their security attributes. A program 
operating on behalf of a user cannot change the security attributes of itself or of any object-
including objects that the user owns. A program may therefore be unable to give away a file 
simply by giving other users access to it. Mandatory controls can also prevent one process from 
creating a shared file and passing information to another process through that file. 

Many different mandatory access control schemes can be defined, but nearly all that have 
been proposed are variants of the U.S. Department of Defense’s multilevel security policy 
(section 6.4). Consequently, it is difficult to discuss mandatory controls apart from multilevel 
security. A few general concepts, however, apply to all mandatory policies. 

Mandatory controls are used in conjunction with discretionary controls and serve as an 
additional (and stronger) restriction on access. A subject may have access to an object only if the 
subject passes both discretionary and mandatory checks. Since users cannot directly manipulate 
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mandatory access control attributes, users employ discretionary controls for their own protection 
from other users. Mandatory controls come into play automatically as a stronger level of 
protection that cannot be bypassed by users through accidental or intentional misuse of 
discretionary controls. 

As we will see in later examples, mandatory access controls unavoidably impose some severe 
constraints on users with respect to their own data. Because these constraints are so visible, it is 
easy to forget that the underlying purpose of mandatory controls is not to restrict the user. If we 
simply wanted to prevent users from accessing other users’ files, discretionary controls would be 
sufficient. On the other hand, if we wanted to prevent a user from giving away a file, nothing the 
computer can do would be sufficient, as it is always possible for a user who can read a file to 
pass the contents of the file to another user manually. But if our intention is to prevent a program 
(in the form of a Trojan horse) from giving away a user’s file, mandatory controls are needed. 
Exactly how a Trojan horse is foiled by mandatory controls is discussed in chapter 7. 

In practice, mandatory controls do provide a benefit over discretionary controls, even if 
Trojan horses are not a threat, in cases of accident or irresponsibility. Mandatory controls make it 
more difficult for a user unintentionally (via an errant program or manual mistake) to give away 
information in an unauthorized manner. In fact, a mandatory policy can be set up so that the only 
ways users can pass information to other users is by means of pencil and paper or by giving away 
their passwords. Using mandatory controls for these purposes is quite reasonable, as long as you 
remember that mandatory controls can do little to prevent malicious users from revealing their 
own data. 

Mandatory security controls have been implemented in all security kernel-based systems (see 
chapter 10) and in a handful of conventional (non-kernelized) operating systems. The latter 
include Honeywell’s Multics (Whitmore et al. 1973), DEC’s SES/VMS (Blotcky, Lynch, and 
Lipner 1986), and Sperry (now Unisys Corp.)’s 1100 Operating System (Ashland 1985). 

 
6.4 MULTILEVEL SECURITY 
 
The idea of multilevel security originated in the late 1960s when the U.S. Department of Defense 
decided it needed to develop some way of protecting classified information stored in computers 
(Ware 1970). Until that time it was against regulations to process classified information on a 
system to which uncleared people had access, because no machine was trusted to protect the 
classified data. Today the situation is not much different, but it should change as systems 
supporting mandatory controls become more widely available. 
 
6.4.1 Military Security Policy 
 
The Department of Defense has a strict policy for manually handling and storing classified 
information, which we will call the military security policy. All information (usually in the form 
of a document) possesses a classification, and every person possesses a clearance. In order to 
determine whether a person should be allowed to read a document, the person’s clearance is 
compared to the document’s classification. 
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A classification or clearance is made up of two components: 

• A security level (also called sensitivity level or just level), consisting of one of a handful 
of names such as UNCLASSIFIED, CONFIDENTIAL, SECRET, and TOP SECRET 

• A set of one or more categories (also called compartments), consisting of names such as 
NATO and NUCLEAR from among a very large number of possible choices used within the 
Department of Defense 

A classification contains a single security level, while its category set may contain an arbitrary 
number of categories. We will write a classification as a security level name followed by a list of 
category names: {SECRET; NATO, NUCLEAR, CRYPTO}. In practice the category set is often empty, 
and it is rarely larger than a handful of names. 

The purpose of the multilevel security policy is to prevent compromise, whereby a user is 
able to read information classified at a level for which he or she is not cleared. In particular, the 
policy says nothing about the modification or destruction of information.1 

The military classification scheme has many parallels in industry, even though the terms used 
in industry are different (Clark and Wilson 1987; Lipner 1982). Although industry does not 
usually employ the concept of hierarchical security levels, most of the theory and practice for 
handling classified information in a computer are directly applicable to techniques for handling 
commercially sensitive or “privacy” information. Because a great deal of research has gone into 
automating the military security policy, and because the concepts are well-defined, we will 
continue to use terms such as SECRET and TOP SECRET. You can directly map these onto terms 
used in industry such as PRIVILEGED and COMPANY CONFIDENTIAL. An industry parallel to 
categories might be the division of a company into departments (ACCOUNTING, PAYROLL, 
PERSONNEL, and so on), subsidiaries, and various product development groups. 

 
6.4.2 A Note on Terminology 
 
To avoid confusion when reading other literature (or perhaps to confuse you more), you should 
notice a few things about terminology. In the context of computer security, there is no difference 
between a classification and a clearance: one term simply applies to an object, and the other 
applies to a subject. This book uses the term access class for both. Elsewhere you will run into 
very loose usage of all these terms. Often the terms security level and level are used as synonyms 
for classification, which is fine as long as the level and category breakdown of the classification 
is not important (it rarely is). In some documents you may see the meanings of classification and 
level interchanged from those given here. Again, the distinction rarely matters: access class, 
security level, clearance, and classification can all be safely taken to mean the same thing. In the 
remainder of this chapter, we will continue to speak about the components of an access class 
individually. In the rest of the book, we will note the rare cases where the distinction between the 
level and the categories matters. 

                                                 
1Of course, the Department of Defense does care about information destruction, but preventing destruction is not the 
main reason for classifying information. 



 

 53

 
 
 
 
6.4.3 Mathematical Relationships 
 
The security levels in an access class are linearly ordered; for example: 
 

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOP SECRET 
 
One requirement of the military security policy is that, in order to obtain information legally, a 
person must possess an access class whose level is greater than or equal to the level of the access 
class of the information. 

Categories are independent of each other and not ordered. To obtain access to information, a 
person must possess an access class whose category set includes all the categories of the access 
class of the information. 

When categories and levels are combined, several relationships are possible between two 
access classes (mathematically called a partial ordering—see section 9.5.3). 

1. The first access class dominates the second; that is, the level of the first is greater than or 
equal to the level of the second, and the category set of the first contains all the categories of 
the second. 

2. The second access class dominates the first. 
3. The access classes are equal, which is a special case where both 1 and 2 above are true. 
4. None of the above is true: the access classes are disjoint and cannot be compared. The first 

contains a category not in the second, and the second contains a category not in the first. 

The word dominates, when used to express a partial ordering relationship, has a meaning similar 
to “greater than or equal to.” While they are not mathematically correct, we will continue to use 
the words greater than or less than with respect to access classes and will only use the word 
dominates in contexts where a more precise meaning is required. 

As an example, consider a document with access class {secret; NATO, NUCLEAR}. A user with 
access class { TOP SECRET; NATO, NUCLEAR, CRYPTO } can read the document, because the user 
possesses a higher level and all the categories of the document. A user with access class { TOP 
SECRET; NATO, CRYPTO} cannot read the document, because the user is missing the NUCLEAR 
category. 
 
6.4.4 Multilevel Security Rules 
 
Multilevel security, also known as MLS, is a mathematical description of the military security 
policy, defined in a form that can be implemented in a computer. The first mathematical model 
of a multilevel secure computer system, known as the Bell and La Padula model (Bell and La 
Padula 1973), defined a number of terms and concepts that have since been adopted by most 
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other models of multilevel security. The Bell and La Padula model is often equated with 
multilevel security or MLS, but researchers have developed other models of multilevel security. 
In fact, many of the concepts of the Bell and La Padula model originated in work done at Case 
Western Reserve University (Walter et al. 1974). Section 9.5.3 discusses the Bell and La Padula 
model in detail. 

Multilevel security has a number of subtleties that make it a not so-obvious transformation of 
the military security policy. Access classes are easy to represent in the computer, and appropriate 
checks can readily be made when a user tries to access a file. Enforcing multilevel security in a 
mandatory way, so that neither users nor their programs can change users’ clearances or files’ 
classifications, is also easy to do. This straightforward enforcement of multilevel security is 
commonly called simple security in the Bell and La Padula model. 

Consider a system with two files and two processes (fig. 6-2). One file and one process are 
UNCLASSIFIED, and the other file and other process are SECRET. The simple security rule prevents 
the UNCLASSIFIED process from reading the SECRET file. Both processes can read and write the 
UNCLASSIFIED file. Despite enforcement of the simple security condition, however, a violation of 
the intent of the military security policy can easily occur if the SECRET process reads information 
out of the SECRET file and writes it into the UNCLASSIFIED file. This is equivalent to an 
unauthorized downgrade (lowering of the access class) of information, except that no access 
class of any file has been changed. Thus, while the letter of the policy has been enforced, the 
intent of the policy to avoid compromise has been violated. Though the actual compromise does 
not take place until the downgraded information is read by the unclassified process, the specific 
act that permits the eventual compromise is the writing of information: When a process writes 
information into a file whose access class is less than its own, we call the act a write-down. The 
write-down problem is a continual source of frustration, because even the best technical solutions 
to the problem adversely affect the usability of systems. 

 

 
Figure 6-2. Security Violation with Simple Security Controls. In this example, 
despite the presence of the simple security restriction of multilevel security controls, a 
Trojan horse in the SECRET process is able to use the UNCLASSIFIED file as a medium for 
passing SECRET information to the UNCLASSIFIED process. 
 

In general, multilevel security requires the complete prohibition of write-downs by untrusted 
software. Such a restriction is clearly not present in the world of people and paper: a person with 
a SECRET clearance is rarely prohibited from writing an UNCLASSIFIED document, despite having 
a desk cluttered with SECRET documents, because the person is trusted to exercise appropriate 
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judgment in deciding what to disclose.2 The restriction on write-downs in a computer is 
necessary because a bug or Trojan horse in the user’s program cannot be trusted to exercise the 
same judgment. This restriction has been given the rather uninformative name *-property 
(pronounced “star-property”) in the Bell and La Padula model-a term that has become accepted 
in the computer security community. We will instead use the more descriptive name confinement 
property. 

To summarize, the multilevel security model has two basic properties (fig. 6-3): 

• Simple security: A subject can only read an object if the access class of the subject 
dominates the access class of the object. In other words, a subject can read down but 
cannot read up. 

• Confinement property: A subject can only write an object if the access class of the 
subject is dominated by the access class of the object. The subject can write up but cannot 
write down. 

 
Figure 6-3. Multilevel Security Rules. A process cannot read an object at a higher 
access class (simple security) nor write an object at a lower access class (*-property or 
confinement property). 

It follows that, in order for a subject to both read and write an object, the access classes of the 
subject and object must be equal. Although these properties allow a subject to write into an 
object at a higher access class, the write-up capability is often not too useful, and most systems 
implementing multilevel security restrict write access to objects that are of an equal access class. 
But from the standpoint of information compromise, there is no reason why a write-up need be 
disallowed. The Bell and La Padula model of multilevel security also makes use of an append 
access mode that allows a subject to attach information to the end of a file it cannot read. 
Although conceptually this seems a nice idea, implementing practical one-way writes in reality is 
very difficult. 

                                                 
2As a half-serious proviso, it might be noted that UNCLASSIFIED reports written by cleared individuals working on a 
classified project are often subject to a manual review before publication, which is a kind of write-down restriction. 
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6.5 INTEGRITY 
 
Even though the confinement property of the multilevel security policy controls the writing of 
information, its goal is to prevent unauthorized disclosure. The multilevel security policy deals 
only with secrecy and does nothing to control unauthorized modification of information. 

Soon after the Bell and La Padula model of multilevel security was defined, people began to 
wonder how to model the unauthorized modification of information. One crude way is simply to 
eliminate the ability to write up. But just as eliminating read-up does not alone prevent the 
unauthorized disclosure of information (the confinement property is also needed), eliminating 
write-up does not fully prevent unauthorized modification. Something akin to the confinement 
property is needed to prevent a process at a higher access class from reading down and being 
adversely influenced by information at a lower access class. 

The Biba integrity model (Biba 1977) addresses the modification problem by mathematically 
describing read and write restrictions based on integrity access classes of subjects and objects 
(Biba uses the terms integrity level and integrity compartment). The integrity model looks 
exactly the same as the multilevel security model, except that read and write restrictions are 
reversed: 

1. A subject can write an object only if the integrity access class of the subject dominates 
the integrity class of the object (simple integrity), 

2. A subject can read an object only if the integrity access class of the subject is dominated 
by the integrity class of the object (integrity confinement). 

Rule 1 is the logical integrity write-up restriction that prevents contamination of high-integrity 
data. Figure 6-4 illustrates the reason for rule 2, the equivalent of an integrity confinement 
property. 

 
Figure 6-4. Contamination with Simple Integrity Controls. A low-integrity process is 
not allowed to write into and contaminate a high-integrity file; but through some error, 
the high-integrity process may receive low-integrity data and may write that data into the 
high-integrity file. 
 

It is easiest to think about integrity if you completely ignore multilevel security for a 
moment. A high-integrity file is one whose contents are created by high-integrity processes. The 
two rules just identified guarantee that the high-integrity file cannot be contaminated by 
information from low-integrity processes. Furthermore, the high integrity process that writes the 
file cannot be subverted by low integrity processes or data. The integrity class label on a file 
therefore guarantees that the contents came only from sources of at least that degree of integrity. 
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When you consider secrecy (that is, multilevel security) and integrity together, you must be 
careful not to confuse the secrecy access class with the integrity access class, as they have 
nothing to do with one another: secrecy and integrity are independent qualities.3 You may, for 
example, use a spreadsheet program obtained from a public bulletin board to display TOP SECRET 
data. The process in which the program runs will have low integrity but high secrecy; the output 
may be erroneous, but the program cannot compromise the TOP SECRET data. 

Conversely, an UNCLASSIFIED process may never have access to any classified information, 
but if the process’s job is to perform a system management function that must work correctly to 
keep the system running, the process should be of high integrity. You would like to feel sure that 
the process cannot be influenced by low-integrity programs or be tricked by running with low-
integrity data. 

Although implementing integrity is straightforward, using hierarchical integrity as an adjunct 
to multilevel security has not fully caught on. Its application is seen as too complicated for many 
purposes. Whereas there are good reasons for having four or five different secrecy levels and ten 
or twenty categories, nobody has thought of a reason to use more than a couple of integrity 
levels; and on top of that, integrity categories are difficult to apply. Some people have warned 
that, with both secrecy and integrity fully in place, it will be all too easy to set up situations in 
which processes will be unable to access anything at all. 

It has been proposed that eliminating the integrity confinement property restriction (rule 2) 
might simplify things. After all, a program of high integrity should be trusted to protect itself 
from low-integrity data. Although it is still possible for an “integrity Trojan horse” in that 
program to read the low-integrity data and write the data into a high integrity file, one may 
wonder how a Trojan horse has gotten into high-integrity program. The integrity confinement 
property is probably more suited to containing errors than Trojan horses. 

Probably one of the most important reasons why the idea of integrity as an exact dual of 
multilevel security has problems in practice is that the notion of integrity is somehow related to 
the notion of trustedness. Secrecy, on the other hand, says nothing about trust, while requiring 
trusted software for its enforcement. We can construct any number of simple scenarios that 
would result in malicious software running at high secrecy access class, but it is hard to think of 
a reason why malicious software would be running at a very high integrity level. A long as we 
already have to worry about the distinction between trusted and untrusted software for security 
purposes, many of the aspects of the integrity model seem superfluous. 

Nonetheless, the integrity model is so clean and appealing that aspects of it have been 
implemented in several systems, leaving its use up to the system managers. In fact, it is possible 
to combine the integrity and secrecy access classes into a single access class that is rarely 
separated into the two components; files, processes, and users are then assigned security 
attributes that combine both secrecy and integrity. In such a system, the rule for reading a file 
would be as follows: the integrity access class of the file must dominate the integrity access class 
of the process, and the secrecy access class of the process must dominate the secrecy access class 

                                                 
3Biba originated the confusion by using the same names for both secrecy access classes and integrity access classes. 
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of the file. This rule combined with the appropriate rule for writing result in a rather complex 
series of checks, especially given that both integrity and secrecy access classes are composed of 
level and category components. 

It may seem at first that integrity addresses the denial-of-service problem by preventing 
random destruction of data (which other security techniques do not address). But, there are many 
ways to cause denial of service other than by destroying data: executing illegal instructions or 
making illegal system calls that halt the system; crashing or slowing down the system by using 
up too many resources; and so on. Integrity is strictly a technique to prevent unauthorized 
modification. 

In the systems where integrity has been implemented, the primary application has been to 
avoid modification of certain system programs and system databases that are important to the 
operation of the system and yet do not involve information with any secrecy content. For 
example, the list of users allowed to access the system might not be secret, but it must be 
protected from modification by untrusted software. This protection must be stronger than the 
discretionary protection provided for user files, and a mandatory integrity mechanism provides 
that type of protection. It has been proposed that integrity categories might be quite useful in a 
commercial environment (Lipner 1982)—perhaps more so than mandatory secrecy controls. 
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 Chapter 7 

Trojan Horses and
 Covert Channels 

When people began thinking about making systems more secure, they naturally speculated about 
specific penetration techniques. At first, the approach to securing operating systems was directed 
toward closing the holes inadvertently left by designers. These holes typically allowed a 
penetrator to gain control of the operating system, or at least to bypass some particular access 
control mechanism. Some penetration techniques identified by “tiger teams” searching for holes 
were incredibly complex, as were the countermeasures. 

The Trojan horse route to penetration, however, was not formally identified until surprisingly 
late in the history of computing.1 This route was far easier to exploit than many of the highly 
sophisticated penetrations people were trying to thwart. Worse, this simple type of penetration 
was fundamentally impossible to prevent on nearly all systems. Only a complete change in the 
philosophy of protection and a complete restructuring of the system could come close to 
addressing the problem. The most insidious aspect of the Trojan horse attack is that it requires no 
discovery and exploitation of loopholes in the operating system. A successful Trojan horse attack 
can be mounted through the use of only the most well-documented and obviously desirable 
features of a flawless, bug-free system. 

Do not assume that the Trojan horse problem is so esoteric that it only applies to computers 
entrusted with military secrets. Once you understand how easy it is to carry out a Trojan horse 
attack, you may wonder why anyone should have any confidence in the safety of any information 
in their system, why more systems are not constantly being penetrated, and why you should 
bother to close every small hole in your system while leaving gaping Trojan horse holes that are 
so easy to exploit. 

One sentence can explain what a Trojan horse is, but chapters are needed to cover all the 
implications. Many who initially think they understand the Trojan horse are surprised when 
confronted with its ramifications. If you explain the Trojan horse problem to the management of 
a large computer installation, the likely response you will receive is “we don’t have that problem 
here, because...” But if you ask about that installation’s existing security controls, you will 
usually find multiple redundant measures strengthening “conventional” aspects of the system 
while leaving wide-open paths for a Trojan horse attack. After such a discussion, you might be 
                                                 
1The term Trojan horse was first used by Dan Edwards (Anderson 1972). 
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able to convince the management that many of the controls in these conventional areas serve 
only to reinforce the iron links in a paper chain. 
 
7.1 TROJAN HORSES AND VIRUSES 
 
Most references define the Trojan horse in one or two sentences. A Trojan horse is a computer 
program that appears to the user to perform a legitimate function but in fact carries out some 
illicit function that the user of the program did not intend. The victim is the user of the program; 
the perpetrator is the program’s developer. 

We can identify several key requirements for launching a successful Trojan horse attack: 

• You (the perpetrator) must write a program (or modify an existing program) to perform 
the illicit act in a way that does not arouse the suspicion of any future user of the 
program. The program should perform some interesting or useful function that will entice 
others to use it. 

• You must have some way of making the program accessible to your victim–by allowing 
the victim access to the program, by installing it in a system library (which could require 
help from an honest but gullible system administrator), or by physically handing the 
victim a tape or disk. 

• You must get the victim to run your program. This might happen incidentally (if your 
program replaces an existing program that the victim normally uses) or intentionally (if 
your program is directly invoked by the victim). 

• You must have some way to reap the benefits of the illicit act. If the act is to copy private 
information (our primary concern), then you have to provide a repository for it that you 
can later access. This is normally quite easy if you have an account on the victim’s 
system. 

A special type of Trojan horse that propagates itself through a system or network of systems is 
the virus (Cohen 1984). “Infecting” a system with a virus usually requires a high level of skill on 
the part of the perpetrator but once installed it can cause a great deal of harm and may be 
particularly difficult to eliminate. 
 
7.1.1 Trojan Horse Examples 
 
In section 3.4.1 we discussed some simple examples of the Trojan horse threat. Following are a 
few more sophisticated examples. of both Trojan horses and viruses: 

• A program that plays the game Adventure uses idle time when the user is thinking to scan 
the user’s directory and give “world” read access to all the victim’s files. You (the 
perpetrator) later log in normally and read the files. The victim might eventually find out 
that the access rights were changed, but may still have a hard time figuring out which 
program did it and whether anyone read the files. 

• A new improved 1ist_directory program that everyone wants to use functions as 
advertised but never exits upon completion. Instead,. it pretends to exit, mimicking the 
response of the system command processor. The program reads and processes the 
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victim’s further commands normally (possibly by invoking the real command processor 
for each command) and never reveals the fact that it is still there. When the user finally 
types 1ogout, the program simulates a genuine logout, but does not really log out. The 
next time any user walks up to the terminal and types 1ogin, the program reads the 
user’s name and password and discreetly sends you (the perpetrator) a message 
containing the user’s password. Then the program mimics a normal login procedure and 
finally does exit, returning the user to the command processor. The user never knows that 
all the prior input has been monitored, and you now have the user’s password. 

• An Adventure game, copied by the user from a public bulletin board where you have 
placed it for free distribution, modifies the user’s command search list to cause a search 
of one of your own directories before searching the system libraries. In all subsequent 
sessions, every time the user types a system command, any one of a number of Trojan 
horse programs in your directory may be invoked instead of, or in addition to, the desired 
system command. Once the search list is modified, you can get the victim to run any of 
your programs practically at will. One of these Trojan horse programs might be an altered 
version of show-search-1ist that hides from the user the fact that your directory is 
on the user’s list. You would probably also want to include a doctored version of 
modify_search_1ist to prevent your own directory from being deleted from the 
list. This example shows that, with a little planning on your part, a single mistake by a 
user can result in permanent compromise of the user’s security. 

• You quietly place your Trojan horse in a public user directory, and give it an interesting 
name like Superspreadsheet, hoping some user will find it and try it. Besides operating as 
a spreadsheet, the program scans the user’s directories, looking for executable binary files 
(other programs) that the user owns and appending a section of Trojan horse code to each 
such file. It modifies the calling sequence in those files to transfer temporary control to 
the Trojan horse each time one of those programs is called. When one of those programs 
is later used–possibly by a different user–the Trojan horse scans that user’s directories, 
looking for more files to append itself to. Of course, the operation of the programs 
modified by this Trojan horse is not visibly affected. On a system where many users 
share each other’s programs, this virus will quickly infect most of the user software in the 
system. If system programmers or administrators ever use someone else’s programs, the 
virus can infect system programs as well. Since nobody ever looks at object code to see if 
it matches compiled code, this virus is unlikely to be detected as long as it does no visible 
harm. 

Your hope is that someone on a compiler development team will use a program 
infected with your virus; your virus is designed to recognize when it is appended to the 
compiler, and it will thereafter cause the compiler to append the virus to all compiled 
programs automatically. In this way, recompiling a program will not eliminate the virus. 

This virus causes no functional harm to the operating system other than using up a 
little memory along with each executable program. You can use your imagination to 
decide what additional features an interesting virus might have. 

A primitive type of virus was installed as a penetration exercise on an early version of 
Honeywell’s Multics (Karger and Schell 1974). 
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As you can see, the illicit activity of the Trojan horse or virus need not hamper or frustrate 
the legitimate function of the command in which it is embedded, although the simplest Trojan 
horses might just go after the information the particular command already uses. The best Trojan 
horses do their dirty work and leave no traces. Modifying the access rights to all the user’s files 
can be very damaging, but it is also easily detected and potentially traceable to the program that 
caused it. Trojan horses that persist indefinitely (like the virus) can cause a great deal of harm 
while they exist, but a program that causes trouble has a chance of being detected eventually. A 
clever Trojan horse might even be programmed to delete itself if the user tries to do something 
that might reveal its presence. Because most systems keep track of logins, stealing and using a 
password is unlikely to work more than a few times before the penetration is detected (although 
password theft is probably the easiest route to computer crime and can certainly cause a great 
deal of damage). 

The common goal in these examples is to allow you (the perpetrator) to read a user’s 
information to which you have no access. The Trojan horse either copies the information into 
one of your files, or sets up access modes so that you can later read the information directly from 
the user’s files. The success of the Trojan horse depends on the extent to which you can retrieve 
the information. 

So far we have not directly talked about Trojan horses that delete, modify, or damage 
information. A Trojan horse or virus whose goal is to modify files can do its job without your 
having to log in. In fact, you do not need to have any access to the user’s system at all (provided 
that you had some way of giving the program to the user in the first place). A write-only Trojan 
horse used unknowingly by a system administrator and acting to modify a system file can be 
particularly insidious. In keeping with the general philosophy of this book that computer security 
is primarily concerned with information disclosure, we will continue to think of the Trojan horse 
as a means of illicitly obtaining read access to information. Although the write-only Trojan horse 
attack is somewhat simpler to carry out, solutions to the Trojan horse information disclosure 
problem (to the extent that they are solutions) generally address the information modification 
problem, as well. 
 
7.1.2 Limiting the Trojan Horse 
 
Preventing a Trojan horse from doing its damage is fundamentally impossible without some 
mandatory controls, and keeping a Trojan horse out of your system is extremely difficult. While 
simple or special-purpose systems might be protected to a degree, no general-purpose system can 
be protected adequately. A few of the techniques discussed here can reduce the possibility of a 
successful Trojan horse attack; but these techniques are somewhat dangerous, in that they can 
give you a false sense of security. Before adopting any of them, therefore, be sure you 
understand their limitations. 
 
Restricting Access Control Flexibility 
 
As was discussed in section 6.2.5, a Trojan horse can defeat any type of discretionary access 
control mechanism. As long as it is possible for the legitimate user to write a program that alters 
access control information for his or her own files, it is possible for a Trojan horse invoked by 
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that user to do the same. Since the ability to write programs that alter access control information 
is a feature of most modern systems, it is difficult to imagine anyone being willing to eliminate 
this ability for the sake of security. 

But suppose we do build a system that provides no unprivileged subroutine interface to the 
access control mechanism. In such a system, the only way for a user to specify access control 
information is by invoking a privileged system utility that sets the information based on input 
from the user’s terminal–not on input from another program. (This utility program would have to 
make sure it was really reading input from the terminal, and not from a command file, for 
example.)  

Since we trust users not to give their own files away, it might seem that the Trojan horse 
threat to discretionary access control could thus be eliminated. 

Notice, however, that several of the examples in section 7.1.1 do not require the Trojan horse 
to alter any access control information. For a Trojan horse to copy a user’s files into the 
perpetrator’s directory, the system need only allow the perpetrator to create a file manually that 
is writeable by the unsuspecting user. To avoid suspicion, the perpetrator might create a file that 
is writable by anyone, rather than solely by the specific user being targeted. 

Let us then go further and mandate that the system not allow anyone to create a world-
writable file (which is not a particularly useful feature anyway). In that case the Trojan horse 
might use a mail utility or an interprocess message to communicate information. If these 
facilities do not exist either, the Trojan horse might find a world-readable file belonging to the 
user and store the information in it. No one could reasonably suggest that a system not allow a 
user to create world-readable files. 

These examples should convince you that, except in very limited systems, it is usually not 
fruitful to try to prevent a Trojan horse attack by limiting the ways in which users can exchange 
information. 
 
Procedural Controls 
 
Within a general-purpose operating system, nobody has come up with a practical scheme for 
detecting a Trojan horse. If the system allows any user programming at all, there is no way to 
prevent a user from implementing a Trojan horse and convincing another person to use it. As 
used here, the term programming includes the ability to write command files, macros, and any 
other instructions that enable a user to cause things to happen outside the user’s direct control. 

Procedurally, however, users can be warned not to run any program: other than those in the 
system libraries, and they can be cautioned not to carry out any action that might accidentally 
invoke a “foreign” file in their directory as a command or program. Users need not be prevented 
from writing their own programs for their own use (because it would be pointless for a user to 
plant a Trojan horse in his or her own program), but users should be suspicious about any 
program that someone else has written. The effectiveness of such voluntary restrictions depends, 
of course, on the dedication of the users. The interesting aspect of such restrictions is that users 
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are only protecting themselves (and information entrusted to them): one user’s violating a 
voluntary restriction against using an outside program will not compromise any other user’s 
private information. 

Unfortunately, voluntary restrictions are highly unreliable. Even sophisticated users may 
inadvertently violate the rules or be misled into doing so. In our earlier example where the search 
list was modified, one-time, possibly accidental use of a Trojan horse renders the user 
permanently vulnerable thereafter. The difficulties of the voluntary approach are exacerbated by 
the fact that those who would build a Trojan horse are not restricted. One can imagine an open 
system in which scores of users litter the system with Trojan horses in the hope that one of a 
handful of honest and careful users might one day make a mistake and type the wrong command 
name. In a multiuser system that allows data-sharing, there is no practical way to prevent 
program sharing. 

In contrast to voluntary restrictions, enforced restrictions can be more nearly foolproof. In 
one approach (Karger 1987), a trusted mechanism in the system prevents programs called by a 
user from accessing files other than those intended by the user based on predefined usage pattern 
of each program that the user calls. The Trojan horse can still damage the files it is legitimately 
given, but it cannot access additional file; without the user’s knowledge. While such techniques 
are an interesting possibility, none has yet been implemented in practice. 

 
System Controls: No Programming 
 
Clearly the best restrictions are ones that the system automatically enforces. Limiting sharing is 
not practical, so the only restriction left involves programming. 

Eliminating user programming might at first seem fairly easy: just get rid of all the 
compilers, assemblers, interpreters, and similar applications. In fact, many systems on which 
users do not need to write programs are operated this way. But if the system has a text editor and 
a command language, the ability to write command procedures (both batch and interactive) must 
also be eliminated, either by changing the command processor or by getting rid of all text editors. 
A DBMS that allows users to store complex queries as procedures for later access must be 
eliminated or restricted. Even without a command processor or DBMS, many text-processing 
tools such as editors and formatters are practically programming languages in their own right; 
these would have to be eliminated, too. (Remember that a successful Trojan horse might be as 
simple as a 1-line copy command embedded in an editor macro.) Even spreadsheet programs 
have features for user programmability. 

By the time you eliminate all possibility of writing any type of program on a system, you 
have probably limited the use of the system to a few very specialized applications. Certainly no 
general-purpose system can be operated that way. But many large systems are in fact special 
purpose and need no kind of programmability. Large organizations such as airlines and banks 
use their operational computers solely for transaction processing, with separate computers for 
development. But even when the operational system has no need for programming, it is rare for 
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designers to make more than half-hearted efforts to eliminate the ability to write programs. 
Usually such efforts are aimed at saving memory and storage rather than at increasing security. 

It is frequently argued that even the best efforts at eliminating programming are doomed. 
After all, any system on a network is a potential recipient of a Trojan horse from another system 
that does allow programming. Moreover, Trojan horses need not always resemble a program. A 
list of financial transactions could contain a Trojan horse in the form of illicit transactions. But, 
while it is indeed very difficult (or perhaps impossible) to guarantee that no Trojan horse has 
entered the system, the guarantee need not be absolute. Through a systematic analysis of all 
possible paths into the system, it is possible to weigh the effort a penetrator must make to install 
a Trojan horse against the value of the information gained or damage done. A partial closing of 
such paths (which, to be of practical benefit, must still be relatively complete) is adequate in 
many cases. 
 
Scrutinizing Vendor Software 
 
One route to installing a Trojan horse that we have not considered is via the vendor of the 
software. Most organizations certainly trust their vendors not to plant Trojan horses (although 
rumors are not lacking about features such as time bombs that inactivate the software when the 
rental period expires). Indeed, prior to initial purchase of a software package, there is little reason 
for an organization to fear that there might be a Trojan horse in the software specifically targeted 
at that organization. Once the software is installed, however, a site with very sensitive data has 
good reason to fear updates to that software supplied by the vendor-not because the vendor is 
likely to be malicious, but because the vendor probably has no more control over the actions of 
its employees than the organization has over its. Imagining a scenario where a disgruntled 
employee quits an organization to work as a programmer for a vendor that supplies the 
organization with software is not difficult. Unless appropriate control is maintained over the 
acquisition of new or updated vendor software, the value of closing all other Trojan horse 
channels is limited. 

Probably the only practical technique for screening vendor software—a method used by the 
government at certain highly secure installations—is to accept software updates from a vendor 
only in the form of source code, to be scrutinized manually for malicious code by site personnel 
and to be compiled locally. Programs that highlight only the differences between earlier and later 
versions of the source code are used as an aid. This technique, though laborious, is considered 
useful because of the assumption that a Trojan horse in source code is easy to spot. Nonetheless, 
a clever programmer might be able to hide a Trojan horse, especially within a complex program. 
Rather than providing 100 percent assurance, the technique of scrutinizing the source code 
probably only serves as a deterrent to penetrators by increasing the work required to hide a 
Trojan horse. 
 
Mandatory Controls 
 
As was stated in section 6.3, the only effective way to handle the Trojan horse threat is to use 
mandatory access controls. Under mandatory access controls, a Trojan horse is prevented from 
giving away information in a way that would violate the mandatory access restrictions. Consider, 
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for example, the multilevel security model discussed in section 6.4.4 and illustrated in figure 6.3. 
The confinement property prevents a Trojan horse in a process running at the SECRET access 
class from writing SECRET information into an UNCLASSIFIED file. Everything writable by a 
SECRET process must have at least a SECRET access class. 

It is important to remember that mandatory controls only thwart Trojan horse attacks that 
attempt to cross mandatory access class boundaries. The Trojan horse in our example can still 
bypass discretionary rules by copying information from the victim’s SECRET file into another 
user’s SECRET file. Since it is impractical to assign a different mandatory access class to each 
user, mandatory controls are only used to protect information that is more sensitive than 
information that is simply private to a single user. 

For example, suppose that a corporation allows its competitors to buy time on its computer 
system. Corporate proprietary information in that system is assigned a mandatory access 
category, and only employees of the corporation are given access to that category. A Trojan 
horse used by one of those employees will not be able to pass information to competitors outside 
the category, but it will be free to transfer information among users within the category. 
 
7.2 COVERT CHANNELS 
 
A key notion behind the Trojan horse attack is illicit communication through a legitimate 
information channel intended for interprocess communication: a file, an interprocess message, or 
shared memory. Mandatory access controls can prevent such communication across access 
classes. But a system usually allows processes to communicate in numerous other ways. that are 
not normally used for communication and are not normally protected by mandatory controls. We 
call these other paths covert information channels, or simply covert channels (Lampson 1973; 
Lipner 1975). 

Covert channels have also been called leakage paths because information can escape 
unintentionally. People worry about leakage paths because it is impossible to predict how much 
information an errant program might leak through such a channel. The practical impact of 
unintentional leakage, however, is usually minor and not a primary concern to us; much more 
serious is the intentional leakage caused by a Trojan horse. 

Systems abound with covert channels. Every bit of information in the system (that is, every 
object) that can be modified by one process and read by another—directly or indirectly—is 
potentially a covert channel. Where mandatory controls prevent a Trojan horse from 
communicating information through files and other conventional objects, any bit of information 
not protected by mandatory controls is potentially an alternate path. 

A covert channel’s most important parameter is its bandwidth—the rate, in bits per second, at 
which information can be communicated between processes. This bandwidth is a function of the 
number of bits in the object and of performance characteristics of the system that determine the 
rate at which the object can be changed or modulated. 
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There are two types of covert channels: a storage channel is any communication path that 
results when one process causes an object to be written and another process observes the effect; a 
timing channel is any communication path that results when a process produces some effect on 
system performance that is observable by another process and is measurable with a timing base 
such as a real-time clock. 
 
7.2.1 Covert Storage Channels 
 
Covert storage channels use three types of information: 
 

• Object attributes 
• Object existence 
• Shared resources 

 
Object Attributes 
 
The easiest-to-use and most common storage channels in systems are usually file names. A 32-
character file name can be changed by one process and read by another process, resulting in a 32-
character message transfer between the processes even if the file itself is not readable or writable 
by the processes. This channel can usually be eliminated by designing the access controls so that 
file names are objects protected by mandatory access controls in the same manner as the files 
are. 

The use of file names is one example of the use of file attributes as storage channels. File 
attributes are items of information about a file that the operating system maintains in addition to 
the data in the file. Examples of other file attributes include length, format, date modified, and 
discretionary access control lists. The file attributes may be directly readable (as are file names), 
or their values may be indirectly inferred. Unlike file names, however, the values of most 
attributes are not directly modifiable by a process, and communicating via the attributes requires 
encoding the message to be sent in a form that uses the legal range of values of those attributes. 
For a process to change the file length, for example, the process may have to rewrite part of the 
file. This file length channel is limited to communicating a relatively small number of bits at a 
time, depending on the range of possible lengths. Changing the file format might be easy and 
direct, but the formats possible might be very few, leading to a rather narrow channel. 
Surprisingly, the access control list often provides one of the largest covert storage channels, 
since the list may be quite long and there might be few restrictions on the format of the user 
names on the list (see section 6.2 and figure 6.1). The values of the date and time when a file was 
last modified are usually difficult to control with any precision. The operating system usually 
updates the date and time at relatively long intervals, and the value may be no more accurate than 
to the nearest second. The bandwidth of such a channel can be no greater than one bit every 2 
seconds; nonetheless, over a long period of time, an undetected Trojan horse can patiently 
transmit a significant amount of information by modifying a file at specific intervals. 
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Object Existence 
 
File attributes are storage objects that are indirectly writable. Storage channels also include any 
items of information about the file that can be deduced by a process. For example, the fact that a 
given file exists is a bit of information; and even if you have no access to any of a file’s 
attributes, you may still be able to infer whether a particular file exists. A simple way to do so 
would be to try to access the file and check the returned status condition. Some systems 
obligingly tell you whether your problem is file does not exist or you have no 
access to the fi1e. If the system can support ten file creations or deletions per second, 
the Trojan horse can communicate ten bits of information per second. 

If the system does not tell you directly whether a file inaccessible to you exists, you might try 
to create a new file with the same name as that file. If the system gives you a 
namedup1ication or other error, you will have confirmed that the file already exists. If the 
system allows you to create and use the new file, you will have established that the file did not 
previously exist. 

The single bit of information about existence of a file may not seem like much information, 
but some systems strive to provide high-speed file creation and deletion. Thus, though the 
information channel is narrow, its bandwidth can be high, especially if multiple files are used. 
 
Shared Resources 
 
The use of file existence as a one-bit covert storage channel is an example of a more general 
single-bit channel involving shared or global resources. Almost every system contains certain 
resources that are pooled among a number of active processes or users. Such resources include 
disk blocks, physical memory, I/O buffers, allocated I/O devices, and various queues for shared 
devices such as printers and plotters. Without per-process quotas, these types of shared resources 
can be consumed by a single process. For example, one process could submit so many print jobs 
that the printer queue fills up. When that happens, other processes on the system simply receive 
some kind of error condition when they try to submit a job. A one-bit channel exists between the 
sending process that fills the queue and the receiving process that gets the error message. The 
sending process can transmit multiple bits in a serial fashion by alternately submitting and then 
canceling the last job on the queue. Some systems tell a process how many total jobs there are on 
a printer queue; communication via the queue is then easy and does not require filling the whole 
queue, and the information about the total number of jobs provides a channel that is wider than a 
single bit. 

One way to minimize the queue overflow channel (or any shared resource exhaustion 
channel) is to use a per-process quota. In our printer queue example, a limit could be imposed on 
the number of jobs that any one process might place on the queue. If the system guarantees that a 
process will always be able to submit jobs up to its quota, then for all practical purposes the 
queue appears to each process as a private, queue, revealing no information about other 
processes’ jobs on the queue. But a queue structured in this way is not actually a shared queue, 
and all of the benefits of resource sharing are eliminated when resources are statically allocated 
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to each process. Nonetheless, static allocation is often necessary to ensure complete. closure of 
certain high-bandwidth shared-resource covert channels. 

A way to reduce the bandwidth of resource exhaustion channels is to limit the rate at which a 
process can discover that the resource is exhausted. Usually a process cannot directly ask how 
much of a shared resource is available. The only way it can determine how much space is on a 
printer queue is to see how many jobs it can submit to the queue. When the process reaches the 
end of the queue, the system can delay the process for a certain amount of time before allowing it 
to attempt to put additional jobs on the queue. Since it is highly abnormal for a process to 
constantly bang away at the end of a queue, delaying a process trying to do so–even for several 
seconds-is unlikely to affect the performance of any legitimate operation. 

One problem with such a bandwidth-limiting scheme is that the process may have access to 
many different shared resources. Therefore the limit must be based on the total number of 
resource exhaustion conditions that a process may be able to detect, not just on each resource 
individually. We also have to worry about the possibility that several processes can work in 
collusion, thereby multiplying the bandwidth by the number of processes. 

Probably the simplest way to address the shared resource channel is to audit each case of 
resource exhaustion, in order to detect an excessive number of such cases within a given time 
interval. The threat of audit and detection might well suffice to deter a penetrator from using this 
technique. While auditing is usually not a reliable method of distinguishing between legitimate 
and illegitimate actions, resource exhaustion happens rarely enough that establishing a relatively 
low audit threshold (minimum number of incidents to trigger an audit) could be a valuable 
security measure. 
 
7.2.2 Covert Timing Channels 
 
Because the usefulness of covert storage channels is measured as a bandwidth, in bits per second, 
people often mistake certain types of storage channels for timing channels. In order for a covert 
channel to be classified as a timing channel, a real-time clock, interval timer, or the equivalent 
must be involved. The clock allows the receiving process to calculate relative amounts of real 
time between successive events. A channel that does not require a clock or timer is a storage 
channel. The distinction is important because, without any way for a process to determine the 
passage of time, a timing channel disappears. Storage channels, on the other hand, are not 
affected when access to a clock is eliminated. 

A simple example of a timing channel is the percentage of CPU time available to a process. 
A Trojan horse in one process transmits 1’s and 0’s by using up varying fractions of CPU time at 
1-second intervals in a busy loop. The receiving process reads the bits by counting the number of 
its own loops that it is able to perform in each interval. If these two processes are the only ones 
running on the machine, the receiving process’s loop count in each second is a direct function of 
the sending process’s CPU utilization. The bandwidth of this channel depends on the range of 
values for the loop count that can be predictably communicated. 
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Timing channels tend to be noisy because they are affected by processes on the system other 
than the ones actually communicating. The noisier a channel is, the lower the effective 
bandwidth becomes; however, it is usually possible to minimize the noise caused by other 
processes by running late at night, when few other processes are running. An effective Trojan 
horse can choose the times it runs. 

It is often suggested that timing channels be eliminated by removing the ability for a process 
to read a clock. Our example above does not work if the receiving process has no time reference. 
But even if the receiving process has no direct access to a clock, there are ways for it to 
determine passage of time. For example, the process can measure 0.1-second intervals by 
counting characters received from a terminal while the user (who is the penetrator on the 
receiving end) holds down a repeat key that enters characters at the fixed rate of 10 per second. 
The process may even be able to manufacture its own clock by counting the number of disk 
accesses it can make or the number of characters it can write to a terminal between specific 
events to be timed. On multiprocessor systems, one process can use program loops to determine 
time intervals on behalf of another process. Even if none of these techniques works, the user can 
always operate a stopwatch at his or her terminal and count the seconds between events. 

Timing channels are insidious for two reasons: there are no formal techniques for finding 
them in a system; and there is usually no way to detect their use and hence to audit them. 
Whereas storage channels can often be countered by controlling the rate at which specific, 
identifiable objects in the system are modified, timing channels do not involve observation of 
any identifiable objects. 

Computer security technology has little to offer those who wish to find and block timing 
channels. Computer security projects to date have failed, by and large, to address the problem in 
a systematic way. The best advice for planners designing a new system would be to understand 
the timing channel problem from the start of the system design and to be constantly aware of the 
threat. Most obvious channels are, uncovered during the design and development process. You 
cannot completely close many of the channels you find, but at least you will have a good idea of 
where they are and can deal with them on an individual basis. 

At the current state of the art in secure operating systems, the timing channel is far more 
difficult for a penetrator to exploit than many other avenues. Perhaps someday, when these other 
routes are closed, we will have better solutions to the timing channel problem. 
 
7.3 TRAP DOORS 
 
The trap door (Karger and Schell 1974) is an illicit piece of software in an operating system that 
provides a way for a penetrator to break into the operating system reliably and without detection. 
The trap door is activated by a special command or unlikely sequence of events that the 
penetrator can cause at will and that no one else is likely to discover by accident. A trap door is 
only useful in software that runs with privileges that the penetrator does not otherwise have; 
otherwise, the trap door does not give the penetrator anything not already obtainable. For this 
reason, we usually think of trap doors in operating systems and not in applications. 
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A trap door is much like a bug in an operating system that permits a penetration. Indeed, a 
penetration might be necessary to install the trap door in the first place. A trap door may also be 
installed by a dishonest employee of the vendor of the operating system. The techniques for 
inserting trap doors are much like those for inserting Trojan horses, but they are more difficult to 
carry out in an operating system. 

Unlike Trojan horses and covert channels, trap doors can only be installed by exploiting 
flaws in the operating system or by infiltrating the system’s development team. Hence, trap doors 
can be avoided by employing the usual techniques for developing reliable trusted software: no 
special techniques are required. 
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 Chapter 8 

Hardware Security
 Mechanisms 

It is fortunate that most of the hardware mechanisms needed to implement a secure system are 
also required by conventional operating systems; otherwise, there would be little hope of seeing 
these features on today’s machines. This is not a coincidence: good protection features are 
essential to an efficient and reliable operating system. Even if security is not a major concern, 
systems must provide reasonable protection against errant user software. Many of today’s 
sophisticated features that protect against malicious software are logical extensions of early 
features designed simply to contain bugs in benign user programs. 

Some hardware security features are useful only for highly secure systems (such as the 
security kernel), but most are commonly found in machines from mainframes through 
microprocessors. Some features, though eminently practical, have never been implemented in 
exactly the form discussed here, although approximations exist. Numerous theoretical features—
particularly features pertaining to so-called “capability machines”—are little-used or highly 
experimental (despite being academically interesting and being studied by all computer science 
students). Such features are given only token consideration in this chapter. 

This chapter is not written for machine designers, although anyone responsible for the 
hardware architecture of a new machine should understand the mechanisms discussed here. 
Instead, it is for software designers who have the option of choosing one of several machines for 
an application or who want to understand how to use specific security mechanisms. You will be 
most likely to use these features if you are developing an operating system or application that 
runs on a bare machine, since most of the features are intended to be used by the lowest levels of 
the system. Many of the security features in some recent microprocessors (for example, the Intel 
80286 and Motorola 68000 families) are not used by most of the popular personal computer 
operating systems (Unix and MS-DOS), because the operating systems evolved on earlier 
hardware architectures that had few security features.  

If you have been exposed to Honeywell’s Multics operating system, you will notice a strong 
Multics slant to much of this chapter. Multics is one of the first large commercial operating 
systems to have included security as a major goal from its inception. The protection features of 
the Multics processor were tailored to the needs of a general-purpose operating system, and 
many of the security features offered by other machines have been influenced by the Multics 
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architecture. Multics is an excellent example to use when discussing protection features because 
the protection features of most other machines are a subset of the Multics features. Furthermore, 
much of the terminology and philosophy developed in conjunction with the Multics project is 
useful for discussing hardware security features. The features discussed here should not, 
however, be taken as a description of Multics. Some features are not in Multics, and those that 
resemble Multics have been simplified for the purposes of this chapter. Some concepts described 
here are also borrowed from Honeywell’s SCOMP, a minicomputer that employs many of the 
Multics features but on a far smaller scale (Fraim 1983). The SCOMP hardware also addresses 
some areas, such as mapped I/O, that Multics does not. 

For a complete description of Multics and its protection features, as implemented on the GE-
645 processor, see the book by Organick (1972). That processor was redesigned as the 
Honeywell 6180, whose major new feature was hardware protection rings (Schroeder and Saltzer 
1972). 
 
8.1 HARDWARE/FIRMWARE/SOFTWARE TRADE-OFFS  
 
Many security mechanisms that were once implemented in software are now implemented in 
hardware. Some features remain in software, either because of their complexity or because the 
hardware designers do not want to lock in a particular implementation. For the most part, the 
distinction between firmware and hardware is not important to the understanding or use of 
security features, and we shall largely ignore the difference. If you should choose to do any 
verification of the hardware or firmware, however, the verification techniques are apt to be quite 
different. See chapter 12 for a discussion of verification. 

You do not need sophisticated hardware to build a secure operating system. Indeed, 
theoretically, a secure operating system can be built on a very primitive processor. Hardware 
security features are favored over software features for three reasons: 

1. The features are alleged to be more reliable and to be correctly implemented. 
2. Putting the feature in hardware yields a much cleaner architecture. 
3. Hardware permits higher performance (speed of execution) than does software. 

Reason 1 is largely a misconception: hardware is fundamentally no more correct than 
software; it seems more reliable because it performs simpler functions. If an entire operating 
system were to be implemented with transistors and wires it would have at least as many bugs as 
the equivalent software (and it would be much harder to fix). Furthermore, unlike software, 
hardware is subject to random failure of parts, making it less reliable as it ages. The only way in 
which hardware might be considered more reliable is that it cannot be damaged by errant 
software, but it is no more reliable in this sense than is software in read-only memory. 

Reason 2 is a valid reason that directly affects security. A well-structured architecture 
increases the reliability of the overall system. 
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Reason 3 is also valid. While performance is only indirectly related to security, nobody is 
likely to use a security mechanism that unacceptably degrades performance. Performance is one 
of the primary reasons for putting security features in hardware. 
 
8.2 PROCESS SUPPORT 
 
A fundamental requirement for a secure operating system is that the system isolate users from 
one another while permitting exchange of information through controlled paths. All modem 
operating systems support some notion of a process as a surrogate for a user. In a time-sharing or 
multiprogramming system, each user may have several processes operating on his or her behalf. 

Because multiprogramming is central to the construction of a secure multiuser operating 
system, it is important that a process switch be very fast. In a system supporting many users at 
once, the process switching overhead can have a significant effect on performance. If this impact 
is great enough, software developers may be tempted to avoid process switching where possible.  

One common way to minimize process switching is to use a single process for several 
simultaneous users, rather than giving each user a separate process. An example is a database 
management system that interacts directly with a number of users who submit queries to a 
common database (see figure 4-2). The danger of multiplexing a number of users onto a single 
process is a greatly reduced level of security, because the hardware’s process isolation 
mechanism is no longer used for user isolation. 

The minimum hardware support required for multiprogramming is the ability to capture the 
internal state of a process so that a suspended process can later be restarted (“dispatched”). This 
internal state includes at least the program counter and the processor registers visible to pro- 
grams. Early processors required software to store and reload these registers one at a time. Most 
processors today perform a bulk load and restore with a single instruction. 

There must also be some way of saving the addressable memory (address space) of the 
process. On simple machines this may involve keeping a copy of the base and the bounds of each 
process’s address space and loading these values into the appropriate registers when the process 
is dispatched. The memory itself may stay put, or can be transferred (“swapped out”) to disk by 
the operating system when the process is not running. 

On machines with more complex memory management, involving segmentation or demand 
paging when a process’s address space consist., of noncontiguous pages in physical memory, 
much more information must be restored when a process is dispatched. Originally machine! 
required software to load a series of memory descriptor registers, individually or in bulk. More 
advanced machines use a single descriptor base register that points to a table of memory 
descriptors. Under this arrangement, a process restart only requires software to load the single 
descriptor base register; however, the process may still be slow to start up if hardware must fetch 
many descriptors from memory as the process references different portions of its address space. 
A mechanism to retain active memory descriptors in a cache across process switches is therefore 
useful. The various technical terms in this and the previous paragraph are discussed more 
completely in the subsection of section 8.3. 
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8.3 MEMORY PROTECTION 
 
Probably the most fundamental hardware requirement for a secure system is memory protection. 
On systems that run a single process in memory at a time, on behalf of a single user, memory 
protection is needed to prevent the user’s programs from affecting the operating system. On 
systems with multiprogramming, memory protection also isolates the process’s memory areas 
from each other. The mechanisms behind memory protection go hand-in-hand with memory 
management mechanisms designed for efficient use of memory. We shall first cover some of the 
important aspects of memory management hardware, and then consider how the features support 
memory protection. 

 
8.3.1 Virtual Address Space 
 
A process in execution has a private address space that contains its programs and data. This 
address space does not include secondary storage (disk) that the process may access using I/O 
instructions. Each word in the process’s address space has a fixed virtual address that the pro- 
grams in the process use to access the word. Most systems support some type of virtual memory 
that enables the physical location of a word with a given virtual address to vary, possibly 
changing each time the process is dispatched.  

In executing a memory reference instruction, the hardware computes the virtual address that 
identifies the target location of the reference, using a value or offset contained in a field of the 
instruction plus some index registers and address registers. The virtual address is then translated, 
or mapped, by hardware into a physical address. This translation is transparent to the program. 
Early machines did not use the terms virtual address and virtual memory, but we shall apply the 
terms liberally to any system that maps memory addresses. 

Machines that support indirect addressing determine the target virtual address by following a 
chain of one or more pointers (virtual addresses stored in memory), as specified by the 
instruction. The effective address is the virtual address of the target location. 
 
8.3.2 Virtual Memory Mapping 
 
The earliest systems that employed any kind of memory management required a process’s 
address space to be in contiguous physical memory locations. A base register pointed to the 
beginning of the physical memory area, and a bounds register pointed to the end or indicated the 
size of the area. A user program running in the process could not reference outside these limits 
and could not modify the registers. By automatically adding the value of the base register to all 
memory addresses, hardware obviated the need for programs to be concerned about the absolute 
location of the address space. 

In a large system where many processes with address spaces of different sizes are swapped in 
and out of memory, the requirement that a process’s memory be contiguous would result in 
fragmentation of physical memory. More efficient use of physical memory is achieved by 
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dividing physical memory into a number of pages of fixed size, and allowing a process’s address 
space to be scattered among these pages. Under this arrangement, swapping in a large process 
only requires finding enough total unused pages, not a single large contiguous space. 

Scattering a process’s virtual memory among many physical pages requires a set of hardware 
mapping registers, each of which points to the start of a page in physical memory that is 
accessible to the process (fig. 8-1). The total number of pages available to the process may be 
limited by the number of mapping registers, or it may be specified in a single bounds register. 

 
Figure 8-1. Mapping Pages in Virtual Memory. The page number portion of the virtual 
address identifies the mapping register to be used in finding the location of the page in 
physical memory. Pages 2 and 5 in physical memory are unused by the current 
process. 
 

When an instruction references memory, it must indicate which mapping register or which 
page is to be used. If we view the virtual memory of a process as a linear address space with 
locations numbered beginning at zero, the page selection is done automatically by hardware and 
remains transparent to software: a machine instruction specifies a virtual address of a location in 
virtual memory and hardware determines the page number or mapping register number by 
examining the high-order bits of the virtual address. To the hardware, the virtual address has a 
two-dimensional structure: 

 
In a paged system, when a process is ready to be dispatched, the operating system determines 

the correspondence between virtual and physical page numbers and sets up a table of page 
descriptors in memory. A page descriptor is a pointer to a physical page that contains some 
additional control information. As the process is dispatched, software or hardware loads the 
descriptors into mapping registers (or into a cache) for high-speed access by hardware on each 
memory reference. The loading of registers from the descriptor table may be dynamic—done 
transparently by hardware the first time each page is referenced by a program. 
 
8.3.3 Demand Paging  
 
Some modern machines permit a process to have a virtual memory that is many times the size of 
the physical memory of the machine; to accomplish this, a demand paging mechanism is used to 
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move pages between secondary storage and physical memory, as required. The process must be 
able to be run without keeping track of which pages are memory-resident. The operating system 
constructs a table of page descriptors for the entire virtual memory of the process, setting an “on- 
disk” flag in the descriptors whose pages are not in physical memory (fig. 8-2). When the 
process references a page, the address translation mechanism sees the “on disk” flag and traps to 
the operating system, signaling a page fault. The operating system finds a free page in physical 
memory, reads in the page from disk, resets the descriptor to point to the page, and resumes 
execution of the process at the point of fault.  

 
Figure 8-2. Demand Paging. In a demand-paged system, some of the pages may not 
be in memory. The operating system takes care of reading the contents of the 
appropriate page from disk, as needed. Shown are two processes that share some of 
the same physical pages. 
 

In order to minimize disk access time, pages in a demand-paged system tend to be small—
equal to the size of a disk block, such as 512 or 1,024 words. Small pages also allow a process to 
run with a small amount of reserved physical memory. In a non-demand-paged system, where a 
process’s entire address space must reside in physical memory, page size is less critical. The 
small size of pages limits their usefulness as a basis for memory protection, as we shall discuss 
more completely in section 8.3.5. With declining memory costs and faster disks, these trade-offs 
are changing. 
 
8.3.4 Segmentation 
 

In most systems, the virtual address space of a process is divided into at least two distinct 
portions, or segments, one for user programs and data (called user space) and the other for the 
operating system (system space). The partitioning is usually simple and static. In figure 8-2, for 
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example, all virtual addresses for pages 0–4 are in user space, and virtual addresses for pages 5–8 
are in system space. Typically, one copy of the operating system (code and data) lies in memory, 
shared by all processes. The figure shows the system space for both processes occupying the 
same physical pages. The user space pages are separate, although some systems allow processes 
to share selected user pages. 

The two-segment scheme is common but limited. The most flexible architecture, the 
segmented virtual memory, allows many segments to be included in each process, any of which 
can be shared. The virtual address is a two-dimensional value containing a segment number and 
a segment offset: 

 

 
Each segment contains an independent identifiable object—a procedure, a large program, the 

process stack, a shared data area, or the like—and segments need not all be the same size (though 
there is a maximum, based on the size of the segment offset field). When a process is stepping 
through consecutive locations in a segment (during program execution, for example, there is no 
notion of overflowing into the “next” segment when the end of the segment is reached: the 
segment number of an object bears no relationship to neighboring segment numbers. If the two-
dimensional virtual address is treated as a single large number, the virtual address space can be 
described as being full of holes, each corresponding to the addresses that lie beyond the end of 
one segment and before the beginning of the next. Though a large number of unused virtual 
memory locations lie at the end of each segment, no physical memory is wasted by the existence 
of these holes. 

Some machines have memory segments but cannot conveniently map segments to distinct 
objects, either because the hardware supports too few segments or because the operating system 
architecture does not permit it. The segmentation is simply a memory-partitioning convenience, 
and memory addresses flow continuously from one segment into the next. 

A translation mechanism for virtual memory addresses that accommodates variable-size 
segments in conjunction with demand paging requires an extra level of memory descriptor, as 
shown in figure 8-3. Notice that the segment offset in the virtual address is composed of a page 
number and a word number. Instead of there being one page table for the whole process, as was 
the case in figure 8-2, there is a variable length page descriptor table for each segment, and each 
process has a variable number of segments. The fixed-size pages permit efficient use of physical 
memory, and the variable-size segments permit efficient sharing of segments among processes. 
Figure 8-4 illustrates the use of a shared segment. Notice that the segment number of the shared 
segment can be different for each process. This permits each process to lay out its virtual address 
space as it chooses, without having to establish any “agreements” ahead of time with other 
processes that share the same segments. 
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Figure 8-3. Virtual Address Translation with Segments. A process has a descriptor 
base register that points to the segment descriptor table for the process. In a virtual 
address, the segment number selects a segment descriptor that points to the page table 
for the segment. The high-order bits in the segment offset constitute the page number, 
which points to a page descriptor that identifies the location of the page in physical 
memory. The low-order bits in the segment offset constitute the word number, which 
identifies the location of the word within the page. 
 

DESCRIPTOR BASE   SEGMENT NUMBER   
SEGMENT OFFSET   

PAGE NUMBER  WORD NUMBER   

VIRTUAL ADDRESS   

pointer to page table   

pointer to page   

word referenced   

SEGMENT DESCRIPTOR TABLE    
(per process)  

PAGE DESCRIPTOR TABLE    
(per segment)  

MEMORY PAGE    



 

 83

 
Figure 8-4. Sharing Segments in a Virtual Memory. Each process has its own 
segment descriptor table that specifies page tables for the segments and access modes 
to the segments. The shared segment ALPHA has one page table, used by both 
processes. ALPHA is referenced as segment number 3 by process A and as segment 
number 6 by process B. 
 
8.3.5 Access Control with Memory Management 

Where the address space is divided into two segments—system and user, as in figure 8-2—
the process must not be allowed to write into system space when running unprivileged programs 
in user mode. When running in system mode, the process is permitted to read and write all of 
virtual memory. A context switch from user mode to system mode is accomplished by using a 
special instruction that transfers control to one of a set of restricted locations in system space. 
Since the partition between system space and user space is static, hardware can easily enforce 
these access restrictions based on the privilege mode (context) of the process. For greater 
flexibility, however, it is desirable to allow the system software to specify exactly which pages 
of the process’s address space are readable and/or writable in each context. 

Before machines provided transparent memory management, access decisions were based on 
the identity of the physical page. Each physical page was labeled with information such as a key 
and some access bits indicating whether the page was readable or writable. Each process was 
assigned a key that had been loaded by the operating system into a process status word. The 
hardware checked the key on each memory reference, prohibiting access unless the process 
status word key matched the memory key and unless the access bits matched the desired read or 
write access mode. A design similar to this was used on IBM 360 machines. 

The approach of associating access information (keys and access bits) with physical pages 
becomes unmanageable when pages are not fixed in memory for the life of a process. Each time 
ownership of a physical page changes (as when a page is swapped), the access information has to 
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be modified. And, if two processes share a page—one for reading and one for writing—the 
access information has to be changed on each process switch. 

With a descriptor-based address translation mechanism, where each process has a private set 
of descriptors, a process’s access modes to a page or segment of memory are specified in the 
descriptors. There may be two sets of access modes, one for use while the process is running in 
user context and the other for use while the process is running in system context: 

 
where the fields W, R, and E are single bits that indicate whether the process has write, read, or 
execute access to the specified segment or page of memory. Because the descriptors are already 
fetched during address translation, descriptor-based access control imposes little or no additional 
overhead in process switching, in context switching within a process, or in swapping processes 
into or out of memory. 

In figure 8-3, where there are two levels of descriptors, the access information should be 
contained in the segment descriptors, not in the page descriptors. Otherwise, it would not be 
possible to specify different modes of access for two processes sharing the same segment. 

Use of Virtual Memory to Map Objects 
 
When a user program reads a file, it asks the operating system to carry out an I/O operation that 
reads the contents of a block of the file into a buffer somewhere in the user space of the process’s 
virtual memory. Another way for a program to access a file is for the operating system to map 
the file directly onto the virtual address space of the process. The file (or a portion of it) is paged 
into memory and the words in the file become accessible through memory reference instructions, 
just as if they were words in the process’s virtual memory. The process must keep track of the 
starting virtual address of the file; it then computes the virtual addresses of words in the file as 
offsets from that starting address. In such an architecture, the entire file system is potentially part 
of each process’s virtual memory, although a single process will only have a small number of 
files mapped at any one time. 

The idea of translating a virtual address into a location in a file is not unlike the concept of 
demand paging, by which portions of a process’s virtual memory, are kept on a paging disk and 
copied into physical memory when referenced. The difference is that the process specifically 
requests that a particular file be mapped into a particular range of virtual memory locations. The 
major benefit of mapping files directly into virtual memory is that no privileged I/O is required 
to access a file once it is mapped: the normal demand paging and memory management 
mechanisms are used. Random access to any location in the file is also made easier, and 
performance improves somewhat because a system call is not required on each access; these 
benefits, however, are not security concerns. 
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The technique of mapping files into virtual memory, although routine in Multics, is rare 
elsewhere. (The feature is available in VMS and probably in other systems, but it is not routinely 
used for all file accesses.) Programmers traditionally use read and write system I/O calls for 
accessing files; giving programmers a way to access a file as a long string of characters or as an 
array of words requires rethinking how applications are designed. To be practical, this technique 
must be well integrated into the programming language. 

 The simplest way to implement file-to-virtual-memory mapping is to associate a single 
segment with an object. Thereafter, the process need simply keep track of the segment number of 
each file it has mapped and need not reserve virtual memory space for objects prior to mapping. 
Associating hardware segments with system storage objects has advantages from a security 
standpoint, because the hardware’s access control mechanisms are used without additional 
software control. 

In order to represent objects as segments efficiently, however, the range of possible segment 
sizes must span several orders of magnitude. It a typical object exceeds the size of a maximum-
length segment, a mechanism must be available for building large objects out of several 
segments, and this means that direct access to a word in an object cannot consist of a simple 
offset from the beginning of a segment. Mapping multisegment objects onto consecutive 
segment numbers in virtual memory leads to an awkward software structure, although it is done 
in the SCOMP (with considerable difficulty) because of the small segments. The small segments in 
the Intel 80286 cause similar programming difficulties. Even Multics, which supports segments 
of up to 218 36-bit words (over 1 million characters), has a multisegment file facility for the 
occasional very large file that will not fit into a segment. These multisegment files are not 
mapped into contiguous segments, so all applications that might potentially use them must use a 
special application package that provides an I/O-style interface for file access rather than direct 
memory reference—thereby defeating some of the performance advantages of direct memory 
reference to files. 

Another performance problem that occurs with multisegment files managed by applications 
is the need for a process to initiate (map for the first time) a number of segments each time the 
file is opened. Segment initiation is a relatively slow process, comparable in overhead to the 
opening of a file in conventional file systems. Moreover, the operating system (which treats each 
segment independently and knows nothing about the relationship between segments in a 
multisegment file) must maintain separate access control information for each segment in the 
file, even though all segments are accessed identically. These performance and overhead 
problems have no adverse effect on security per se, except that the poor performance of such 
features might drive people to find shortcuts that bypass the security controls. 

The preceding discussion indicates that, if you are to represent files as segments efficiently, a 
reasonably large file should fit into one segment. It is also necessary that the system support 
enough segments for each process to free most processes from concern about terminating 
(unmapping) segments no longer in use. If a process runs out of segment numbers as it brings 
new objects into its address space, the process must find a segment to terminate that it knows is 
not needed by any programs in the process. Determining which segments are no longer in use 
and avoiding inappropriate reuse of segment numbers for deleted objects pose a difficult problem 
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and an undesirable complication—complete cooperation by user applications is required. For 
example, when a program is finished with a file or segment, that program cannot simply unmap 
the segment because other programs in the process might still retain pointers to virtual memory 
locations in the original segment If a new file is later mapped into the same virtual memory 
locations thereby inheriting the same segment number, those other programs, using their stored 
pointers, will access the wrong file. As in the case of small segments, these problems are security 
issues only to the extent that they may so complicate the applications that people will seek 
shortcuts that bypass the controls. 

In addition to mapping files into virtual memory as segments, executable programs can also 
be mapped. On most systems, executable programs are in fact stored in files. Usually, however, 
all separately compiled programs that will run in a process must be linked in advance into one 
large executable image that is stored in a single file or series of segments. At execution time, the 
image is mapped into virtual memory as one or more memory segments. From an access control 
standpoint, the image is one object to which the process has execute access permission, and no 
finer-grained control on the programs within the image is enforced. 

Dynamic linking is a sophisticated capability used in Multics that allows separately compiled 
programs to remain in individual segments without prior linking. The first time a program is 
called by a process, the segment containing the program is mapped into the virtual address space, 
and all linking between the process and the program takes place at execution time.1 An 
advantage of dynamic linking (and the ability to retain each program in its own segment) is that 
the protection attributes of the program (obtained from its segment) remain enforced by 
hardware, thereby permitting different programs in the same process to have different attributes. 
The importance of this will become more apparent as we discuss execution domains in the next 
section. 

8.4 EXECUTION DOMAINS 

Hardware features that support execution domains are as pervasive as memory management 
features. Even systems that lack memory management or multiprogramming usually support 
execution domains. Our use of the term execution domains includes commonly used terms such 
as execution mode, state, and context. 

When there are two domains, system and user, the domains are hierarchical. The more 
privileged domain has access to all of memory and all instructions, and the less privileged 
domain has access to a portion of memory and a subset of the instructions. A three-domain 
machine is likewise hierarchical. Both two- and three-domain machines are special cases of a 
general hierarchical domain architecture based on protection rings, so called because a picture of 
the hierarchy is shown as concentric rings (fig. 8-5). The lowest-numbered, innermost ring has 
the most privilege; and the highest-numbered, outermost ring has the least. Each ring has access 
to at least the same memory as the next less-privileged ring (fig. 8-6). Though Multics has 
proposed instituting as many as sixty-four rings, rarely are more than three or four rings used. 

                                                 
1Because of the performance overhead of dynamic linking, even Multics provides a prelinking or binding facility for 
collections of programs that are routinely used together. 
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The International Computers Limited (ICL) 2900 mainframe supports sixteen rings, and most of 
them are used on the VME/B operating system (Parker 1981). 

 
Figure 8-5. Hierarchical Domains. The rings of privilege show the most privileged ring 
in the center, with less privileged rings as we move outward. The operating system 
occupies the innermost rings, users do their programming in intermediate rings, and 
certain restricted users might be given access to the outermost rings only. 
 

 
Figure 8-6. Hierarchical Domain Memory Access. The most privileged domain (ring 
0) can access all of memory, while the least privileged domain (ring 4) has the most 
restricted access. Memory accessible to the less privileged domains is segregated by 
process, whereas the more privileged domains tend to share the same memory across 
all processes. 
 

It is easy to understand the purpose of having two rings: to separate the operating system 
programs from user programs, but it is less easy to see the purpose of having three or more. One 
way of viewing rings is in terms of scope of control. The innermost ring contains the operating 
system that controls the whole computer system. Outside it might be a ring in which large 
applications—such as database management systems and transaction processing monitors—are 
run. These large applications control various user applications in an outermost ring. 
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The important security concept here is that the domain mechanism protects each ring from 
those outside it and allows each ring to control applications efficiently in the less privileged 
rings. The process isolation mechanism is orthogonal to the domain mechanism: a given process 
may run in any one of several rings at any one time, moving from ring to ring during execution. 
When a process is running in a given ring, that process is protected from damage by other 
processes running in the same ring because the system normally isolates processes from one 
another. On the other hand, the innermost rings are the ones most likely to choose to share 
system-wide data or data belonging to multiple users; and in a given ring, the processes are only 
isolated to the extent that the software in that ring chooses to keep its data separate from the data 
of other processes. 

Hardware that implements a two-domain architecture needs a single process state bit: on if 
the process is in system domain, and off if it is in user domain. As was discussed in section 8.3, 
the processor determines which segments in memory are accessible in each domain by using 
information in descriptors that indicate access modes for each segment in each domain: 

 
If hardware supports many hierarchical domains, maintaining a separate set of W, R, E bits in 

each segment descriptor for the access modes for each ring is unwieldy. Fortunately, there are 
shortcuts. We know that, if ring n has a given mode of access to a segment, all rings 0 through n 
– 1 also have that mode of access. Therefore, for each type of access mode, it is necessary to 
specify in the descriptor only the greatest ring having that mode of access. Instead of maintaining 
three access mode bits per ring, we have three fields, each containing a ring number (one for 
each of the access modes): 

 

 
We call these three ring numbers (R1, R2, and R3) ring brackets, where 

0-R1 is the write bracket. 
0-R2 is the read bracket. 
0-R3 is the execute bracket. 

For example, the set of ring brackets (4, 5, 7) within a segment descriptor would tell us that 
the segment was writable from rings 0 through 4, readable from rings 0 through 5, and 
executable from rings 0 through 7. As a simplifying assumption, we can assume that the ring 
brackets always satisfy the relation 

R1 ≤ R2 ≤ R3 

since there is little reason to prevent a domain from reading a segment that it is allowed to write, 
or to prevent it from executing a segment that it is allowed to read. It is dangerous (and pointless) 
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for a process to execute a segment from an inner ring that is writable from a less privileged ring, 
so it is reasonable to restrict the execute bracket to the range R1–R3; however, such a restriction 
only serves to limit the damage caused by errors in an inner-ring program and is not, strictly 
speaking, a security requirement. 

A segment with brackets (0, 0, 0) is only accessible from within the innermost ring, while a 
segment with brackets (7, 7, 7) is readable and writable from all rings. Since ring 0 is the most 
privileged, there is little security reason to prohibit access to a segment from a user in ring 0 
(though, for reliability, Multics does allow ring 0 to write-protect its segments from itself). 

As we saw in figure 8-4, each process that uses a shared segment has its own segment 
descriptors and (possibly different) set of access modes to the segment. It might at first seem 
useful to allow each process to have a different set of ring brackets for a given segment, so that 
two processes that share a segment would have different access to the segment in different rings. 
But the set of ring brackets is better treated as a system-wide attribute of the segment—one that 
defines the domains in which the segment may be used, regardless of which process uses the 
segment. Instead of giving each process a different set of ring brackets for a segment, we can use 
the same set of ring brackets for all processes and alter the three access mode bits W, R, and E in 
situations where access differs per process. The access mode bits restrict access to a segment in a 
way that is more restrictive than that implied by the ring brackets. The segment with ring 
brackets (4, 5, 7), for example, is writable from rings 0 through 4 only if the write access mode 
bit is also on. The access control information in the segment descriptor thus includes one set of 
ring numbers and three access mode bits: 

 
Each process’s segment descriptor table contains this information for each segment; and only the 
W, R, E bits may differ among processes sharing the same segment. 

8.4.1 Transfer of Control Across Domains 

In executing a program, the processor fetches instructions from the sequential virtual memory 
locations indicated by a program counter. This sequential flow is altered when the processor 
encounters one of three types of transfer instructions that load a new virtual address into the 
program counter: 

• jump changes the program counter to a specified virtual address. 
• call saves the program counter on the process stack and changes the program counter to 

a new value. 
• return restores the program counter to a value previously saved on the stack. 

In general, these instructions may specify arbitrary locations in virtual memory. Whether 
instruction execution at that new location takes place or not depends on whether the segment or 
page of virtual memory is marked executable and possesses the proper ring brackets. 
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In a system with two domains and two segments—system space and user space—a process 
running in the user domain that performs a simple jump to a random location in system space 
does not change domains. While the locations in system space may be addressable and 
executable by a process running in the user domain, the process will have no system privileges, 
and the system code will eventually fail when it attempts an access that is not permissible from 
user domain. A domain change is only permitted through a call to prescribed legitimate entry 
points in system space. Most machines implement such a call as a trap to a predetermined 
location or to a transfer vector in system space. Return to user domain is accomplished with the 
return instruction. Hardware does not need to restrict the target location of return, but of 
course; you cannot use a return instruction to switch from user domain to system domain. 

In a ring architecture, the processor maintains a current ring of execution in place of a single 
user/system mode bit. A domain change; can only be accomplished by transferring control 
through a call instruction to prescribed locations in special gate segments that are designated 
as entry points into an inner ring. The reason for designating some segments as gates is to 
prevent a program from calling into a inner ring and executing at an arbitrary location. The 
single-bit gate indicator, along with the new ring of the segment, is specified in the segment 
descriptor along with the other access control information: 

 
The permissible locations in the gate segment where entry is allowed may be specified in 

additional fields in the segment descriptor (Multics has a call limiter field that is the maximum 
address to which control can be transferred), but simply restricting entry to location zero of the 
gate segment is adequate because multiple entry points can be designated by values passed in 
registers: 

Even though the ring brackets and mode bits of a segment may specify that the segment is 
executable (using any type of transfer instruction) from any ring, the current ring number will 
only change if the segment is a gate and a call instruction is used. 

Once a process has entered an inner ring through a gate, that gate segment may transfer 
control to other segments executable within the new current ring. Some nongate segments, such 
as language utilities, are useful in many rings and therefore have an execute bracket that spans all 
rings; the current ring of execution remains unchanged when those segments are called. Other 
segments are useful only in inner rings and may not be executable or callable from outer rings. 
From a security standpoint, an outer ring can only damage itself by calling or transferring 
illegally to an inner-ring segment, because the current ring number will not change and the code 
will fail. Still, there may be reasons to hide the contents of programs in inner-ring segments by 
preventing their execution as well as the reading of their contents (as when a program contains 
secret algorithms). 

Multics has the additional concept of a call bracket that specifies the maximum ring from 
which a segment may be called. Such a feature is more of a convenience than a requirement for 
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security, since in any case the gate procedure can check whether it has been called from a ring 
within a given range. 

8.4.2 Argument Passing Across Domains 

Figure 8-7 illustrates a tree of procedure calls that occur within a process as the process traverses 
several rings. For simplicity we will assume that each procedure is in its own segment, but 
nothing prevents us from prelinking several procedures in the same ring into a single segment. 

 
Figure 8-7. Domain Crossing. Each box represents a procedure within a system 
supporting hierarchical domains (rings). The tree of procedure calls spans user, 
operating system, and kernel rings. 
 

When procedure A calls procedure B, the current ring remains unchanged because both 
procedures are part of ring 4 (the user ring). Procedure B has the same access to information as 
procedure A. When procedure B calls procedure C or D, however, there is a ring change, and 
therefore procedure C or D can access additional information belonging to ring 2. Procedures C, 
D, E, and I are gate procedures into their respective rings. Also shown in the figure is a call 
from procedure H to procedure I that drops directly from ring 4 into ring 0. Finally, notice that 
procedure G is accessible from and runs within either ring 4 or ring 2. Its execute bracket 
includes rings 2 through 4. 

When A calls B, programming practices might dictate that B check the arguments passed to it 
for validity. While such checks might help find bugs in A, the checks do nothing for security 
because A and B have access to exactly the same information. Consequently, A can obtain access 
to any information used by B, whether or not B checks its arguments. 

On the other hand, procedure D, being a gate into ring 2, is responsible for ensuring that 
arguments passed by B cannot harm ring 2. Operating systems typically go to great lengths to 
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check arguments received from user programs. Many of the checks are simple, such as ensuring 
than an argument is within a prescribed range of values, and they are often used to catch errors in 
user programs rather than to protect the operating system. Other checks are security-relevant, 
designed to ensure that one user’s process cannot illegally obtain access to data belonging to 
another user, or to ensure that part of the operating system is not damaged. In order to prevent 
asynchronous modifications to arguments (by other processes or processors) between the time 
they are checked and the time they are used, arguments passed across a gate must usually be 
copied into a safe place within the ring of the gate. Argument copying and most general-validity 
and access checks are implemented by software in the gate procedure of the inner ring; the ad 
hoc nature of these checks means that hardware can do little to help. The software impact of 
argument validation is discussed in section 11.2. 

Hardware can help significantly in one particular type of argument validation, however: 
address validation. In figure 8-7, one way that ring 4 can use procedure B to obtain ring 2 
information is to fool D into copying that information into a place accessible to ring 4. As an 
example, assume that D is an I/O procedure that writes data from a buffer specified by the caller 
into a file also specified by the caller. The calling sequence from B to D might be 

call write_file (file-name, buffer_ptr) 

where the argument buffer_ptr is a pointer to (a virtual address of) the buffer. The buffer is 
supposed to lie in an area of memory accessible to ring 4. If write_fi1e does not check the 
validity of the buffer pointer, procedure B may be able to pass a pointer to an area of ring 2’s 
memory, thereby causing write_fi1e to write ring 2 data into the file. The normal hardware 
access control mechanism does not prevent a ring 4 procedure from constructing a pointer to ring 
2 data, nor does it prevent the data from being accessed by the ring 2 procedure. Therefore, 
procedure D must carry out some type of pointer validation on the buffer_ptr. 

Pointer validation done completely by software tends to be time consuming because of the 
number of steps involved: finding and examining the target segment descriptor, fetching indirect 
references, validating intermediate addresses, and calculating index information. For better 
performance, some hardware support for pointer validation is desirable when the machine has 
several rings, segmented virtual memory, multiple levels of pointer indirection, or indexing 
information in pointers. Machines that have just two or three rings and simple pointers in which 
a one-dimensional virtual memory is statically assigned to domains probably do not need 
hardware help. 

 There are two general types of hardware pointer validation schemes: explicit and implicit. 
The explicit scheme is more common and requires inner-ring software to invoke the validation 
mechanism as required. The implicit scheme requires software cooperation but no direct 
assistance. 
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Explicit Pointer Validation 

The simplest explicit pointer validation mechanism is a machine instruction that asks some form 
of the question, “What mode of access does ring x have to the area of memory designated by 
pointer p?” This technique requires software to validate the pointer explicitly, prior to use. 

A somewhat more sophisticated mechanism uses a two-instruction sequence: the first 
instruction asks the machine to “execute the following instruction using the access rights of ring 
x rather than the rights of the current ring”; and the second instruction is a normal memory 
reference instruction that uses indirection through the pointer. The second instruction will fail 
with an access violation, if access was not allowed in the outer ring x. To eliminate the 
possibility of asynchronous modification, the machine automatically suspends interrupts between 
the pair of instructions. Each time software makes a reference through a pointer that might have 
come from an outer ring, the reference must be preceded by the special instruction. This 
technique allows software to postpone validation until the time that the pointer is actually used. 

With either technique for explicit pointer validation, software must decide when to check the 
pointer: at the point of entry into the inner ring (in the gate procedure), or in conjunction with its 
normal use. In figure 8-7, the buffer_ptr passed from procedure B to procedure D; might not 
be used until procedure G is called, so the task of validating the pointer appears to lie most 
appropriately with G. For procedure D to validate the pointer properly, it would have to know 
whether the buffer was to be read or written by G, and it would have to know the length of the 
buffer (to ensure that the buffer could not overflow onto an area not accessible to ring 4). 

Another complicating factor is that arguments may contain pointers. For example, the 
write_file I/O call might require as an argument a data structure containing information 
such as file name, location in file to be written, space for returning a status code, and buffer to be 
written. The data structure itself is passed by means of a single pointer as an argument. To keep 
the structure compact and to avoid moving a great deal of data around on each call, the data 
structure contain pointers to the items rather than containing the items themselves. This means 
that all the pointers in the structure (as well as the pointer to the structure itself) have to be 
validated. Requiring the gate procedure to validate these pointers forces it to be intimately 
familiar with the format and use of the data structure, even if the gate’s only role is to pass the 
data structure on to another procedure for processing. This requirement violates good software 
layering and information-hiding principles. 

On the other hand, one could argue that the task of a gate procedure such as D is to make all 
appropriate argument checks and to relieve inner procedures from having to make such checks. 
For example, procedure G might be a general-purpose I/O routine that can perform I/O on behalf 
of either the user or the operating system. If so, procedure G may not know whether the buffer 
pointers or embedded pointers passed to it should be validated with respect to the user’s ring or 
to the operating system’s ring. Such information might be passed to G by every caller; but if G 
happens to be embedded deep in a tree of procedure calls, this extra information must be passed 
down by every caller in the tree. 
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A problem with explicit pointer validation in advance of use is that the information on which 
the validation is based (like the segment descriptors) may be changed by other processes or 
processors by the time the pointer is used. This is possible even if the pointer itself is copied into 
a safe place so that it cannot change. 

Ensuring that the segment descriptors have not changed between the time a pointer is 
validated and the time it is used may require suspending interrupts and stopping all other 
processors (on multiprocessor systems) during the interval. This is rarely a feasible option, 
although suspending interrupts on a single-processor system for a brief period by using the 
delayed validation approach is possible. 

Despite its drawbacks, explicit pointer validation is the only type of hardware assist provided 
on most machines. Through various techniques (based largely on programming and calling 
sequence conventions), operating system software does the best it can to ensure that the 
validation information has not changed. From a security standpoint, perhaps our biggest concern 
with this technique—as with any technique that requires explicit software action—is the 
possibility that security holes will remain as a result of overlooked or incorrect checks. 

Implicit Pointer Validation 

The implicit pointer validation mechanism requires little or no software assist and avoids 
most of the asynchronous change problems of pointer validation. The hardware automatically 
validates every pointer at the time of use. In order to be efficient, the hardware validation cannot 
require extra machine cycles, since the vast majority of pointers need no validation. Aside from 
the obvious benefit of avoiding software errors, a major advantage of this mechanism is that the 
programmer of an inner-ring procedure need not worry about the origin of the pointer. 

Automatic pointer validation requires that the pointer contain a field indicating the ring 
number of its origin: 

 
This ring number is inseparable from the pointer, staying with it as the pointer is passed between 
procedures. When a program finally uses the pointer as an indirect reference, hardware computes 
access rights to the target location based on the ring number in the pointer rather than on the 
current ring of execution. 

Refer again to figure 8-7, where procedure B in ring 4 calls procedure D in ring 2. If B passes 
a pointer to D, the pointer looks like this. 

 
indicating that the pointer originated in ring 4. The pointer might get copied from place to place 
in ring 2 prior to use; if so, the ring number, of 4 is preserved during copies. When procedure G 
makes an indirect reference through the pointer, hardware will validate access to the target based 
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on the effective ring number 4, rather than on the current ring; number 2. Pointers originating in 
ring 2 have a ring number of 2 and the effective ring for them is 2, correctly validating the 
pointer with, respect to the current ring. In both cases, the programmer of procedure G has done 
nothing to assist validation. 

Since ring 4 constructs the pointer, it is possible for procedure B to lie about the origin of the 
pointer and insert a 2 in the RING field. This deception must be prevented by checking the RING 
number in the pointer at the time it is first copied into ring 2. Hardware assist to prevent this 
form of attack is a special copy_pointer instruction that operates much as any other data 
copying instruction does, but performs an additional validation on the ring field to ensure that its 
value is no less than the ring of the segment from which the pointer is copied. By using 
copy_pointer for all pointer copying, software can safely pass the pointer through several 
rings. 

The purpose of copy_pointer is not just to save a little software checking: an important 
additional benefit is that the pointer need not be copied into the inner ring by the gate procedure; 
it can be copied at any later time. The gate procedure need not know anything about the intended 
use of the arguments, and the procedure that uses the pointer and does the copy need not know 
where the pointer originated, thereby fostering clean software layering. 

But procedures do not always have a reason to copy pointers into an inner ring prior to use, 
so an additional mechanism exists to allow the pointer to be validated at the time of use even 
while still residing in the outer ring. During address calculation, hardware sets the effective ring 
number to the maximum of the RING field of the pointer and the ring of the segment in which 
the pointer is located. In this way a pointer can remain in ring 4, and a ring 2 procedure can make 
an indirect reference through that pointer with assurance that access will be computed relative to 
ring 4. 

While the pointer validation mechanism discussed here is unique to Multics, it demonstrates 
the possibility of freeing software from any concern about the origin of pointers and attendant 
access checks in most cases. 

Extension to Nonhierarchical Domains (Capabilities) 

Our discussions about pointer validation, though based in the context of a ring architecture, apply 
equally to all hierarchical domain architectures. Architectures with two domains do not need as 
complicated a mechanism as architectures with four or more domains, because the solutions do 
not have to be as general. 

With nonhierarchical domains, solutions to argument validation are difficult and complex. 
Nonhierarchical domains provide greater flexibility for support of mutually suspicious 
subsystems (a topic covered more fully in section 11.3) than do ring-based systems, although 
proposals have been made for using rings in such systems (Schroeder 1972). The main problem 
is that, when domains are not hierarchical, hardware has no simple “greater than” relationship to 
use in comparing the relative access rights of two domains. Controlled sharing between mutually 



 

 96

suspicious domains means preventing each domain from accessing the memory of others, while 
allowing domains to pass selected pointers to each other’s memory. 

When the domains are nonhierarchical, this in effect requires that hardware implement the 
concept of an object, where a primitive object is indicated by a special kind of pointer that 
identifies a range of consecutive virtual memory locations. A domain that receives a pointer to an 
object as an argument from another domain cannot modify that pointer and cannot reference 
words outside the range of the pointer. A domain cannot construct a pointer to anything outside 
its address space. A pointer that identifies an object is called a capability because the domain that 
possesses the pointer has the capability to access the object. Capabilities can be passed freely 
between domains. Designs based on such concepts are given such names as object-oriented 
architectures, domain machines, and capability machines. 

There are two common ways for hardware to manage capabilities. One is to store all 
capabilities in special areas of memory that are directly accessible only to privileged programs or 
to the hardware. This approach is always used in systems that implement capabilities in software, 
but is also used in some hardware architectures. Another, more flexible approach uses tagged 
memory, whereby each word of memory contains an extra bit that indicates whether the word 
contains a capability or simple data. In both cases, moving a capability from place to place 
requires special instructions or system calls. 

Several commercial hardware architectures are based on capabilities. These include the Intel 
iAPX 432 microprocessor and the midrange IBM System/38. 

8.5 INPUT/OUTPUT ACCESS CONTROL 

Among the functions of a typical large operating system, input/output tends to be the most 
complex. While the hardware to support processes, memory management, and domains is geared 
toward the convenience of the programmer, hardware support for input and output seems to work 
against any programmer concerned with implementing an easy-to-understand I/O system. People 
who search for security holes in an operating system look first at the I/O area, because hardware 
rarely, if ever, provides any assistance for secure I/O. The design goals for the hardware that 
supports I/O in most large machines are geared toward cost and performance, not security. The 
hardware is replete with idiosyncrasies that frustrate attempts to implement a well-structured 
secure interface to I/O functions. 

Almost universally, I/O is a privileged operation that can be carried out only by the operating 
system. All operating systems provide high level system calls to read and write files; in these 
procedures, the user need exercise no control over the details of the I/O operation. Some systems, 
to enhance flexibility and performance, enable the user to specify many details and may even 
allow the user to write channel programs (lists of instructions executed by I/O controllers). 
While this flexibility makes it appear as if the user has direct control over the I/O device, the 
operating system must carry out many complex internal checks to ensure that the requested 
operations in the channel program are secure. Operating systems based on IBM’s 370 
architecture are representative of this approach. 
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Operating systems could be far simpler if they did not have to mediate all I/O operations. The 
Multics structure, in which files are mapped into virtual memory segments, avoids the need to 
perform explicit I/O for file access, but it does not eliminate the need for operating system-
supported I/O for terminals, tapes, printers, and foreign (non-file-system) disks. Operating 
systems must carry out much of the same I/O on their own behalf: they must access their own 
system disks and tapes to keep the system running. But in principle, the operating system need 
not play a part in providing or controlling access to devices that are owned by a single user or 
process. With the proper hardware support, complete control over these devices could be 
relegated to applications programs outside of the operating system. 

From an access control perspective, a generic I/O instruction issued by a process involves 
identifying the following items: 

1. The I/O device 
2. The affected medium or portion of medium (which particular tape reel, disk pack, or 

sector of disk) 
3. The locations in memory of the buffers involved in the data transfer 
4. The locations where device status information will be stored and where commands to the 

device will be obtained 

Regardless of their complexity, access requirements of I/O operations can be decomposed into 
some combination of these four primitive elements. 

Hardware security support for memory management concentrates solely on processor-to-
memory access (shown. on the right side of figure 8-8). When I/O is included, several additional 
information paths appear: device-to-medium, device-to-memory, and processor-to-device. 
Access control decisions for these interfaces must be based on the identity of the subject 
(process) on behalf of whom the device of processor is operating, and on the object (area of 
memory or medium) that is affected. 

I/O operations initiated by the processor include both control operations to the device 
(sending commands, reading status) and requests for data transfers to or from the medium. Some 
control operations, such as “rewind tape,” do not require a data transfer; others, such as “write 
end-of-file” and “erase disk block,” clearly do. Certain status conditions may indirectly reveal 
information about contents of data on the medium (“parity error,” “byte count”), while other 
status conditions either are unpredictable hardware conditions or reveal information about the 
state of the device controller and are not a function of the data on the medium. For security 
purposes, control operations that influence or are influenced by the medium must be viewed as if 
they were write or read data transfer operations. A pure control operation is one that involves no 
data transfer as a side effect. 
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Figure 8-8. Access Paths for I/O and the CPU. The processor and the device operate 
on behalf of subjects (processes) that access the objects (the memory and the 
medium). The device and processor may also access each other as objects. In general, 
information flows in both directions along all four paths. Multiple processors and devices 
may operate on behalf of different subjects, accessing different areas of memory and 
media. 
 

Looking again at figure 8-8, we can view a “rewind tape” operation issued by the processor 
as a write from the processor to the device, possibly followed by a write from the device to the 
processor or to memory to return the status of “rewind done.” A “read data” operation requires 
several steps: 

1. Processor sends “read” command to device. 
2. Device reads additional command information from memory (location of buffer, number 

of words, and so on). 
3. Device reads data from medium. 
4. Device writes data to memory. 
5. Device sends status to processor. 

Step 1 illustrates why all I/O operations must be viewed as “writes” to the device—even 
those that only read data from the medium or status from the device. 

Figure 8-8 is the most general view of the access paths for I/O. Where the device or the 
medium is outside the system or security perimeter, the device may be indistinguishable from the 
medium, from a security standpoint: reads and writes to the device must be controlled in exactly 
the same manner as reads and writes to the medium are. For example, if the device is an 
intelligent controller managing a number of disk drives whose firmware is user-supplied and not 
under the control of the operating system, the operating system can only control the commands 
and data that are written to the controller—not what the controller writes to the individual drives. 
Terminals are devices that commonly fall under full user control: sending a command to a 
terminal is tantamount to displaying it to the user; anything the processor receives from a 
terminal must be treated as if the user entered it. On the other hand, if a controller and the disk 
drives it manages can be trusted to carry out requests of the operating system, the controller 
effectively becomes part of the operating system (within the security perimeter), and data 
transfer to the disk packs—not to the controller—is the important security concern. 
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The simplest view of I/O access control treats both the device and the medium as one object, 
as if both were outside the security perimeter. Since all I/O operations are data transfers to and 
from the device, a process carrying out I/O must have both read and write access to the device. In 
figure 8-8, this means that the device-to-medium path can be collapsed, and that the processor-
to-device path is always bidirectional. 

Devices in figure 8-8 can also be viewed as autonomous subjects that are trusted to read and 
write memory in a manner specified by the processor. (Trusted subjects are discussed in section 
10.5.) Such a view mostly affects the security model of the system (a topic covered in chapter 9, 
where subjects and objects are enumerated), rather than the hardware architecture. Some 
techniques however—particularly the fully mapped technique, covered in section 8.5.4—permit 
a device to be treated as an untrusted subject. 

From an access control perspective, hardware can support I/O in four ways (from simplest to 
most complex): 

• Programmed 
• Unmapped 
• Premapped 
• Fully mapped 

Programmed I/O is synchronous, in that the processor is in direct control of every word of data 
transferred to or from the I/O device. The other three types of hardware support are varieties of 
DMA (direct memory access) I/O, whereby the processor tells the controller to begin a lengthy 
I/O operation (such as reading one or more blocks of disk), and the controller carries out the 
operation autonomously and asynchronously from the processor. Each of these four support 
systems has different implications for hardware access control. Much of the discussion that 
follows echoes aspects of the SCOMP design. Multics has no hardware support for I/O mediation. 

8.5.1 Programmed I/O 

Programmed I/O was the only type available before I/O controllers became intelligent enough to 
operate autonomously (without the help of the processor). Under programmed I/O, software 
loads a register with a word of data to be transferred and executes an I/O instruction with an 
argument naming the device. Later, when the transfer is complete, the processor receives an 
interrupt (or alternatively, software periodically scans a status register). Even today, programmed 
I/O is often used for slow-speed devices such as terminals, especially on microprocessors that 
perform only one function at a time and can afford to dedicate the processor to terminal I/O. 

Because I/O is carried out through a processor register, no device-to-memory path is 
involved in the transfer. The only security concern is whether the process making the request has 
access to the I/O device. A straightforward way to support device access is to use a device 
descriptor table, which maps a virtual device name into a physical device name, much as a 
virtual address is mapped onto a physical address (fig. 8-9). The device descriptor contains 
information similar to the segment descriptor: 
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Instead of using the execute mode for memory access, we have a control mode that specifies 
whether the process can carry out a control operation. 

If you intend to implement a pure control mode in order to allow a process to manipulate the 
device without affecting the medium, you have to be careful to define control operations in a 
way that cannot confuse another process sharing the device. For example, a process that has been 
given only control access can secretly backspace a tape and cause another process to write 
information onto the wrong place on the tape. 

Some device characteristics can be changed quite drastically through a control operation, 
making it impossible to isolate the actions of one process from those of another that shares the 
device. Systems that support such operations might use the control access mode as a privileged 
mode of access rather than as a restricted mode. 

 
Figure 8-9. Mapping Device Names. A virtual device name is mapped by hardware 
into a physical device name. If the device is in the process’s device descriptor table, the 
process has access to the device. 

8.5.2 Unmapped I/O 

Unmapped I/O is by far the most common type of direct memory access I/O: software sends the 
device an I/O command that specifies the physical location of a buffer in memory. The device 
acts as a trusted subject and is allowed to read or write physical memory. It is trusted to execute 
the command correctly. 

Since user programs do not deal with physical addresses, unmapped I/O can be initiated only 
by the operating system. The operating system must translate virtual buffer addresses supplied by 
the user) into physical addresses. Although hardware could provide a translation for virtual 
device names, as described above for programmed I/O, such a translation does not relieve the 
operating system of having to validate and carry out the I/O request. 
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8.5.3 Premapped I/O 

Also called virtual I/O, premapped I/O allows software to specify virtual buffer addresses. 
When the I/O instruction is issued, the processor translates these virtual addresses into physical 
addresses, using the descriptor tables and mapping registers of the current process; the processor 
then passes the resulting physical address to the device. During the translation, the processor 
checks whether the process has the correct access permission to the locations to be read or 
written. From the device’s point of view, I/O is physical (the device never sees a virtual address); 
but from the process’s point of view, the I/O is virtual and access control is enforced by 
hardware. As in unmapped I/O, the device must be trusted to access only the desired locations in 
memory. 

Even if hardware does support virtual I/O, user programs may not be able to issue I/O 
instructions without operating system intervention. A mechanism is needed to prevent the 
operating system from unknowingly reassigning (for example, through swapping) the affected 
pages of memory while user-initiated I/O is in progress. Mechanisms designed to inform the 
operating system that DMA I/O is in progress are complex and are rarely seen. The virtualization 
frees the operating system from the chore of performing address translation and access control-
but not from the task of managing and keeping track of the I/O operations. The SCOMP comes 
close to allowing user-initiated virtual I/O by providing (through a combination of hardware and 
software) primitives that specify when pages should be wired down in memory, and by ensuring 
that I/O can only take place in pages that have been previously wired. 

8.5.4 Fully Mapped I/O 

With premapped I/O, the initial translation of the virtual buffer address to the physical address, 
together with the associated access check, provides sufficient protection as long as the I/O 
controller is a trusted subject that references only the intended physical addresses and obeys the 
read/write restrictions that the processor has previously checked. But some I/O controllers are 
very complex: some are even microprogrammed with firmware downline-loaded from memory. 
In highly secure systems, it may be improper to assign such a high level of trust to hardware and 
firmware that are relatively uncontrollable. It is definitely improper to do so if the device itself is 
outside the security; perimeter, as when the device resides remotely in a user-controlled area. 

A much safer form of virtual I/O consists of hardware carrying out a virtual-to-physical 
translation on each memory reference made by the device. The device acts as an untrusted 
subject (possibly even containing a Trojan horse), presenting only virtual addresses as it reads or 
stores information in memory; translation hardware within the security perimeter does the 
mapping and access checks. The translation hardware uses the same memory descriptors that 
belong to the process initiating the I/Q. Because the translation and the access check are made on 
each word transferred, there is no security problem if the operating system reallocates memory 
during the I/O operation (although the I/O operation is likely to abort with an error if a page fault 
is encountered while I/O is in progress). 

Fully mapped I/O is not a simple enhancement of the premapped approach. Because I/O is 
asynchronous, a virtual address presented by an I/O device may not necessarily lie within the 
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address space of the currently running process. While the I/O device is operating on behalf of 
one process, the processor may be operating on behalf of another. Complex address translation 
hardware is required to keep track of all processes for which I/O is in progress, so that the proper 
descriptors can be fetched from memory during address translation. In effect, each I/O device 
must be treated as a separate processor with its own descriptor tables. Translating every address 
during high-speed operations that cannot be stalled also has performance implications: unless all 
descriptors in the translation path are cached, a translation requiring a fetch of multiple 
descriptors from memory may not be able to keep up with the I/O. 

Finally—though it is not a security concern here, as it is for premapped I/O—the operating 
system must know when I/O to a given page of memory is in progress, in order to avoid a page 
fault during I/O. Thus, primitives to wire pages are still needed. 

8.6 MULTIPROCESSOR SUPPORT 

A multiprocessor system, in which a number of processors share the same physical memory and 
run different processes, introduces a host of complexities. Most of these complexities revolve 
around the issue of consistent maintenance of shared information, such as descriptor tables that 
might be modified at any time during execution of a process. Software is responsible for 
handling most of these problems. Hardware helps only by providing a primitive locking 
mechanism for communication between processors, using “read-alter-rewrite” or “test-and-set” 
instructions that read and write locations in a single indivisible operation. (Such instructions also 
simplify interprocess communication on a single-processor system.) Few of these problems are 
unique to security, but support by hardware can improve the performance of certain security-
related operations. 

Memory management, already very complex, becomes even more so with multiple 
processors. These complexities center on descriptor cache management. Each processor usually 
has its own memory descriptor cache. When one processor modifies a descriptor in memory or in 
its own cache, the other processors must be told to invalidate their copies and to fetch a new 
copy from memory. A simple mechanism that accomplishes this is an interprocessor signal 
(initiated by software) that forces all processors to purge all descriptors whenever a descriptor is 
changed. While a total cache purge is often used on single-processor systems, such purges can 
cause serious performance problems on large systems where each user operates several processes 
and where descriptors get changed very frequently. (Consider that a descriptor is invalidated 
each time a page fault is processed.) A much better (but complex) approach is a mechanism that 
invalidates only the descriptor that is changed. The logically simplest approach (which, 
unfortunately, is usually impractical from the standpoint of hardware implementation) is to 
implement a single descriptor cache shared by all processors; this is also the most secure 
approach because it minimizes the chance for error caused by flawed coordination mechanisms. 

We have already discussed the problem of argument validation, where the information on 
which the validation is based can change between the check and the use of the argument. This 
problem is far worse on a multiprocessor system because it is not feasible, without a severe 
performance impact, for one processor to disable interrupts or instances of process switching on 
other processors for extended periods of time during critical sections of code. 
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Vendors often build computers first as single-processor systems and enhance them later to 
support multiple processors. If multiple-processor support is not considered during the original 
hardware design, such enhancement is very painful and introduces a host of software 
incompatibilities. Likewise, even with the best hardware support, enhancing an operating system 
designed for a single processor to fit a multiprocessor operating system usually requires major 
software modifications. Even the best security architecture is not likely to survive such a 
hardware/software overhaul. Needless to say, the best time to consider; multiprocessor support in 
a system is during the initial system design, when the hooks for multiprocessor support cost 
relatively little. 

There has been considerable interest, but few practical results, in efforts to prove the 
correctness or security of multiprocessor systems. Verification and formal modeling techniques 
(subjects of chapters 9 and 12) typically model a system as a single “state machine” with single 
thread or execution; consequently, they are not strictly suitable for multiprocessor systems. But 
given that the current state of the art of program verification does not permit a full formal proof 
of even single-processor systems, the additional uncertainty introduced by multiple processors is 
not significant. Multiprocessor handling is best addressed informally as part of implementation 
correspondence (see section 12.8). 
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 Chapter 9 

Security Models

Success in achieving a high degree of security in a system depends on the degree of care put into 
designing and implementing the security controls. But even the most careful application of the 
best software engineering practices is inadequate unless you clearly understand the system’s 
security requirements. The purpose of a security model is to express those requirements 
precisely. 

A security model has several properties: 

• It is precise and unambiguous. 
• It is simple and abstract, and therefore easy to comprehend. 
• It is generic: it deals with security properties only and does not unduly constrain the 

functions of the system or its implementation. 
• It is an obvious representation of the security policy. 

 
For high-security systems, especially those based on a security kernel, the requirement for 
precision is satisfied by writing the model in a formal mathematical notation. However, the 
concept of modeling a system does not require the use of mathematical techniques. Even for 
medium-grade security, if your goal is to modify an existing system to improve its security. 
properties, writing a natural-language model can be well worth your while. 

The property of simplicity is satisfied by modeling only the security properties of a system, 
and not the functions. It is important to avoid the tendency to turn the model into a formal 
specification (a topic of chapter 12) by including too many functional properties of the system 
that are irrelevant to the security policy. 

9.1 ROLE OF A SECURITY MODEL 

There are two reasons why a system may not be as secure as expected: there is a bug in the 
security controls; or the definition of what it means to be secure is flawed. The first problem is 
one of software reliability and is overcome by good software engineering in conjunction with the 
design techniques and principles specific to security that are discussed throughout this book. 
Chapter 12 covers formal specification techniques that, in part, address software reliability. 
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The second problem—defining what you want the system to do—is not a particularly hard 
problem for most systems, but it is relatively difficult for security because the definition must be 
much more precise. The security model plays a pivotal role in the formal system development 
path illustrated in figure 9-1. Figure 9-2 explores several ways to carry out the formal 
development path. The goal of each of these options is to demonstrate, to varying degrees of 
assurance, that the implementation corresponds to the model. 

Paths (a) and (b) do not involve any formal work beyond the definition of the model. Path (a) 
assumes that you have developed a formal or informal model but have no additional specification 
of the security properties from which to implement the system. (This does not imply that you 
have no specification at all: it is assumed that you have a functional specification, but that the 
specification does not specifically elaborate on the security requirements expressed in the 
model.) In path (b), you have an informal specification of the security properties as an 
intermediate step between the model and the implementation. Both paths require informal 
arguments and testing to support the correspondence argument. 

Because of the huge jump in level of detail between the model and the implementation, the 
correspondence argument in path (a) is very tenuous. Consequently, the model is of dubious 
value. Path (b), on the other hand, permits you to make a far more credible correspondence 
argument. In particular, you can use the informal specification in path (b) as a basis for designing 
and implementing the system, just as you would use any functional specification. 

 
Figure 9-1. System Development Paths. The abstract security model is the first step 
in the formal development path that corresponds to the informal security requirements 
phase. 
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Figure 9-2. Model Correspondence Alternatives. As we add more intermediate levels 
of formal specification between the model and the implementation, and as we carry out 
proofs between the more formal levels, the overall assurance of the system increases. 
The specifications referred to in this figure represent specifications of security properties 
not specifications of functional properties. 
 

Paths (c) and (d) employ formal specifications and proofs, and both require a formal model. 
Path (c) uses a single formal specification in place of (or in addition to) the informal 
specification in path (b). The formal specification incorporates the same level of detail as the 
informal specification in path (b), but it is far more precise and unambiguous. The formality of 
the specification provides the basis for a mathematical proof that the specification corresponds to 
the model. While the correspondence argument between the implementation and the formal 
specification remains informal, as in path (b), the argument can be much more precise. 

Path (c) significantly raises the level of assurance over path (b). Nonetheless, a large gap 
remains between the levels of abstraction of the formal specification in path (c) and of the 
implementation. Path (d) shows two or more levels of formal specification between the 
implementation and the model, thereby reducing the gaps that must be filled by informal 
justification. The state of the art in verification today does not permit us to eliminate the informal 
argument between the implementation level and the lowest level of formal specification, and this 
informal step remains the weakest link in the overall model-to-implementation correspondence 
argument. 

The benefit of additional levels of specification beyond the top begins to diminish rapidly. 
Too many levels can even reduce the degree of confidence in the correspondence, because the 
large number of intermediate proofs increases the probability of error. Even the best automated 
verification systems cannot eliminate all sources of human error. Incorporating many levels of 
specification also significantly increases the maintenance costs of the specifications and 
intermediate proofs, as the system undergoes revisions. 

The precise meaning of levels of specification in figure 9-2(d) is addressed more thoroughly 
in chapter 12, where we cover paths (c) and (d) and formal proofs. In this chapter, we are 
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concerned primarily with the development of the model used in all paths and in the informal 
correspondence arguments of paths (a) and (b). 

9.2 PRACTICAL APPLICATIONS Of A MODEL 

People shy away from modeling because of its abstract nature, and many have a difficult time 
appreciating its relevance to a real system. Indeed, it is all too easy to get carried away with 
modeling details and mathematical formalism to the point where the model does not help you to 
design the system. This chapter explains how to develop a model and how to prove that it is a 
reasonable description of your security requirements; it also tells you how to apply the model to 
the system development process. 

9.2.1 Security Model as a Security Specification 

When you write a functional specification early in the life cycle of a system, you usually have 
not done enough detailed design to specify every possible aspect of the system’s behavior. In 
fact, if you write a highly detailed functional specification at this point to cover all unusual error 
conditions, you will unnecessarily constrain the design. A functional specification should leave 
the designers free to define for themselves the course of action to be taken in the numerous 
“don’t care” conditions that will be identified as the design progresses. The functional 
specification inmost useful in describing the particular aspects of the system that are needed to 
satisfy the obvious requirements of the system. When the system is completed, chances are that 
the designers will have exercised reasonable judgment, and that the course of action taken for all 
the “don’t cares” will not violate the spirit or unwritten intent of the specification. 

But the specification of a secure system cannot leave certain things to chance. Despite good 
intentions and knowledgeable designers, subtle security flaws such as covert channels can show 
up at any spot where the functional specification. has left a loophole. A functional specification 
for a secure system need not cover every function in excruciating detail, but wherever detail is 
omitted the specification must constrain the possible designs so that the system cannot 
simultaneously meet the specification and violate the intent of the security policy. 

Most of us are not accustomed to writing functional specifications with the degree of 
precision necessary to close all security loopholes. A security model can help. Used as an adjunct 
to the functional specification, the model constrains the design to meet the security requirements 
without constraining the functions. Because the model must be proved or demonstrated to obey 
the security properties derived from the security policy, a system implemented in accordance 
with the model (subject to the vagaries of proving that accordance) will have no security flaws. 
The functional specification continues to serve as a guide to the functions of the system, and the 
security model serves as a guide to the security-relevant behavior of the functions. 

9.2.2 When Is a Model Useful? 

It is unfair to imply that the only good way to specify the security properties of a system is to use 
a mathematical model—or any modeling technique at all. Modeling requires considerable effort 
and is worth doing only if you have the freedom and resources to carry out one of the 
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correspondence paths in figure 9-2 fully and properly. If your system is already built and your 
job is to make major add-on enhancements, an informal natural-language model is probably 
adequate for your needs. If you only have the chance to make a few changes here and there to an 
existing system (“closing the holes”), you cannot do much to improve security of the system 
anyway, and modeling is probably fruitless. Although this chapter focuses on mathematical 
models, the process of developing an informal model is conceptually the same. 

Fortunately for many organizations, using a model is not synonymous with developing one. 
A few security models exist that are sufficiently generic to be tailored to many systems with 
minimal alteration. The Bell and La Padula model discussed in section 9.5.3 has been used 
repeatedly for security-kernel-based systems. 

9.3 TYPES OF SECURITY MODELS 

Security models are not easy to classify because models tend to differ markedly from one 
another. While people talk about modeling as a general concept, only a handful of security 
models have had widespread exposure (Landwehr 1981; Millen and Cerniglia 1984, and even 
fewer have been applied to real systems. Nonetheless, certain characteristics are common to this 
handful. Do not be discouraged by the relatively small number of different models: this is due 
not to a problem with the concept of modeling, but to the widespread applicability of the few 
existing models. 

A state-machine model describes a system as an abstract mathematical state machine; in such 
a model, state variables represent the state of the machine, and transition functions or rules of 
operation describe how the variables change. Most of the models described in this book are of 
the state-machine type. The idea of modeling a system as a state machine is quite old, but state-
machine models have not played a leading role in software development because modeling all 
possible state variables of an operating system is infeasible. The security model deals only with 
the most prominent security-relevant state variables, and so is far simpler than a complete state-
machine model of a system. 

The access matrix model (Harrison, Ruzzo, and Ullman 1976) is a state-machine model that 
represents the security state of the system as a large rectangular array containing one row per 
subject in the system and one column per subject and object (fig. 9-3). The entry in each position 
of the array specifies the modes of access each subject has to each object or other subject. This 
access matrix is one of several state variables of the state-machine model. The transition 
functions of the model describe how changes to the access matrix and to other variables take 
place. 

Another common way to describe the security state of the system is in terms of security 
attributes of subjects and objects. The access modes that a subject has to an object are 
determined by comparing their security attributes, rather than by looking them up in a matrix. A 
model may use both an access matrix and security attributes. All such models based on subject-
to-object access might be termed access models. 
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Figure 9-3. Access Matrix. The intersection of a row and a column specifies a 
subject’s modes of access to an object or to another subject. Allowed modes of access 
are read, write, and execute to objects and send to another subject. 

A variant on the access model is the information flow model (Denning 1983), which—rather 
than checking a subject’s access to an object—attempts to control the transfer of information 
from one object into another object, constrained according to the two objects’ security attributes. 
The difference between flow models and access models (which we will discuss later in this 
chapter) may seem rather subtle, but its most practical effect is that access models do not help 
you find covert channels, whereas flow models do so nicely. 

Another type of model that has recently been developed is the non-interference model, where 
subjects operating in different domains are prevented from affecting one another in a way that 
violates the system’s security properties (Goguen and Meseguer 1982). This model is still 
undergoing development as it is being applied by Honeywell in the Secure Ada Target research 
project (Boebert et al. 1985; Haigh and Young 1986). 

9.4 CHARACTERISTICS OF A SECURITY MODEL 

People often have a hard time understanding the difference between a model of a system and a 
description or specification (such as a formal specification) of the system. When developing a 
model for a specific system, it is all too easy to get lost in detail, and the result is a model that 
does not serve its purpose. 

The primary characteristic of a good model is that it is easy to comprehend. It should be 
possible to describe, in natural language, all the important aspects of the model. in a very few 
pages, or to explain it in a few minutes. Of course, the precise mathematical version of the model 
might be difficult for a non-mathematician to follow, but any person trained in the notation 
should be able to understand it easily. 

The model must be simple because it is a restatement, in mathematical terms, of the security 
properties you want your system to obey. If the restatement is not obvious, you will have a hard 
time convincing anyone that the model reflects the intended policy. There is no way to prove 
mathematically that a policy written in natural language corresponds to the model, so 
“convincing argument” is the best we can do. If you look at the most popular models for 
security, their correspondence to the real-world policy will be patently obvious. 
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On the other hand, the model will likely have a number of characteristics whose purpose is 
not obvious. Because a model tries to be mathematically perfect (complete and consistent) in 
defining the properties that represent the policy, it often calls for the inclusion of restrictions or 
additional properties that were not originally intended. For example, suppose you were to model 
multilevel security that controls disclosure of information. As we have seen in section 6.4, such a 
model would have to include restrictions on writing, as well as reading, information. Without the 
write restriction, the model might not be strong enough to prevent someone from circumventing 
the read restriction that is the primary goal of the policy. 

9.5 STATE-MACHINE MODELS 

State-machine models were originally favored because they represent a computer system in a 
way that mimics the execution of an operating system and hardware. A state variable is an 
abstraction for each of the bits and bytes in the system that change as the system is running. 
Thus, every word in memory, on disk, or in registers is a state variable. The state transition 
functions are abstractions of system calls into the operating system that describe exactly how the 
state can and cannot change. While other promising techniques to modeling do exist, as 
discussed in section 9.3, the state machine concept is so pervasive that everyone doing modeling 
work should understand it. 

A security model does not deal with all state variables and functions of the system. It is up to 
you to choose the security-relevant variables and functions to be modeled. 

Developing a state-machine security model involves specifying the elements of the model 
(variables, functions, rules, and so on), along with a secure initial state. Once you have proved 
that the initial state is secure and that all the functions are secure, mathematical induction tells 
you that if the system begins in a secure state, the system will remain in a secure state, regardless 
of the order in which the functions are invoked. 

The following specific steps are involved in developing a state machine model: 

1. Define the security-relevant state variables. Typically, the state variables represent the 
subjects and objects of the system, their security attributes, and access rights between 
subjects and objects. 

2. Define the conditions for a secure state. This definition is an invariant that expresses 
relationships between values of the state variables that must always be maintained during 
state transitions. 

3. Define state transition functions. These functions describe changes to state variables that 
may take place. They are also called rules of operation because their purpose is to 
constrain the types of changes that the system may make, rather than to specify all 
possible changes. The rules may be very general and may allow functions that your 
system does not have; however, your system cannot modify the state variables in a way 
that the functions do not allow. 

4. Prove that the functions maintain the secure state. To make sure that the model is 
consistent with the definition of the secure state, you must prove for each function that if 
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the system is in a secure state prior to the operation, the system will remain in a secure 
state after the operation. 

5. Define the initial state. Pick a value for each of the state variables that models how the 
system starts out in an initially secure state. 

6. Prove that the initial state is secure in terms of the definition of the secure state (step 2). 
 
The above description may seem a bit abstract for those accustomed to writing computer 

programs and not mathematical descriptions of programs. Section 9.5.1 describes, step by step, 
how a security policy is translated into a complete model, using a simple example of multilevel 
security that resembles (but is definitely not) the Bell and La Padula model (discussed in section 
9.5.3). We shall discuss how the model is proved to satisfy the secure state invariant, after which 
we shall consider some additional constraints that the model may have to satisfy (and that are not 
listed in the above steps). 

9.5.1 Example of a State-Machine Model 

Consider the following real-world security policy: 
 

Policy: A person may read a document only if the person’s clearance is greater than or 
equal to the classification of the document. 

 
This policy is a simplified statement of the military security policy discussed in section 6.4. 1. 
Our goal is to develop a model for a computer system that enforces the intent of this policy. For 
now we shall assume that there are no other rules in the policy. 

We must first develop some computer abstractions of the elements of the policy, restating the 
policy in terms of those abstractions. We shall make the following substitutions: 

 Real-world Item Computer-world Abstraction 

 person subject 
 document object 
 clearance access class 
 classification access class 
 
The resulting translation of the policy is as follows: 

Property (a): A subject may read an object only if the access class of the subject is 
greater than or equal to the access class of the object. 

 
Equating both clearance and classification with access class is valid only because we know that 
both have identical structures and interpretations (as was discussed in section 6.4). Instead of 
using subject and object, we could have said process and file, but these words have a fairly 
specific connotation in the computer world, and their use would unnecessarily restrict the ways 
in which person and document are represented. Some models do use more specific terms when 
the real-world policy has different rules for different types of objects. 
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Although the abstractions we have made are valid, property (a) does not guarantee the intent 
of the original policy. As was noted in section 6.4.4, there has to be a corresponding write-down 
(confinement property) restriction: 

Property (b): A subject may write an object only if the access class of the object is 
greater than or equal to the access class of the subject. 

 
This property is more constraining than the real-world policy because people can write 
documents at lower access classes. 

STEP 1. DEFINE THE STATE VARIABLES 

Our state variables correspond to the computer-world abstractions of the policy, plus some 
additional variables that we will use in later examples: 

 S  = set of current subjects 
 O = set of current objects 
 sclass(s) = access class of subject s 
 oclass(o) = access class of object o 
 A(s,o) = set of modes, equal to one of: 
 {r} if subject s can read object o 
 {w} if subject s can write object o 
 {r,w} if both read and write 
 ∅  if neither read nor write 
 contents(o) = contents of object o 
 subj = active subject 
 
The symbol ∅ designates the empty set. 

The subjects and objects are modeled as members of the sets S and O. The two-dimensional 
access array A, which resembles the access matrix in figure 9-3, is but one way to represent all 
subjects’ current access rights to all the objects. 

We have defined two variables that are not directly mentioned in property (a) or property (b): 
contents(o) which represents the state of (the information contents of) each object; and subj, 
which is the identity of the subject that is currently active and is invoking the transition 
functions. You can think of subj as a variable that is equal to one of the current set of subjects 
and that may change to an arbitrary value at any time (thereby modeling the process switching 
that takes place in a real system). Since these two variables are not mentioned in the properties, 
we might consider them not to be security-relevant; but there are reasons you might want to 
include them in the model, as we shall discuss in later examples. 

The state of the system at any one time is expressed as a set of values of all the state 
variables: 

{S,O,sclass,oclass,A,contents,subj} 
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STEP 2. DEFINE THE SECURE STATE 

The definition of the secure state is a mathematical translation of property (a) and property (b) 
into an invariant: 

 Invariant: The system is secure if and only if, for all s ∈ S, o ∈ O, 
  if r ∈ A(s,o), then sclass(s) ≥ oclass(o), 
  if w ∈ A(s,o), then oclass(o) ≥ sclass(s). 
 
The notation s ∈ S means “s is contained in set S.” 
 

Although they are straightforward, we cannot prove that our translation and our definitions of 
the state variables accurately portray the original policy. It is thus very important that the 
properties in the model be so simple and obvious that no one will question their correspondence 
to the real-world policy. 

Neither the properties nor the invariant says whether any subject can in fact read or write any 
object. In other words, all values of A may be null, and the system would still be secure 
according to the invariant. A different policy might require certain accesses to be allowed, but in 
general security policies do not place any constraints on the usefulness of the system. 

STEP 3. DEFINE THE TRANSITION FUNCTIONS 

A transition function can be viewed as a procedure call to a system service routine requested by a 
subject, where the service desired is a specific change to the state variables. The parameters to 
the function are specified by the subject and must be checked by the system for validity before 
the system carries out any state change. This system call view of transition functions is a bit 
simplistic-since state changes may occur that are not initiated by any subject (for example, 
asynchronous events and interrupts)-but the view is adequate for our purposes. 

Table 9-1 summarizes the transition functions that we shall discuss in the remainder of this 
chapter. The first two will be introduced here, and the remainder will be covered in later 
sections. 

 1. Create_object (o, c) Create object o at class c. 
 2. Set_access (s, o, modes) Set access modes for subject a to object o. 
 3. Create / Change_object (o, c) Set class of o to c and create. 
 4. Write_object (o, d) Write data d into contents(o). 
 5. Copy_object (from, to) Copy contents(from) to contents(to). 
 6. Append_data (o, d) Add data d to contents(o) 
 
Table 9-1: Transition Function Examples. Listed are the transition functions used in 
our example of a state-machine model. 
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We define two simple functions: Create_object adds a new object to the set of known 
objects; and Set_access changes a subject’s access to an object. In these examples we use the 
convention of placing the prime symbol ' in front of a state variable to refer to the new state. 
Unprimed variables refer to the value in the old state: 
 
 
 

Function 1:  Create_object (o,c) 
 if o ∉ O 
 then 'O = O ∪ {o} and 
 'oclass(o) = c and 
 for all s ∈ S, 'A(s,o) = ∅. 
 
Function 2.  Set_access (s,o, modes) 
 if s ∈ S and o ∈ O 
 and if  {[r ∈ modes and sclass(s) ≥ oclass(o)] or r ∉ modes) and 
  {[w ∈ modes and oclass(o) ≥ sclass(s)] or w ∉ modes} 
 then 'A(s,o) = modes. 
 

While these functions look like computer programs with mathematical operators, there are 
some important differences between the way a computer program is interpreted and the way 
these mathematical statements are expressed: 

• The purpose of a function is to specify relationships between variables in the previous 
state and in the new state. The = sign in a function should be read as a statement of 
mathematical equality, and not necessarily as an assignment, even though an assignment 
to values in the new state might be implied. 

• The function does not imply any specific ordering of statements (or algorithm) for an 
operation. It should be viewed as a statement of what has happened to the state when the 
operation is completed. 

• The function is atomic; that is, its effects are indivisible and uninterruptible. Specified 
state changes happen all at once, without the passage of any time “during” a state 
transition. This assumption of atomicity becomes important in modeling systems with 
multiple processors (see section 8.6). It also means that you have to be careful in 
multiprogramming systems (with single processors) not to ignore inadvertently the 
effects of asynchronous processes. These issues tend to involve detail in the formal 
specification more than in the model, but the conceptual problems are the same. 

• Finally, the function is a description of all allowed state transitions. If the new value of a 
variable or element of an array is not explicitly forced to change, the value must not 
change. Thus, in an expression such as 

if cond then ... 
if we omit the else clause and do not say what happens when cond is false, there must be 
no change to the state.1 
 

                                                 
1Some formal specification languages assume quite the opposite (see section 12.2). 
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The Create_object operation adds the requested object as a one element set {o} to the set of 
current objects O (if that object is not already in the set) and sets the access class of that object 
equal to the requested value. It also sets the object’s column of the access matrix A to null, so 
that no subject has access to the object. The Set_access operation sets new access modes in any 
element of A, as long as those new modes are consistent with the invariant. In keeping with our 
conventions, all other columns of A(s,x), where x ≠ o, remain unchanged. 

Notice that both operations allow a subject to have less access to an object than the maximum 
permitted by the security properties. We might view the ability to reduce the access modes as a 
form of discretionary access control. Our policy says nothing about this discretionary access 
control, and therefore places no constraints on restricting access further than is required by the 
mandatory rules. 

STEP 4. PROVE THE TRANSITION FUNCTIONS 

Normally, once convinced that your functions are fairly simple and correct, you would define 
most of them before attempting to prove them rigorously. But it is always wise to try to prove the 
first few functions just to see if you are on the right track. 

For each function, you must prove the following theorem: 

Invariant and Function imply 'Invariant. 
 
where the prime symbol signifies that the invariant is being applied to the new state. In other 
words, the theorem says that each function must maintain the secure state. 

Although we shall not go through the proof here, notice that Create_object would violate the 
invariant if it did not initialize to null the column of the access matrix corresponding to the new 
object. We could have initialized that column in any of a number of other secure ways, but this 
one allows maximum flexibility, since Set_access can later be called to set any access desired. 
Most systems in fact set some initial access modes on newly created objects, often to values 
specified by the caller. Because we initialized the mode to null, we can model a create function 
in our system as a sequence of calls—Create_object, followed by Set_access. Since the system 
is proved secure before, between, and after this pair of function calls, a system that carries out 
both functions as a single indivisible call is also secure. 

STEPS 5 and 6. DEFINE AND PROVE INITIAL STATE 

A last but very important item is the initial state. Mathematically, the initial, state is expressed as 
a set of initial values of, all the state variables in the system: 

{S0,O0,sclass0,oclass0,contents0,subj0}. 
 
In order to prove that this initial state is secure, we have to specify restrictions on these initial 
values. 
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The simplest initial state consistent with the invariant is one without, any objects or subjects: 

Initial State (1): S0 = ∅ and O0 = ∅ 
 

We do not have to define the initial values of any of the other state variables, since the state is 
secure regardless of their values. Eventually of course, we must add to the model a function to 
create subjects as well as objects; otherwise, the system would never arrive at a state in which S 
≠ ∅. 

Another, more realistic secure initial state allows for an initial (arbitrary) set of subjects and 
objects, all of the same initial (but arbitrary) access class c0: 

Initial State (2): For all s ∈ S0, o ∈ O0 
 sclass0(s) = c0 
 oclass0(o) = c0 
 A0(s,o) = {r,w} 
 

The initial access matrix A0 allows all initial subjects read and write access to all initial 
objects. This initial state is very general, because it places no constraints on the number of 
subjects and objects; it does, however, require all the subjects and objects to be of the same 
access class. 

9.5.2 Adding Constraints to State-Machine Access Models 

A key element of the philosophy underlying the state-machine models we have discussed so far 
is the concept of a secure state, where the definition of security is completely embodied in an 
invariant: you can take a snapshot of the system at any time and determine whether the system is 
secure based on the invariant, without regard to what happened in previous states. Nonetheless, 
an invariant alone does not quite specify all the security properties you may have intended. This 
is because security is not only a property of the current state of the system, but a property of 
sequences of states. Hence, we need a revised definition of security that covers relationships 
between variables in two successive state transitions, as well as within individual states. In this 
revised model, though each transition function may obey the invariant, a function may not be 
secure because the specific transition from the previous state was not permitted. 

Specifying properties about transitions requires adding constraints to the definition of 
security in the model. In terms of proof, a constraint is handled just as the invariant is: you must 
prove that the constraint is satisfied by each function. A constraint differs from an invariant 
because it talks about the relationships between values in two consecutive states-before and after 
each transition function. 
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Constraints on transitions are needed for several reasons: 

• Nonsecure transitions: the old and new values of variables must maintain a “secure” 
relationship (as we shall see below). 

• Controls on subjects: subjects should not be allowed to invoke certain operations under 
certain conditions. 

• Controls on information: a model that talks about information contents must control 
transitions that modify information. 

 
Nonsecure Transitions 

We now rewrite function 1, Create_object, slightly, so that it allows the access class of an 
existing object to be changed: 

Function 3:  Create/Change_object (o,c) 
 'oclass(o) = c; and 
 if o ∉ O then 'O = O ∪ {o}; and 
 for all s ∈ S, 'A(s,o) = ∅. 
 
As before, access to the changed or created object is removed for all subjects, so the function 
satisfies the invariant. But the function now allows what we would normally consider a severe 
security violation: the possible downgrading of the access class of an object. 

The reason for this problem is that the original set of security properties said nothing about 
the possibility that access classes of objects might change. Suppose, however, that the properties 
are augmented with the additional statement: 

Property (c): The access class of an object cannot decrease. 

The Create/Change _object is now clearly in violation of the new property. Because the 
concept of downgrading involves a particular type of state transition, converting property (c) into 
a mathematical statement requires a constraint rather than an invariant: 

Constraint 1: For all o ∈ O, 'oclass(o) ≥ oclass(o) 

This constraint states that the access class of an object can only increase or stay the same in the 
new state.2 Notice the use of the ' symbol in the constraint to distinguish between the new and 
old states. 

                                                 
2Of course, a function that obeys this constraint must also obey the secure state invariant, so that the access matrix 
reflects allowed accesses based on the object’s new access class. In a system obeying a multilevel security policy, 
such a change to the access matrix can result in a covert channel between the subject that invokes the function and 
other subjects whose access to the object was removed. One way to avoid this complication is to enforce a 
tranquility constraint, as is done in the Bell and La Padula model (section 9.5.3), where access classes cannot change 
at all. 
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Controls on Subjects 

Other constraints on transitions restrict the operations that subjects may invoke. A commonly 
needed constraint prevents subjects from changing the access attributes of objects to which they 
have no access. It would not be proper, for example, to allow an operation that enabled a subject 
to give itself access to any object. As in the previous example, the security properties must be 
augmented, this time to constrain the modification of access modes: 

Property (d): A subject may modify another subject’s access to an object only if the 
first subject can read the object. 

In the constraint that follows, we for the first time use the state variable subj, which is the 
identity of the active subject: 

Constraint 2: For all o ∈ O, 
 if r ∉ A(subj,o) 
 then for all s ∈ S, 'A(s,o) = A(s,o). 
 
Of course, Set_access does not satisfy this constraint, and a proof would therefore fail. 

Since our simple model has only one function that changes access modes, we could have 
written a simpler constraint that applies only to the one object referenced by the Set_access 
function, but the above constraint is more sound because it prevents any operation of the model 
from violating the security properties. It is important to write constraints in as general a manner 
as possible, without reference to the specific operations in the model. If you include operation-
specific information in a constraint, you are likely to miss some cases where the intent of your 
requirement is violated—especially if you later enhance the model and forget why the original 
constraints are there. 

Controls on Information 

One limitation of the state-machine access model and its rules and constraints is the fact that only 
changes to access rights (and not to information itself) are constrained. This is acceptable in 
many cases because the purpose of the model is to formalize the security policy, rather than the 
functions of the system. But suppose that we do want to model an operation on data contents, 
such as: 

Function 4: Write_object (o,d) 
 if o ∈ O and w ∈ A(subj,o) 
 then 'contents(o) = d. 
 

Since Write_object does not change any variables mentioned in the invariant or in any of the 
constraints we have specified so far, it is secure according to our model. This operation also 
intuitively appears to obey the security properties, because it prevents you from writing into an 
object unless you have explicit write access, and because you can only get write access if the 
proper access class relationship is satisfied (as enforced by the invariant) at the time the access 
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matrix is modified. Still, there is nothing in any of our formal statements (invariants or 
constraints) that justifies our confidence that this function satisfies the security properties. If we 
remove the important check for w ∈ A(subj,o), the function still obeys the invariant and 
constraints but clearly violates property (b) about writing into objects. 

The model (but not the policy) is insufficient because it only expresses the potential access 
of subjects to objects (as represented by the access matrix), and does not consider whether 
information is actually read or written. We have chosen to interpret the phrase “may write” in 
property (b) as “has write access to,” as reflected in the access matrix. If you want to model the 
functions that read and write information, then information must be mentioned in the definition 
of the secure state. 

We can fix the problem by changing the mathematical interpretation of property (b), but 
another way to achieve the same result is to add an explicit property statement: 

Property (e): A subject may modify an object only if the subject has write access to the 
object. 

 
This property translates into the statement: 

Constraint 3: For all o E O, 
 if w ∈ A(subj,o) 
 then 'contents(o) = contents(o). 
 

This constraint is sufficient to satisfy property (e) but is very restrictive, inasmuch as it 
allows no change to an object if the object is not writable—even as a side effect of an operation. 
Nonetheless, it expresses a useful property that allows us to prove the security of Write_object. 

If you want to carry out a similar enhancement to the model to specify a Read_object 
function you must add yet another state variable—this time one that models the place where the 
contents of an object are read into. (Without such a variable, you would not be able to express 
Read_object as a state transition.) However, you will not be able to express any useful 
constraints on the reading of information (try it). Such constraints can only be addressed through 
a flow model (see section 9.6). 

Since including functions that reference the contents of objects complicates the model and its 
proof, what would motivate us to try to do so? Historically, the contents of objects have not been 
included in functions of models because the secure state definition does not mention them. 
Where the intent of the model is to address the access policy, and not implementation details, it 
is undesirable to clutter the model with such operations as Write_object and Read_object that 
trivially obey the access matrix A, given that it is just as easy to show during correspondence 
proof that the implementation of such functions in the system obeys the constraints of the matrix. 
For example, it may be adequate to show how the read and write restrictions in the matrix map 
onto the read and write bits in memory descriptors, and how, all machine instructions are 
constrained by the modes in the memory descriptors. 
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As abstract modeling has been used in more and more systems, however, it has become 
evident that information can be read and written in a real system in many ways—some by 
software, and some by hardware—that do not obey the access matrix in any obvious manner. 
People are uncomfortable when their system has numerous functions that manipulate information 
not represented by state variables in the model. Consequently, there is a temptation to add this 
information (and additional rules about operations on this information) to the model, so that 
some meaningful properties of these operations can be stated and an attempt can be made to 
prove them. 

You will have to decide for yourself how far you want to go, but be warned that each 
additional state variable and its attendant operations will significantly complicate the model and 
its proof. Demonstrating correspondence of the implementation to a simple abstract model may 
be far more convincing than mapping to a very detailed complex model. Remember that a 
security model is supposed to represent only the security-relevant behavior of the system, not all 
variables and all operations in a system. If you want more detail, you should write a formal 
specification. 

When to Use Constraints 

A security model might need constraints as part of its security definition for any of several 
reasons; and just as you cannot prove that your invariant is an adequate statement of the policy, 
you cannot prove that you have all the necessary constraint. The adequacy of the constraints has 
to be accepted on faith. 

In a typical model it is possible to come up with a large number of interesting constraints, 
many of which the functions trivially satisfy. It is also possible to define constraints that are true 
but have very complex proofs. Most constraints, however, merely express facts about the 
functions you have chosen to represent in the model, and so are not security-relevant. The best 
way to determine whether a constraint is necessary is to judge whether it is an obvious extension 
of the security properties. If it is not, leave it out—unless you have reason to believe that its 
omission might leave a security loophole. There is no formal way of determining whether a flaw 
is possible (other than proof by existence: finding and demonstrating a specific flaw), but the 
simpler your model is, the easier the task of anticipating flaws becomes. 

It is most important to realize that formulating constraints on state transitions is an integral 
part of defining a system’s security requirements. 

9.5.3 The Bell and La Padula Security Model 

One of the first security models—and by far the most often used—was developed by David Bell 
and Leonard La Padula to model the operation of a computer that obeys the military security 
policy (Bell and La Padula 1973; Bell and La Padula 1973-74). The work by Bell and La Padula 
grew out of earlier work at Case Western Reserve University (Walter et al. 1974). The goal of 
the model is to specify rules for multilevel operation of a computer; the precise description of the 
military security policy that permits such an operation is called the multilevel security policy (see 
section 6.4). 
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Because the Bell and La Padula model became the best-known formalization of the 
multilevel security policy, the concept of multilevel security is often equated with the Bell and 
La Padula model. In fact, however, several other models also satisfy a multilevel security policy. 
Each tends to express the policy in different ways, but the same policy is used by all. We shall 
consider the Bell and La Padula model in this section and a related class of information-flow 
models in section 9.6. 

Models such as the noninterference model do not express a multilevel security policy 
directly; instead, they employ a more general policy, of which multilevel security is a special 
case. In the future, people may actually favor these more general models because they can be 
used to support other kinds of specialized models (multilevel security is often viewed as being 
overly restrictive for many applications). 

In formalizing the multilevel security policy, the Bell and La Padula model defines a 
structure of an access class (with classification and category set as components) and establishes 
the partial ordering relationship between access classes that we call dominates. Section 6.4 
discusses the meaning of dominates and the structure of an access class. 
 

In mathematical notation, we write the dominates operation as a simple ≥ symbol, although 
in this instance the symbol does not indicate a numerical comparison. Thus, “A dominates B” is 
written A ≥ B. To avoid confusion, we do not reverse the symbol and write B ≤ A (“B is 
dominated by A”), nor do we write A > B (“A dominates but is not equal to B”). We shall use the 
conventional meaning of = to indicate equality in comparisons of two access classes. 

The operation ≥ is described as a partial ordering on access classes. A partial ordering 
relation ≥ has the following mathematical properties between access classes A, B and C: 

Reflexive: A ≥ A 
Antisymmetric: if A ≥ B and B ≥ Α, then A = B 
Transitive: if A ≥ B and B ≥ C, then A ≥ C 

 
The biggest mistake you might make is to assume that 

if A ⁄≥  B, then B ≥ A. 

This shows that it is not always possible to compare two access classes using a dominates 
relationship. Speaking loosely, people say that A and B are disjoint in such a case; but because A 
and B may have elements of their category sets in common, a more mathematically correct term 
is incomparable. 
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Besides defining a partial ordering, the dominates relationship has two properties that make it 
a lattice. Given any two access classes A and B (whether or not they are comparable): 

• In the set of all access classes dominated by both A and B, there is a unique greatest 
lower bound that dominates all the others. 

• In the set of all access classes that dominate both A and B, there is a unique least upper 
bound that is dominated by all the others. 

 
You need not be concerned with the question of why such a partial ordering is called a lattice, 
but you should understand that the ability to express a security policy as a lattice is a 
fundamental requirement of many models of security. 

Given a finite set of access classes, we can use the lattice property to define two important 
unique access classes: SYSTEM HIGH, which dominates all other access classes; and SYSTEM 
LOW, which is dominated by all other access classes. It is easiest to think of SYSTEM HIGH as an 
access class that contains the highest possible security level and all possible categories, and to 
think of SYSTEM LOW as an access class that contains security level zero and no categories. 
However, nothing prevents us from defining other values. For example, in a system that contains 
no information classified less than SECRET, the value of SYSTEM LOW is SECRET with no 
categories. 

The security policy of the Bell and La Padula model has mandatory and discretionary 
components. The discretionary component is represented in an access matrix that is structured 
much as the access matrix A(s,o) is in our example model. In addition to having read and write 
access modes, the discretionary component includes append, execute, and a control modes-the 
last of which indicates whether a subject can pass to other subjects the access rights it has to the 
object. The mandatory component of the policy, consisting of the simple security property and 
the confinement property that were introduced in section 6.4, is enforced by restricting the 
accesses that are granted, based on a comparison of the access class attributes of subjects and 
objects. 

Unlike our example model, the Bell and La Padula access matrix models a discretionary 
policy only, not the mandatory constraints. This means that changes to the access matrix are 
constrained exclusively by control mode and not by access classes. At the time that access to an 
object is granted, both the discretionary check and the mandatory check are made. 

There are about twenty functions or rules of operation in the Bell and La Padula model, 
having to do with modifying components of the access matrix, requesting and obtaining access to 
an object (as when opening a file), and creating and deleting objects; and each function is proved 
to preserve the definition of the secure state. No functions explicitly read or write the contents of 
objects: the model implicitly assumes, in an implementation, that, all access to objects is 
preceded by the appropriate access request and that reads and writes take place in accordance 
with the access that was granted. In a typical operating system, for example, the act of requesting 
access may take place at the time a file is opened for reading or writing, and subsequent reads or 
writes are limited to the modes of access granted at the time of opening. 
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In addition to proving the mandatory security policy, the functions obey a rather severe 
constraint of tranquility that prevents the access classes of objects from changing. This constraint 
is necessary because, if the access class of an object can change, accesses that have already been 
granted may no longer obey the secure state definition. If already-granted accesses are removed, 
a covert channel might result. A gross complication to the model is avoided by requiring 
tranquility. 

Bell and La Padula developed their model based on Multics concepts and have provided a 
“Multics interpretation” of the model (Bell and La Padula 1975), but people soon realized that 
the model was generic enough to apply to many systems. The thinking was that, since the proof 
that the functions in the model preserve the security properties need be done only once, each new 
system thereafter could merely map its functions onto the model’s generic functions. But few 
secure system developments have chosen to use the Bell and La Padula functions, opting instead 
for their own functions based on the Bell and La Padula security policy. As a result, when people 
talk about the Bell and La Padula model, they usually refer only to the simple security and 
confinement property conditions, not to the functions that constitute the bulk of the model and its 
proofs. 

One primary reason why the functions of the model have been ignored is that performing the 
system-specific mapping was perceived to represent at least as much effort as rewriting and 
proving a new set of functions specific to the system. Furthermore, security models today are 
written in specification languages that are processable by machine (Bell and La Padula’s was 
written and proved by hand), and the act of transcribing the Bell and La Padula functions into the 
specification language can be as much work as writing new functions. Machine processing is the 
most reliable way to carry out an error-free proof (although the machine does not actually save 
much manual labor). 

The Bell and La Padula model, in attempting to be as applicable as possible to real systems, 
introduced the concept of trusted subjects—subjects for whom the confinement property checks 
that are prescribed in the rules of operation (and the tranquility constraint) do not necessarily 
apply. Remember that the confinement property’s control over write-downs serves mainly to 
prevent accidents and to defeat Trojan horse attacks. In the real world, we can view trusted 
subjects as special processes or users that are trusted not to violate security even without 
enforcing confinement. Trusted processes are used for various system functions (such as backup) 
and to carry out the direct wishes of users and system administrators who want to be sure that no 
untrusted software is interfering. (See section 10.5 for an explanation of trusted processes for 
security kernels.) Among practitioners, there has probably been more controversy and 
misunderstanding about the notion of trusted subjects than about any other single aspect of 
secure systems. 

Should you decide to study the Bell and La Padula model in more detail, bear in mind that 
terminology in the fast-moving field of computer security has changed significantly. Most of the 
terms used in this chapter and in this book (except for access class—see section 6.4.2) are 
commonly used today but were not in use at the time the Bell and La Padula model was 
developed. To make matters worse, terms originated by Bell and La Padula have come to mean 
different things over the years. In particular, the *-property defined by Bell and La Padula 
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includes the read-up restriction as well as the write-down restriction—even though today it is 
almost exclusively applied to the write-down restriction. 

9.6 INFORMATION-FLOW MODELS 

One deficiency of the classical proof techniques used for state-machine models cannot be 
addressed by adding invariants or constraints. This deficiency involves the flow of information, 
rather than the control of security attributes of subjects and objects. We touched indirectly on the 
topic of information flow in section 9.5.2, when we talked about proving the security of 
information modification; in general, however, constraints on information flow can be expressed 
only by information flow models. Many people consider information-flow models useful only 
for finding covert channels, because with suitable constraints on information modification (as in 
our example) there are no information channels via normal objects of the system. For this reason, 
information-flow analysis—the act of analyzing a system for adherence to the information-flow 
model—is often equated with covert channel analysis. 

With most systems, in the absence of some kind of information-flow analysis, you have no 
assurance that your proved model represents a secure system. For example, a system adhering to 
the Bell and La Padula model may be riddled with covert channels. It is in fact possible to locate 
covert channels directly in the Bell and La Padula model, despite strict adherence to the 
confinement property designed to thwart Trojan horse attacks. 

Meaningful flow analysis requires a detailed formal specification, not an abstract state 
machine model. This is because the variables that participate in covert channels are not 
necessarily represented in an abstract model. Section 12.7 discusses the flow analysis of formal 
specifications in detail. Flow analysis has also been attempted directly on computer programs 
(Tsai, Gligor, and Chandersekaran 1987), but such work is in its early stages. The complexity of 
flow in programs is usually such that the analysis requires excessive manual effort. 

Although flow models require detailed specifications, our abstract model offers the readiest 
example to demonstrate why flow analysis is needed. Consider the following operation: 

Function 5: Copy_object (from,to) 
 If from ∈ O and to ∈ O and w ∈ A(subj,to) 
 then 'contents(to) = contents(from). 
 
This function copies the contents of one object into another, if the subject has write access to the 
destination object. The function is not secure because, in failing to check for read access to the 
from object, the to object may be written with information to which the subject has no access, 
and the subject might later read the object. What is missing from the “If” expression is the 
condition r ∈ A(subj,from). 

It is impossible to write a constraint or invariant capable of detecting such an omission. 
While we were able to write a constraint to prevent illegal modification to information (see 
constraint 3 in section 9.5.2), there is no general way to express a constraint on the illegal 
reading or transfer of information as done by Copy_object. 
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You might argue that, mathematical difficulties aside, it is a simple matter to scan all 
functions and check for references to contents(o) not qualified by r ∈ A(subj,o). In general, 
however, such a constraint is unrealistic. For example, there is nothing wrong with the following 
function 

Function 6: Append_data (o,d) 
 If o ∈ O and w ∈ A(subj,o) 
 then 'contents(o) = contents(o) ∪ {d} 
 
which adds data d to the contents of an object. The proper test is made to see that the subject can 
write the object; yet no security reason exists to require that the subject have read access to the 
object. A constraint that prevents unqualified references to contents(o) would prevent us from 
including this legitimate function in the model. 

In a real system, many objects (such as buffer pools, quota variables, and global counters) are 
modified by all subjects (and need to be read in order to be modified, as in Append_data), 
despite not being directly visible to the subjects. Distinguishing between such legitimate read 
references to objects and references that do violate the security requirements (as in 
Copy_object) is very difficult, requiring a thorough analysis of each function in which such 
references occur. 

Flow analysis can be meaningfully applied only to operations in a system that are used by 
untrusted subjects, such as processes possibly containing Trojan horses that violate the 
confinement property. Trusted subjects are specifically trusted not to exploit covert channels and 
are therefore not restricted by the confinement property. As was stated in section 3.3, users are 
trusted not to give away their own data; and so they, too, constitute trusted subjects in this sense. 
Therefore, functions in a model that are intended to be invoked directly by users, and not by 
potentially untrusted software, are not subject to flow analysis. (A user who does decide to give 
away data is not likely to bother with a low-bandwidth covert channel when there are far easier 
ways to do it.) 

In carrying out flow analysis on a model or some level of specification, you have to be very 
careful that the more detailed specification or implementation does not introduce flows not 
identified at the level at which the analysis was carried out. Most correspondence-proof 
techniques do not specifically look for additional flows, because they are more concerned with 
proving that the invariants and constraints still hold at the lower level. For this reason, flow 
analysis has been criticized as giving users a false degree of confidence in the security of their 
system. If you fail to recognize the possibility of additional flows at the lower level, the flow 
analysis of the upper level represents nothing more than a safety check to show that you have not 
introduced insecure operations at that upper level. The only way to be absolutely sure that your 
system is free from nonsecure flows is to do the analysis on the code, but (as was stated above) 
this is often impractical. 
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9.7 INFORMAL MODEL-TO-SYSTEM CORRESPONDENCE 

In this section we shall discuss the informal correspondence arguments in steps (a) and (b) of the 
development alternatives illustrated in figure 9-2. The concepts presented here are a prerequisite 
to understanding the formal paths (c) and (d) that will be covered in chapter 12. 

The security model describes a state machine equipped with a small set of primitive 
operations that manipulate a small set of security-relevant state variables. A real system (also a 
state machine) has hundreds of operations and thousands of state variables. The task of proving 
that the variables and functions in a real system correspond to, or map into, those in the model is 
clearly formidable. Since an informal correspondence effort cannot achieve mathematical 
perfection, there is no point in trying. But you can carry out the correspondence to any 
intermediate level of detail, depending on the degree of assurance you seek. 

The biggest payoff in confidence for a given amount of effort is achieved simply by having 
all key designers of the system understand the model and its rules, before any high-level design 
of the system is begun. With security foremost in their minds, the designers will be unlikely to 
violate the security requirements in any fundamental way. 

If the system is designed in a pure top-down manner, the first stage of design is to identify 
the interface functions (without discussing the internal details of their implementation) and the 
principle objects that those functions manipulate. At a high level of design, where the functions 
and objects are described in general terms, it is possible to carry out a cursory model 
correspondence. More detailed mapping requires a detailed functional description of each 
operation, including all parameters that are passed through that interface, and a precise 
description of the changes made to objects and variables in the system. 

9.7.1 Mapping the Functions 

It would be nice if you could produce a straightforward one-to-one correspondence between 
operations in the system and operations in the model. But in general the system will have more 
complex functions that map into sequences of model functions. For example, a create_fi1e 
function of the system may have the same effect as consecutive calls to Create_object and 
Set_access in the model. Such a mapping is permissible because our inductive proofs tell us that 
any sequence of transitions is secure. 

You will also encounter many cases where several functions in the system map into the same 
operation. in the model. In our example, give_access and delete_access both 
correspond to Set_access, but with different parameters. Another case of many-to-one mapping 
arises when the system has several functions that deal with similar operations on different types 
of objects: delete_fi1e, delete_directory, delete_device, and so on. Of course, 
you do not need to implement every type of operation for every type of object permitted by the 
model. 

You must be careful when a function in the model is implemented with a sequence of 
functions in the system. Proofs of the model assume that operations are atomic, and consequently 
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they say nothing about the state of the system “in the middle of” an operation. If a function in the 
implementation only partially completes an operation in the model—carrying out only some of 
the required state changes—then the subsequent state of the system is not defined in the model 
and may not be secure. You can safely split an operation into pieces only if you can demonstrate 
that the pieces always occur in sequence, that they are always completed, and that no other 
operation of the system can take place in the middle of the sequence. 

9.7.2 Mapping the Variables 

State variables in the system will not map one-to-one with those in the model because the model 
has simple generic variables such as subjects and objects, whereas the system has several types 
of subjects and objects. Typically, you have to identify the key subjects and objects of the 
system, as well as the variables that contain their security attributes. You must also show how 
subject and object existence is expressed in terms of variables in the system. If you have an 
access matrix, you must identify how it maps onto the system’s access control mechanism. For 
example, each column in the access matrix corresponding to an object of type file might be 
represented in the system by a file header containing an access control list. The access control 
bits in the perprocess descriptor segment used by hardware in section 8.3.5 are a low level 
manifestation of a portion of a row of the access matrix. 

9.7.3 Unmapped Functions and Variables 

Probably the biggest problem in showing the correspondence between a system and a model 
involves functions and variables in the system that do not manipulate security-relevant 
information and therefore do not correspond to anything in the model. 

For example, functions such as write_file and rename_file might not reference state 
variables in the model. In such cases you have to judge whether the variables mentioned in the 
functions are in fact security-relevant. If you decide that they are, and you have no way to map 
them into the model, then the model is lacking a security-relevant aspect of the system and must 
be changed. If you decide that they are not, then you still have to make sure that any access to 
subjects or objects made by the function obeys all implied access rules of the model. In our 
model we did not originally have a Write_object, because we assumed that any function writing 
into an object would obey the access modes in the access matrix A. Without a Write_object 
function in the model, we would have to show that a write_file operation in the system 
checks the proper access rights. 

You should resist the temptation to beef up your model with additional functions that only 
serve to make the mapping more nearly complete. Any increase in confidence that you gain by 
having a fuller mapping is offset by the increased complexity of the mapping and of the proofs of 
the model. You cannot escape the fact that the informal correspondence process is manual and 
subjective: adding excessive detail in an attempt to achieve perfection merely increases the 
chance for error and confusion. Using a formal specification technique (figure 9-2(c) or (d), 
discussed in chapter 12) will bridge the code-model gap more soundly than adding detail to the 
model will. 
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 Chapter 10 

Security Kernels 

The security kernel approach is the single most often used technique for building a highly secure 
operating system. However, it does not follow that you can buy one easily, that you can build 
one easily, that most secure systems are based on a security kernel, or even that most people 
agree that the security kernel is the right way to go. Indeed, many researchers believe that the 
security kernel is the wrong approach and are working on alternatives. But to date, for the 
highest-security systems, the security kernel has shown more promise than any other single 
technique. 

The security kernel concept was developed by Roger Schell in 1972 and has commonly been 
defined (Anderson 1972; Ames, Gasser, and Schell 1983) as the hardware and software that 
implements the reference monitor abstraction we introduced in section 4.2. Sixteen years after 
the idea was first proposed, only a handful of security kernels have been implemented, few are 
commercially available, and rarely are they being used for practical applications. This seeming 
lack of progress is due not to a problem with the kernel approach, but to a lack of interest in 
security on the part of vendors, as we discussed in chapter 2. With today’s heightened interest in 
security in both industry and the government, you can expect additional commercially developed 
kernel-based systems to emerge in the next few years. 

The first security kernel, developed by MITRE as a government-sponsored research project 
to prove the concept, ran on a DEC PDP-11/45 (Schiller 1975). Another notable research security 
kernel is the UCLA Data Secure Unix for the PDP-11/45 and 11/70 (Popek et al. 1979). The 
Department of Defense, under a project called Guardian, sponsored the design and formal 
specification of a security kernel for Multics (Schiller 1977), but the kernel was never 
implemented. Government sponsored developments that led to functioning systems (which have 
seen limited use) include KVM—an enhanced version of IBM’s VM/370, developed by System 
Development Corp. (now part of Unisys) (Gold et al. 1979)—and KSOS—a kernel intended to 
support Unix that was developed by Ford Aerospace and Communications Corp. to run on the 
PDP-11/70 (McCauley and Drongowski 1979; Berson and Barksdale 1979). Two commercial-
grade security kernels are available: Honeywell’s STOP, which runs on the SCOMP, an enhanced 
version of the company’s Level 6 minicomputer (Fraim 1983), and the Gemini Computers’ 
GEMSOS, which runs on the Intel iAPX 80286 microprocessor (Schell, Tao, and Heckman 1985). 
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10.1 THE REFERENCE MONITOR 

In section 4.2 we introduced the abstract concept of the reference monitor, whereby all accesses 
that subjects make to objects are authorized based on information in an access control database 
(fig. 10-1). The specific checks that are made and all modifications to the access control database 
are controlled by the reference monitor in accordance with a security policy. The multilevel 
security policy implemented by most reference monitors is discussed in section 6.4.4, and an 
example of a model of a policy is provided in section 9.5.1. 

In the early days of computing, we used the term monitor to identify the program in the 
system that controlled the actions of other programs. As these monitors became bigger, they 
began to be called operating systems, and the term monitor was relegated to the most primitive 
types of operating systems. The reference monitor is a special-purpose monitor that deals only 
with access control to resources. Usually, other security-relevant functions of the system lie 
within the security perimeter but are not part of the reference monitor (these are often called 
trusted functions—see section 10.5). All non-security-relevant functions of a system (functions 
that lie outside the security perimeter) are managed by the operating system. 

 
Figure 10-1. Reference Monitor. All attempts made by subjects to reference objects 
are monitored and constrained in accordance with a security policy embodied in the 
reference monitor, using access control information stored in a database. Important 
security events are stored in the audit file. 
 

The concept of the reference monitor would merely be academic without having a practical 
way to implement one. The security kernel was the proposed approach. While there may be other 
ways to build systems that satisfy reference monitor concepts, no other approach is as well-
developed. For this reason, people tend to equate the reference monitor concept with the security 
kernel approach, and—particularly in discussions of principles, rather than of implementation 
details—the terms are often used interchangeably. You should try to keep an open mind, 
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however, and be willing to accept the possibility that other types of reference monitors may 
someday exist. 

10.2 THE THREE PRINCIPLES 

The reference monitor and the security kernel must satisfy three fundamental principles: 

• Completeness: it must be impossible to bypass. 
• Isolation: it must be tamperproof. 
• Verifiability: it must be shown to be properly implemented. 
 

We shall examine each of these principles in detail, focusing on their design implications. 

Realistically, no large system is likely ever to satisfy all three principles fully. The goals of 
the security kernel approach are to follow these principles as closely as possible—nobody would 
claim that a large system based on a security kernel guarantees perfect security. 

10.2.1 Completeness 

The principle of completeness requires that a subject not reference an object without invoking 
the reference monitor. It implies that all access to information must be mediated by the kernel. At 
first, you might think that this principle is quite reasonable, and that most operating systems 
today probably attempt to adhere to it. There are, however, a number of important differences 
between the unequivocal demand made by the completeness principle and the way operating 
systems are generally implemented. 

An operating system usually considers the information in a system to lie in obvious places 
such as files, memory, and I/O buffers; and the operating system makes reasonable attempts to 
control access to these objects. The completeness principle is not satisfied with an ad hoc 
definition of the objects. Any repository of information, regardless of its size or intended use, is a 
potential object. 

Among the additional objects where information can be stored are file names (which 
themselves constitute information), directories (which may include information about files), 
status registers, and active dynamic data maintained by the operating system and containing 
information about logged-in users, processes, resources consumed, and so on. You might 
recognize some of these items as potential covert channels (see section 7.2). The completeness 
principle insists that you make an explicit decision as to how the kernel will enforce access to 
each of these objects. 

The completeness principle also places requirements on the hardware that supports a kernel-
based system. If the kernel is to permit efficient execution of untrusted programs without 
checking each machine instruction, the hardware must ensure that the program cannot bypass 
access controls specified by the kernel. All references to memory, registers, and I/O devices must 
be checked for proper access through mechanisms such as memory management with access 
control (section 8.3). The kernel must be able to isolate processes from each other (section 8.2), 
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and to ensure that the processes cannot communicate without kernel mediation. A computer that 
allowed all processes unconstrained access to a common page of physical memory, for example, 
would not be a suitable base for a security kernel. 

10.2.2 Isolation 

The isolation principle—which states that the kernel must be tamperproof—is, like the 
completeness principle, a common-sense goal for most systems. Even the most primitive 
operating systems make a reasonable effort to protect themselves, at least against most accidental 
and casual attempts at break-in. 

Enforcing the isolation principle in a practical way requires a combination of both hardware 
and software. The primary hardware feature that enables the kernel to prevent user programs 
from accessing kernel code or data is the same memory management mechanism that the kernel 
uses to prevent processes from accessing each other’s data. User programs must also be 
prevented from executing privileged instructions that the kernel uses to control the memory 
management mechanism. This requires some type of domain control, such as protection rings 
(section 8.4). 

In a system equipped with the necessary hardware features, there is little chance that a user 
program could succeed in a direct attack on the kernel by writing the kernel’s memory, executing 
a privileged instruction, or modifying the kernel software. While you might be tempted to 
provide additional isolation by fixing the kernel code in hardware read-only memory, direct 
writing of the kernel software is rarely a profitable route to penetration. A far more common 
penetration technique involves tricking the system into running your (the penetrator’s) own 
program in privileged mode, thereby giving you control of the system without your having to 
touch either the kernel or any of its data (Karger and Schell 1974). 

10.2.3 Verifiability 

The principle of verifiability is addressed through relentless devotion to a number of design 
criteria: 

• Employing state-of-the-art software engineering techniques, including structured design, 
modularity, information hiding, layering, abstract specification, and the use of 
appropriate high-order languages 

• Emphasizing simplicity of functions at the kernel interface 
• Minimizing the size of the kernel by excluding functions not related to security 

If you keep these goals in mind while building a kernel, you will be able to convince yourself 
and others that the kernel is correct by using a combination of techniques: 

• Code inspection 
• Thorough testing 
• Formal mathematical specification and verification 
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It is important to understand that the kernel approach does not require the use of a specific 
verification technique. Your choice depends on the degree of assurance you seek. If you do not 
intend to devote any appreciable effort to demonstrating its correctness, however, then 
developing a kernel is a waste of time. 

Code inspection and thorough testing are of course commonly used for most systems, yet 
most systems are replete with bugs. Unless we do something different with these techniques, we 
have little reason to expect that they will work better for a security kernel. 

The primary technique that supports the verifiability argument for a security kernel is the 
development of a mathematical model of security. The model precisely defines security, and the 
functions in the model are formally proved to be consistent with this definition. The model must 
be structured in a way that lends itself to some kind of correspondence demonstration—that is, to 
an argument that the kernel implementation adheres to the model. Chapter 9 discusses security 
models in detail, and section 9.7 provides guidelines for demonstrating this correspondence 
informally. 

When the reference monitor approach was first proposed, it was thought possible to build a 
kernel that would be small enough to be verified by exhaustive testing. Model-to-implementation 
correspondence in such a case would consist of testing all possible security states of the system 
as defined by the model—or at least enough states to satisfy the tester that a security bug would 
be highly unlikely, given the designer’s dedication to structuring and simplicity in the kernel’s 
design. But except with respect to experimental kernels having limited functions, exhaustive 
testing is out of the question. While testing is certainly important, few people now believe that 
testing alone can provide enough assurance: some additional model-to-code correspondence 
work is required. 

For a time, people had the dream of formally verifying (mathematically proving) this 
correspondence by relating the bits in memory to the abstract model. A number of formal 
specification languages, proof techniques, and automated tools were developed to help bridge the 
huge gap in level of detail between model and code. Some of these techniques, already under 
development for other reasons, were adapted to security correspondence. It quickly became 
evident, however, that, (like exhaustive testing), complete formal correspondence would not be 
practical for a long time, and that less-than-perfect assurance would have to suffice. Formal 
specification and verification are discussed in chapter 12. 

If you are using state-of-the-art software engineering techniques, the process of developing 
and proving a model, writing an informal system specification, and informally showing 
correspondence between the code and the model will get you at least 80 percent of the way to 
full assurance. Writing a formal specification will get you another 10 percent of the way there, 
and all the known formal verification techniques will add at most another 5 percent. While many 
may quarrel with these percentages, few will argue that the effort to do formal verification is 
only justified in the highest-security environments. 

Rather than trying to develop your own security model from scratch, you should seriously 
consider using or building upon an existing model—either the Bell and La Padula model 
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discussed in section 9.5.3 or one of the handful of others discussed in section 9.3. If you decide 
to write a formal specification (an entirely feasible and useful exercise), use one of the 
specification languages discussed in chapter 12, and look at examples of secure systems 
specified in that language (Landwehr 1983). If you decide to go all the way and do proofs of 
your specification, you must obtain the automated processing tools appropriate for the 
verification system you have selected. It is useless to try to prove a specification by hand, 
without having a tool to check your proof (specific tools are listed in section 12.1). 

If you want to go one step further and verify the code, stop and think again. There are no 
practical tools for proving a complete code correspondence of a large system or for checking the 
correctness of such a proof, so a proof of this kind would have to be supported by a huge manual 
effort. You are exceedingly unlikely to be able to do a convincing manual proof, given that the 
proof would have to be many times larger than the code and the specification combined. Section 
12.8 gives you some feel for this process, though most of it is theory since only small examples 
have been carried out in practice. While people are still working on developing practical code 
proof techniques, your best bet for code correspondence is to carry out an informal 
demonstration, using systematic code review in conjunction with the formal specifications. Such 
an effort need not be greater than that required for any good code review process, but the use of a 
formal specification to guide your review will add credibility and objectivity to the process. 
Code correspondence can and should be used to guide system testing as well. 

10.3 VIRTUALIZATION AND SHARING 

In the face of a mandatory security policy, the kernel must be able to isolate subjects (processes) 
from one another so that, where the policy requires, it can prevent the actions of one subject from 
influencing another subject—even if the subjects want to communicate. This would be easy to do 
if processes had no way of interacting, but in most real-world systems such physical resources as 
memory, I/O devices, I/O media, and communications lines cannot be permanently allocated to 
individual processes without considerable cost or inconvenience. These resources must be shared 
among processes—carved up into portions that are dynamically assigned to processes as the need 
arises. Processes must then be prevented from accessing each other’s resources. The easiest way 
to control resource access is to virtualize the resources. This means that a process accesses a 
resource by using a virtual name or virtual address that the kernel maps into a physical name. 
Because the mapping is under control of the kernel, the kernel can prevent two processes from 
sharing a portion of a resource that should not be shared. In chapter 8 we discussed ways by 
which hardware can manage a virtual address space for both memory and I/O devices. Physical 
regions of secondary storage media (disks) are virtualized using a file system, where processes 
use file names or virtual disk addresses rather than physical addresses. Section 11.4 discusses 
some issues in the design of secure file systems. 

In addition to having the kernel control access to the resources, complete isolation requires 
that the kernel prevent a process from knowing the physical addresses and physical identifiers of 
its portions of dynamically allocated resources, because any dynamic resource allocation 
mechanism is a potential path for a covert storage channel. For example, in a system that swaps 
processes between memory and disk, revealing to a process the physical location of its memory 
might allow the process to infer something about the activities of other processes, especially if 
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the process knows the memory allocation algorithm. A covert channel is possible if one process 
can modulate its usage of memory in a way that another process can observe. The kernel could 
try to hide such channels on a case-by-case basis, but the best general solution is to avoid the 
problem by only revealing virtual information to processes. 

There are a couple of cases where the virtualization principle need not apply. First, when a 
resource is statically allocated to a number of processes and is not dynamically reallocated, the 
shared resource is equivalent to several unshared resources (one per process). Identifying 
physical locations or other information about the resource only reveals static information that 
cannot be used as a basis for covert communication. Second, if the resource is allocated by the 
direct actions of users (who do not originate covert communication), the principle again does not 
apply. As an example, revealing to a process the physical address of a terminal from which a 
user logs in is not a source for a covert channel (and is not a security problem, unless the policy 
states that the user’s physical location or terminal line is sensitive information). But if a process 
can reserve a terminal line on its own and can either choose the line number or find out the line 
number that it has been given, then another process can determine that the line was reserved, and 
a covert channel between the processes is possible. 

As we discussed in section 7.2.1, completely eliminating covert channels introduced by 
dynamically shared resources is probably impossible. The simplest way to avoid such channels is 
to minimize dynamic reallocation. In view of the declining cost of memory and hardware, it 
might be more feasible (and certainly it is easier and more secure) to allocate memory and disk 
space statically, than to go to great lengths to hide storage channels. 

Of course, you do not want to eliminate interprocess sharing completely, or you might as 
well use an array of isolated microcomputers, one per process. No matter how cheap hardware 
becomes, you still want to be able to share data (as permitted by the security policy). Keep in 
mind that information sharing, as opposed to physical resource sharing, is the real goal of a 
multiuser computer system. Physical resource sharing is a practical necessity (or necessary evil) 
that the security kernel must manage in order to provide a secure information-sharing 
environment. 

10.4 TRUSTED PATH 

Figure 4.3 showed a clean, layered structure in which all trusted code is contained in the kernel, 
while users interact with the system through untrusted applications and the operating system. In 
practice, this structure does not work out perfectly. Users and system administrators must carry 
out a number of functions in any system through direct interaction with the kernel, without 
intermediate layers of untrusted software. These include the login function, specification of an 
access class (on a multilevel system), and administrator functions such as changing security 
attributes of users and files. 

We must prevent a Trojan horse in the user’s process from being able to mimic the login 
sequence, thereby tricking the user into giving away his or her password (one of the examples we 
discussed in section 7.1.1). In a multilevel system, users must be able to determine, from a 
trusted source, the access class of the process with which they are interacting. For certain 
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functions, administrators must be able to verify the correctness of the output they receive on their 
terminal to make sure that it did not come from a Trojan horse. For all of these situations, we 
need a mechanism that effectively authenticates the kernel to the user (in addition to the usual 
mechanism that authenticates the user to the kernel). 

Such a mechanism is provided by some form of trusted path or secure path, whereby the user 
has a direct communications link to the kernel or to trusted software. An easy, but costly way to 
provide a trusted path is to give each user two terminals—one for normal work, and one 
hardwired to the kernel. A more realistic technique is for users to establish the trusted path 
through their normal terminal, by causing an event that signals the kernel to grab the terminal 
away from untrusted software. This secure attention signal must be one that untrusted software 
cannot intercept, mask, or fake. On an asynchronous ASCII terminal line, the signal might be an 
out-of-band condition (such as a BREAK that is entered at the keyboard) or a line condition 
caused by momentarily turning terminal power off. If the kernel is able to intercept all characters 
entered at the terminal, any character can be chosen as a secure attention character. 

Depending on the characteristics of the hardware, the kernel may have to go to great lengths 
to ensure that the user’s process cannot place the terminal or line controller in a mode where the 
secure attention character might be missed. Early attempts at implementing a trusted path 
consisted of special lights on the terminal controlled by the kernel, or a special area of the screen 
reserved for kernel communications, but the flexibility of most terminals today is such that the 
kernel would have an extremely hard time preventing such a mechanism from being spoofed by 
a Trojan horse. 

The requirement for a trusted path presents a serious problem when the user’s terminal is in 
fact an intelligent device or a personal computer. The trusted path must persist from the user’s 
keyboard, through any software in the terminal or PC, to the kernel in the host. Likewise a 
trusted display must persist from the kernel to the user’s screen. The only way to ensure the 
integrity of such paths is to verify the trustworthiness of the software in the terminal or PC, and 
to ascertain that the software cannot be modified or adversely influenced by commands from the 
user’s process in the host. For a PC, such assurance may only be obtainable by implementing a 
security kernel or other form of trusted software in the PC. Although there is no technical reason 
why a PC with the appropriate hardware architecture cannot run a security kernel—and, in fact, 
security kernels have been built for microprocessors (Schell, Tao, and Heckman 1985)—these 
difficulties have led to the requirement in some applications that only dumb terminals be used 
with kernel-based systems. 

In a high-security environment where mandatory controls are present, a personal computer 
must always be treated as a computer and not as a terminal. Even if the PC is a single-user 
computer and the user owns all the data in the PC, mandatory security rules require that the PC 
protect the user’s data from improper modification or disclosure that might result from 
malfunctions and Trojan horses in applications running on that PC. A PC that interacts with a 
host kernel-based system, even if only through a terminal-emulator program, does so as a host on 
a network and must face scrutiny regarding network security issues that go far beyond those of a 
single computer system—whether or not the PC has a security kernel. See chapter 13, 
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particularly section 13.5, for a discussion of network security issues as they pertain to security 
kernels. 

10.5 TRUSTED FUNCTIONS 

In addition to the trusted path, trusted functions are needed on most systems, and the difficulty of 
integrating these trusted functions is another reason why the ideal layering of the kernel-based 
system is often violated. The administrator interactions and user logins that we discussed in 
section 10.4, plus a number of administrative functions such as backup, are functions that must 
be trusted to maintain the security, of the system but that are usually carried out by autonomous 
processes rather than by the kernel layer running in an inner domain protected by the hardware. 
Logically, such functions are part of the trusted software, and therefore they should be 
considered part of the kernel; but architecturally they run as processes outside the kernel and use 
services of the kernel just as though they were untrusted processes. The only difference between 
trusted processes and untrusted processes is that the former may be privileged to modify kernel 
databases and to bypass certain requirements of the security policy. 

Trusted functions, also called trusted processes, are controversial because early kernel-based 
systems had nearly as much software running in the form of trusted processes as they had 
running in the kernel, substantially increasing the quantity of trusted code. Nobody could come 
up with a good reason why trusted code running outside the kernel should be subject to less 
scrutiny than code in the kernel, yet it was difficult to come up with a rigorous definition of what 
these processes were supposed to do: the security policy for trusted processes is not as obvious 
and straightforward as are the simple security and confinement properties. Moreover, some of 
the verification tools did not permit proofs of trusted process properties. Trusted processes were 
viewed suspiciously as a catch-all category for software that is needed to maintain the security of 
the system but that nobody wants to verify. 

Today the tools are a little better, and proofs of properties of trusted processes are feasible, 
but some of the controversy remains. Some people view the interface between trusted processes 
and the kernel as a special kind of interface for trusted subjects—processes that do not need to be 
constrained as much as untrusted processes. The kernel provides most of the same functions for 
trusted processes as it does for untrusted processes, but it bypasses normal security checks if a 
process possesses trusted-subject privileges. 

Other people assert that the only important interface is the external interface into the security 
perimeter. The trusted processes clearly run within the security perimeter and in a sense are just 
extensions of the kernel. The interfaces between the trusted processes and the kernel are no more 
special than other interfaces between portions of software within the kernel. There is one security 
policy, and it must be enforced consistently everywhere around the security perimeter; no special 
policy is needed for the interface between the kernel and trusted processes. 

Operating-system designers are often faced with making a decision about whether to 
implement a function as an autonomous process or to implement it as part of the operating 
system that is distributed across all processes. Usually the function is more efficient when it is 
inside the operating system, but maintenance is far easier (and the design may be simpler) when 
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it is outside. Kernel designers are faced with the same decisions. For example, the login function 
is often handled by a (trusted) process rather than directly by the operating system or kernel. But 
clearly that process must be trusted as much as the kernel and must enforce the same security 
policy. It is hard to make a convincing argument either that the policy enforced by the login 
process or its degree of verification should depend on a design or implementation detail. 

From a purist’s point of view, the only trusted subjects are people: users and administrators. 
Users are trusted to protect information to which they have access, and administrators are trusted 
to protect the kernel and to specify security attributes of users. Like other interfaces into the 
kernel, the interfaces for these trusted subjects (implemented through the trusted-path mechanism 
we discussed in section 10.4) must be constrained by the security policy, except that certain rules 
(specifically, the confinement property of the Bell and La Padula model) may not apply to 
people. Whether the software that implements such functions runs as a separate process or runs 
within a privileged domain is an implementation detail. 

10.6 KERNEL SECURITY POLICIES 

Almost universally, the security kernel approach has been applied to systems that enforce a 
multilevel security policy (see section 6.4). In particular, the mandatory and discretionary 
policies of the Bell and La Padula model (section 9.5.3) are the ones most commonly used. 
While few people doubt that the security kernel is a good place to enforce a mandatory security 
policy, a great deal of controversy has surrounded the discretionary policy. 

We saw in section 6.2.5 that a Trojan horse can easily bypass discretionary access controls 
without violating any rules. This is true even if the controls are enforced in a security kernel. 
Nobody questions the usefulness of discretionary access controls; but many doubt whether, given 
this vulnerability to Trojan horses, it pays to go to the effort of implementing the controls in a 
kernel. After all, the kernel is supposed to be as small and simple as possible, and the cost to 
implement anything in a kernel is quite high because of the verifiability requirement. 
Discretionary access controls can easily be implemented in the operating system outside the 
kernel. Such controls can also be implemented within an expanded security perimeter that 
includes more than just the kernel. 

The kernel typically provides two types of functions to support discretionary access controls. 
One function is an explicit kernel call that allows a user (or a process) to set the access rights to 
an object. The other function is the act of enforcing those rights on each access to the object (as 
part of the complete mediation principle). The kernel function that sets access rights on an object 
must of course check to make sure that the user or process has sufficient right to do so (for 
example, by ensuring that the user owns the object or that the object is contained in a directory 
that the user can modify), but the function places no constraints on the access rights that the user 
or process may specify. The definition of discretionary access control requires that a user be 
allowed to give away a file to anyone as a matter of discretion. 

Thus, while the kernel faithfully enforces the access rights on an object, it does not restrict 
the values to which those rights may be set, thereby leaving discretionary access controls wide 
open to a Trojan horse attack. 
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It appears, at first, that the root of the vulnerability of discretionary access control is the fact 
that a program in the user’s process can give away access rights. Consequently, it is occasionally 
proposed that this capability be eliminated by providing a trusted path such that only the user can 
set access rights. As we established in section 7.1.2, however, such a restriction is nearly 
useless—unnecessarily constraining the flexibility of the system, while doing nothing to defeat a 
Trojan horse. 

You may conclude that, in order for the effort to implement discretionary access control in 
the kernel to be justified, you have to prove that you can prevent a Trojan horse from entering 
the system (or from entering a specific set of applications). In section 7.1.2 we discussed some 
ways to limit the occurrence of a Trojan horse through procedural controls. In a fairly closed 
system where no user programming is allowed or where the only users who are able to write 
programs are trusted, it is possible to increase your level of confidence that no Trojan horse can 
get into places where it would do much harm. You must be very careful, however, that you do 
not close the system to such a degree that your need for a security kernel is dubious. If you go so 
far as to require all your users to be cleared for access to all the information in the system, then 
you do not need much security. 

Another way to minimize the occurrence of a Trojan horse is to use an integrity policy (see 
section 6.5) in which integrity access classes are assigned to subjects and objects based on some 
measure of their reliability. The kernel will prevent high-integrity programs and data from being 
contaminated (modified) by lower-integrity programs. If you login at a high integrity level, your 
process will only be able to run high-integrity programs, and you need not worry about 
accidentally using a low-integrity program that might contain a Trojan horse. 

The integrity technique has a practical limitation: all programs used in a high-integrity 
process, including any that run in the operating system and all system applications needed by the 
process, must be of high integrity. This makes the use of normal-integrity tools such as compilers 
and text editors impossible in conjunction with these high-integrity programs. In general, using a 
level of integrity above that of the average system utility is practical only for very special cases. 

In summary, the jury is still out on the usefulness of discretionary access control in the 
kernel. While most security kernels do implement a discretionary policy (because the 
government’s Criteria (see section 1.2) requires that such controls lie within the security 
perimeter), you will have to judge for yourself whether it is appropriate for your kernel to do so. 

10.7 KERNEL IMPLEMENTATION STRATEGIES 

In general, a security kernel resembles an operating system and uses conventional operating-
system design concepts. The hardware support required for a security kernel is also largely 
conventional. The kernel must control all subjects and objects within the security perimeter, and 
therefore it must provide support for processes, a file system, memory management, and I/O. 
Nothing in the three principles of the reference monitor approach inherently dictates an 
architecture fundamentally different from that of conventional operating systems. In fact, these 
principles are worthwhile guidance for the design of any operating system. 
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Most of the differences between a kernel and an operating system are quantitative and follow 
from the high priority given to the three principles in comparison to flexibility, functions, 
performance, cost of development, ease of use, and other factors that are normally more 
important to an operating system. The most direct quantitative impact is caused by the 
verifiability principle, which dictates that the kernel have a primitive interface and be much 
simpler and smaller than a full operating system, while at the same time insisting that it be 
closely scrutinized (and therefore more costly to build in relation to its size)., 

But if we look at the kernelized system as a whole, including the operating system and all the 
applications, the architectural aspect that differs most from conventional systems is the existence 
of an additional operating-system layer on top of the kernel that compensates for all the functions 
that the primitive kernel does not provide and so keeps the system running smoothly. The kernel 
approach does not require such an operating system, but a properly constructed kernel is, by def- 
inition, too primitive and inconvenient to use directly for an interface to applications. A kernel 
also does little to prevent denial of service unless denial of service is expressed as a security 
requirement. 

Since few of us are in a position to build a complete system from scratch (including all 
hardware and software), we shall discuss in this section some of the early trade-offs you might 
make in planning to kemelize an existing system. Chapter 11 covers additional design topics 
pertaining to both kernels and conventional systems that are not covered here or in preceding 
sections. 

Suppose that you are given an existing insecure operating system (ISOS) running on top of a 
reasonably modern computer (RMC). You will be subject to one of the following constraints 
(fig. 10-2), which are listed in order from most restrictive to least restrictive: 

(a) Identical operating system: You must support the existing ISOS with minimal or no 
changes, and you must support all existing applications with no changes (object code 
compatibility). You must be able to support all future releases of ISOS with minimal 
effort on your part for each new release. 

(b) Compatible operating system: You may completely redesign the existing ISOS, but you 
must support all existing applications with no changes to the applications. 

(c) New operating system: You need neither retain the existing ISOS nor support existing 
applications. You are building a new secure operating system (SOS), and any 
resemblance to the original is incidental. 

We shall now discuss implementation issues for each case. 
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Figure 10-2. Kernel Implementation Strategies. There are three ways to incorporate 
a security kernel into an insecure operating system (ISOS) on given computer hardware 
(RMC): the first (a) retains most of the ISOS code and applications, the second (b) 
redesigns the operating system but retains the ISOS interface, thereby preserving the 
applications; and the third (c) is a completely redesigned SOS with a new interface and 
applications. 
 
10.7.1 Case (a): Identical Operating System (Virtual Machine) 

This case is at once the most restrictive and the most realistic. In most cases where security is 
the only motivation for improving a system, you are required to use as much of the code from an 
existing operating system as possible, and you must maintain full compatibility with existing 
applications. A further constraint may be that you must avoid the need to issue a new release of 
your system every time the original operating system is changed. 

In this approach, the original operating system is used almost intact, and the kernel is 
implemented as a new layer within the existing system. The only practical way to implement this 
strategy is through a virtual machine monitor (fig. 10-3), such as IBM’s VM operating system. In 
this case, the kernel is the virtual machine monitor, whose interface  is nearly identical to that of 
the original hardware. The kernel supports multiple virtual machines (with a copy of the 
operating system running in each machine), in a manner analogous to the way in which an 
operating system supports multiple processes. The operating system, unaware that it is being 
controlled by the security kernel, carries out its own functions of multiprocessing and memory 
management as if it were on the bare machine. In this structure, the virtual machines occupy 
isolated areas of memory; sharing memory is not usually possible because the operating systems, 
unaware of each other, do not have the necessary coordination mechanisms. With a few 
modifications, however, or with an operating system that is already able to run as a virtual 
machine, some sharing could be permitted (under control of the kernel, of course). 
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Figure 10-3. Virtual Machine Monitor Approach. In this architecture, the kernel 
supports multiple virtual machines, each of which runs a copy of the original operating 
system. Each operating system may service multiple applications and users. The kernel 
enforces the vertical isolation between virtual machines but not between processes on 
the same machine. 

 
The virtual machine approach has been used quite successfully in KVM because both the 

hardware (the IBM 370) and the original operating system (VM/370) were already structured to 
support virtual machines. Certain hardware features are crucial to practical implementation of a 
virtual machine monitor, so this approach is not suitable for all systems. 

In this architecture, the kernel’s idea of a subject is in fact a virtual machine. Each virtual 
machine has a unique identifier and a set of security attributes on the basis of which the kernel 
makes its access decisions. Because the kernel does not manage (nor necessarily know about) the 
processes operating above that virtual machine, the kernel cannot perform any finer-grained 
access control over those processes. The kernel carries out actions requested by the operating 
system in each virtual machine and cannot trust the operating system to distinguish between the 
requests of different users. As far as the kernel is concerned, each machine is a single subject. 

The operating system running in each virtual machine protects itself and the integrity of that 
machine, and the kernel protects itself and the integrity of the overall system. Such an 
architecture requires a hardware base with at least three states or domains, one for the kernel, one 
for the operating system, and one for all the applications. Furthermore the architecture requires 
that the original operating system be able to run outside the most privileged state of the 
machine—something it probably is not accustomed to doing. It is unlikely that you will get away 
without making any changes at all to the original operating system; but if the operating system is 
well-structured to begin with, the changes may be very minor. 

If we want each virtual machine to take on the role of a surrogate for a single user, the kernel 
must permit no more than one user to access each machine. The user may have multiple 
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processes on that virtual machine, but all processes have the same access rights (enforced by the 
kernel) as the virtual machine. This single-user virtual machine is represented in the leftmost 
ISOS in figure 10-3. The kernel’s enforcement of access control to the granularity level of the 
virtual machine is equivalent to enforcing access to the level of a single user. On the other hand, 
it might be desirable to allow a virtual machine to be used by several users, as represented by the 
other two ISOS’s in figure 10-3. Since ISOS is a multiuser operating system, this is a natural 
thing to do. In this case the kernel cannot distinguish between the actions of different users on 
the same machine. For access control purposes, the users must be considered as members of a 
group, and the kernel’s access enforcement is to the level of granularity of a group of users. 

Which of the two approaches—single- or multiple-user virtual machines—you adopt depends 
on your security policy and on pragmatic issues such as performance. “Sliding” a virtual 
machine monitor beneath an existing operating system is well-known to have an adverse impact 
on performance. If the hardware is optimized to support a virtual machine concept, however, the 
impact might not be too great. But in a system with a hundred simultaneously logged-in users, 
the overhead involved in maintaining a virtual machine per user could be intolerable. On the 
other hand, if the security policy requires the kernel to distinguish between the actions of 
programs run by different users, there is no secure alternative. 

Even though the kernel’s security policy cannot distinguish between the operating system 
and the applications, there is no reason why the operating system cannot continue to enforce its 
own security policy over the applications. While we cannot trust the operating system to enforce 
its security policy with the same level of assurance we have in trusting the kernel, that does not 
necessarily render the operating  system’s controls useless. In particular, conventional 
discretionary access control (already a feature of most operating systems) will continue to be 
enforced even if the operating system is running on top of a kernel. The kernel might enforce 
more stringent mandatory security controls that the operating system does not provide. 

In a virtual machine architecture, the kernel can manage a file system  on secondary storage 
in a number of ways. One way is to provide each virtual machine with a private area of disk in 
which the operating system manages its own file system. (In KVM each VM is given access to 
its own minidisk area of disk.) The kernel mediates the I/O to the disk but does not interpret the 
contents of a virtual machine’s disk area.  But in order to allow sharing of information, the kernel 
must allow two virtual machines to access the same disk area in accordance with the security 
policy. Whether this is workable depends on how easily the operating system is able to 
coordinate sharing a file system with another machine. 

10.7.2 Case (b): Compatible Operating System (Emulation) 

Even if you are lucky enough to be free to redesign the internals of the operating system, you 
will doubtless be constrained by existing applications. In figure 10-2(b), your constraints are to 
use the existing RMC computer and to implement the same ISOS interface (so that applications 
do not know the difference between the real ISOS and the ISOS emulator). You have complete 



 

 146

freedom to define an interface between the ISOS emulator and the kernel. This approach was 
proposed for the KSOS project, where a Unix emulator was to run on top of the security kernel.1 

The most straightforward way to realize this approach is to implement the operating system 
emulator as a program within each user’s process, running in a domain outside the kernel but 
with more privileges than the user programs enjoy (fig. 10-4). In this case, unlike the situation in 
the virtual machine monitor approach, each subject is a process that operates as a surrogate for a 
single user. But like the virtual machine system, this architecture requires a machine that has at 
least three domains. In general, the emulator that runs in each process acts as a translator, 
rendering operating system functions into kernel calls, rather than as a complete operating 
system, because the emulator only controls a single user’s process and cannot freely share 
information with its counterparts in other processes. Nonetheless, a properly constructed 
emulator can maintain a certain amount of global control over users in all processes. With some 
luck, sections of the code for the emulator can be obtained unmodified from the original 
operating system, because most operating systems are already built to distribute a portion of their 
outer layers among the processes in the system. 

 
Figure 10-4. Operating-system Emulator. A program running in an intermediate 
domain of each process emulates operating-system calls, using combinations of kernel 
calls. 

 
Since you are designing both the emulator and the kernel, and since you are constrained only 

by the ISOS interface at the top and the hardware at the bottom (and perhaps by the desire to use 
some existing code), you can make the optimum engineering choice of the split in functions 
between them. But some common problems arise in attempts to kernelize an operating system in 
this way, because of incompatibilities between the security policy that the kernel must enforce 
and the characteristics of the interface to be emulated: 

• Some functions of the interface are not secure according to the new policy and cannot be 
emulated. 

• Some functions of the interface, though secure, are exceptionally difficult to emulate. 

                                                 
1The Unix emulator was later abandoned as a result of budgetary constraints. 
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In section 5.2 we discussed some examples in which applications depend on functions of an 
operating system that are insecure. You are most likely to encounter such problems when you try 
to enforce mandatory controls on a system that depends on the ability to communicate or share 
information among many or all processes. In particular, you cannot emulate functions that reveal 
global dynamic status about the system if the kernel enforces mandatory controls. These 
functions are not a problem in the virtual machine approach because each machine runs its own 
complete operating system in its own security domain and can function quite well without being 
aware of other machines. 

A function that is secure but difficult to emulate under mandatory access controls is one that 
maintains an interprocess synchronization mechanism, in the form of locks that are shared by 
several processes. On the “vanilla” system, there might be a system-wide database (in memory) 
containing information about locks, such as the list of processes waiting on each lock. The lock 
manager enforces access control on the locks, so that a process may only use a lock when 
permitted by the process that created the lock. But mandatory controls do not allow any single 
system-wide object to be read and written by all processes: the locking mechanism has to be 
redesigned to use multiple databases—one per access class. Because the system may support a 
huge number of different access classes, the databases must be dynamically created in memory 
(assuming that the kernel supports shared memory) each time a process of a new access class is 
activated, and they must be deleted when the last process of a given access class terminates. 
Reliably deleting objects, so as to avoid filling memory with thousands of unused lock databases, 
is a difficult design problem. 

Another function—secure, but difficult to emulate—provides access control for small objects 
such as records or interprocess messages. A kernel with a primitive file system is unlikely to 
support many types of objects, so a simple way to manage small objects is to store one object per 
file. While such a scheme is not hard to implement, its performance implications and storage 
requirements might make it impractical. A much more complex scheme might be required, 
whereby multiple objects are stored on a per-access-class basis, as are the locks in the previous 
example. 

Before undertaking a project to kernelize an existing operating system, you should carefully 
analyze each function to be emulated and determine exactly where the function might fail under 
the kernel’s security policy. Most of the problems you identify will involve additional error 
conditions that can usually be implemented in a compatible way, or functions that do not work in 
quite the same way but are not used much anyway. You may however, run into a few show-
stoppers, where fixing the problem nullifies so many applications that you must abandon hope of 
emulating the existing operating system. 

If you find that a function will work but is very difficult to implement, you might decide to 
place part of it in the kernel. A locking mechanism, for example, is much easier to implement in 
the kernel, where it can know about all processes. But you should make such decisions carefully 
and with good reason, or before you know it the kernel will be as big as the original operating 
system, and the emulator will be little more than an empty shell. 



 

 148

10.7.3 Case (c): New Operating System 

The third case arises when you are designing your own system from scratch, and thus have the 
rare freedom (within reason) to define your own operating system interface. This case of course 
assumes that you are designing a complete operating system and not just a kernel. In case (c) you 
are allowed to define an operating system interface that is compatible with the security policy 
enforced by the kernel. The interface might closely match the functions provided by the kernel, 
either on a one-for-one basis or through simple mappings of operating system functions to kernel 
functions. With the flexibility afforded by the freedom to choose an interface, you can probably 
design both a kernel of minimal size and an operating system that performs well. With 
appropriate hardware support (see chapter 8), your fully functional secure operating system need 
perform no worse than any insecure operating system that has similar functions. 

The SCOMP is an example of a kernelized system with a specialized operating system. On top 
of the kernel is a simple operating system that provides more application-friendly features than 
the bare kernel does. 

The structure of the system will resemble that in figure 10-4, with a portion of the operating 
system code running in each process under control of the kernel. But because there is no 
compatibility constraint on the type of sharing that the operating system must implement, you 
can design both the file system’s and the operating system’s internal databases to use kernel 
primitives to share information in accordance with the security policy. This flexibility minimizes 
the need to implement special-purpose functions in the kernel. 

If you have a multilevel security policy, for example, a process running at SYSTEM LOW 
(see section 9.5.3) outside the kernel can write information readable by all other processes. Such 
a process can manage a large number of administrative functions affecting system databases that 
are read (but not written) by other processes. These include the user registration file, 
configuration information, sysgen parameters, and start-up procedures. 

A SYSTEM HIGH process outside the kernel can handle functions that must be able to read 
system-wide information written by all processes. Such a process can read (but not write) any 
file in the system without special privileges. Examples of applications of this type are processes 
that handle audit or accounting logs or that monitor system usage. 

You cannot go too far with this notion of untrusted processes for system functions. The 
system backup process, for example, only requires read access to files and might therefore seem 
to be a good candidate for a SYSTEM HIGH untrusted process. But if you ever want to restore the 
files you have backed up, you will be unable to believe any of the access class labels or kernel 
data written by backup. In general, backup and restore operations must be implemented within 
the kernel or as trusted functions (see section 10.5). 
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 Chapter 11 

Architectural 
 Considerations 

This chapter covers a number of miscellaneous topics pertaining to the design and development 
of secure systems, as well as to their applications. It applies to both security kernels and 
conventional designs. 

11.1 OPERATING-SYSTEM LAYERING 

Although the concept of layering is not unique to secure operating systems, it is particularly 
useful for them because it promotes a structured design that can help satisfy some assurance 
needs. A layered operating system is one whose internal structure looks like a stack of systems, 
each having an interface for use by the layers above (table 11-1). 

Layers in a system are strictly hierarchical: the lower layers provide primitive functions, and 
the higher layers use the primitive functions to provide more complex functions. By employing 
the technique of data hiding, the software in each layer maintains its own global data and does 
not directly reference data outside its layer. Each layer knows only about its own data and about 
the set of functions available to it below; it knows nothing about higher layers except such 
information as can be deduced from interactions across the interface. The rule is “downward 
calls only.” 

One way we can view the functions of the layers resembles the way we view layers in a 
kernel-based system implementing a virtual machine (refer to figure 10-3), where each of the 
three layers is a complete mini-operating system providing functions in all necessary areas: 
object management, process management, I/O, and so on. The mini-operating systems in the 
higher layers have more functions and are more complex than those in the lower layers. In such a 
structure, there is no reason why any layer need use functions belonging to a layer other than the 
one immediately below. The primary difference between the layering inside the operating system 
in table 11-1 and that in figure 10-3 is that inside the operating system there is no need to enforce 
vertical isolation between portions of the upper layers, as there is between processes or virtual 
machines. Performance of operating systems layered in this way tends to be poor because many 
of the frequently used simple functions that are implemented in the lower layers can be accessed 
only by a cascade of calls through multiple upper layers. 
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Table 11-1. Operating-system Layers. Each layer provides a set of functions for the 
layers above it, using functions available to it in the layers below. Everything at or below 
layer 8 in this example is within the operating system (or security kernel). This 
architecture resembles that of PSOS (Neumann et al. 1980). 

Another view constrains each layer to a particular subset of functions, as in the example in 
table 11-1. The hierarchical structure. (downward calls only) is maintained, but no single layer 
provides enough interfaces to be usable as an operating system in itself. A layer may directly call 
functions several layers down, bypassing intermediate layers. In table 11-1, for example, a user 
application in layer 10 may be, permitted to read and write a file by directly calling layer 4, 
without necessarily passing through intermediate layers. 

The structure whereby a layer services a single functional area is more efficient, because the 
layer need not participate in functions of the lower layers; but it is also more error-prone, 
because software in a higher layer may be able to bypass intermediate layers and directly access 
objects that the intermediate layers should handle. In table 111, for example, layer 5 creates 
directories using the files provided by layer 4. If programs in layer 6 (or above) always call layer 
5 before calling lower layers, the integrity of the directories can be maintained by layer 5. But if 
a program makes a direct call from layer 10 into layer 4, for example, that program might be able 
to write into a file containing a directory without the directory manager’s knowledge. To handle 
this type of problem gracefully, each layer must provide pass-through interfaces to functions in 
layers beneath it, allowing lower-layer functions to be used only where the data-hiding 
constraints of the layer are not violated. In our example, the directory layer would provide pass-
through calls for the open-file function in the file layer, but only after checking the 
arguments of the open-file call to make sure that files containing directories are not opened. 

Regardless of how the layers are interpreted, security decisions usually must be made by 
most layers. Normally, having a single “security layer” is impossible because each layer has its 
own set of objects that require secure management. It would be nice if, for example, the 
operating-system interface layer in table 11-1 could validate the legitimacy of all system calls, 
since that would relieve the lower layers of the duty to check their arguments. But the ability to 

Layer   Function  

10  user applications

9  command language interpreter 

8  operating system interface   

7  device input/output

6  high-level processes

5  directories

4  files

3  segments

2  pages

1  low-level processes

0  hardware

Outside
Operating System  

Inside
Operating System  
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do so, especially for the pass-through calls, might require that the interface layer know about 
details of the lower-layer data structures, thereby violating the data hiding principle of layering. 
If a whole operating system existed in each layer, with no pass-through functions, such 
knowledge would not be required because each layer would fully protect all its objects. 

In most systems, the layering structure is enforced during development, rather than at run 
time, using design guidelines and development tools such as compilers that prevent out-of-layer 
references. When in execution, the entire operating system runs in one or two domains, and the 
hardware has little or no role in preventing erroneous software in the operating system from 
violating the layering. While the layering structure looks as though it could be handled by 
hardware that supports hierarchical domains, there is little security advantage in adopting this 
strategy because the entire operating system (or security kernel) is security-relevant. Once a 
system call passes through the operating system interface. and satisfies the initial checks of its 
arguments, any lower layer can cause a security violation if it misbehaves. 

In summary, layering supports design verification by promoting a clean architecture and 
reducing the chance for design and implementation errors. Some verification techniques model 
the layering structure (see section 12.6.2). Using hardware to enforce layering during execution 
may add robustness to the system in the face of programming errors, but it adds little measurable 
security. 

11.2 ASYNCHRONOUS ATTACKS AND ARGUMENT VALIDATION 

In section 8.4.2 we discussed hardware techniques for checking pointers passed as arguments 
between domains. Pointer validation is a special case of argument validation performed by all 
operating systems prior to carrying out a user’s system call request. Where a system supports 
multiple processors and multiprogramming, there exists a class of problem referred to as the 
asynchronous attack, whereby one process passes pointers to parameters (residing in its virtual 
memory) to the operating system, and another process (with access to the same memory 
containing the parameters) modifies the parameters between the time the operating system 
validates them and the time they are used. The first process (the one making the system call) is 
suspended during the call so that it cannot modify the parameters, but any other process or 
processor may be able to run during the call. Another term that has been used to describe this 
problem is TOC/TOU (“time of check/time of use”). 

As we discussed in section 8.4.2, the safest solution to the TOC/TOU problem is for the 
operating system to copy the parameters to a location safe from asynchronous modification prior 
to validation. But it is also necessary for the operating system to prevent an asynchronous change 
to all information on which the validation depends, not just to the parameters themselves. We 
spoke earlier, for example, of a segment descriptor that is modified between the time access to 
the segment is determined and the time the segment is referenced. Another example, at a higher 
level, involves a system call to read a file. The operating system must first read a directory to 
find out the caller’s mode of access and to obtain the location of the file on disk. By the time the 
file on disk is read, the file may have been deleted and a new file put in its place—a file to which 
the caller did not originally have access. Of course, operating systems can handle these cases 
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through the use of appropriate locks, but each case must be handled in its own way: there are no 
generic solutions. 

While locking helps avoid the TOC/TOU problem in situations where tables and operating-
system databases are involved in checking access, a user’s database that is randomly located 
somewhere in a process’s address space cannot be locked by the operating system. In situations 
where such data take part in an access check, the data may have to be copied into the operating 
system in total. 

Asynchronous actions that change the contents of memory can also occur as a result of I/O 
operations. A classic penetration of OS/360 involves writing a channel program that is valid at 
the time it is checked by the operating system prior to the start of I/O, but causes itself to be 
modified (overwritten with the data being read) in a way that invalidates the prior check. Thus, 
you are not necessarily safe from the TOC/TOU problem even if your system runs on a single 
processor and your operating system prevents a process switch between time of check and time 
of use. 

11.3 PROTECTED SUBSYSTEMS 

A protected subsystem is an application program outside of the operating system that carries out 
functions for a group of users, maintains some common data for all users in the group, and 
protects the data from improper, access by users in the group. The subsystem itself is protected 
from tampering. A database management system that maintains a database shared by a group of 
users is a protected subsystem. The operating system, via conventional access controls, prevents 
users from tampering with either the database or the DBMS itself. The database can only be 
accessed through proper calls to the DBMS. Most transaction monitors are also subsystems. A 
program such as a compiler is not a subsystem because the compiler runs with the access rights 
of the user that called if, operating on data accessible only to that user. 

Smith process  

Green process  

Jones process  

DBMS  
process  

DATABASE 
ALPHA 

(Smith) DATABASE 
BETA 

(Smith,Green)

DATABASE  
GAMMA  

(Green,Jones) 

 

 

 

 

 

Figure 11-1. Protected Subsystem in an Active Process. In this structure, the DBMS 
runs as a process that is inherently no different from a user process. The operating 
system’s normal access-control mechanism prevents all but the DBMS process from 
accessing the database files. The DBMS must control individual users’ access to 
different files and different portions of files. 



 

 155

One key problem in supporting a protected subsystem is how to prevent user programs from 
accessing the subsystem’s shared data directly, while allowing the subsystem access to the data. 
In most systems, the easiest way to implement such a scheme is to run the subsystem in its own 
process with its own access rights and its own files (fig. 11-1). User processes send requests to 
the subsystem via shared memory or interprocess messages. The subsystem remains permanently 
active, ready to process a request at any time. 

When subsystems are supported in individual processes, they tend to require centralized 
system management to ensure that they are always active. Users cannot write their own 
subsystems and change them as they see fit. But these management problems are not as 
important a consideration as a security problem: the operating system cannot tell on whose 
behalf the subsystem is working at any given time. The subsystem is responsible for enforcing 
access to data belonging to a number of users, even though the subsystem is apt to be far less 
trustworthy than the operating system. As far as the operating system is concerned, all files used 
by the subsystem belong to a single user (DBMS, in figure 11-1). The security controls in the 
operating system only keep the subsystem’s database separate from other processes. 

A related way to support subsystems, employed in Unix via its set-uid mechanism, 
involves activating a separate subsystem process on each request made by another process (fig. 
11-2). The subsystem process runs with the identity of the subsystem and not with the user’s 
identity: At any one time, multiple subsystem processes may be operating on common data. This 
technique has all the same security problems as the single process, because each of the multiple 
processes takes on the identity of the same user, but it does minimize the need for centralized 
management of subsystems. 
 

In yet another approach, the subsystem runs as just another program in the context of each 
process that uses it, thereby taking advantage of the operating system’s process isolation 
mechanisms to separate the actions of different users. In order to prevent the applications fro 
damaging the subsystem’s data, this approach requires a machine whose hardware supports 
hierarchical domains (see section 8.4). The subsystem runs in an inner domain that is more 
protected than the user program but less protected and less trusted than the operating system. The 
subsystem must still be trusted to manage data shared among several users, but the operating 
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Figure 11-2. Protected Subsystem Activated on Request. The subsystem is 
activated as a separate process each time it is needed, while retaining its own identity 
separate from that of the invoking process. 
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system can enforce a certain degree of control over the data: the data can be protected from 
processes outside a given group of users as well as from programs running in domains less 
privileged than that of the subsystem. 

The maximum number of domains in a system that contains hierarchical domains is usually 
limited to a small number such as 3, 4, 7, or 16. As illustrated in figure 8-5, domains tend to be 
reserved for specific functions-the innermost ones for the operating system, the outermost ones 
for users, and some intermediate ones for subsystems. Recall that access control to files is based 
on the user identifier of the process and on the domain in which the process is running; there is 
no further distinction among programs within the same domain. 

This structure works very well when the system supports just one or two subsystems, since 
each can run in its own domain. But with a limited number of domains, the use of subsystems 
must be centrally managed; and in a large system with scores of subsystems, there are too few 
domains. If several subsystems are placed in the same domain and are used by the same process, 
the operating system or hardware cannot distinguish between the programs of one subsystem and 
those of another. In figure 11-3, both the MAIL and DBMS subsystems run in the same domain. 
If both subsystems are used by process P1, they share the same user identifier, SMITH; 
therefore, both have access to the same files. Where two subsystems are mutually suspicious this 
is a security problem. There are several ways around this problem (Schroeder 1972), but none is 
very attractive. While it nicely addresses the performance problems of the other approaches, the 
use of hierarchical domains for subsystems can only succeed in a few special cases and is not a 
general solution. 

 

OPERATING SYSTEM  OPERATING-SYSTEM DOMAIN  

DBMS  MAIL  PRIV  SUBSYSTEM DOMAIN  

P1   P2  P3  USER DOMAIN  

SMITH  JONES  GREEN  

Process P1 

 

 

 

 

 

 

 

Figure 11-3. Mutually Suspicious Subsystems. Process P1, with access rights of 
user SMITH invokes both the DBMS and the MAIL subsystems. The subsystems run as 
part of process P1, but in a more privileged subsystem domain. The access rights of a 
program in the subsystem domain run by P1 are based on the same identifier SMITH so 
there is no way for the DBMS subsystem to protect itself from the MAIL subsystem. This 
is a classic problem with hierarchical domains. 
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Hierarchical domains are poor vehicles for protected subsystems because there is, in general, 
nothing hierarchical about access rights of different subsystems. We need a more generalized 
domain structure, where subsystems run in private domains that are isolated from each other and 
from their callers, and where no practical limit constrains the total number of domains on a 
system. This need has driven many researchers to design hardware that can support a generalized 
domain or capability architecture (see section 11.6), and a few commercial systems have been 
built around this concept. The IBM System/38 and Intel iAPX 432 are examples. But the 
hardware designs are more radical, and little experience has been accumulated in building secure 
operating systems on these machines. Such domain machines are viewed in practice as offering a 
means to improve software reliability, because a software problem in one domain cannot affect 
software in another domain. Building a secure operating system or security kernel on such a 
machine remains an area of research. 

11.4 SECURE FILE SYSTEMS 

The file system is the primary focus of access control in an operating system. Following are 
some important aspects of file system design that affect the implementation of secure file 
systems. 

11.4.1 Naming Structures 

Early in the development of the first secure operating systems, certain file-system-naming 
structures were recognized to be better than others for secure sharing of files. The simplest 
structure is the flat file system wherein file names are maintained in a global name space stored 
in a single system-wide directory. Any process or user can ask for any file by name, and access 
to a file is determined by looking up information about the file in the directory. 

Flat file systems make poor secure file systems because there is no way to hide the existence 
of a file from a user. Nobody has yet come up with a way to hide the file names in such a system. 
Even if the operating system refuses to tell you directly whether a file of a given name exists, 
you can always infer it by attempting to create another file of the same name and checking to see 
whether you get a “name duplication” error message. Some measure of security can be attained 
by forcing people to use mundane file names so that the name itself will not reveal any useful 
information, but in general the existence of the file (as well as the name of the file) must be 
hidden. This problem makes flat file systems particularly inappropriate for mandatory security 
controls, because the file name and file existence are ideal covert storage channels (see the 
example in section 7.2.1). 

Most attempts to make flat file systems secure involve some type of qualifier (such as a 
mandatory access class) that is automatically attached to the file name and distinguishes between 
two files of the same name that were created by different processes having different security 
attributes. In effect, the system maintains two or more versions of the file, one for each access 
class at which the file is created. But the approach has serious functional (not security) problems, 
because it requires a process that wants to read a file to know which qualifier  to use (when it has 
access to more than one version). 
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One way to prevent covert channels in a flat file system is to prevent processes from 
choosing file names. In this approach, each file is assigned a unique ID by the operating system 
at the time of its creation. A process can create a file whenever it pleases, but it cannot select the 
name; and all processes must use the unique ID for future access to the file. This approach is 
adopted by the KSOS security kernel. While it works well for files that are created and used by 
programs, users cannot be expected to remember system-generated unique IDs. In order to allow 
users to name files, the system must maintain a directory that maps user-selected file names to 
unique IDs. Such a directory is none other than a global name space, posing the same security 
problems as a flat file system. 

The other file-naming structure is the hierarchical file system, wherein a collection of files is 
contained within a directory and directories are contained within other directories (fig. 11-4). 
The name of a file is specified as a path name—a series of directory names beginning at the root 
directory and ending with the file’s parent directory, followed by the name of the file in the 
directory. 

 
Access to directories, which contain names and pointers to files and other directories, is 

controlled in a manner similar to access to files, except that directories are readable and writable 
only indirectly through special system calls. When you create a file, you have to specify the 
directory in which it is to be created. If you want to create a file whose existence you want 
hidden from another user, you create the file in a directory that the user cannot read. A user 
without read access to a directory cannot infer anything about its contents or about the hierarchy 
below that directory. 
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Figure 11-4. Multilevel Secure Hierarchical File System. Boxes represent directories, 
and capsules represent files. A directory contains a list of files and other directories, 
plus information on access control and file system management. Shown is one way to 
organize a multilevel file system so that the access classes increase as you go down 
the tree. 
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To prevent covert channels in a multilevel secure hierarchical file system, we must avoid 
write-downs or confinement property violations (see section 6.4.1) in directories, by preventing a 
process from creating an object (a file or directory) in a directory unless the process has write 
access to the directory. This means that a TOP SECRET process cannot create a file in a SECRET 
directory. However, a SECRET process can create an object in a SECRET directory and then 
upgrade the object to TOP SECRET. The TOP SECRET process can thereafter write into the object. In 
this way, a tree of directories and files is created in which access classes stay the same or 
increase as you go down the tree. 

In a multilevel hierarchical file system, an object whose access class is greater than its 
parent’s is an upgraded object that cannot be deleted by a process running at the object’s access 
class. The object can only be deleted by a process running at the parent’s access class—even 
though that process cannot read the object. This causes some difficulties because a process at the 
parent’s access class cannot find out (and cannot be permitted to determine) whether an upgraded 
directory is empty; the system must permit the directory to be deleted by that process even if the 
directory is full of files and other directories. Despite this difficulty, hierarchical file systems are 
far preferable to flat file systems when multilevel security is involved. 

11.4.2 Unique Identifiers 

A highly secure system needs an unambiguous way to identify subjects and objects uniquely for 
access control and administrative functions. Guaranteeing uniqueness of subject identifiers is a 
manual job, because subject unique IDs are based on user names assigned administratively and 
centrally. Object unique IDs present a more difficult management problem, because not all 
objects are manually created and because user-assigned object names cannot be trusted to be 
unique. 

Ideally, the unique ID for an object is a number that is generated by the system when an 
object is created and is never reused for another object in the life of the system. Normally the 
user or process also specifies a human-readable name for the object, but the unique ID is the 
basis of access control decisions. It is important to avoid assigning two unique IDs to the same 
object. It is convenient—though not essential—to avoid changing the unique ID of an object 
unnecessarily. 

You may notice that the unique ID name space appears to be the same global name space that 
we said was a bad idea in section 11.4.1. Because you do not specify unique IDs yourself when 
you create objects, however, and because you use the conventional (for example, hierarchical) 
name to access the object, using system-assigned unique IDs for ambiguity resolution and other 
functions listed below avoids all of the problems of a global name space. 

One purpose served by the unique ID is to permit the system to determine whether two 
objects are the same. Without a unique ID, this is harder than you may think, because the same 
file may be identified in many different ways—especially where file names can change, where 
files can have multiple names, or where files are accessible through indirect links, as in Unix or 
Multics. Knowing whether two objects are the same is necessary in order to determine whether 
or not to revoke access when security attributes of object change. 
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Object unique IDs are also used for administrative functions, such as backup and retrieval. 
Without a unique ID, it is impossible to ascertain whether a backed-up image of a file written 
long ago is the same file that currently resides on the system or is a completely different file that 
just happens to have the same user-defined name. A security violation could result if the wrong 
file is retrieved. 

Even if the contents of a file are completely erased and rewritten, its unique ID need not be 
changed, because it remains the same file for purposes of access control. If a file is deleted and a 
new one is created in its place with exactly the same access attributes, it can safely be assigned 
the same unique ID; but in general the operating system does not bother to keep track of the 
access attributes or unique IDs of deleted files. If the access attributes of a file change, the 
unique ID need not change, since the process that changed them possessed the right to access the 
file both before and after the change. Unique IDs generated by the system have gained a 
reputation as a source of covert channels. In order to ensure uniqueness of IDs, one approach to 
generating unique IDs is to use the value of a counter that is advanced each time an object is 
created. But if a process can see the unique IDs of two successive objects it has created, it can 
determine whether another process has created an object in the interim. This results in a covert 
storage channel. 

To counter this problem, a better source for unique IDs is a real-time clock whose resolution 
is sufficiently small that no two successive objects will have the same unique ID. This eliminates 
the covert storage channel but permits the exploitation of timing channels by providing in effect, 
a process-readable system clock. While this timing channel may not be new (the system probably 
already provides a clock for user processes), the unique-ID clock may be more accurate than a 
low-resolution clock that processes need for their usual timing functions. 

When a unique-ID generator is based on a clock that must be manually set each time the 
system is booted, the clock may be set wrong through human error. If the clock is set to a time in 
the past, unique IDs of previously created objects may be duplicated, and serious security 
problems can result. If the clock is set to a time in the future, no secure way exists to restore the 
clock to its proper value without finding and deleting all objects that have been created in the 
interim. 

11.5 SECURITY GUARDS 

The security guard is a low-cost add-on security mechanism that addresses a particular class of 
multilevel security problems. In many environments, users need to communicate with a system 
even though certain of those users cannot be allowed direct access to the system because of 
weaknesses in the system’s security controls. The users may need access to a restricted set of 
data, and the system may not be strong enough to protect other highly sensitive data residing on 
that system. 

Figure 11-5 shows an example of a guard that permits users logged into a system running at a 
Low access class to submit queries to a database running on a system at a HIGH access class. The 
two systems are not allowed to communicate directly because neither is trusted. The guard is a 
trusted (usually kernel-based) system that is allowed to communicate with both systems 



 

 161

simultaneously; it is trusted to prevent a nonsecure flow of information from HIGH to LOW. The 
guard accepts queries from the LOW system and passes them to the HIGH system unmodified: 
this is perfectly safe. The response to the query is received by the guard and displayed to a 
human reviewer to ensure that it contains no information above the LOW access class. 

In a similar manner, a guard can be used for access to a LOW database by users on a HIGH 
computer. In this case the human reviewer must examine the queries, not because the HIGH user 
might try to disclose information but because the HIGH computer cannot be trusted to prevent 
disclosure. 

Fully automated guards have been used for one-way traffic, such as sending mail from a 
LOW to a HIGH system. The only information that the LOW system needs to receive in response 
to a message it has sent is an acknowledgment that the message was accepted by the guard. The 
guard has enough store-and-forward capability to ensure that little or no information about the 
status of the HIGH system can be deduced by the LOW system, thereby minimizing the 
possibility that a covert channel will occur. Section 13.5 discusses why secure one-way traffic 
cannot generally be supported on a network. 

 
Automated guards have also been implemented to handle database: queries, where the 

queries and responses are highly structured and can be thoroughly checked so that the possibility 
of covert communications from HIGH to LOW is remote. For the most sensitive applications, 
how- ever, you must assess the Trojan horse threat before deciding whether the automated guard 
approach is suitable (Denning 1984). 

While the guard concept may seem “low-tech,” it is the only practical way to carry out 
various applications on many existing systems. Without a guard, the function is carried out using 

low
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Figure 11-5. Security Guard. Queries from the LOW to the HIGH system are passed 
essentially unmodified, while responses are manually filtered for HIGH system data 
content. Where the guard computer enforces process isolation with suitable assurance 
(for example, if the guard is based on a security kernel) the low and high processes 
running on the guard need not be trusted. 
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pencil-and-paper messages.1 The guard itself has to be developed using advanced computer 
security principles. The Department of Defense has developed several guards, one of which is 
based on a security kernel (Woodward 1979; Denning 1984). 

11.6 CAPABILITY-BASED ARCHITECTURES 

In section 6.2.2, we discussed the concept of a capability list for access control and noted that 
capabilities have enjoyed more success as a low level mechanism than as a user-visible one. In 
section 8.4.2, we examined how to use capabilities, supported by hardware, as pointers to 
implement nonhierarchical domains. While researchers have always shown a great deal of 
interest in capabilities, most capability systems remain research systems; only a very few (such 
as IBM’s System/38 and the Intel iAPX 432) have been built commercially. 

Despite the fact that capabilities are touted as a protection mechanism, using them for secure 
systems raises a fundamental problem. As a key to an object, a capability can be passed freely 
between domains, and possession of a capability is sufficient to permit access. Indeed, a primary 
advantage of capabilities is their ability to be given away without the system’s having to keep 
track of who has access to what. Each application can manage its own capabilities as it pleases. 

The flexibility to pass a capability to someone else is acceptable if the capability is for an 
object that you own, but it is unacceptable if the capability is for an object that you do not own. 
For example, a subsystem that processes data on behalf of one user, and thereby receives some 
capabilities for the data, should not be allowed to pass those capabilities to other users. The 
opportunity for a Trojan horse to propagate capabilities in an unconstrained manner makes pure 
capabilities useless for enforcing mandatory access controls. 

A number of researchers have addressed this deficiency, in various ways (Karger 1987; 
Boebert et al. 1985; Newmann et al. 1980; Rajunas et al. 1986). Some place controls over the 
propagation of capabilities by constraining the locations in which they can be stored. Others 
place additional constraints on access, beyond those specified in the capability. One approach is 
to use capabilities only as temporary keys for active processes and to redistribute the keys on 
each new access, in a manner similar to checking for access at the time a file is first opened. 

Rather than being used as a mechanism by which users may control access, capabilities can 
act quite effectively as an underlying protection mechanism. Some of the efforts currently under 
way are likely eventually to give us a way to build a secure system with greater ease and 
flexibility than current approaches allow, but in the short run the conventional machine 
architecture with conventional mechanisms appears to be the most practical. 

                                                 
1In many environments a person reads messages on one terminal and retypes the message into another terminal, 
because the two systems cannot be trusted to be electrically connected. 
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 Chapter 12 

Formal Specification 
 and Verification 

In section 4.3 we looked at an overview of the typical informal system development process and 
saw how that process is supplemented by formal techniques. The formal specification and formal 
verification phases of the formal system development paths (fig. 12-1) are used to increase the 
level of assurance that a system will meet its security requirements. 

In chapter 9 we discussed mathematical concepts for defining a security model of a system, 
and in section 9.1 we summarized several paths—formal and informal—for demonstrating 
correspondence of the system to the model (illustrated in figure 9-2). Section 9.7 discussed 
specific techniques for following the informal paths without having to use a formal specification. 
The formal techniques for showing correspondence covered in this chapter closely follow the 
philosophy of the informal techniques, and reviewing section 9.7 will help you put these formal 
techniques into perspective. 

 

 
Figure 12-1. System Development Paths. The formal specification satisfies the phase 
of system development corresponding to the informal functional specification. 

Implementation  Implementation 
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Despite the similarity in some of their formal methods, you should distinguish between the 
process of writing a formal model and the process of writing a formal specification. Formal 
specifications are only useful for systems that must maintain the highest degree of security, 
whereas models have a much broader applicability. You need to have a model in order to write a 
specification, but the converse is not true. The purpose of formal specification is to describe the 
functional behavior of the system in a manner that is precise, unambiguous, and amenable to 
computer processing. The purpose of the computer processing is to carry out various forms of 
analysis on the specification with minimal chance of human error. The primary goal of the 
analysis is to prove properties about the specification. The computer processing does not help 
you design and build the system: designers and implementers must read the formal specification 
and manually develop the software (and hardware) that satisfies the intent of the specification, 
much as they would use a natural-language specification. 

A formal specification can be used to prove many properties about the design of a system, 
but our primary concern is the correspondence of the specification to the security model. Proving 
that the specification conforms to the functions, invariants, and constraints of the model is one 
step in the formal verification of a system. 

Another step in the verification consists of proving that the implementation adheres to, or 
corresponds to, the formal specification. Unlike the specification proof, a complete formal 
implementation proof of a large system is but a dream with today’s technology, although a great 
deal of research is in progress and the theory is well-understood. We may have to await much 
more advanced tools (perhaps even artificial intelligence) before we see a fully verified operating 
system. But even if we cannot formally verify all the code, the formal process gives us the 
advantage of a precise (and verified) specification from which to carry out an informal (largely 
manual) argument to support that correspondence. 

When we think of formal specification, the concept of multiple layers of specification is 
usually predominant (fig. 12-2). The intent of the layering is to divide the large gap in abstraction 
between the model and the code into several smaller and (it is hoped) more manageable steps. 
The top layer looks most like the model, and the bottom layer looks most like the code. Proofs 
between the layers ensure correspondence from top to bottom. The various ways to decompose a 
system into layers are covered in section 12.6. 

While we discuss formal specification as if the goal were to verify formally the accuracy of 
the specification and to prove code correspondence, a formal proof of the specification is not a 
mandatory part of the development process. The discipline of formally specifying a system can 
be of significant benefit even if no formal verification is carried out; however, if you do not 
follow through and invest some substantial effort in showing specification and code 
correspondence, writing a specification will be a waste of time. It is particularly common to see 
formal specifications, written early in the design of a system and proved to be secure, lying on a 
shelf gathering dust as the system is implemented because nobody has taken the time to keep the 
specifications up to date. 
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Figure 12-2. Specification Layers. A formal specification may consist of several 
layers—the top layer most resembling the model, and the bottom layer most resembling 
the code. If verification is to be performed, the formal proof takes place between each 
pair of layers except with respect to the code. 

12.1 FORMAL SPECIFICATION TECHNIQUES 

Doing a credible job of specifying and/or verifying a system requires a collection of languages 
and automated tools. Only a handful of formal specification languages have been applied to 
sizable systems. The following four are the most popular of these: 

• Gypsy Verification Environment (GVE), developed by the University of Texas (Good, 
Akers, and Smith 1986) 

• Formal Development Methodology (FDM), developed by the System Development Group 
of Unisys (formerly System Development Corp.) (Scheid et al. 1986) 

• Hierarchical Development Methodology (HDM), developed by SRI International (Crow et 
al. 1985)1 

• AFFIRM, developed by the Information Sciences Institute at the University of Southern 
California (Thompson and Erickson 1981) 

These systems are large and complex and differ greatly from one another. Each has notable 
strengths and weaknesses, and none is entirely free of problems (Cheheyl et al. 1981; Kemmerer 
1986). The field of formal specification and the tools developed to handle specifications are by 
no means mature. These systems are called methodologies because they not only incorporate a 
specification language and related tools but prescribe a way of designing a system. While you 
                                                 
1The new, enhanced version of HDM is under development. The old HDM (Robinson, Silverberg, and Levitt 1979), 
though now obsolete, is the source of many concepts on which new HDM and other work in the field is based; and 
the old tools, particularly the MLS flow-analysis tool, are still in use. 
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can accomplish a great deal using only the specification language, you will obtain the greatest 
benefit if you adopt the design approach that these systems recommend. 

The most common way to view a system (and the way employed by FDM and HDM) is as an 
abstract state machine—the same approach that is used for an abstract model. This means that 
the system has state variables and state transition functions. In fact, to a large extent, state 
machine specifications are no more than complex models. The difference between a state-
machine model and a state-machine specification lies in the degree of detail; the latter looks far 
more like a description of a real system than like an abstract statement of rules and relationships. 

Gypsy specifications are significantly different from those written in FDM or HDM. Instead of 
modeling an abstract state machine with state variables, Gypsy employs specifications of the 
inputs and outputs of the individual procedures in the implementation, modeling a system in a 
manner that closely resembles the way it is written as a hierarchy of nested procedure calls. This 
technique has enjoyed some success as being the one most amenable to code proofs. 

AFFIRM uses a form of specification called algebraic that describes the functions of a system 
by specifying the cumulative effect of a sequence of nested function calls. Algebraic 
specifications have not yet received much use for secure systems, so we shall not dwell on them 
in detail. 

12.2 PROPERTIES OF FORMAL SPECIFICATIONS 

At first glance a formal specification looks much like a computer program, with its logical and 
arithmetic statements, but the notation is quite different. Figure 12-3 is an example of a formal 
specification. The language of this example specification is not an existing language, but it 
resembles the style of Ina Jo (the language used in FDM) and Special (the language used in old 
HDM). The notation of a formal specification language is much richer than that of a programming 
language and allows you to express logical operations and relations not possible in a computer 
program—especially those involving set theory. The following will help clarify some of the 
notation used in the example: 

type1: SET_OF type2 type type1 is a set with elements of type type2 
var:typename identifier var is of type typename 
'var value of var in new state 
{var1,var2} set of elements 
var1 ∪ var2 set union 
var1 IN var2 TRUE if var1 is an element of set var2 
exp1 | exp2 boolean OR of two expressions 
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Figure 12-3. Formal Specification of Security Model. The variables proc_class and 
file_class are arrays indexed by parameters identifying processes and files, 
respectively. Each element of the two-dimensional access matrix is a set that contains 
zero or more of the values "r" or "w". While all data types used in this specification are 
listed, most do not need to be elaborated. 

 

The functions in the specification are equivalent to function or procedure calls in a system; but 
unlike a computer program, the body or effect of the function is a nonprocedural description of 
the function and not an algorithm. The effect asserts what is true after the function completes, 
without saying how the function is implemented. 

 

TYPES 
  process Process name 
  file File name 
  class Access class 
  mode: "r" | "w Possible modes 
  modes: SET_OF mode A set of modes 
 
CONSTANTS 
  init_procs (p:process): boolean Arbitrary constants 
  init_files (f:file): boolean used for initial state 
  init_class: class 
 
VARIABLES 
  proc_class (p:process): class Access class of process p 
  file_class (f:file): class Access class of file f 
  access (p:process, f:file): modes Access modes for p to f 
  file_exists (f:file): boolean TRUE if file f exists 
  proc_exists (p:process): boolean TRUE if process p exists 
  cur_proc: process Current process 
 
AXIOM Partial ordering of class 
  FOR_ALL (c1:class, c2:class, c3:class) 
      (cl >= c1) 
    & (IF c1 >= c2 & c2 >= c1 THEN cl = c2) 
    & (IF cl >= c2 & c2 >= c3 THEN cl >= c3) 
 
INITIAL 
  proc_exists = init_procs & 
  file_exists = init_files & 
  (FOR_ALL (p:process, f:file) 
             SUCH-THAT (proc_exists(p) & file_exists(f)) 
        (proc_class (p) = init_class) & 
        (file_class (f) = init_class) & 
        (access (p, f) = {"r","w"})) 
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Figure 12-3. Formal Specification of Security Model (continued). Shown are 
functions to create a file, give a single access mode, and rescind an access mode. 
 

The statements in the functions are mathematical expressions and should not be read as if 
they were assignment statements in a computer program. For example, the two statements 

'var = var + var2 
var2 = 'var - var 

are equivalent expressions, stating a relationship between the old and new values of var and the 
old value of var2. The two statements 

 ('var2 = 'var + 5) & ('var = 3) 
 ('var = 3) & ('var2 = 8) 

are also equivalent. No order of evaluation is implied by an ordering of expressions. 

/* Create file f with access class c */ 
 
FUNCTION create_file (f:file, c:class) 
  IF NOT file_exists (f) File must not already exist 
  THEN 'file_exists (f) Make it exist 
        & 'file_class (f) = c Set its access class 
        & FOR_ALL p:process SUCH_THAT proc_exists(p) 
               'access (p, f) = NULL Give nobody access 
 
/* Give process p access mode m to file f */ 
 
FUNCTION give_access (p:process, f:file, m:mode) 
 
  IF (proc_exists (p) & file_exists (f)) Process and file must exist 
   & ( (m = "r" & Mode requested is r and 
          proc_class (p) >= file_class (f))   file is readable or.. 
       |(m = "w" & Mode requested is w and 
           file_class(f) >= proc_class(p)   file is writable 
  THEN 'access (p, f) = access (p, f) U {m} Add mode to access rights 
 
/* Rescind process p access mode m to file f */ 
 
FUNCTION rescind_access (p:process, f:file, m:mode) 
  IF (proc_exists (p) & file_exists (f)) Process and file must exist 
   & (m IN access (p, f) 
  THEN 'access (p, f) = access (p, f) - {m} Take away requested mode 
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It is easy to write an expression that cannot be true: 

'var = 3 & 'var = 4 

If this is the sole expression in the effect of a function, the function is attempting to force the new 
value of var to two different values, rendering the function inconsistent and any proof of the 
specification in valid. Nonetheless, although it is useless to do so, there is no harm in writing a 
false expression as a condition, as in: 

IF 'var = 3 & 'var = 4 THEN . . . 

Effects of functions state what must be true after a function is invoked; consequently, if the 
effect of a function can never be true, the function is inconsistent. For example, assume a 
function has the following statement as its sole effect: 

IF a = b THEN var = 6 ELSE 'var = 7 

This says that old value of var is 6 when a = b . If a is not equal to b, the new value of var is set 
to 7. Because an effect of a function must always be true, this function can be inconsistent if it 
can be called when a = b and var does not equal 6. Placing undue constraints on the old values 
of variables is dangerous unless the specification shows that the function is not called under 
circumstances where the effect cannot be true. Some languages allow you to specify 
preconditions that state when the function can be called. 

This last example shows that determining the inconsistency of a function depends on other 
functions of the specification. In general, it is meaningless to write an effect that constrains the 
old value of a variable to a specific value or values unless you can guarantee that the constraint 
will always be true. In general there must be some way to force an effect to evaluate to true 
through assignments of values to variables in a new state. 

A specification may be nondeterministic in several ways: 

 'var > 3 
 'var = 3 | 'var = 4 
 'var1 = 'var2 

The first statement says that the new value of var is greater than 3. A function with such a 
statement is nondeterministic unless another statement in the function further constrains var . 
The second statement allows var to have one of two possible values. The last statement says that 
the new values of two variables are equal. It is nondeterministic if no other statement in the same 
function specifies a value for one of them, but it is inconsistent if the function constrains the new 
values to be different. 

The ability to make nondeterministic statements is of great benefit when you are writing 
formal specifications, because it allows you to say what is allowed without constraining the 
implementation and without forcing you to include unnecessary detail. One of the common 
forms for a function in a secure system is as follows: 
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if security checks fail 
then return “security error” 
else (perform function or return “other error”) 

This effect prevents the function from being performed if the security checks fail, but it does not 
specify under what other conditions it may not be performed. The nondeterministic else clause 
allows for optional completion of the function under conditions not specified. Because a function 
that has no effect when it is invoked is as secure as it would be if it never were invoked, this 
function is just as secure as if it had been written without the or return "other error" clause or if 
it had been written with a detailed description of the conditions that cause "other error". Since 
detailed descriptions just add clutter to a specification and do nothing to help prove the security 
of the functions, the detail can be omitted. 

One final important convention applies to our specification: if a variable or array element is 
not specifically shown to change in a function or in one branch of a conditional (if statement), it 
is assumed to remain unchanged; and when we specify a new value for one element of an array, 
the other elements must not change. Though this no-change convention may seem intuitively 
obvious (it is clearly the convention used in programming languages), most verification systems 
must be told explicitly when variables do not change. This is because verification systems take 
the mathematical view that a function specification is like a theorem that must be proved true 
under the assumption that variables not specifically constrained can take on any possible values. 
This mathematical view of specifications, which conflicts with the programming view, is a 
source of some frustration and requires the user to insert numerous no-change statements 
throughout the specification. These no-change statements may increase the size of a specification 
by as much as 50 percent. In general, developing a tool that views a specification as resembling a 
program (and so figures out when variables mentioned in one part of a function do not change in 
another part) is a difficult theoretical problem. 

12.3 EXAMPLE OF A FORMAL SPECIFICATION 

Our example of a formal specification applies to a system that satisfies the formal model 
discussed in chapter 9. The variables and rules of the model are repeated in figure 12-4 for 
convenience. The definition of the secure state and any other constraints of the model will be 
addressed later, when we discuss proving the specifications. 

The model has two functions: one to create an object, and one to specify access modes in the 
access matrix. While we could have translated the model directly into a formal specification (as 
you might do if you were going to write the highest of several levels of specification), it is more 
informative here to show a specification for a slightly more concrete system and then illustrate 
how that specification maps to the model. The specification in figure 12-3 is a partial description 
of a system that uses an access matrix (as in the model) but has processes and files instead of 
generic subjects and objects. The create_file function is similar to the Create_object 
function of the model. The give_access function is different from Set_access, in that it adds a 
single access mode (either "r" or "w") to a set of modes for an entry in the access matrix, rather 
than resetting the entire entry with a new set of modes. The function rescind_access takes 
away an access mode. 
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The data types of the file, class, and process identifiers are not defined in this 
specification. Just as nothing in the model nor in its proofs depends on how subjects, objects, or 
access classes are represented, the functions in this specification and proofs of this specification 
do not depend on the data types of these items. You might be tempted to assign names or 
numbers to files, but it is better to eliminate such detail in the specification. 

While it is not necessary to say how the types are represented, it is often necessary to state 
certain properties that apply to the types. For example, we have included an AXIOM stating that 
the >= relation on data items of type class defines a partial order. Without this axiom, the 
system that processes this specification would not know how to interpret the >= operator on 
variables of the unspecified data type class. 

All of the parameterized variables (arrays) in figure 12-3, such as file_class and 
file_exists, appear to be of infinite extent. Clearly the implementation must have an upper 
bound on the number of files, but this limit is unimportant in our specification, as in many 

State variables: 
 S =  set of current subjects 
 O =  set of current objects 
 sclass(s) =  access class of subject s 
 oclass(o) =  access class of object o 
 A(s,o) =  a set of modes, equal to one of: 
 {r} if subject s can read object o 
 {w} if subject s can write object o 
 {r,w} if both read and write 
 Ø if neither read nor write 
 contents(o) =  contents of object o 
 subj =  active subject 

Rule 1. Create_object (o, c): 
  if o ∉ O 
  then 'O = O ∪ {o}; 
 'oclass(o) = c; 
 'A(s,o) = Ø. 

Rule 2. Set_access(s,o,modes): 
  if s ∈ S and o ∈ O 
  and if {[r ∈ modes and sclass(s) ≥ oclass(o)] or r ∉ modes} 
 and 
 {[w ∈ modes and oclass(o) ≥ sclass(s)] or w ∉ modes} 
 then 'A(s,o) = modes. 
 

 
Figure 12-4. Example of Formal Model. This example is identical to the one 
discussed in detail in chapter 9. 
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others: it is far easier to prove properties about a specification if such limits are omitted, in all 
but the most detailed specifications.  

12.4 SPECIFICATION-TO-MODEL CORRESPONDENCE 

Proving that a specification corresponds to a model amounts to proving that the specification is 
one example of a system that obeys the model. If the variables and functions in the specification 
map one-to-one with the variables and functions in the model, little more than inspection should 
be required to prove the correspondence. But in general it is necessary to write mappings 
between the model and specification. 

Figure 12-5 describes these mappings in mathematical terms, using the example specification 
and the model. The mappings for types, parameters, and variables are nearly one-to-one with 
those in the model. The purpose of the parameter mappings is to show how dummy variables 
used in the mapping translate into variables in the specification. 

Since arrays in both the model and the specification are of infinite extent, it is acceptable to map 
slev(s), for example, onto proc_class(p) without bounding the value of s. If proc_class 
were finite, containing only access classes of processes that exist, the mapping would have to be 
qualified to constrain s to values that are elements of S. Expressing the mapping of a finite subset 
of values of s onto values of p would also be quite complicated. The only difficult mapping in 
the example is that of Set_access. This function of the model maps to a combination of calls to 
give_access and rescind_access (no ordering implied). 

Since we are mapping this specification to the model, we must prove that the specification 
adheres to the same definition of the secure state and to any additional constraints that we have 
proved about the model. The mappings for the variables and functions in figure 12-5 allow us to 
translate the definition and constraints of the model into terms of the specification, by simple 
substitution (figure 12-6). It is necessary to prove the following theorem for each function in the 
specification: 

if INVARIANT and body of function 
then 'INVARIANT and CONSTRAINTS 

where 'INVARIANT represents the INVARIANT with all references to variables replaced by their 
new values. 

The mapping for Constraint 1 in figure 12-6 is trivially satisfied by our specification, 
because file_class never changes for any file that already exists. For purposes of illustration 
we have also included Constraint 2 and its mapping, even though it is not satisfied by our 
specification (nor by the model, as we discussed in section 9.5.2): both give_access and 
rescind_access fail to check for "r" access by the current process before modifying the 
access matrix. 



 

 175

12.5 TECHNIQUES FOR PROVING SPECIFICATIONS 

Proving specifications is so complex and error-prone that nobody trusts manual proofs; an 
automated tool is needed. These tools, called theorem provers, vary in sophistication from proof 
checkers that ensure the correctness of manual steps to artificial intelligence aids that grind away 
for hours on their own. Integrated specification and proof systems automatically generate the 
necessary theorems, based on the axioms, functions, invariants, constraints, and other elements 
of the specification. 

Mappings for Types 

 subject process 
 object file 
 access class class 
 access mode mode 

Mappings for parameters 
 s:subject p:process 
 o:object f:file 
 c:access class c:class 
 m:access mode m:mode 

Mappings for variables 
 O SET_OF (f:file SUCH_THAT file_exists(f)} 
 S SET_OF (p:process SUCH_THAT proc_exists(p)} 
 olev(o) file_class(f) 
 slev(s) proc_class(p) 
 A(s,o) access(p, f) 

Mappings for Functions 
 Create_object(o,c) create_file(f,c) 
 Set_access(s,o,modes) if r ∈ modes 
  then give_access (p, f, "r") 
  else rescind_access (p, f, "r") 
   and 
  if w ∈ modes 
  then give_access (p, f, "w") 
  else rescind_access (p, f, "w") 

 
Figure 12-5. Mappings between Specification and Model. The variables and rules 
of operation in the model depicted in figure 12-4 are mapped onto the variables and 
functions in the specification of figure 12-3. 
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The current state of the art, in proving specifications has advanced sufficiently to make it 
feasible to prove constraints and invariants on large specifications containing thousands of lines, 
with reasonable confidence that the specification is indeed secure. (“Reasonable confidence” is 
the best we can achieve because theorem provers cannot detect all possible inconsistent ways to 
write a specification. If you work at it, you may be able to make the system prove false 
theorems—that is, formulas that are not true.) You can expect to expend far more effort in doing 
the proof than in writing the specification, however, so you should not take the decision to do 
proofs lightly. Again, there is value in writing a specification even if no proofs are done. 
Furthermore, proofs of specifications rarely detect true design errors: by the time you get to the 
proof stage, you will have manually caught most such errors. The inability to prove a portion of a 
specification is usually attributable to a typographical error or to a specification that was written 
in a legitimate and secure form that the proof system nonetheless cannot handle. Still, a proof 
does give you confidence that your specification (on which, presumably, you are basing the 
design of the system) does not have a serious security flaw. 

MODEL 

Invariant: The system is secure if and only if, for all s ∈ S, o ∈ O, 
 if r ∈ A(s,o) then sclass(s) ≥ oclass(o), 
 if w ∈ A(s,o) then oclass(o) ≥ sclass(s). 

Constraint 1: For all o ∈ O, 
 'oclass(o) > oclass(o). 

Constraint 2: For all o ∈ O, 
 if r ∉ A(subj,o) 
 then for all a ∈ S, 'A(s,o) = A(s,o). 

SPECIFICATION 
  INVARIANT 

    FOR_ALL (p:process,f:file) SUCH_THAT (file_exists(f) AND 
proc_exists(p)) 
         (IF "r" IN access (p,f) 
            THEN proc_class (p) >= file-class (f)) 
       & (IF "w" IN access (p,f) 
            THEN file_class (f) >= proc_class (p)) 

  CONSTRAINTS 

    FOR_ALL f:file SUCH_THAT file_exists (f) 
         'file_class (f) >= file_class (f) 

    FOR_ALL f:file SUCH_THAT file_exists (f) 
         IF NOT ("r" IN access (cur_proc, f)) 
         THEN FOR_ALL p:process SUCH_THAT proc_exists (p) 
                   'access (p, f) = access (p, f) 

Figure 12-6. Mappings of Secure State and Constraints. The definition of the 
secure state and the constraints of the model map directly to an INVARIANT and 
CONSTRAINTS by simple variable substitution from the mappings in figure 12-5. 
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12.6 METHODS OF DECOMPOSITION 

At one extreme, you can have a specification that is very abstract and closely resembles the 
model (as does our example); in such instances you must deal with the difficult task of 
convincingly demonstrating the correspondence between the code and the specification. At a 
much more detailed level, the specification might closely match the operations visible at the 
interface to the system—function for function, and parameter for parameter. Such a specification 
will be very complex and unreadable, and a formal proof that it corresponds to the model may be 
impractical. These alternatives are shown qualitatively in figure 12-7. At an even more detailed 
extreme, the specification represents the internal procedures of the system rather than the visible 
interface. The correspondence proof to the model may be extremely difficult (or at least no easier 
than the second case), but the correspondence to the code may be close enough to permit a partial 
proof. 

 
Several specification techniques deal with these large differences in levels of abstraction in 

various ways. They correspond, roughly, to the techniques used in FDM, old HDM, and Gypsy, 
although some techniques are used by more than one methodology. 

12.6.1 Data Structure Refinement 

The data structure refinement method, used in our example and in FDM, employs a refinement 
of detail at different levels of abstraction. Each layer of specification is a state machine that 
completely describes the system. The top layer is highly abstract and combines multiple data 
types, variables, and functions into a few simple functions. The second layer adds more detail, 
possibly dividing generic functions about subjects and objects at the top layer into specific 
functions about specific types of objects. Once the second layer is written and has been shown to 
map into the upper layer (in the sense that we mapped the specification into the model in our 
example), the upper-layer specification is no longer needed. The second layer is a more concrete 

 

 

 
 

 

 

Figure 12-7. Extremes of Specification Detail. A detailed specification will make the 
code correspondence simpler but the formal proof harder (and maybe impractical), 
whereas a highly abstract specification will make the code correspondence impractical 
or unconvincing. 
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description of the system and, when proved to satisfy the mapped invariants and constraints, 
satisfies the same security properties as the top layer. 

Similarly, we can add more detail at the next-lower layer and have yet more functions. Once 
we add a layer, do the mappings to the upper layer, and complete the proofs, we no longer need 
the upper layers (unless we someday need to modify and re-prove the lower layer). The bottom 
layer (the one closest to the implementation) may closely correspond to variables and functions 
in the code, making it a very precise and detailed description of the interface to the system and a 
specification from which designers can implement a system. 

The data structure refinement technique does not provide you with any clues for designing 
the internals of the system. The lowest level of specification only describes the system interface; 
it says nothing about the design. Making a credible code correspondence argument that the 
underlying software accurately implements this specification requires traditional software 
engineering techniques such as code inspection and testing. 

12.6.2 Algorithmic Refinement 

In contrast to the data structure refinement technique, whose lowest layer specification presents 
the external view of the system, the algorithmic refinement technique, used in HDM and 
illustrated in table 12-1, allows you to specify some of the internal structure of the system. The 
technique most directly applies to systems designed with internal layers, as discussed in section 
11.1. The technique views a system as a series of layered abstract state machines. Each machine 
makes available a set of functions for use by the machine above. The implementation of each 
function in a machine consists of an abstract program that calls functions in the machine below. 
(For simplicity, only call statements are shown in the programs in the table, but in general the 
programs may contain the usual semantics of programming languages.) The lowest-level 
machine provides the most primitive functions of the system-those that cannot be further 
decomposed. 

The abstract machine concept is best illustrated with an example of a three-layer machine 
implementing a file system (table 12-2). The bottom, most primitive machine (machine 0) knows 
only about disks, disk blocks, and memory. It provides a few primitive functions, such as 

disk_block_read (disk_name, block_address, buffer_address) 

and knows nothing about the concept of files or access control. 

Machine 1 provides a primitive flat file system, with functions typical of a file system 
manager: 

file descriptor = open(file_index) 
file_read(file_descriptor,offset,buffer) 

where file_index is simply an integer pointing to the file on disk. The implementation of 
functions in machine 1 consists of abstract programs that use the functions of machine 0 to create 
a file system out of disk blocks, using file indexes (stored on disk blocks) to keep track of 
multiple files and using file descriptors stored in memory to keep track of open files. 
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Layer Formal Specifications Abstract Programs 

 interface to system 
 

↓ 
 

N top-level machine 
(interface specification) 
func A 
func B 

proc AN             proc BN 
   call AN – 1          call BN – 1 
   call CN – 1          call AN – 1 
   return               return 

N – 1 intermediate machine 
func A 
func B 
func C 

proc AN – 1         proc BN – 1         proc CN – 1 
   call AN – 2           call BN – 2           call CN – 2 
   call CN – 2           call AN – 2               return 
   return                call AN – 2 
                              return 

N – 2 intermediate machine proc AN – 1         proc BN – 1         proc CN – 1 

. 

. 

. 

. 

. 

. 

       .                          .                         . 
       .                          .                         . 
       .                          .                         . 

1 intermediate machine proc A1              proc B1 

0 primitive machine proc A0              proc B0 

Table 12-1. Algorithmic Refinement. The approach of specifying layered abstract 
machines allows the internal structure of a system (below the top-level interface) to be 
modeled. The top-level machine provides the functions visible at the interface to the 
system. 

Machine 2 implements a hierarchical file system containing directories and files within 
directories. It provides file names as strings of characters and functions for access control to 
files. It implements directories (using files in machine 1) that store names of files and access 
control information. 

In the algorithmic refinement technique, the highest-layer machine implements the interface 
to the system as it appears to users. Each function call at the interface results in a possible 
cascade of calls to lower-layer machines. 
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Abstract Machine Data Structures Functions 

Machine 2 Files 
Directories 

Create/delete files/directories 
Read/write files 
Access control functions 

Machine 1 Files 
File descriptors 

Create/delete files 
Read/write files 

Machine 0 Disk blocks Read/write disk blocks 

 
Table 12-2. Example of Three-Machine System. The higher-level machines provide 
increasingly more complex file system functions. 

When you write a specification using this technique, you write two things for each abstract 
machine: a formal state-machine specification that resembles a single-layer specification of the 
sort used in the data structure refinement technique; and an abstract program for each function in 
the machine, providing an algorithmic description of the function in terms of calls to functions in 
the lower-layer machine. Code correspondence proofs using a specification such as this require 
proving that the abstract programs at all layers correspond to the real programs in the system. 

Proof of a specification developed with these techniques first requires proving that the 
highest-layer machine specification corresponds to the model, in a manner identical to the one 
used to prove a specification in the data structure refinement technique. Then, in a manner 
analogous to (but mechanically quite different from) proving the consistency of mappings 
between layers, we must prove that the abstract program for the highest-layer machine correctly 
implements its specification, given the specification of the functions of the next-lower-layer 
machine. The process is repeated down to the lowest layer, at which point we must assume that 
the specification of the lowest layer primitive machine is implemented correctly. In the overall 
proof, it is necessary to specify how data structures in each machine are mapped onto data 
structures in the next-lower machine. 

Each layer in the real system corresponds to a layer of the specification, with functions that 
closely match the functions in the abstract programs. As a result, it should be much easier to 
argue for correspondence between the specification and the code in this case than if you had only 
an interface specification, as in the data structure refinement technique. In fact, it has been 
proposed (but never proved) that someday it might be possible to write a translator that converts 
an abstract program into a computer-language program. 

Unfortunately, the algorithmic refinement technique suffers from several drawbacks that 
make its use a bit more theoretical than practical (though pieces of practical systems have been 
developed using this technique and show promise for the near future). The primary drawback is 
the difficulty involved in carrying out proofs of the abstract algorithms. It is much more difficult 
to prove an algorithm than to prove a mapping, and such a proof becomes intractable for all but 
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fairly small algorithms. Abstract program proofs differ little from concrete program proofs; the 
only reason there is greater hope of proving abstract programs is that these programs can be 
written in a highly restricted language that need not deal with many details of real programming. 

Another drawback—this one far from fatal—is that the top-level specification is quite 
complex because it represents the real interface to the system. Because the specification is so 
close to the real system, proving its correspondence directly to the model has all the same 
problems with level of detail that we faced with the data structure refinement technique, where 
we proposed a single very detailed specification between the model and the code (the leftmost 
extreme of figure 12-7). 
 

The reason this second drawback is not fatal is that nothing restrains us from applying the 
multiple levels of the data structure refinement technique above the top-level abstract machine 
(fig. 12-8). Using this method, we can have the best benefits of both worlds; do not go to your 
corner software store looking for an off-the-shelf system that implements this combination of 
techniques—at least for a few years. 

12.6.3 Procedural Abstraction 

Gypsy’s specification technique might be called procedural abstraction. Gypsy directly models 
the way a system is implemented: as a set of nested procedure calls. As in the algorithmic 
refinement technique, each function in a Gypsy specification is equivalent to a function in the 
implementation, but Gypsy does not require the system to be built in layers, as does HDM. The 
specification of a Gypsy function describes how the function manipulates its arguments, not how 
the function affects a global state of the system. Gypsy goes further than HDM and FDM in 
allowing you to specify the functions of every internal procedure in the system, not just the 
interface to the system or to each layer. 

Because Gypsy specifications are so closely aligned to the code (in fact, the Gypsy language 
includes a PASCAL-like programming language), Gypsy might be viewed as more a program-

 

Algorithmic Refinement 
Top-level Abstract Machine · · · 

Intermediate-level Abstract Machine · · · 
Bottom-Level Abstract Machine 

Data Structure Refinement 
Top-level Specification · · · 

Intermediate-level Specification · · · 
Bottom-level Specification =

Figure 12-8. Combination of Specification Techniques. Though not yet 
demonstrated in practice, a merge of both the data structure refinement and 
algorithmic refinement techniques can achieve the benefits of both. 
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proving system than a specification system. But Gypsy does permit you to write specifications 
without code and to prove abstract properties about those specifications without writing the 
programs. When used in this manner, the specification for the set of top-level procedures 
accessible from outside the system resembles the specifications for the top-layer interface 
machine in HDM and for the bottom-layer interface in FDM. 

12.7 INFORMATION-FLOW ANALYSIS 

The concept of information flow was introduced in section 9.6 as a way of addressing 
deficiencies in the state-machine modeling technique-where the concept of a secure state and 
constraints on state transitions are insufficient to prevent certain nonsecure information flows, 
such as covert channels-while permitting legitimate functions. Information-flow analysis is a 
general technique for analyzing leakage paths in a system (Lampson 1973; Denning 1983); it is 
applicable to any security model. The technique can be applied to programs or to specifications, 
although the rules governing the two applications are different. At present, we shall discuss how 
to apply information-flow analysis to nonprocedural formal specifications, in order to support the 
proof that a specification meets a mandatory multilevel security policy. Later, in section 12.7.2, 
we shall briefly discuss the use of flow analysis with programs. 

Before beginning any flow analysis effort, you must realize that the flow analysis of the 
specification—like any other proof of the specification—is only meaningful to the extent that the 
implementation corresponds to the specification. While this should be an obvious point, many 
people seem to focus on flow analysis as being particularly vulnerable to deficiencies in state-of-
the-art of proving correspondence, when in fact flow analysis is no more vulnerable than other 
techniques. 

You might convince yourself of the need for flow analysis by noting that our example 
specification in figure 12-4 has several covert channels. The example allows for a number of 
write-downs (see section 6.4.4), by permitting the actions of a process at a high access class to be 
detected by a process at a lower access class. One such case is in the file_exists array, where 
a high process can create a file and a lower process can determine that the file already exists by 
trying to recreate the file and noting that the access array did not change. (Although they are 
not shown, we presume that the complete system has functions that return information about 
what accesses are allowed, either by asking directly or by attempting an access and getting a 
failure.) 

Using the multilevel security policy as our requirement, we find that the complete statement 
of an informations flow policy is very obvious: 

Flow Policy: If information flows from object A to object B in a state transition, the access 
class of B must dominate the access class of A. 

It seems apparent that this policy fulfills the intent of the multilevel security policy. 

In theory, if you can eliminate all flow violations in a system (or in a model of a system), the 
system (or model) has neither covert nor overt channels, and there is no need to perform any of 
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the invariant or constraint proofs about secure states and state transitions.2 Unfortunately, 
deciding what is and what is not a flow is not always easy; and tools that perform flow analysis, 
because they are ultraconservative in finding flows, are usually insufficient to justify our 
declaring a specification completely clean. You usually have to carry out an error-prone informal 
analysis to vindicate the apparent flow violations. For these practical reasons, the invariant and 
correspondence proofs add considerably to the assurance in the security of the specification, even 
though flow analysis theoretically might be sufficient. (Real systems are also never completely 
free of real flow violations, so the manual analysis would be required even if the tools were 
perfect.) 

An information flow can be viewed as a cause-and-effect relationship between two variables 
w and v. In any function where v is modified and w is referenced, there is flow from variable w to 
variable v (written w → v) if any information about the value of w in the old state can be deduced 
by observing the value of v in the new state. For simplicity, we do not explicitly show the new 
value in the notation (as in w → ' v), but the understanding is that the flow always moves from a 
variable in an old state to a variable in a new state. 

When analyzing functions in a model or specification, if we cannot tell ahead of time 
whether a particular function will result in a flow, we play it safe and flag it anyway. Such is the 
case when the flow occurs only under certain conditions that are not explicit in the definition of 
the function being analyzed. In fact, when looking at isolated functions, we can never tell 
whether a potential flow is an actual flow. Only by looking at the system as a whole can we 
identify the real flows. Thus, when we talk about a flow in a function, we almost always mean a 
potential flow. Sometimes it is possible to rewrite the function or specification so as to eliminate 
the potential flow. In such a case, the potential flow is called a formal flow because it appears 
only as a result of the form in which the specification is written. 

The process of flow analysis includes both finding the flows and proving that they do not 
violate flow policy. The functions are observed one at a time, each expression in the function is 
analyzed, and each flow between a pair of variables is written as a flow statement. (Rules for 
finding the flows from expressions are covered in section 12.7.1.) A given function may yield 
many flow statements. A flow may occur only under certain conditions, depending on the values 
of other variables, so in general a flow statement has the following form: 

Flow Statement: If condition, then A → B 

where condition is some expression, and A and B are variables. 

To decide whether a flow expressed in a flow statement is safe according to the flow policy, 
we generate from each flow statement a flow formula having the following form: 

Flow Formula: If condition, then class(B) ≥ class(A) 

                                                 
2As we shall see later, sometimes the proof of a flow formula requires you to write and prove an invariant as a 
lemma. Such an invariant might closely resemble the secure state invariant that you would prove about the model. 
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where condition is the same as in the flow statement, class(x) means “the access class of x,” and 
≥ is a symbol meaning dominates. Proving that there are no flow violations in a function requires 
proving that each flow formula is true. If the formula cannot be proved, it may represent a real or 
formal flow violation that must then be justified. To assist you in proving the flow formulas, you 
may use invariants or constraints in the specification provided that the specification has already 
been proved to satisfy the invariants and constraints, or you may write new invariants that you 
subsequently have to prove. 

Notice that the flow formula is defined in terms of the access classes of variables. Probably 
the most restrictive aspect of information-flow analysis for multilevel security is the need to 
define an access class manually for every variable in the specification—even for internal state 
variables that are not objects according to the security policy. If you choose the wrong access 
class, a flow violation will show up, so you do not have to worry about introducing an 
undetected error in this process. But in many cases, no matter what access class you pick, a 
formal flow violation will be committed in some function somewhere, even though the 
specification may be secure and may exhibit no covert channels. Sometimes you can eliminate a 
flow by rewriting the specification, but that may make the specification so obscure that 
correspondence to the code is extremely difficult to demonstrate. 

Information-flow analysis is something of an art. The rules for deciding when information 
flow is possible are complex and difficult to apply by hand. In practice, flow analysis is rarely 
done on a system at the level of an abstract model. While a flow analysis of a model can indeed 
catch many potential flow violations, it will also miss most of the interesting ones. This is 
because a model leaves out many details of a system, such as state variables and functions that 
do not affect the security state of the system as represented in the access matrices. Yet it is 
precisely these internal state variables that provide the paths for covert channels. Flow analysis 
on a model can catch these only if the operations on such variables are represented in the 
functions of the model. 

12.7.1 Flow Rules 

At the current state of the art, automated flow tools work syntactically. Semantic assumptions 
that the flow tool makes about a specification are based solely on the syntactic style in which the 
specification is written, not on what the specification says: if you write the same secure function 
in two different ways you may get different flow formulas, some of which are true and some of 
which are false. The false formulas are due to the ultraconservative nature of the analysis, which 
finds all possible flows but also flags many formal flows. 

Syntactic flow analysis is based on a number of simple rules. Given a form of expression in a 
specification, a flow rule specifies the potential flows. Following are examples of two simple 
flow rules: 

Flow Rule 1. In the equality statement with a single new-value operator, 

' v = expression 
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where expression is an arbitrary expression containing no new values, there is an unconditional 
flow from all variables mentioned in expression to v. This includes all variables appearing as 
parameters of functions and indices of arrays in expression. 

Flow Rule 2. To find the flows in the statement, 

if condition then statement-1 else statement-2 

where statement-i are of the form of the statement in flow rule 1, analyze statement-1 and 
statement-2 for flows according to flow rule 1. When condition is true, all the flows in statement-
1 occur; when condition is false those in statement-2 occur. There are also unconditional flows 
from all variables mentioned in condition to all variables that are the target of flows in statement-
1 and statement-2. 

The preceding rules, though too simple to take care of all cases (especially those where the 
new value of a variable appears in the expression), can be used to analyze some of the 
expressions in the examples in table 12-3. 

Examples 1 and 2 illustrate flow rule 1, where a flow occurs from any variable in an 
expression—even when it is in a parameter of a function in an array index—to the new value of 
the variable. We do not bother with flows from constants: constants are considered to have 
SYSTEM LOW access class, so any flow from a constant is safe. In the example, the function f (x) 
is a constant function of the variable x. In example 2, we have an array var that is a variable; 
consequently, we have to show that a flow occurs from the specific array element to the new 
value, as well as from the variable used as the array subscript. Example 3 illustrates flow rule 2, 
where the flows in each branch of a conditional statement are conditional and where an 
unconditional flow occurs from the variable a mentioned in the condition. The latter flow occurs 
because the value of w can be deduced from the new value of v. You may argue that, if in 
example 4 we end up with ' v = 6, we do not know much about w, but information flow analysis 
does not try to quantify the amount of flow: that is a job for a covert channel analysis of the 
resultant system, which serves to determine the bandwidth of any covert channels revealed by 
information-flow analysis (see section 7.2). 

In example 6, a flow tool operating according to our rules would indicate a flow that was not 
there. According to flow rule 2, we should indicate the flow w → v; but no such flow exists, 
since v is set to the same value regardless of w. By moving the assignment to ' v outside the if 
statement, we can make the formal flow disappear. 

Example 7 contains statements in which the new value of a variable appears in places other 
than on the left-hand side of an = sign, making our flow rules inappropriate for such cases. The 
example illustrates that flows only originate from old values of variables, not from new values. It 
also shows that, even though v is not the target of any flows according to flow rule 1, it still is 
the target of a flow from w, thereby violating flow rule 2. Syntactically, examples 6 and 7 are 
nearly identical, yet the flows they exhibit are different. 
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Example Flows Rationale 

1.  ' v = x + f (x) + 5 
     [ f (x) is a constant] 

w → v 
x → v 

Flow from old values to 
new values in expression; 
no flows from constants. 

2.  ' v = var(w) w → v 
var(w) → v  

3.  if a = 1 then ' v = w else ' v = x 
if a = 1 then w → v 
if a ≠ 1 then x → v 
a → v 

Unconditional a → v 
because ' v depends on w. 

4.  if w = 1 then ' v = 5 else ' v = 6 w → v  

5.  if w = 1 then ' v = 2 else ' v = w w → v  

6.  if w = 1 then  ' c = 1 and 
                          ' v = x 
                  else  ' c = 3 and 
                          ' v = ' c 

w → c 
x → v 

No w → v because ' v = x 
unconditionally. 

7.  if w = 1 then  ' c = 1 and 
                          ' v = ' c 
                  else  ' c = 3 and 
                          ' v = ' c 

w → c 
w → v 

No c → v because old value 
of c is irrelevant. 

8.  if w = 1 then  ' c = 2 and 
                          ' v = ' c + 1 
                  else  ' v = ' c – 1 

if w ≠ 1 then c → v 
w → v 
w → c 

 

9.  if w = 1 then  ' c = a and 
                          ' v = ' c + 1 
                  else  ' c = a and 
                          ' v = ' c – 1 

a → c 
a → v 
w → v 

No w → c because ' c = a 
unconditionally. 

10. ' v = a a → v  

11. ' a = c c → a  

12. if a = b then ' w > v “everything” → w 
Nondeterministic 
assignment is flow from all 
variables. 

 

Table 12-3. Examples of Flow Analysis. This table illustrates the flows that result from 
various types of expressions that might appear in a specification. 
 

The rules for finding flow depend not only on the specification language but on the specific 
security properties that the flow analysis is intended to support. In particular, net flow after a 
succession of state transitions depends on the order in which the functions are invoked. For 
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example, if our specification has two functions-one whose effect is example 10 in the table, and 
the other whose effect is example 11—the net flows for 10 followed by 11 are as follows: 

a → v and c → a 

just as indicated in the table. But if 11 is followed by 10, the new value of v depends on the 
original value of c, and the original value of a is irrelevant. The new value of a after the first 
statement serves as the old value of a for the second.) The net flow is thus 

c → a and c → v 

apparently indicating that there is a flow c → v that we did not find when we analyzed the 
statements in the table independently. (The flow from a has also disappeared). 

In general, this omission of a flow would indicate a fatal flaw in the flow analysis technique 
by which you examine functions individually; but if we look at the flow formulas that we have to 
prove for multilevel security, such an omission can introduce no new flow violations. While the 
net flow depends on the order of the functions, the security relationship we want to prove about 
the flows does not. The two flows a → v and c → a require us to prove that 

class(v) ≥ class(a) and class(a) ≥ class(c) 

Transitivity allows us to conclude that 

class(v) ≥ class(c) 

which is exactly the same formula that we would need to prove if we had detected the flow c → 
v. While order of statements affects the flows, order has no effect on the multilevel security 
analysis of the flow formulas. The transitivity of the multilevel security relationship we have 
termed dominates permits us to use flow analysis to determine whether individual functions are 
secure and allows us to declare an entire specification secure if all the individual functions are. If 
we were to use flow analysis to prove a non-transitive security relationship that depends on the 
order of function calls, we would have to worry about all possible sequences of functions and 
would have little hope of analyzing a specification for flow in a practical manner. 

Another important note about flow analysis relates to nondeterminism. If a function contains 
a nondeterministic expression involving a new value of a variable, the variable may take on any 
of several values, and the selection of the new value may depend on any other state variable in 
the specification. Hence there is a potential flow from all variables in the specification to the new 
value—even from variables not mentioned in the function. Unless you have an invariant or 
constraint that limits the new value to one specific value, or unless the variable’s access class is 
SYSTEM HIGH, it will be impossible to prove that the function is secure. You would have to 
supplement the flow analysis with some type of informal argument that the nondeterminism is 
secure. Thus, while nondeterminism is an important convenience in writing formal 
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specifications, it should not be used (except to a very limited extent) in specifications that are 
subjected to flow analysis. 

One way out of this dilemma is to write two or more levels of specification, where the top 
level is very general and nondeterministic and the lower level is fully deterministic. The flow 
analysis need (and should) only be performed on the lowest level. Another trick is to write a 
deterministic expression that sets the new value to some unspecified, but constant, function of 
other variables: 

' w = f (x,y,z) 

For flow analysis purposes, it does not matter what the constant function f is, so no elaboration 
on the definition of f is needed. You only need to list all the variables that might be input as 
parameters to that function. If the flows x → w, y → w, and z → w are secure, and if the 
statement accurately represents all possible dependencies on the new value of w, the 
nondeterminism is eliminated with little adverse impact on the generality of the specification. 

12.7.2 Flow Analysis Process 

Because the syntactic flow analysis technique only flags potential flow violations, additional 
covert channel analysis is required to determine whether the violations are real. There are no 
tools that help you do this, since it requires looking at the specification as a whole and deducing 
or proving additional properties. A typical argument to support the contention that a flow is not 
real would be based on the fact that the specification lacks certain functions that could exploit the 
flow. If the function is later added to the specification, the violation could become real even 
though no existing function changes. 

As a very simple example, consider example 8 in table 12-3, and assume that the flow c → v 
is a violation. If we can prove that w is always 1, we will establish that this flow never occurs, 
but doing so requires that we examine the entire specification for places where w is set. Even if 
we prove that w ≠ 1, we risk reintroducing the flow each time we add a new function that might 
affect w. Thus, when we add a function to the specification, we do not have to re-prove the flow 
formulas for existing functions; but we do have to rejustify all the failed proofs that depended on 
knowledge of other functions. 

Formal flow analysis is ruthless, requiring you to look at every reference to every state 
variable of the system. In fact, flow analysis is not valid unless every variable is involved, 
because it is all too easy for a covert channel to sneak in via a variable that has not been 
examined. Because flow analysis of a specification only tells you whether or not the 
specification is secure—and nothing about the security of the implementation—it would be best 
to do flow analysis on the code. But, though the state of the art of flow analysis seems to work 
fairly well with detailed formal specifications, it does not work well with code. (Some effort with 
respect to code flow analysis has shown promise (Tsai, Gligor, and Chandersekaran 1987).) 

Finding flows by hand is hard and tedious, although it has been done on fairly large 
specifications. It is best done with one of several automated flow analysis tools (sometimes 
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called flow table generators) that perform a simple syntactic analysis of a machine-readable 
specification and generate tables of potential flows with the proper conditions. The flow tables 
are examined either manually or with the aid of another tool that attempts to prove that each flow 
is allowed. Flow analysis tools are available for old HDM (called the MLS formula generator) 
(Feiertag 1980), FDM (Eckmann 1987), and Gypsy (Haigh et al. 1987). 

Because flow tools require that you assign access classes to all variables, they flag many 
internal flows as potentially insecure even though the net effect may be secure. Therefore a flow 
tool works best on a specification whose internal variables are largely segregated according to 
access class. For example, if all variables referenced in functions available to a process are 
treated as arrays indexed by process ID, a great many potential flows will be avoided. Whether 
such a specification accurately reflects the implementation depends on the underlying 
architecture. 

Another technique for covert channel analysis—the Shared Resource Matrix (SRM) 
(Kemmerer 1983)—is very similar to flow analysis in the way it which it detects covert channels. 
In addition to looking at each function individually, however, the SRM requires a process called 
transitive closure that analyzes the specification as a whole. The SRM technique does not require 
you to assign access classes to all internal variables, thereby eliminating a significant source of 
frustration in flow analysis, and does not require determinism. But as a result it cannot prove that 
individual functions are secure in isolation. Transitive closure takes into account interactions 
between functions, and detects cases where adding a seemingly secure function to an existing 
secure system renders the result insecure. The SRM technique has been used successfully on 
several projects, but the analysis has been largely manual: tools to support the technique simplify 
the matrix generation but do not assist in any proofs. All potential channels, even trivial ones, 
have to be manually examined and justified. Because you do not have to specify access classes 
of internal variables, the SRM technique is much better suited to examining code than is flow 
analysis, although experience in using it for this purpose has been minimal (Tsai, Gligor, and 
Chandersekaran 1987). 

12.8 CODE CORRESPONDENCE PROOFS 

The theory for proving programs correct has been around for many years (Floyd 1967; Hoare 
1978), but practice lags far behind and will remain so for the foreseeable future. There are a 
number of reasons for this lag: 

• The proofs become exceedingly complex as programs become larger, so that the proof 
effort is many times greater than the effort to write the program. 

• Popular high-order programming languages are not designed for provability, making 
proofs hopeless without severe programming restrictions. 

• The few languages that were designed for provability suffer from inefficiencies that make 
them unsuitable for many applications. 

• Tools to assist program proofs (either to check the correctness of proofs done manually or 
to carry out proofs on their own) and proof techniques are in their infancy. Theorem 
provers designed for specification proofs are not suitable for programs. 
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Nobody doubts that it is possible to prove the correctness of programs, but few people believe 
that it is practical or cost effective to do so, even for the most highly secure systems. The largest 
high-order language program ever proved was on the order of 1,000 lines. 

Unlike specification proofs, for which it is only necessary to prove fairly simple selected 
properties related to security, proving that a program satisfies its specification entails proving the 
complete correctness of the program. This is because there is no a priori way to determine 
whether any aspect of a program will affect its specification. Some researchers have concentrated 
on proving programs directly, using flow analysis (and without using a specification), thereby 
minimizing the need to do correctness proofs of the system. Such techniques are in their infancy, 
however. 

Even though we cannot do the proofs of a program formally, we can talk about the process as 
if it were possible, use formal techniques when practical, and use informal demonstration when 
proofs are infeasible. Regardless of the specification technique we are using, program proof 
means showing that a procedure meets its formal specification—one procedure at a time 
corresponding to one function in the specification. In the algorithmic refinement technique in 
table 12-1, we have top-level procedures that implement the functions in the interface 
specification and lower-level procedures that implement functions in intermediate abstract 
machine specifications. If we use only the data structure refinement technique, we do not have 
the benefit of internal layers of specification to break the proof into smaller pieces, and therefore 
we must prove that the entire implementation corresponds to the lowest-level (interface) 
specification. But with either specification technique, the proof approach is the same. 

The initial steps in the proof of a procedure require mapping variables, parameters, and types 
in the formal specification of the function onto global variables, types, and parameters used in 
the procedure—much as we mapped the top-level specification into the model, or levels of 
hierarchical specification into each other. In the Gypsy system, the specification language is 
integrated with an implementation language, so the specification already uses the same data 
types and variables as are used in the program. But if your program is written in PL/I, C, or 
PASCAL, there will be no obvious correspondence, and a mapping will be required. 

The technique of program proof requires the programmer to write. down entry assertions and 
exit assertions for each procedure in the system. Entry assertions state relationships between all 
global variables in the system and parameters to the procedure that are true upon entry to the 
procedure. Exit assertions state properties that are true upon return from the procedure fig. 12-9). 
Proving that a program is correct involves proving that it meets its exit assertions. The following 
formula is to be proved: 

Entry assertions and effects of code imply exit assertions. 

The effects of code are the accumulated sequential effects of all the statements in the procedure. 
In general, though, you cannot do a proof of a procedure in one fell swoop. Instead, the 
procedure is divided into sections of code, and a verification condition is written that states the 
formula to be proved for each section. 
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If the procedure is a simple function that executes an in-line sequence of statements based on 
its parameters and then returns, the effects of code may be easy to determine. If the procedure 
calls nested procedures, the entry assertions for the nested procedures must be proved to be 
satisfied by the program at the point each procedure is called. Then the exit assertions for the 
nested procedure can be taken as the effects of code for the procedure call statement. 

Through the use of entry and exit assertions, each procedure can be proved in isolation—
looking only at the assertions, and not at the body of any other called procedure. If a procedure is 
modified but its entry and exit assertions remain the same, the proofs of procedures that call it 
need not be redone. In fact, a primary benefit of this approach is that you can design a system as 
a tree of procedure calls with only entry and exit assertions and no code. You can then 
implement and prove the procedures in any order, redoing a proof only when an assertion used in 
that proof changes. Gypsy benefits greatly in this respect because the programs and assertions 
are integrated, and it is easy to track when a procedure changes that might affect assertions used 
elsewhere. 

 
Figure 12-9. Use of Entry and Exit Assertions. It is necessary to prove that, given the 
entry assertions for proc1, the statements in the procedure satisfy the entry assertions 
for all called procedures, as well as satisfying the exit assertion for proc1. 
 

 Program Assertions 
  ←⎯ entry_proc1 
 procedure 
    s1 
    s2 
    s3 
  ←⎯ entry_proc2 
    call proc2 
  ←⎯ exit_proc2 
    s4 
    s5 
  ←⎯ entry_proc3 
    call proc3 
  ←⎯ exit_proc3 
    s6 
 return 
  ←⎯ exit_proc1 
 
Verification Conditions 
    1. entry_proc1 & S1 & S2 & S3 → entry_proc2 
    2. entry_proc1 & S1 & S2 & S3 & exit_proc2 & S4 & S5 → entry_proc3 
    3. entry_proc1 & S1 & S2 & S3 & exit_proc2 & S4 & S5 & exit_proc3 & S6 → exit_proc1 
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As you can see in figure 12-9, the verification conditions get quite large as you accumulate 
statements and exit assertions from called procedures, even if many of the statements and 
assertions are irrelevant to subsequent assertions. A way to reduce these is to insert intermediate 
assertions manually at various points in the program; these assertions must be proved true upon 
reaching the points at which they appear, after which they can be used as given for proofs 
beyond that point. The intermediate assertions leave out details that are not necessary for further 
proofs. Nothing prior to an intermediate assertion need be examined to prove subsequent 
assertions. You cannot introduce an error with an incorrect intermediate assertion, because the 
proof of a false assertion will fail. If the intermediate assertion contains insufficient detail to 
prove subsequent assertions, the proof of a verification condition will fail. In practice, the only 
places where intermediate assertions are useful are at branches and loops. A loop invariant is an 
assertion that states properties that are true each time through a loop. If the loop can be shown to 
terminate (another hard problem), the effects of code for the loop are represented by the loop 
invariant. 

The entry and exit assertions for a procedure that implements a function in the formal 
specification are taken from the formal specification of that function. The entry assertions come 
from invariants, axioms, and other criteria in the specification, and the exit assertions include the 
specified effects of the function. Automated tools (called verification condition generators that 
understand program semantics and can create these assertions from specifications and programs 
have been developed in experimental examples, but tools to generate these conditions for 
practical use with sizable programs are still a long way off. Because the verification condition 
generator must be intimately familiar with the semantics of the language, and because most 
popular programming languages do not have formally defined semantics, such tools have only 
been developed for certain languages designed for provability. Of course, each combination of a 
programming language and a specification language requires a different tool. The tool that is 
closest to practical application is in the Gypsy system, where proofs of small programs have been 
successfully carried out. 
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 Chapter 13 

Networks and 
 Distributed Systems 

Most books and reports on network security focus on encryption. To many people-including 
some experts-network security is encryption, and the sole purpose of network security is to 
prevent wiretapping. But the total network security problem is far more than the wiretapping 
threat, and encryption is just part of the solution. 

Understanding network security entails understanding network architectures, from the 
standpoints of protocol design and of physical construction and topologies. It also entails 
understanding how encryption techniques can be applied to solve part of the network security 
problem. In the first two sections that follow, we shall develop some terminology important to 
network security and some fundamental concepts of networking and encryption; then we shall 
undertake a detailed discussion of network security architectures. 

13.1 OVERVIEW OF NETWORKING CONCEPTS 

This section gives you a quick overview of various salient characteristics of network 
architectures. This overview assumes that you have some prior knowledge of networking 
concepts and that you understand the reasons for the various types of network architectures; it 
concentrates on presenting facts and terminology and is not intended to be a tutorial on 
networking. 

13.1.1 Protocol Hierarchies and Models 

The purpose of a network is to provide a mechanism for two peer communicating entities to 
exchange information. The entities—which may be computers, operating systems, programs, 
processes, or people—are the users of the network’s services. The network provides an interface 
composed of a set of functions, much as an operating system provides an interface consisting of 
system calls fig. 13-1). The description of this interface is the functional description of the 
network. Typical functions in a network interface enable the entities to send and receive 
messages, to obtain status information, to identify remote peer entities with which to 
communicate, and so on. 
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Figure 13-1. Use of Protocols. The pairs of communicating entities, {AN,A'N}, {BN,B'N}, 
and so on, use the network service to implement protocols PN and QN. Several sets of 
entities may obey the same or different protocols using the same network service. The 
network service is accessed via function calls through an interface. 
 

In order for two entities to understand each other they must agree on a common protocol. 
The definition of a protocol includes data formats of messages and sequences of messages. A 
protocol definition must take into account the types of functions provided by the interface to the 
network service on which that protocol depends: the protocol description is specified in terms of 
the generic function calls to that interface. 

A network is constructed as a hierarchy of layers, each of which implements a specific type 
of network service. If we look inside the network service in figure 13-1, we see that the service 
itself is composed of communicating entities that exchange information with their remote peers, 
implement their own protocols, and use services of a lower-layer interface (fig. 13-2). The layer 
N–1 entities constitute the network service for layer N. Notice that AN can choose from among 
several lower layer entities, thereby forcing its communication with A'N to employ a specific 
lower layer protocol. 

The purpose of a protocol model is to provide a framework for describing the layered 
services of a network in a manner independent of the specific protocols that are used within the 
layers. Each layer of a model provides a network service to the layer above, and within each 
layer reside the communicating entities that implement one or more protocols appropriate to the 
layer. The ISO Reference Model, illustrated in figure 13-3 as it might be employed in a packet-
switched network, is a familiar example. (ISO is the International Standards Organization.) 
Another notable model is the Arpanet Reference Model, used by the Department of Defense. A 
model does not prescribe any specific protocols; it defines only the general characteristics of 
protocols in each layer. 
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Figure 13-2. Communicating Entities. Within layer N, AN communicates with its 
remote peer A'N by means of a common protocol PN, employing services of layer N – 1 
through an interface to entities AN–1 or BN–1. The layer N – 1 entities likewise 
communicate with their peers by means of lower-layer protocols PN–1 and QN–1. 
 

The primary function of a protocol layer is to transmit and receive data on behalf of the 
communicating entities in the layer above. The entities pass messages across the interface to a 
lower layer, along with control arguments. A layer treats the messages passed to it as data and 
wraps the data with header and/or trailer information (such as destination address, routing 
controls, and checksum) that is needed by the layer to process the message as requested through 
the control arguments from the layer above. These wrapped messages are then passed into the 
layer below along with additional control information, some of which may be forwarded or 
derived from the higher layer. By the time a message exits the system on a physical link (such as 
a wire), the original message is enveloped in multiple nested wrappers—one for each layer of 
protocol through which the data have passed (fig. 13-4). 

 
 

 
Figure 13-3. ISO Open Systems Interconnection Reference Model. A protocol is 
used within a layer by a pair of peer communicating entities. Protocols in layers 4-7 are 
end-to-end or host-to-host; lower-layer protocols are used for individual physical links. 
Not all lower-layer protocols need to be alike: only communicating pairs within a layer 
must use the same protocol. 
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Figure 13-4. Nested Headers on a Message. Each protocol layer wraps its own 
header and trailer around the data passed to it from above. The data field of protocol 
layer N contains a complete message received from protocol layer N + 1. 
 

Good protocol layering requires that a layer not look at or depend on the contents of the data 
field that it receives from the layer above: communication of control information between layers 
(for example, requests to open and close connections, specifying source and destination 
addresses) should be done through function calls and arguments, and not by reference to the data 
contents of the messages. 

13.1.2 Characteristics of Protocols 

Security issues tend to center on four of the layers in the ISO model, allowing us to view 
protocols in terms of a four-layer model in which several of the ISO layers may be collapsed into 
one: 

• Application (ISO 5,6,7) 
• Transport (ISO 4) 
• Network (ISO 3) 
• Data link (ISO 1,2) 

This view is not universal. On occasion, the session layer (layer 5) might need to implement 
certain security services offered by an application or transport layer; and at times, we need to 
distinguish between the physical layer and the data link layer. But for our purposes it is easiest to 
focus on these four layers. Please note that what we say here about protocols is merely typical of 
existing protocols operating at given layers: it is not a hard and fast requirement of all such 
protocols. 

Both the data link and network protocol layers provide a datagram network service. 
Datagrams are packets of information composed of a header, data, and a trailer. The header 
contains information (such as destination address) needed by the network to route the datagram, 
and it may also contain other information (such as source address and security labels). The trailer 
contains little more than a checksum. 
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The communicating entities that make use of a datagram service must specify the destination 

address (via control information) and the data for each message to be transmitted. The data link 
and network protocols package the message in a datagram and send it off. The datagram service 
does not support any concept of a session or connection, and it maintains no memory of whom it 
is talking to once a message is sent or received. Such memory, if needed, is the responsibility of 
the user of the datagram service (the next-higher protocol layer). Retransmission and error 
checking are minimal or nonexistent. If the receiving datagram service detects a transmission 
error (through a checksum, perhaps), the datagram is usually ignored, without notifying the 
receiving higher-layer entity. 

The transport layer provides a highly reliable communications service for entities wishing to 
carry out an extended two-way conversation. The service employs the concept of a connection or 
virtual circuit, with open and close commands to initiate and terminate the connection, in 
addition to the usual transmit and receive functions. Information is accepted by the transport 
layer for transmission as a stream of characters and returned to the recipient as a stream. 

The application layer provides functions for users or their programs and is highly specific to 
the application being performed. A single exchange at the application layer (called, a session) 
might include an electronic mail message transfer, a file or database copy, or a user’s query/ 
response transaction with a database management system. A session can be very short or can last 
for days. A given application layer protocol may employ multiple connections at the transport 
layer to accomplish its job. 

13.1.3 Network Topologies and Components 

Today’s network topologies are designed to handle two distinct needs: wide-area and local-area 
communications. A common wide-area network technology is based on packet switching. The 
physical structure of a packet-switched network, illustrated in figure 13-5, resembles a random 
sprinkling of nodes or packet switches interconnected in an arbitrary fashion. A packet switch is 
connected to neighboring packet switches and may be the point of entry into the network for one 
or more hosts. The software in the host communicates with its adjacent packet switches by 
means of a network-layer protocol, sending datagrams (packets) into the network that are routed 
to the destination host—via multiple intermediate destinations if necessary—in a manner 
determined by routing algorithms in the packet switches. These routing algorithms are adaptive 
to a limited extent: they take the dynamics of the network into account, altering the path taken by 
successive packets between two hosts depending on the network load and the status of the 
communications lines. 

DESTINATION  SOURCE  SECURITY LABEL  OTHERS  ...DATA...  CHECK  

HEADER  TRAILER  



 

 200

 
Figure 13-5. Packet-switched Network. The packet-switching nodes (PS) are usually 
small dedicated computers, interconnected by high-speed long-distance telephone 
lines. Hosts may connect directly to the packet switches or via front-end processors 
(FEPs). 
 

A local-area network (LAN) has a number of characteristics that distinguish it from a wide-
area network. These include throughput that is several orders of magnitude higher, extremely 
short delay, and large total carrying capacity (bandwidth). The most common LAN topologies 
employ a broadcast medium, in which a datagram transmitted by one host to another host is in 
fact received by many or all hosts, with the understanding that only the intended recipient will 
bother to read the datagram. There is no routing in a broadcast medium. Figure 13-6 shows a 
typical picture of a broadcast local-area network using a bus topology, where hosts are linked to 
the bus through interface units that contain varying amounts of intelligence and may be 
integrated as I/O controllers into the hosts themselves. 

 

 
Figure 13-6. Local-area Network. The popular Ethernet has this bus architecture, 
whereby each host (connected to the network via an interface unit), has the ability to 
receive all the traffic on the LAN. 
 
13.2 ENCRYPTION 

Though not a solution in itself, encryption is an important component of most network security 
solutions. In order to devise a security architecture for a network, you must understand where 
encryption can help and where it cannot. We shall review here some of the fundamentals of 
encryption that pertain to networking (we are not concerned with techniques that are only useful 
for encrypting files on disks, for example), and we shall then cover the primary network 
applications. Fortunately, you do not have to be an expert in cryptography to understand these 
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applications: unlike section 13.1, this section is a brief tutorial and does not require much prior 
knowledge of the topic. Several books offer more detailed coverage of encryption (Denning 
1983; Meyer and Matyas 1983). A good survey of network security and encryption is provided in 
an article by Voydock and Kent (1983). 

We have not yet talked about what it means to have a secure network (that is the topic of 
section 13.3), but we can make some general statements about the purpose of encryption in order 
to give the techniques discussed here their proper perspective. The primary goal of encryption is 
to allow peer entities to communicate by using their common protocol over an unprotected path 
in a manner that is as secure as if the path were physically protected. Depending on your 
definition of security (that is, depending on how you define the threats), encryption may achieve 
that goal quite satisfactorily or may not help at all. For example, a goal of protection from 
eavesdropping by a wiretapper is readily satisfied by encryption, but a goal of preventing denial 
of service—where the threat is someone cutting an unprotected wire—cannot be addressed by 
encryption. Encryption between two entities can be implemented at any protocol layer, but for 
present purposes it is easiest to think of encryption as taking place between two computer 
systems over a physical link, where the encryption is implemented in a box that serves as each 
computer’s link interface. We shall discuss later what it means to encrypt at other protocol 
layers. 

13.2.1 Fundamentals of Encryption 

A cipher is a mathematical algorithm that transforms a string of source data (plaintext) into 
unintelligible data (ciphertext), and vice versa, in a way that uniquely depends on the value of a 
cryptographic variable or key. If you do not have the key, you cannot carry out either 
transformation. 

A secret key cipher is one for which both encipherment and decipherment require the same 
key; consequently, the sender and the receiver must share secret information.1 The most popular 
secret key algorithm (besides various classified algorithms used by the Department of Defense) 
is the Data Encryption Standard (DES) specified by the National Bureau of Standards (1977). 
This algorithm is available from several vendors in the form of an integrated circuit chip that is 
used in a number of commercial encryption products. Secret keys are also called symmetric keys. 

A public key (asymmetric key) cipher always has two different keys: one private, and one 
public. A message enciphered with either key can be deciphered only with the other key.2 The 
public key is easily calculated from the private key via a simple mathematical transformation, 
but it is not possible (or more precisely, it is computationally infeasible) to determine the private 
key from the public key. Each user has a unique private key, which is kept secret and from which 
the user calculates a public key to be distributed to others. In a typical application, the sender 
enciphers a message with the receiver’s public key, and only the receiver can decipher the 
message. Only the receiver (not the sender) possesses secret information. In contrast to DES, 

                                                 
1Strictly speaking, the two keys need not be the same, but it must be possible to derive either key from the other. 
2This concept of enciphering with either key is somewhat simplistic and applies only to certain public key ciphers, 
but it is sufficient for this discussion. 
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there is no one generally accepted public key algorithm, and hardware is not readily available; 

but the RSA algorithm has a number of useful properties (Rivest, Shamir, and Adleman 1978), in 
which there is a considerable interest today. Because public key algorithms (even the hardware 
implementations) are computationally very slow (tens of characters per second), their use is 
limited to selected applications such as key management (section 13.2.4). 

For communications we are particularly interested in stream ciphers, which are able to 
transform a message in serial fashion as characters or blocks of data enter a communications 
network. Either public or secret key ciphers can be used in the streaming mode. 

Encryption Modes 

Ciphers for serial encryption have several modes of operation, each providing certain capabilities 
for communications. We shall look briefly at the modes defined for DES. Similar modes are used 
by other algorithms. 

In the simplest block mode—also called electronic code book—a block of plaintext (64 bits 
or 8 characters in DES) and a key are combined to yield a block of ciphertext (fig. 13-7a). Every 
block of plaintext is encrypted independently of preceding blocks. This mode is unsuitable for 
most communications applications because transmission of repetitive plaintext blocks will yield 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13-7. Encryption modes. In block mode (a), each block is independently 
encrypted. In chaining modes, (b), the ciphertext for a block depends on the previous 
blocks in the message. 
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repetitive ciphertext, permitting easy cryptanalysis via a one-for-one substitution or known 
plaintext attack. 

This problem of repetitive plaintext is addressed through the use of a chaining mode (fig. 13-
7b). Encryption still takes place in blocks, but the calculation of the ciphertext for a block uses 
three inputs: the plaintext block, the key, and a feedback value based on the previous block of 
information. Even with highly repetitive sequences of plaintext, the ciphertext has the 
appearance of being a random stream. A single bit change in one block of the plaintext 
propagates indefinitely into the subsequent ciphertext. To start out the process, an initialization 
vector (IV) is used in place of a feedback value, as input to the first block. 

Because chaining modes have distinct starting points where the IV is fed into the calculation, 
some means of synchronization between sender and receiver is essential. The sender and receiver 
must agree on the IV as well as on the key, and they must have a way to signal the start of a new 
message. They must also be able to determine block boundaries. The design of chaining modes 
addresses various types of synchronization problems that could be introduced by errors during 
transmission: errors where bits in the ciphertext change, and errors where there are extra or 
dropped bits. Without synchronization, the received plaintext stream would be continuously 
unintelligible. 

Two types of chaining modes use different approaches in addressing the synchronization 
problem. In cipher block chaining, where the ciphertext for each block is used as the feedback 
value into the next block, a bit error in the ciphertext propagates no more than two blocks into 
the deciphered plaintext. But cipher block chaining does not deal well with lost or extra bits or 
characters in the ciphertext where block framing can be lost. Once framing is lost, it can only be 
restored by some out-of-band technique (unencrypted signal) that resynchronizes the blocks. 
Thus, block chaining is suitable only for applications where dropouts are unlikely and where 
framing can be maintained: in synchronous lines at the data link layer, and in protocols that use 
frames, packets, or datagrams. On synchronous lines, the encrypted data stream is constantly 
changing—even when the sender is transmitting nothing but continuous synchronization (SYNC) 
characters. 

Cipher feedback mode deals with dropped or extra characters or bits (which are most 
prevalent on asynchronous lines) by means of a combination of chaining and shifting of 
characters within a block. An extra or lost character in transmission affects no more than the next 
block or two of characters in the plaintext because framing is restored on each character 
boundary through use of unencrypted start and stop bits. The disadvantage of this technique is 
that only one character (rather than a whole block) is transmitted for each pass through the 
encryption algorithm, slowing down the encryption by a significant factor. Fortunately, 
asynchronous lines do not usually operate at high enough speeds for performance to be a 
problem. 

Because it is relatively simple to implement, single-bit cipher feedback is common on 
synchronous lines, where the encryption device ignores character boundaries and cycles single 
bits through the encryption algorithm. 
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Link and Packet Encryption 

Encryption is employed in different ways in different protocol layers, but these ways break down 
into two main types: link encryption and packet encryption. Link encryption is restricted to 
physical-layer and data-link-layer protocols in which the information is transferred in a 
continuous stream of bits or characters and where there is no concept of a message. In most 
protocols above the data link layer, communication takes place in the form of distinct packets or 
datagrams. Many data-link-layer protocols, such as HDLC and CSMA/CD, also use packets called 
frames. From an encryption standpoint, these frames must be treated as packets and not as bit or 
character streams. 

Link encryption is the simplest (and safest) form of encryption and is the preferred method 
when the only needed security is protection of the physical wire or radio link. It is commonly 
used on point-to-point synchronous or asynchronous lines. In link encryption, the encryption 
boxes on the ends of the link synchronize at a well-defined point and then employ a chaining 
mode to encipher all the data between them indiscriminately. If there are no data to transmit, the 
transmitting box sends continuous fill characters that are enciphered as if they were data; as a 
result, an observer of the traffic on an encrypted link sees random characters or bits, whether or 
not any information is being transmitted. If cipher block chaining is used, a means must be 
provided for the transmitter and receiver to resynchronize if an error occurs. This is 
accomplished by sending an out-of-band signal (such as a BREAK) or a unique bit pattern (such 
as a stream of zeros or ones). In cipher feedback mode, with character framing on the line, 
synchronization is automatic. 

On links that are shared by multiple nodes—especially local area networks composed of 
rings and buses—and in all higher layer protocols, information is transmitted in frames or 
packets of fixed or variable sizes. Packet encryption avoids synchronization problems because 
the chaining process is restarted on each packet. If a receiver misses or ignores some packets, 
subsequent packets can still be deciphered without error because each packet is independent of 
previous packets from the point of view of the encryption mechanism: a transmission error in 
one packet will not propagate to subsequent packets. Packet encryption is often called end-to-end 
encryption, because it was first employed at the network or transport layers between end host 
systems on a wide-area network; but packet encryption is also needed at the data link layer, if the 
information is processed in frames. 

Packet encryption differs substantially from link encryption because a part of the packet 
header is not encrypted. Parts of the header must remain unencrypted because the header 
contains information needed by the recipient in order to decipher the message. (For example, a 
recipient communicating with a number of systems may need to see a source address in order to 
determine which of several keys to use for decryption.) Moreover, if encryption occurs at a 
higher-layer protocol, any additional headers appended by lower-layer protocols will be (and 
must remain) unencrypted. If the destination address of a datagram in a packet-switched network 
were encrypted, for example, the packet switches in the network (which do not know the key) 
would not be able to route the datagram to its proper destination. 
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13.2.2 Security Services 

Although we have talked so far about encryption as a way of preventing an observer or 
wiretapper from reading traffic on a communication path, encryption can address various other 
threats, and it has a number of vulnerabilities to those threats. Somewhat unconventionally, we 
shall consider security concerns as classified into the following categories: 

• Confidentiality – ensuring that the information is not subject to unauthorized disclosure 
(is not readable to the wiretapper through passive wiretapping or eavesdropping) 

• Integrity – ensuring that the information is not subject to unauthorized and undetected 
modification (selective modification by the wiretapper through active wiretapping or 
tampering) 

• Inference – ensuring that the wiretapper is not able to deduce anything about the 
information (by means of traffic analysis) 

• Authentication – ensuring that communicating entity that receives a messages knows the 
peer entity that originated the message 

• Denial of service – ensuring that the wiretapper is not able to destroy information 

As has already been noted, encryption is not a general solution to denial of service, and we 
shall not cover denial of service here as a security threat. The other four categories are discussed 
in the subsections that follow. 

Confidentiality 

Stream ciphers are very safe against eavesdropping if used properly, but some residual 
vulnerabilities remain, even with the best techniques. These vulnerabilities center on the fact that 
a stream cipher requires a distinct synchronization point—an identifiable beginning of message. 
The information following the beginning of a message is subject to simple cryptanalysis or the 
known plaintext attack. 

Chaining ciphers generate changing ciphertext despite the existence of repetitive plaintext 
within a message, but two messages beginning with identical plaintext will begin with identical 
ciphertext (until they reach blocks that differ). This is a vulnerability when messages are frequent 
and short, as in packet encryption; it is less of a vulnerability when messages are very long and 
non-repetitive, or when synchronization is infrequent, as in link encryption. In the extreme case 
of character-at-a-time terminal-to-computer communications over a packet switched network, 
where large numbers of messages differ in only one character, individual encryption of packets 
would result in a simple, predictable, one-for-one substitution of plaintext packets with 
ciphertext packets. 

One way to address this vulnerability is to randomize or prewhiten messages by inserting a 
random block of plaintext at the start of each message before encryption. The receiver discards 
this first block after decryption. This inserted block does not have to be random or secret: it 
simply needs to be different each time, and the receiver does not have to know what it is in 
advance. A simple counter such as a sequence number or time of day is often used. Sequence 
numbers are a convenient choice when encrypting messages at the transport layer, because 
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transport protocols already have a sequence number in the header of each message that can be 
included in the encrypted data. You have to be sure, however, that the sequence number is 
sufficiently wide that it does not repeat often: 8-bit sequence numbers are far too short, and even 
16-bit numbers may be inadequate. 

Instead of inserting extra data at the start of each message, you can whiten messages by 
altering the initialization vector for successive messages. Because both the transmitter and the 
receiver must use the same IV, they must maintain synchronization so that they alter the IV in 
the same way each time. One way to do this is for the sender to transmit the IV in unencrypted 
form at the start of each message (the IV need not be secret, as long as it never repeats). 

Integrity 

An active wiretapping threat is one in which a wiretapper selectively modifies ciphertext in 
transit so as to spoof the receiver. A wiretapper who cannot read the ciphertext may nonetheless 
know the format of the transmissions and may know exactly which characters to change in order 
to cause the desired effect on the plaintext. In a chaining mode, it is not possible for a wiretapper 
to make a specific change to specific characters in a message: changing one bit in the ciphertext 
causes an unpredictable change to one or two blocks in the plaintext. While such an effect 
generally results in destruction of information (denial of service) rather than in selective 
modification, the fact that destruction is limited to two blocks permits the wiretapper to erase 
parts of a message selectively—a security threat in some cases. 

It is the responsibility of the receiver of the information to protect itself from the adverse 
effects of selective destruction, using a validation technique such as a checksum inserted by the 
transmitter. Checksums must be calculated on the plaintext and encrypted along with the rest of 
the message; otherwise, the wiretapper could simply alter the checksum to compensate for the 
modifications made. Some types of checksums may not be able to detect tampering, if the 
wiretapper can change the ciphertext in such a way as to preserve the original checksum. More 
sophisticated manipulation detection codes employ algorithms, such as a cyclic redundancy 
check (CRC), whose values are more difficult to control by modifying the ciphertext. 

A message authentication code (MAC) is a cryptographic checksum that is calculated using a 
chaining mode of encryption and a secret key whose value cannot be predicted without knowing 
the key. The MAC may consist of little more than the feedback value that emerges after the last 
block of encryption. A message with an appended MAC can be safely transmitted in unencrypted 
form without fear of undetected modification. Most encryption techniques, used in conjunction 
with a MAC, will detect the insertion of false information into a data stream or into the message: 
without possessing the encryption key the wiretapper cannot generate a decipherable message 
that passes the MAC check. 

Replay is a threat that occurs when the wiretapper records a stream of previously transmitted 
ciphertext and retransmits the stream at a later time. A serious security problem would arise if, 
for example, a wiretapper could capture the encrypted login sequence of one user’s session and 
retransmit the sequence at a later time in place of his or her own login sequence. In lines 
employing link encryption, a potential for replay exists at each synchronization point. 
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One obvious way to detect replay is to change the key frequently, but this introduces 
complex synchronization and key distribution problems. Inserting a random block at the start of 
each message (or after each synchronization point) does not detect replay, because the receiver 
ignores the random block. The primary way to address replay is to insert a sequence number or 
time stamp in the message, which the receiver checks before considering the message to be valid. 
To prevent false rejections, the receiver must account for missing, delayed, out-of-order, or 
duplicate packets that can occur in a large network. The time stamp or sequence number must of 
course be protected by encryption or a MAC. This sequence number may be the same one used to 
whiten packets to prevent cryptanalysis. 

Inference 

In physical link encryption, a wiretapper sees a steady stream of random bits or characters, 
whether or not any communication is taking place: the only information the wiretapper may be 
able to discern is an occasional synchronization signal. In packet encryption, the observer sees 
individual packets and can discern a number of things: the existence and rate of packets, packet 
lengths, and unencrypted packet header information (such as source and destination addresses). 

Other than flooding the network with dummy packets to confuse the wiretapper, there are no 
good solutions to the traffic analysis problem. Fortunately, in most environments an 
eavesdropper cannot gain anything useful from such information, and the threat can usually be 
ignored. In only a few high-security environments is there a concern that traffic patterns on a 
network might reveal sensitive information. 

The lack of concern about traffic analysis is often justified on the grounds that the transmitter 
is not trying to communicate with the wiretapper. This seems a reasonable assumption, since the 
transmitter is the “good guy” who is responsible for the data being communicated; but as we 
have observed time and again in earlier chapters of this book, we often have to contend with the 
Trojan horse threat (a topic of chapter 7). The encryption device or protocol entity performing 
encryption is of course trusted not to disclose information intentionally, but the application 
software in the host outside the box or above that layer (which is where the data originates) is 
not. Any of the items in a packet header observable to a wiretapper is a potential covert channel 
(see, in particular, section 7.2.1), if it can be modulated by the application and observed by a 
wiretapper. The Trojan horse in the application, being forced to communicate through the trusted 
encryption layer, cannot directly contact the wiretapper but may have direct or indirect control 
over packet lengths, destination addresses, and (in the extreme) data link synchronization signals 
(Padlipsky, Snow, and Karger 1978). 

Packet headers and lengths provide a major path for covert channels because so much of the 
information is directly under the control of the application. You can minimize the Trojan horse 
threat by encrypting . as much of the packet as possible, but heroic efforts are not worthwhile, 
because some information will always remain unencrypted. If you are willing to accept reduced 
flexibility, you can control the range of values of header fields (for example, by allowing the 
application to select from only a small fixed set of destination addresses) and pad all packets to 
the same length prior to encryption; but even these measures only reduce the bandwidth of the 
covert channel, without eliminating it. On a local-area network with a rate of several hundred 
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packets per second, even 1 bit of information per packet results in a high-bandwidth covert 
channel. 

We shall discuss the importance of the covert channel further in section 13.5. 

Authentication 

Authentication—knowing whom you are talking to—means making sure that the entity with 
which you are communicating is not masquerading as someone else by lying about its identity 
(by altering the source address that is contained somewhere in its messages). In a sense, 
authentication is an automatic feature of encryption; if you assume that nobody else knows the 
encryption key, the ability to communicate with another entity implies possession of the key and, 
therefore, proper authentication. Authentication does not require encryption if the remote entity’s 
messages are protected by a MAC. While, in theory, you could use a MAC to protect only the 
source address of a message, and not the data, it is unsafe to provide authentication without some 
kind of integrity protection of the entire message, because it does no good to know who 
originated a message if the message might have been modified en route.3 

If you share the same key with a number of entities, you have to trust them all to identify 
themselves accurately, because any one could masquerade as another. For this reason, the safest 
approach is to use pairwise keys: a separate key for each pair of communicating entities. The 
pairwise authentication process is closely related to key management (covered in section 13.2.4). 
We shall discuss some of the general concepts here. 

When initializing a communication, two encryption boxes residing outside their host systems 
can authenticate each other by exchanging handshakes of some type. Since the host trusts its 
encryption box to authenticate the remote box, the host software can be sure that it is 
communicating with software on a specific remote host (or more precisely, with someone 
attached to the specific remote encryption box). Encryption does nothing to help software in the 
host to distinguish between different entities (processes or applications) on the remote host: the 
hosts must trust each other for this higher-level authentication. 

Unless you carefully analyze how authentication is used in your system, it is very easy to be 
misled into believing that you have more protection than you actually do. Authentication is 
particularly confusing because the authenticated identifier (the network address of an entity) is 
valid only for the protocol layer at which the authentication occurs. Since each protocol layer 
potentially has its own addressing mechanism, the authentication of a source address on the 
protocol header of a lower-layer protocol packet does not necessarily say anything about the 
authenticity of the address in an embedded (higher-layer) protocol packet. 

For example, encryption at the transport layer may allow transport layer entities to 
authenticate host addresses appearing in the protocol headers of the transport layer; but unless 
that authenticated host address is checked by the application-layer protocols, the authentication 

                                                 
3On the other hand, if your threat is minimal, so that you are worried only about wiretappers masquerading by 
sending false messages rather than by modifying existing messages, authentication by itself could be useful. 
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will be useless. In particular, application-layer protocols such as file transfer and electronic mail 
employ their own addressing mechanisms that are far removed from transport-layer addresses. 
While a mapping from electronic mail address to transport address occurs on the transmitting 
side as a mail message is passed down to lower-layer protocols, the reverse mapping is not done 
on the receiving end, since the addressing information is already present in the header of the 
mail. Thus, if you get mail that claims to be from Jones at system Alpha, you might have no 
assurance that the message came from either Jones or system Alpha because your receiving mail 
system might not have checked the host name in the mail protocol header against the 
authenticated host address received by the transport layer.4 Normally, when there is no 
encryption (and no authentication), protocols have no reason to double-check these addresses on 
the receiving end. A similar anomaly is possible at the boundary between the data link and 
network layers. 

13.2.3 Integrating Packet Encryption into a Protocol Architecture 

When two entities first wish to communicate using packet encryption, they must undergo an 
initialization process whereby they identify each other and negotiate the encryption keys. The 
handshaking might involve an exchange of information with a key distribution center (discussed 
in section 13.2.4). These exchanges mark the start of a cryptographic session. In order to avoid 
the overhead of reinitializing on every message, the two entities must keep track of this session 
for a period of time until they decide they have finished communicating. For confidentiality and 
integrity protection, they may have to keep track of certain additional information for each 
session—such as sequence numbers, as we discussed earlier. 

Since an entity at any protocol layer might simultaneously communicate with a number of 
remote entities, it must keep track of multiple cryptographic sessions. At the application or 
transport layer, a cryptographic session directly corresponds to a network session or virtual 
circuit: the protocol at those layers already keeps track of sessions or circuits, and adding the 
additional cryptographic session state information is straightforward. At the network or data link 
layer, where datagrams or frames are used, the concept of a session has to be artificially created 
because the protocol entities do not normally keep track of whom they are talking to. In some 
cases the session concept can be introduced transparently to a layer by a cryptographic module 
that postprocesses the datagrams, but it is better to integrate the concept directly into the 
protocols. (The thorniest problem with implementing sessions transparently consists of figuring 
out when to end the session and when to purge the state information.) 

The need to maintain the state of a cryptographic session and the need to exchange 
cryptographic information at the start of a session should make it apparent that, when packet 
encryption is employed in a given protocol layer, the encryption becomes an integral part of the 
protocol specification of the layer and is best designed into the protocol from the beginning. 
Inserting packet encryption into a protocol after the fact usually requires a major redesign of the 
protocol, because it affects both message formats and sequences of exchanges. For higher layer 

                                                 
4This problem should not be confused with the name-to-address translation problem that we shall discuss in section 
13.4.2. 
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protocols, it is impossible to squeeze encryption between two adjacent protocol layers in a 
transparent manner without severely upsetting the layered architecture and performance. 

To a certain extent, it is possible to insert encryption transparently into existing protocols at 
lower layers. This is most easily and most commonly done at the physical layer (where 
encryption is performed by a device that transforms individual bits) or at the data link layer 
(where encryption is based on characters, and there is no concept of a frame). Packet encryption 
can be inserted transparently at the data link and network layers because it is usually feasible to 
nest an existing data-link-layer or network-layer datagram inside an encrypting protocol at the 
same layer, by inserting the encrypting layer underneath the layer to be encrypted. You should be 
aware, however, that—while nesting approaches are the second most common technique used—
they are complex to implement and can adversely affect performance. 

13.2.4 Key Management 

In order to minimize the risk of exposure in a secret key system, a secret key should only be 
shared by the two entities that are communicating. Each entity must remember a separate key for 
each other entity with which it is currently communicating. In practice, however, a group of 
communicating entities often shares the same key. In such a case, if one of the entities is 
compromised, the others are, too. 

Because keys get “stale” after repeated use (the greater the amount of information encrypted 
with a given key, the easier cryptanalysis becomes), it is necessary to change keys periodically 
(an interval called a cryptoperiod). Manual rekeying is the most commonly used technique today 
(both in the government and in industry); by this means, keys are created at a central key 
distribution center (KDC), and the printed list or magnetic tape of keys is hand-delivered by 
courier to each site and physically entered into the encryption devices. 

Key Distribution Center 

Manual key distribution is a major management burden, sufficient to limit the use of encryption 
to the most sensitive applications. In many applications, key management—and not the cost of 
encryption hardware—is the reason encryption is not applied. One way to minimize the burden is 
to employ an automated KDC that distributes the keys over the network on demand. When two 
systems wish to enter into a cryptographic session, they exchange messages with the KDC, which 
sends them both a key for that session. When the session is over, the systems discard the key. 
The KDC generates a new key for each session. If a session between two systems lasts for days or 
weeks, the systems may want to ask the KDC periodically for a fresh key. 

Because the KDC resides on the network just as any other computer system does, interaction 
with the KDC must be authenticated and, for the most part, encrypted. The key for this 
authentication is a per-system secret master key. Each system must permanently store its own 
master key: the KDC must maintain a database with the identifiers and master keys of all the 
network entities. The master keys are changed only rarely because little information is encrypted 
with them. 
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But the master keys must still be manually entered into each system initially. There is no 
secure way to transmit master keys on the network: any such technique would require encrypted 
communications, which would require a second level of master key in each system. Key 
hierarchies can be constructed where the keys highest in the hierarchy are changed least often (or 
never) and the lowest keys are changed frequently (perhaps hourly or daily) and automatically. 
No matter what the architecture, however, you cannot get around the need to enter a secret 
master key manually at least once into each system. If you ever change these master keys, the 
new master keys should also be entered manually, since redistributing master keys over the 
network based on previous master keys does little to improve security. 

The KDC concept has been criticized on many counts—some valid, and some unfounded. One 
misconception is that KDCs make a network unreliable because they present a single point of 
failure. This problem is easily solved by using multiple KDCs; the protocol that allows a system 
to switch to an alternate KDC is not very complex. A bit more complex is a mechanism to 
distribute the network database to multiple KDCs. 

Another unfounded criticism is that large numbers of key distribution messages place an 
excessive load on the network. In fact, the amount of traffic generated for key distribution at the 
start of each session is minuscule in comparison to the amount of data traffic for sessions of 
average length. 

A valid criticism of the KDC concept (but usually not a serious problem) points to the extra 
delay for key distribution at the start of each cryptographic session. The delay can be many times 
that of a normal session initiation for a virtual circuit, especially if the KDC is remote and the two 
systems that wish to communicate are on the same local area network. Most higher-layer (end-
to-end) protocols, however, can easily adapt to potentially long delays because they must 
accommodate communication over long distances. Network and data link layers tend to be 
unaffected by delays because their protocols do not require acknowledgments. 

The most serious valid criticism of the KDC concept addresses the management required for 
large networks. The KDC is one system on the network that must know the identity (and the 
master keys) of all other systems. In many networks, it is impractical to require all systems to be 
centrally registered and administered; furthermore, it may be impossible to identify a central 
authority that all systems on a network are willing to trust. An approach permitting a hierarchical 
KDC structure, in which each community of systems has its own KDC, is easier to administer but 
requires complex protocols. 

Public Key Distribution 

A public key distribution system avoids some (but by no means all) of the management burden 
of the KDC. Such a system has no central registry to distribute keys. Each operating system 
creates its own private key, which it keeps secret, and then computes the corresponding public 
key. The public keys for all systems are stored in a file readable by anyone on the network. 
Using the RSA algorithm, you encrypt a confidential message to be sent to another system with 
the recipient’s public key. If you receive a message from a system that you can decrypt with its 
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public key, you can be sure that the message came from that system. The public key mechanism 
thereby provides the same degree of mutual authentication that the secret key mechanism does. 

As was noted earlier, public key algorithms are very slow and impractical for many 
applications. The performance problem is minimized by using the public key algorithm only for 
key distribution and session initiation, where its benefits are greatest. Once two systems 
authenticate each other, they exchange a randomly generated secret key for the session and 
employ a fast secret key algorithm such as DES for all subsequent communications. There is no 
advantage to using a public key algorithm once a secret key has been established. 

The public key distribution technique requires establishment of a central registry of systems 
that lists the public keys. As in the KDC approach, that registry must be trusted and protected 
from tampering, since reliable authentication depends on obtaining the correct public key for a 
system.5 The registry must authenticate itself to other systems, which implies that each system 
must know the public key for the registry. But unlike the KDC, the registry need not be kept 
secret, and no secret information need be shared by systems prior to session initiation. The 
registry can freely be duplicated, and portions can be copied and stored locally. A new system 
can even add itself to the network automatically by creating its own private key and sending the 
public key to the registry. A system can change its private and public key at any time by sending 
an update message to the registry. Almost all network management is decentralized. 

Public key distribution techniques have seen very limited use because they are fairly new (the 
theory was not developed until the late 1970s, and an intellectual debate continues over their 
immunity to cryptanalysis) and because hardware is not readily available. The extremely long 
keys involved (hundreds to thousands of bits) has also limited the techniques’ practicality. 
Nonetheless, because of the greatly simplified key distribution they allow, we may someday see 
public key techniques predominate over secret key distribution centers—even before encryption 
itself becomes a routine part of computer communications. 

13.3 A NETWORK SECURITY ARCHITECTURE 

Secure networks have been studied much less than secure computer systems, and few practical 
examples of them exist. While it is easy to find pieces of network security solutions (particularly 
those employing encryption), finding an example of an integrated secure distributed system is 
much harder. The problem is not in the technology but in the lack of an accepted architecture for 
a distributed system. It is easy for us to draw a generally accepted picture of a computer system 
as being composed of hardware, an operating system, and applications (figure 4-1); but 
distributed systems are much more complex, and no simple picture of such a system has yet 
emerged. In this section we shall consider just one of many possible ways to characterize a 
secure distributed system. This section discusses the security problems of distributed systems 
that are addressed by currently available computer and network security techniques. 

                                                 
5If a MAC is employed on the individual registry entries so that nodes can authenticate entries as valid, the online 
server that distributes the registry need not be trusted or protected. Such a MAC must be based on a network-wide 
public key known to all nodes, whose private key in each case is known only to the trusted entities that create the 
registry. 
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Our goal in defining a network security architecture is to draw as much of a parallel as 
possible between a network architecture and a computer system architecture—employing the 
same technology wherever possible, and inventing new techniques only where necessary to 
accommodate the differences between networks and computers. Many of the concepts to which 
we shall refer are similar to those discussed in chapters 3 and 4. 

13.3.1 Network Subjects, Objects, and Access Control 

A secure network is a set of communications mechanisms that provides to its subjects a specific 
type of service at a given protocol layer (fig. 13-8). The subjects (users) are the communicating 
entities that use the secure network, implementing their own protocols to communicate among 
each other. The nature of these subject-to-subject protocols is of no concern to the trusted 
network. The network consists of all the elements that make up the protocols, from a given layer 
down; the internal layers of the secure network are invisible to the subjects. This concept of 
hiding functions and protocols is consistent with that of a layered protocol model. Exactly what 
types of subjects (processes, computers, people, and so on) the secure network supports depends 
on the entities supported by the layer you choose to call your secure network (table 13.1) and on 
the security policy that the secure network is to enforce. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13-8. A Subject’s View of a Secure Network. Two subjects (peer protocol 
entities) communicate with each other using services of any underlying secure 
network. The security perimeter is the interface to those underlying services. The 
secure network within the perimeter provides services at protocol layer N – 1. 
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We can draw a parallel between the structure shown in figure 13-8 and that of a computer 

system in which the network is a trusted operating system and the subjects are processes that 
invoke functions at the interface to the system. Like the trusted operating system, the network 
manages shared resources and mediates access to those resources by the subjects under its 
control, in accordance with a security policy. We can also draw a parallel between the internal 
layering of the secure network and the layering within a secure operating system (see section 
11.1 and table 11-1). Of course the details of implementation of the layers inside the secure 
network are quite different from those of a secure operating system. 

The policy enforced by the secure network has the sole goal of determining which pairs of 
subjects can communicate. Unlike a security policy for a secure computer system, a security 
policy for a network does not have to deal with objects as permanent information stored in a 
system. It is possible for the secure network to enforce a security policy by directly controlling 
subject-to-subject access; however, it is usually more convenient to employ the concept of a 
network object as an intermediary through which two subjects may exchange information. The 
network object plays the same role played by a file in a computer system that is used for process-
to-process communication: one process writes the file, and another reads it. The network security 
policy, expanded to cover subject-to-object access, then begins to look much like a computer 
system security policy. 

Just as the types of network subjects differ, depending on the protocol layer at which security 
is implemented, the types of network objects may differ as well. Examples of network objects 
include messages, frames, datagrams, virtual circuits, and files (table 13.1). Network objects can 
have widely varying characteristics. Some objects (such as datagrams) are fleeting, existing only 
between the time they are transmitted by one subject and the time they are received by another. 
Objects such as physical links are permanent. Virtual circuits may exist for an arbitrary amount 
of time, from seconds to days. Messages, packets, and datagrams are accessible to only one 
subject at a time. Virtual circuits and some physical links are simultaneously accessible to a pair 
of subjects. A LAN bus is accessible to a large number of subjects. 

ISO Layers Subjects Objects 

5,6,7 (application) Users Files, Electronic Mail, ... many 
others 

4 (transport) Processes, Applications Connections, Virtual Circuits 

3 (network) Hosts, Networks Datagrams, Packets 

1,2 (data link) Nodes on end of link, Nodes on bus Frames, Datagrams, Physical 
Links 

 
Table 13-1. Subjects and Objects in Protocol Layers. The types of subjects and 
objects supported by the secure network depend on the layer at which security in the 
network is implemented. At protocol layers 4 and above, the subjects (users and 
processes), are the same as those usually supported by a secure operating system. 
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Just as the types of network subjects differ, depending on the protocol layer at which security 

is implemented, the types of network objects may differ as well. Examples of network objects 
include messages, frames, datagrams, virtual circuits, and files (table 13.1). Network objects can 
have widely varying characteristics. Some objects (such as datagrams) are fleeting, existing only 
between the time they are transmitted by one subject and the time they are received by another. 
Objects such as physical links are permanent. Virtual circuits may exist for an arbitrary amount 
of time, from seconds to days. Messages, packets, and datagrams are accessible to only one 
subject at a time. Virtual circuits and some physical links are simultaneously accessible to a pair 
of subjects. A LAN bus is accessible to a large number of subjects. 

The secure network in figure 13-8 carries out its subject-to-object access control in a manner 
identical to that employed by a secure operating system. Because the subjects and objects are 
under full control of the secure network service within each system, access mediation based on 
discretionary and mandatory security policies is implemented by means of the same techniques 
as are used in an operating system and most likely by the same mechanisms as exist within the 
operating system. For example, subjects may be implemented as processes on a system, and 
objects may be implemented as memory segments or buffers under the control of memory 
management mechanisms. 

If the trusted network service operates at the transport layer (layer 4), the subjects are 
processes and the network security policy can be identical to the security policy of the operating 
system. In other words, the secure operating system and the secure network service work 
together and present an integrated secure system that enforces a single security policy, whether 
dealing with network objects or with system objects. 

If the trusted network service operates at the data link layer, the network service cannot 
distinguish between different processes on the same computer and cannot enforce selective 
access control to the granularity of a process. The security policy enforced by such a network—
where subjects are nodes, and objects are datagrams—bears little relationship to any policy that 
might be enforced by the operating system running on the nodes. 

13.3.2 Network Security Perimeter and Protected Path 

As in the case of a secure computer system, we must draw a security perimeter—a boundary 
between trusted and untrusted mechanisms. This security perimeter surrounds everything within 
the highest protocol layer that constitutes the secure network. 

In the discussion that immediately follows, it is assumed that a single security policy is 
enforced throughout a specific collection of systems on the network at a single protocol layer, in 
a manner similar to the enforcement of security at a single interface within a computer system. It 
is further assumed that you have selected a suitable layer based on the security policy you want 
to enforce and on the types of subjects and objects you want to protect. A network can enforce 
multiple nested policies—one for each layer—but it is very difficult to devise meaningful nested 
security policies. We shall talk later about more complex arrangements in which the security 
policy is not enforced uniformly throughout a network. 
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In order to maintain the integrity of the security perimeter around a pair of geographically 
separated systems (as in figure 13-8), you must have a protected path between the systems. This 
path is similar to the trusted path between users and the security kernel (see section 10.4), but in 
this case the path protects the integrity of communications between two trusted systems rather 
than between a user and a trusted system. As with the user’s trusted path, providing a protected 
path between systems means ensuring that communications between the systems are physically 
secure and that all devices and other systems supporting the communications are secure and 
trusted. The protected path ensures that the entire set of software and hardware within the 
security perimeter operates as a single coordinated entity, even though the entity is physically 
distributed. Because the path at the lowest (physical) layer (as shown in the figure) is protected, 
communication between peer entities in any given layer within the secure network is also 
protected. 

13.3.3 Distributed Secure System 

Taken together, a network of several systems—each of which contains a portion of the trusted 
network service as in figure 13-8, and each of which implements the same security policy—is a 
distributed secure system. The trusted portions of the individual systems interact via secure 
paths, and the untrusted portions are managed within each system in accordance with the 
common security policy. 

This simplistic view of a secure network, while properly portraying the network from the 
point of view of subjects in the computer systems, does not represent the way in which the secure 
network is implemented. We rarely have the luxury of physically enclosing everything 
throughout the network below a given layer of protocol within the security perimeter. For long-
distance communications, for example, software from the transport layer down through the data 
link layer might be protected within the security perimeter of a single computer system, but the 
public telephone lines between systems are not protected. In a packet-switched network, the 
packet switches that route datagrams between the hosts might not be protected. 

When physical protection does not extend from end to end (between subjects in different 
systems), we must replace the physical protection with logical protection through encryption. 
From outside the security perimeter, the logical view of the secure network remains the same as 
in figure 13-8; but the architectural view is like the one shown in figure 13-9, where the software 
and hardware in the lower protocol layers are not trusted. The security policy of the network is 
enforced only by the intermediate layers within the security perimeter, and security does not 
depend on correct operation of the untrusted lower layers. Logically, encryption does no more 
than provide the equivalent of a protected path between the two computer systems at protocol 
layer 3, making up for the lack of physical protection at layers 2 and 1. Because of this protected 
path at layer 3, the logical paths between protocols above layer 3 (up to layer N – 1) are also 
protected. 
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Figure 13-9. Actual View of a Secure Network. The security perimeter surrounds a 
portion of the protocol tower in each system. The layers beneath that portion (and 
everything between the end systems), are untrusted. Encryption between the lowest 
trusted layers is used to enforce the protected path between the systems. 
 

Encryption provides a protected path between the two systems in figure 13-9 by ensuring that 
information transmitted by the trusted network service at layer 3 in one system is received by its 
peer in the remote system without being observed or altered en route by an outsider. Encryption 
also provides authentication, ensuring that the two systems are communicating with each other 
and not with a masquerading system. Encryption does nothing to support the network security 
policy enforced on the subjects that are above the security perimeter (the insiders with legitimate 
access to the network services over which each computer system has control). The policy 
regarding insiders is enforced by conventional computer security controls, as we discussed 
earlier. 

While a security architecture for a network must precisely specify the highest protocol layer 
at which the security policy is to be enforced uniformly throughout the network (the upper limits 
of the security perimeter), it need not specify a fixed lower limit at which encryption is to be 
performed. Encryption is only necessary where physical protection of the lower layers cannot be 
provided between a given pair of systems. Within a local area network, for example, where the 
systems are physically protected but the wires between the systems are not, encryption might be 
employed at the data link layer and implemented within the interface units (see figure 13-6). If 
some of these hosts communicate over a public packet-switched network, where the packet 
switches are not trusted, encryption must be employed in the network or transport layers to 
secure the paths to remote systems. Adjacent machines in a computer room connected by a 
protected physical wire need employ no encryption. Of course, for communications to be 
possible, both ends of a given protocol layer must employ encryption at the same time. 
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In addition to compensating for the lack of physical protection of paths between computer 
systems, encryption can minimize the need to trust some of the network mechanisms within a 
system. For example, software and hardware that constitute the data link layer need not be 
trusted if encryption is used at the network layer. The data link layer sees only encrypted data 
passed to it by the network layer. But realistically, even with encryption, it is difficult to avoid 
having to trust lower-layer protocols when those layers are implemented in a computer system 
(as in figure 13-8), because the software in lower-layer protocols usually needs special privileges 
(for example, to perform I/O). Privileged software can corrupt the operating system and cause a 
security violation, even if its normal function is only to process encrypted traffic. Using 
encryption to eliminate the need to trust lower layers is most useful in situations where the 
lower-layer protocols are implemented in separate physical devices (such as front-end processors 
or packet switches in figure 13-5). In such cases the devices can remain entirely untrusted and 
unprotected. 

Interestingly, the reverse situation can also occur; in such a case the separate physical front-
end device is the only trusted component of a secure network, and the hosts (including each 
host’s operating system) are untrusted. In figure 13-6, for example, the interface units operating 
at the data link layer may employ encryption to provide a secure data link service to untrusted 
hosts as subjects. 

13.3.4 Mutually Suspicious Systems 

Together, the systems in a secure distributed system constitute a security domain that operates 
under a common management and implements a common security policy at a common protocol 
layer. Each system within the domain is equally responsible for security of the system. Using 
encryption or physical protection, we can logically isolate the secure distributed system as a 
whole from other computer systems on the same physical network that are not trusted to be 
members of the domain. In figure 13-10, a secure distributed system composed of systems A, F, 
and C exists in one domain. The other systems on the network are not part of that domain. 

The existence of the untrusted system E along the physical path between A and F does not 
necessarily prevent establishment of a protected path between A and F at a suitably high protocol 
layer. For example, a secure virtual circuit can be established between subjects on A and F with 
encryption at the transport layer, where E is an intermediate gateway that handles the network 
layer protocol. 

But what if a subject on system A wants to communicate with a peer on system B, where B is 
not part of the same security domain? System A must treat B as lying outside its security 
perimeter; the protocol layers within the security perimeter of A cannot trust their peer layers on 
the remote system (fig. 13-11). The entire remote system—and not just the subject at protocol 
layer N —is treated as an untrusted subject, and each protocol layer within the security perimeter 
of system A must be able to communicate with an untrusted peer without compromising its own 
security or the security policy enforced on the subjects in system A. 
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Figure 13-10. Security Domains. Systems A, F, and C lie in the same security domain. 
They can trust each other to enforce the same security policy. Lines represent physical 
connectivity. 
 

By allowing an exchange with an untrusted system in figure 13-11, we have built an 
additional interface into the security perimeter (besides the interface at protocol layer N – 1 for 
local subjects). This interface, which is shown as a heavy vertical dashed line in the figure, 
provides direct access to functions of the secure network that are hidden inside the security 
perimeter of the distributed system in figure 13-9. Whereas the distributed system’s security 
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Figure 13-11. Mutually Suspicious Computer Systems. From the point of view of 
system A, system B is a single untrusted subject. The protocol layers within the 
trusted portions of system A must remain suspicious of their peers. 
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policy in figure 13-9 deals with subjects and objects at a single protocol layer, an expanded 
security policy is required for the situation in figure 13-11—one that specifies the types of 
objects handled by each of the protocol layers within the security perimeter. While these new 
layers must handle several new types of objects, the security policy need address only one new 
type of subject: an untrusted remote system. That remote system has multiple interfaces into the 
perimeter at different layers, but from an access control policy viewpoint it is a single monolithic 
subject. As far as that policy is concerned, the peer entity inside subject B with which subject A 
communicates in figure 13-11 is indistinguishable from any other part of the untrusted remote 
system. 

A multiple-protocol-layer security policy is apt to be complex, since it must resolve issues of 
access by subjects at one level of abstraction to objects at a different level of abstraction. For 
example, in order to specify what happens when subject A opens a connection at the transport 
layer to entity A', the policy must account for the fact that the transport-layer objects (messages) 
are converted to one or more packets, or datagrams at the lower layer and are individually 
transmitted to the remote subject at the data link layer. The remote subject cannot be trusted to 
reassemble the datagrams into the original message nor to respond appropriately to any of the 
protocols. Each protocol layer within the security perimeter of system A must protect itself from 
deception by or malfunction in system B. This requirement is not quite as hard as it seems, since 
good protocols are usually fairly robust in the face of protocol errors on a remote system. The 
complexity lies in the definition of the security policy for such interactions. 

Encryption is not required to extend the security perimeter at layer 3 in figure 13-11, as it 
was in figure 13-9, because the security perimeter of system A does not extend to system B. 
Encryption or physical protection must nonetheless be employed between the systems, however, 
in order to create a protected path for confidentiality of communications. Encryption is also 
needed if the systems want to authenticate each other, for the same reasons that users must have 
a protected path in order to authenticate themselves to an operating system (see section 10.4. But 
authentication is only necessary if the security policy requires the remote systems to be 
individually identified. It is not needed if the policy treats all remote systems alike, giving them 
all access to exactly the same objects without distinguishing among them. 

The discussion here has been from the point of view of a single security domain on the 
network. A network may contain a number of secure distributed systems—each residing in its 
own security domain, each implementing a different security policy, and each viewing the 
systems in the other domains as suspicious. In the extreme, each system on the network may lie 
in its own domain and not trust the others at all. 

13.4 NETWORK SERVERS 

A distributed system often consists of a collection of computer systems that trust each other but 
generally serve their own local users, plus server systems that provide various types of services 
to other systems and users. Because these servers usually maintain data that are shared by a 
number of other systems, they bear some of the responsibility for enforcing the network security 
policy. 
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13.4.1 Authentication and Authorization Servers 

Some servers, in effect, help to implement a portion of the security policy. The key distribution 
center that we discussed previously is an authentication server: anyone can use the KDC to 
determine whether a given message is authentic (was transmitted by a claimed source). A public 
key distribution center is also an authentication server. 

The KDC is also often used as an authorization server to decide who can talk to whom, based 
on a security policy and attributes of systems stored in its database. It can enforce this 
authorization via selective key distribution—although, in general, an authorization server only 
provides information and does not directly enforce the authorization. For example, the public key 
distribution center cannot enforce anything (because the keys it gives out are public), but it can 
provide authorization information for others to use. 

13.4.2 Name Servers 

A name server is an entity on the network that provides a way to translate the name of an entity 
into the network address of the entity. Usually the name is human-readable. Like an 
authentication server, a name server is a central registry of network entities. Name servers are 
necessary in large distributed systems whether or not security is an issue, because users cannot 
be expected to know the network addresses of all the services they use, and because each system 
on the network cannot store the names of all possible services. The name server allows services 
to move around on the network, and it can provide the addresses of alternate services if the 
primary service is not responding. Name servers are usually accessed by distributed applications 
on a system and not directly by users: the user enters into the local system the name of the 
service to be accessed (for example, “news wire service”), and the local system then interrogates 
the name server for the network address in order to make the remote connection to the service. 

It is not often realized that the name server needs to be a highly trusted entity, as a name-to-
address translation error can render useless all the rest of the network security and authentication 
controls. Suppose you are logged into your local system and want to send a file to a remote 
system omega on which you have an account. You enter the command “remote copy to 
omega” into your local system, and the remote_copy program invokes the trusted network 
service on the local system to send a message to the name server asking, “What is the network 
address of omega?”. The name server returns the value 345678.0987, and your application again 
invokes the trusted network to establish a connection to that system. The secure network 
connection is set up, possibly with the aid of an authentication server that assures remote_copy 
that it is really talking to 345678.0987, and the file is copied in complete privacy between your 
local system and that remote system. Of course, you as a user have no idea whether 345678.0987 
is really omega: you have to believe the name server. Even if the name server is trusted, you 
have to trust the programs on your own system to provide the name server with the correct 
information, as you requested. Thus, for the maximum degree of security, each system needs a 
protected path to the name server. 

Because name servers tend to be involved at the beginnings of sessions and need to be 
trusted, it is convenient to combine them on the same computer systems with authentication 
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servers. But it is important to understand that the function of name-to-address translation is quite 
different from the function of authentication. 

13.4.3 Other Servers 

Distributed systems have a number of other shared services, such as bulk file storage, hardcopy 
output, and remote interfaces to other networks. Most of these are potentially security-relevant. 
A file server, for example, might contain files belonging to many different users. Instead of 
treating the file server as a subject, the trusted network service in the distributed system has to 
include the file server within the security perimeter, and the services of the file server have to be 
covered by the security. policy. If the file server handles part of the file system for a distributed 
operating system, the file system is logically part of the operating system. 

Techniques have been proposed and implemented in experimental systems where file servers 
need not be trusted (Rushby and Randell 1983). Such designs rely on encryption and 
authentication to prevent the file server from mixing files of different users. While the potential 
for residual covert channels may make the technique unsuitable for some applications, the ability 
to keep the file server outside the security perimeter is attractive because it reduces the number 
of special-purpose systems on the network that have to be trusted. 

In practice, the use of distributed applications and shared servers (secure or otherwise) is still 
in its infancy, and few practical results have been obtained by securing such systems. But 
security is a serious problem in a distributed system—much more so than in operating systems. 
Perhaps it is not too late to design security into these systems from the beginning, before industry 
locks itself into fundamentally nonsecure approaches that can never be retrofitted. 

13.5 SECURITY KERNEL ON A NETWORK 

A distributed system like the one shown in figure 13-8 is really a distributed operating system. If 
the secure operating system in each system is a security kernel, and you want to enforce the same 
policy (with the same level of assurance) on the distributed system as you have within the kernel, 
the security kernels in the individual systems must cooperate in some manner. One way to 
accomplish this is to allow the kernels to communicate directly with one another, exchanging 
control information as needed to coordinate the exchange of traffic. This technique requires a set 
of trusted kernel-to-kernel protocols—and of course a protected path between the kernels. Such 
kernel protocols have very difficult synchronization requirements that must await solutions to 
still-open research issues. 

A much easier technique is to keep the kernels as disjoint as possible, relying on each kernel 
to enforce subject-to-object access within its own computer system and minimizing the amount 
of trusted control information that must be exchanged between kernels. It turns out that, for a 
multilevel security policy, the only trusted control information that needs to be exchanged is the 
access class of the network objects; the transmitting kernel inserts an access class label on a 
message based on the access class of the subject that created the message, and the receiving 
kernel uses that access class to determine who on its own system may read the message. If the 
trusted network service operates at the transport layer, a label is required only when the virtual 
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circuit is established, and not on each message that is exchanged over that circuit. The kernels 
must still trust each other to insert and obey the access class labels according to their common 
policy, but no information other than the labels need be managed or exchanged between the 
kernels. In particular, the kernels do not have to know the identifiers or attributes of each other’s 
subjects. 

In order for the system to label network objects securely, some portion of the network 
protocols in each kernelized system must be trusted to insert the correct label, and the labeling 
function must be integrated into the protocol architecture. Such labeling capability is 
incorporated as an option in the protocol header of the Arpanet’s IP datagram at the network 
layer. Trusted labeling can be provided in various ways without trusting all of the network 
software that implements these protocols, but in general adding trusted labeling with the same 
degree of assurance as is possessed by the kernel entails trusting a considerable amount of 
network software. 

The protected path between security kernels is best provided by physical security or link 
encryption. With packet encryption, unless you can close the high-bandwidth covert channel 
between an untrusted application and a wiretapper of a line (which is very difficult, as we 
discussed in section 13.2.2), the secure distributed system has a serious vulnerability that is not 
present when each kernel-based system is isolated. You need to evaluate this vulnerability in 
detail, early in the design of the distributed system, because it can be a waste of time and energy 
to close the covert channels in the isolated systems (to protect yourself against malicious, but 
authorized users) if you cannot protect yourself against wiretappers (malicious unauthorized 
users). 

When a kernelized system communicates with an untrusted system, the kernel must treat the 
untrusted system as a single subject that is unable to enforce or provide any reliable labeling. 
With a multilevel security policy, this means that the untrusted system may communicate with 
subjects on the kernelized system at only a single access class, which the kernel determines by 
authenticating the remote system and knowing (from internal tables) the correct access class. 

When two kernelized systems communicate, it may occasionally be desirable for one-way 
communication to occur between a subject at a high access class and a subject at a low access 
class. The multilevel security policy permits an UNCLASSIFIED process (for example) to create an 
UNCLASSIFIED datagram, and a SECRET process to read the datagram. In effect, the UNCLASSIFIED 
process does a write-up to a SECRET process. Because the reverse communication is not possible 
(the SECRET process cannot send to the UNCLASSIFIED process), the only protocols that will work 
in a one-way mode are those at the network or data link layers, where two-way handshakes are 
not required to establish a session or virtual circuit. In practice, few applications call for a pure 
one-way transmission over a network; the only users of a datagram service are higher-layer full-
duplex protocols. Even if the purpose of establishing a virtual circuit is to transmit information in 
only one direction (for example, to send a file or electronic mail), the virtual circuit protocols are 
two-way and will not work. Thus, while the security policy may not prohibit one-way 
communication, there is little reason for a kernel-based network to provide such a service. 



 

 224

13.6 FUTURE OF SECURE DISTRIBUTED SYSTEMS 

In contrast to the items discussed in most of the other chapters in this book, the secure distributed 
system model presented in this chapter is more of a proposal than a description of proven 
technology. No examples of commercial distributed systems address all dimensions of the 
computer security problem while concurrently providing a wide range of services for general-
purpose applications. The model presented here does show, however, that the architecture of a 
secure distributed system can be mapped into that of a secure computer system, employing most 
of the same concepts. The technology and applications of encryption to support the distributed 
nature of the system are well understood, although few examples exist of systems that implement 
the most flexible of the public key management alternatives. 

More work is particularly needed in defining an appropriate security model for a distributed 
system comprising multiple security domains, and in describing and implementing the various 
types of servers that are needed to support a coherent distributed-system architecture. Because 
work in the latter area is still in its infancy—even for distributed systems that have no security—
we need to exercise caution in defining security architectures that apply to current network 
implementations but do not generalize to future systems. At the same time, we must balance this 
cautionary approach with the realization that the use of networks is growing continuously, 
constantly increasing the vulnerability of the computer systems that use them. 
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