

BUILDING
A SECURE
COMPUTER
SYSTEM
Morrie Gasser

ACF2 is a trademark of Uccel Crop.
AOS is a trademark of Data General Corp.
DEC, PDP-11, VMS, SES/VMS are trademarks of Digital Equipment Corp.
IBM is a registered trademark of International Business Machines, Inc.
Intel, 80286, iAPX 432 are trademarks of Intel Corp.
Motorola, 68000 are trademarks of Intel Corp.
TOP SECRET is a trademark of CGA Software Products Group, Inc.
Unix is a trademark of American Telephone & Telegraph Co.

Copyright © 1988 by Van Nostrand Reinhold

Library of Congress Catalog Card Number 87-27838
ISBN 0-442-23022-2

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or
used in any form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—without written permission of
the publisher.

Printed in the United States of America
Designed by Beth Tondreau

Van Nostrand Reinhold
115 Fifth Avenue
New York, New York 10003

Van Nostrand Reinhold International Company Limited
11 New Fetter Lane
London EC4P 4EE, England

Van Nostrand Reinhold
480 La Trobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada
Division of Canada Publishing Corporation
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Library of Congress Cataloging-in-Publication Data
Gasser, Morrie, 1947–

Building a secure computer system.
Bibliography: p.
Includes index.
1. Computers—Access control. 2. System design.

1. Title.
QA76.9.A25G37 1988 005.8 87-27838
ISBN 0-442-23022-2

 TO MY WIFE,
 KATE,
 AND MY CHILDREN,
 BECKY AND DANNY.

 v

 CONTENTS

Foreword xi

Preface xiii

PART I OVERVIEW

Chapter 1 What is Computer Security? 3
1.1 Secrecy, Integrity, and Denial of Service 3
1.2 Trusted System Evaluation Criteria 4
References 6

Chapter 2 Why Systems Are Not Secure 7
2.1 Security is Fundamentally Difficult 7
2.2 Security Is an Afterthought 8
2.3 Security Is an Impediment 9
2.4 False Solutions Impede Progress 10
2.5 The Problem is People, Not Computers 11
2.6 Technology is Oversold 12
References 13

Chapter 3 General Concepts 15
3.1 Internal and External Security 15
3.3 The System Boundary and the Security Perimeter 16
3.3 Users and Trust 18

3.3.1 Protecting the User from Self-betrayal 18
3.3.2 Identification and Authentication 18

3.4 Trusted Systems 19
3.4.1 Trojan Horses 21

3.5 Subjects, Objects, and Access Control 21
3.5.1 Access Control 22
3.5.2 Security Policy 23

Chapter 4 Design Techniques 24
4.1 System Structures 24

4.1.1 Structure of a Computer System 25
4.1.2 System States 27

4.2 The Reference Monitor and Security Kernels 28

 vi

4.3 System Development Process 30
References 32

PART II DETAILED CONCEPTS

Chapter 5 Principles of a Security Architecture 35
5.1 Consider Security from the Start 36
5.2 Anticipate Future Security Requirements 36
5.3 Minimize and Isolate Security Controls 38
5.4 Enforce Least Privilege 39
5.5 Structure the Security-Relevant Functions 41
5.6 Make Security Friendly 41
5.7 Do Not Depend on Secrecy for Security 43
References 44

Chapter 6 Access Control and Multilevel Security 45
6.1 Access to the System 45
6.2 Discretionary Access Control 47

6.2.1 Passwords for File Access 47
6.2.2 Capability List 48
6.2.3 Owner/Group/Other 48
6.2.4 Access Control Lists 49
6.2.5 Trojan Horse Threats 50

6.3 Mandatory Access Control 50
6.4 Multilevel Security 51

6.4.1 Military Security Policy 51
6.4.2 A Note on Terminology 52
6.4.3 Mathematical Relationships 53
6.4.4 Multilevel Security Rules 53

6.5 Integrity 56
References 58

Chapter 7 Trojan Horses and Covert Channels 60
7.1 Trojan Horses and Viruses 61

7.1.1 Trojan Horse Examples 61
7.1.2 Limiting the Trojan Horse 63

7.2 Covert Channels 67
7.2.1 Covert Storage Channels 68
7.2.2 Covert Timing Channels 70

7.3 Trap Doors 71
References 72

PART III IMPLEMENTATION

Chapter 8 Hardware Security Mechanisms 75
8.1 Hardware/Firmware/Software Trade-offs 76

 vii

8.2 Process Support 77
8.3 Memory Protection 78

8.3.1 Virtual Address Space 78
8.3.2 Virtual Memory Mapping 78
8.3.3 Demand Paging 79
8.3.4 Segmentation 80
8.3.5 Access Control with Memory Management 83

8.4 Execution Domains 86
8.4.1 Transfer of Control Across Domains 89
8.4.2 Argument Passing Across Domains 91

8.5 Input/Output Access Control 96
8.5.1 Programmed I/O 99
8.5.2 Unmapped I/O 100
8.5.3 Premapped I/O 101
8.5.4 Fully Mapped I/O 101

References 103

Chapter 9 Security Models 105
9.1 Role of a Security Model 105
9.2 Practical Applications of a Model 108
9.3 Types of Security Models 109
9.4 Characteristics of a Security Model 110
9.5 State-Machine Models 111

9.5.1 Examples of a State Machine Model 112
9.5.2 Adding Constraints to State-Machine Access Models 117
9.5.3 The Bell and La Padula Security Model 121

9.6 Information-Flow Models 125
9.7 Informal Model-to-System Correspondence 127

9.7.1 Mapping the Functions 127
9.7.2 Mapping the Variables 128
9.7.3 Unmapped Functions and Variables 128

References 129

Chapter 10 Security Kernels 131
10.1 The Reference Monitor 132
10.2 The Three Principles 133

10.2.1 Completeness 133
10.2.2 Isolation 134
10.2.3 Verifiability 134

10.3 Virtualization and Sharing 136
10.4 Trusted Path 137
10.5 Trusted Functions 139
10.6 Kernel Security Policies 140
10.7 Kernel Implementation Strategies 141

10.7.1 Case (a): Identical Operating System (Virtual Machine) 143
10.7.2 Case (b): Compatible Operating System (Emulation) 145

 viii

10.7.3 Case (c): New Operating System 148
References 148

Chapter 11 Architectural Considerations 151
11.1 Operating System Layering 151
11.2 Asynchronous Attacks and Argument Validation 153
11.3 Protected Subsystems 154
11.4 Secure File Systems 157

11.4.1 Naming Structures 157
11.4.2 Unique Identifiers 159

11.5 Security Guards 160
11.6 Capability-based Architectures 162
References 163

Chapter 12 Formal Specification and Verification 165
12.1 Formal Specification Techniques 167
12.2 Properties of Formal Specifications 168
12.3 Example of a Formal Specification 172
12.4 Specification-to-Model Correspondence 174
12.5 Techniques for Proving Specifications 175
12.6 Methods of Decomposition 177

12.6.1 Data Structure Refinement 177
12.6.2 Algorithmic Refinement 178
12.6.3 Procedural Abstraction 181

12.7 Information-Flow Analysis 182
12.7.1 Flow Rules 184
12.7.2 Flow Analysis Process 188

12.8 Code Correspondence Proofs 189
References 192

Chapter 13 Networks and Distributed Systems 195
13.1 Overview of Networking Concepts 195

13.1.1 Protocol Hierarchies and Models 195
13.1.2 Characteristics of Protocols 198
13.1.3 Network Topologies and Components 199

13.2 Encryption 200
13.2.1 Fundamentals of Encryption 201
13.2.2 Security Services 205
13.2.3 Integrating Packet Encryption into a Protocol Architecture 209
13.2.4 Key Management 210

13.3 A Network Security Architecture 212
13.3.1 Network Subjects, Objects, and Access Control 213
13.3.2 Network Security Perimeter and Protected Path 215
13.3.3 Distributed Secure System 216
13.3.4 Mutually Suspicious Systems 218

13.4 Network Servers 220

 ix

13.4.1 Authentication and Authorization Servers 221
13.4.2 Name Servers 221
13.4.3 Other Servers 222

13.5 Security Kernel on a Network 222
13.6 The Future of Secure Distributed Systems 224
References 224

Bibliography 226

Index 229

 xi

 FOREWORD

The lack of a technical reference work on computer security has for years been a serious
impediment to the growth of the field. Removing this obstacle required an author thoroughly
conversant with the technology, skilled in writing, and fully dedicated to completion of a most
difficult undertaking. Mr. Gasser has accepted this formidable challenge and has succeeded
beyond what even we optimists would expect. Although I recognized that Mr. Gasser was
unquestionably qualified, I was frankly skeptical about whether or not it was possible to produce
a practical, understandable, and thoroughly accurate first book on the subject. As I started to read
the book for the first time I found myself engrossed into the wee hours of the morning, and came
away impressed that this singular effort had at long last given the field a definitive reference
work for technical solutions to computer security problems.

The field of computer security did not begin to emerge until the late 1960s, with the growing
recognition by several groups in the government and private sector that computers were highly
vulnerable. The landmark report by Willis Ware of RAND in 1969 alerted those within the
Department of Defense to many of the technical weaknesses of computer security. The publicity
associated with IBM’s commitment of forty million dollars to address computer security in the
early 1970s brought the problem to the public’s attention as well. Unfortunately, many of those
building computer systems took the position that internal computer controls (those that are
embodied in software within the operating system) could effectively limit the access of users to
authorized information only. For a number of years many were lulled into the belief that
computer security was a “people problem” that could be addressed by encouraging people to
follow the “rules of the road”. A few organizations, especially in the military, formed “tiger
teams” to simulate adversaries trying to obtain unauthorized access to information.

These tiger teams consistently found that circumventing the internal computer control was an
easy way to compromise security. Even when the system builder made a major and concerted
effort the find and patch all the holes, the technical controls were usually penetrated with ease. In
recent years the media coverage of the exploits of “hackers” have increased general awareness of
such computer vulnerabilities. However, awareness that a problem existed did little to help the
designers and builders of systems understand the underlying issues needing to be addressed in
order to respond to the problem. This book brings together the problems and technical solutions
in a balanced perspective that pinpoints constructive responses to some of the most significant
aspects of the problem of computer security.

Any computer system can only be secure with respect to some specific policy that defines
what information people are authorized to read or modify. This book presents the two major
classes of policies—discretionary and mandatory—and shows how the information contained in
rules and regulations can be fine-tuned for use in building a specific computer system to meet a

 xii

desired policy. This is the first design step. Fortunately it is now understood that policy can be
mathematically modeled abstractly, so that a wide range of end-user policies are represented by a
single model. This means that a single system design can be used effectively for private and
commercial as well as civil and military uses.

The nub of the problem of secure computers is how to determine if a computer is in fact
secure. In fact, in practical terms, one of the most serious and difficult impediments to
widespread introduction of highly secure systems is the limited number of evaluators who can
accurately and consistently judge the security of a computer. The key to this problem lies in
specifying a chain of objective evidence that bridges the gap from policy to implemented system.
Although the steps identified in this book fully support the Trusted Computer System Evaluation
Criteria produced by the National Computer Security Center, the technical elements of an
objective evaluation are not tied to any particular organization or class of users. Reproducible
design steps that are carefully documented make it possible for a third party to objectively judge
the efficacy of the builder’s use of the technology. Understanding and using these steps make it
possible not only to build a secure computer, but also to have an evaluator confirm that you have
succeeded.

There can be little doubt that it is unusually difficult to build and understand a highly secure
computer system. One of the most delightful aspects of this book is its readable style that
presents difficult and subtle topics clearly, without excessive jargon or superficiality, while
achieving the needed breadth of coverage. This book distinguishes the technical aspects of
computer security, and identifies the significance of the vulnerabilities being addressed. If I had
but one book that I could recommend to the computer professional on computer security,
Building a Secure Computer System would be my unqualified choice.

Dr. Roger Schell

Vice President for Engineering
Gemini Computers, Inc.

Carmel, California

 xiii

 PREFACE

This book is for the practicing computer professional who wants to understand—and perhaps
implement—technical solutions to computer security problems. It covers the state of the art of
applied computer security technology developed over the last fifteen or twenty years. It is a
guide to building systems, not an exhaustive academic study, and provides enough information
about selected techniques to give you a well-rounded understanding of the problems and
solutions.

It is not possible in one book to treat all applications of security while retaining the technical
depth needed to cover each topic adequately. I have concentrated on applications for which
prevailing literature is weak: operating systems, hardware architecture, networks, and practical
verification. Subjects about which books are already available, such as database security and
cryptographic algorithms, receive less discussion here.

In selecting techniques for discussion, I have given primary attention to demonstrable
practicality. Many interesting techniques have been implemented in experimental systems but
have never seen production use. Some sophisticated features appear in research systems that are
used daily at universities, proving that the concepts are viable, but for various reasons (not the
fault of the researchers) the systems remain one-of-a-kind.

Important technological advances in computer security are only now beginning to see the
light of day, as interest in security grows among computer system vendors and users. Experience
with many sophisticated techniques is in its infancy, and examples are few and far between.
Therefore, despite my attempt to stick to practical techniques, I have included some advanced
concepts that are not quite ready for production use but follow logically from today’s technology
and show reasonable promise.

The technology of computer security is controversial. While everyone agrees that we have a
serious computer security problem, few agree on the best response. Many would address the
problem through better control of personnel, better administrative procedures, and more suitable
laws; others believe that technical solutions are most appropriate. While this book concentrates
solely on the technical approach, the ultimate answer will surely be a combination of many
approaches.

Even among those who agree that technology is the answer, there is some disagreement on
the value of different techniques. While I wish to be fair to all points of view, I emphasize
approaches in this book that I believe work, and I make only token mention of others. This
manner of selection is not meant to discredit alternatives: there simple is not room to go into
adequate detail about all reasonable approaches. In addition, some good techniques may have

 xiv

been omitted because I am not aware of them; I apologize to any researchers and developers
whose work may be shortchanged.

Please note: this book does not teach you how to break into systems. If you are looking for a
“hacker’s guide,” this is the wrong place.

Part I of this book provides an overview of elementary concepts and serves as an introduction
to the chapters in parts II and III that will enable you to read only the chapters of interest, without
getting lost.

I would like to express my sincere appreciation to those who have taken the time out of their
busy schedules to review and comment on drafts of this book: Martha Branstad, Paul Karger,
Richard Kemmerer, Steven Lipner, Jonathan Millen, John Parodi, Marvin Schaefer, Roger
Schell, Joe Tardo, and John Woodward. I am especially grateful to my most critical reviewer: my
wife, Kate, without whom this book would never have left the word processor.

PART I

Overview

 3

 Chapter 1

What is Computer
 Security?

The meaning of the term computer security has evolved in recent years. Before the problem of
data security became widely publicized in the media, most people’s idea of computer security
focused on the physical machine. Traditionally, computer facilities have been physically
protected for three reasons:

• To prevent theft of or damage to the hardware
• To prevent theft of or damage to the information
• To prevent disruption of service

Strict procedures for access to the machine room are used by most organizations, and these
procedures are often an organization’s only obvious computer security measures. Today,
however, with pervasive remote terminal access, communications, and networking, physical
measures rarely provide meaningful protection for either the information or the service; only the
hardware is secure. Nonetheless, most computer facilities continue to protect their physical
machine far better than they do their data, even when the value of the data is several times
greater than the value of the hardware.

You probably are not reading this book to learn how to padlock your PC. Information
security is the subject of this book. Furthermore, we are limiting our study to the insider
problem: the security violations perpetrated (perhaps inadvertently) by legitimate users whom
padlocks and passwords cannot deter. Most computer crimes are in fact committed by insiders,
and most of the research in computer security since 1970 has been directed at the insider
problem.

1.1 SECRECY, INTEGRITY, AND DENIAL OF SERVICE

Throughout this book, the discussion of computer security emphasizes the problem of protecting
information from unauthorized disclosure, or information secrecy. You may find it disconcerting,
as you read this book, that information integrity-protecting information from unauthorized
modification or destruction-seems to be receiving no sustained attention.

There are two reasons for this seemingly one-sided point of view, one historic and one
technical. First, having been funded primarily by the United States government, most computer

 4

security endeavors have concentrated on maintaining the secrecy of classified information. This
tradition has persisted even in commercial applications, where classified information is not the
concern and where integrity, not secrecy, is often the primary goal. And second, the information
disclosure problem is technically more interesting to computer security researchers, and the
literature reflects this bias.

Fortunately, techniques to protect against information modification are almost always the
same as (or a subset of) techniques to protect against information disclosure. This fact is
consistently borne out in the technical measures we will discuss. In the rare cases where the
techniques differ, that fact will be pointed out explicitly.

While the definition of computer security used in this book does, therefore, include both
secrecy and integrity, the closely related area termed denial of service is rarely discussed here.
Denial of service can be defined as a temporary reduction in system performance, a system crash
requiring manual restart, or a major crash with permanent loss of data. Although reliable
operation of the computer is a serious concern in most cases, denial of service has not
traditionally been a topic of computer security research. As in the case of data integrity, one
reason for the lack of concern is historic: secrecy has been the primary goal of government-
funded security programs. But there is also an important technical reason. While great strides
have been made since the early 1970s toward ensuring secrecy and integrity, little progress has
been made in solving denial of service because the problem is fundamentally much harder:
preventing denial of service requires ensuring the complete functional correctness of a system—
something unlikely to be done in the foreseeable future.

If denial of service is your only concern, you should refer to such topics as structured
development, fault tolerance, and software reliability. Most of the techniques for building secure
systems, however, also help you build more robust and reliable systems. In addition, some
security techniques do address certain denial-of-service problems, especially problems related to
data integrity. This book will indicate when those techniques apply.

To sum up, security relates to secrecy first, integrity second, and denial of service a distant
third. To help you remember this, memorize the computer security researcher’s favorite (tongue-
in-cheek) phrase: “I don’t care if it works, as long as it is secure.”

1.2 TRUSTED SYSTEM EVALUATION CRITERIA

The U.S. Department of Defense has developed its own definition of computer security,
documented in Trusted Computer System Evaluation Criteria (Department of Defense 1985),
also called “the Orange Book” after the color of its cover /and hereafter shortened to “the
Criteria”). The document employs the concept of a trusted computing base, a combination of
computer hardware and an operating system that supports untrusted applications and users. The
seven levels of trust identified by the Criteria range from systems that have minimal protection
features to those that provide the highest level of security modern technology can produce (table
1-1). The Criteria attempts to define objective guidelines on which to base evaluations of both
commercial systems and those developed for military applications. The National Computer

 5

Security Center, the official evaluator for the Defense Department, maintains an Evaluated
Products List of commercial systems that it has rated according to the Criteria.

The Criteria is a technical document that defines many computer security concepts and
provides guidelines for their implementation. It focuses primarily on general-purpose operating
systems. To assist in the evaluation of networks, the National Computer Security Center has
published the Trusted Network Interpretation (National Computer Security Center 1987), that
interprets the Criteria from the point of view of network security. The Trusted Network
Interpretation identifies security features not mentioned in the Criteria that apply to networks
and individual components within networks, and shows how they fit into the Criteria ratings.

Class Title Key Features

A1 Verified Design Formal top-level specification and
verification, formal covert channel
analysis, informal code correspondence
demonstration

B3 Security Domains Reference monitor (security kernel),
“highly resistant to penetration”

B2 Structured
Protection

Formal model, covert channels
constrained, security-oriented architecture,
“relatively resistant to penetration”

B1 Labeled Security
Protection

Mandatory access controls, security
labeling, removal of security-related flaws

C2 Controlled
Access

Individual accountability, extensive
auditing, add-on packages

C1 Discretionary Discretionary access controls, protection
against accidents among cooperating
users

D Minimal
Protection

Unrated

Table 1-1. Trusted System Evaluation Criteria Ratings. In order for a system to be
assigned a rating, it must meet all the technical requirements for its class in the four
areas of security policy, accountability, assurance, and documentation. The
requirements are cumulative, moving from class D to class A1.

 6

You can be sure that a system rated high according to the Criteria (that is, at class Al or B3)

has been subject to intense scrutiny, because such systems are intended to protect classified
military information. In order to attain such a high rating, a system has to be designed with
security as its most important goal. While systems rarely qualify for any rating without some
changes, most commercial operating systems can achieve a C1 or C2 level with a few
enhancements or add-on packages. The Evaluated Products List is short because the Criteria is
relatively new and evaluations take a long time. Also, many vendors have not yet shown an
interest in submitting their products for evaluation.

While most of the technical concepts in the Criteria are covered in this book, we will pay
little attention to its rating scale. If your interest is in developing a system for United States
government use, the scale is important; for other applications, you will be more interested in
specific features than in the ratings.

REFERENCES

Department of Defense. 1985a. DoD Trusted Computer System Evaluation Criteria. DOD

5200.28-STD. Washington, D.C.: Department of Defense. (U.S. Government Printing Office
number 008-000-00461-7.)
The DoD criteria for evaluating and rating operating systems according to a scale based on
security features and assurance. This document discusses many of the computer security
concepts covered in this book.

National Computer Security Center. 1987. Trusted Network Interpretation. NCSC-TG-005. Ft.
George G. Meade, Md.: National Computer Security Center.
An interpretation of the Trusted Computer System Evaluation Criteria for networks and
network components.

 7

 Chapter 2

Why Systems Are
 Not Secure

Despite significant advances in the state of the art of computer security in recent years,
information in computers is more vulnerable than ever. Each major technological advance in
computing raises new security threats that require new security solutions, and technology moves
faster than the rate at which such solutions can be developed. We would be fighting a losing
battle, except that security need not be an isolated effort: there is no reason why a new
technology cannot be accompanied by an integrated security strategy, where the effort to protect
against new threats only requires filling in a logical piece of a well-defined architecture.

We probably cannot change the way the world works, but understanding why it works the
way it does can help us avoid the typical pitfalls and choose acceptable security solutions. This
chapter explores some of the classic reasons why the implementation of security lags behind its
theory.

2.1 SECURITY IS FUNDAMENTALLY DIFFICULT

Why are computer systems so bad at protecting information? After all, if it is possible to build a
system containing millions of lines of software (as evidenced by today’s large operating
systems), why is it so hard to make that software operate securely? The task of keeping one user
from getting to another user’s files seems simple enough—especially when the system is already
able to keep track of each user and each file.

In fact, it is far easier to build a secure system than to build a correct system. But how many
large operating systems are correct and bug-free? For all large systems, vendors must
periodically issue new releases, each containing thousands of lines of revised code, much of
which are bug fixes. No major operating system has ever worked perfectly, and no vendor of an
operating system has dared offer a warranty against malfunctions. The industry seems resigned
to the fact that systems will always have bugs. Yet most systems are reasonably dependable, and
most of them adequately (but not perfectly) do the job for which they were designed.

 8

What is adequate for most functions, however, is not sufficient for security. If you find an
isolated bug in one function of an operating system, you can usually circumvent it, and the bug
will have little effect on the other functions of the system: few bugs are fatal. But a single
security “hole” can render all of the system’s security controls worthless, especially if the bug is
discovered by a determined penetrator. You might be able to live in a house with a few holes in
the walls, but you will not be able to keep burglars out.

As a result, securing a system has traditionally been a battle of wits: the penetrator tries to
find holes, and the designer tries to close them. The designer can never be confident of having
found all the holes, and the penetrator need not reveal any discoveries. Anyone entrusting
sensitive. information to a large operating system or to a computer on a network has reason to be
concerned about the privacy of that information. If the information is valuable enough to a
penetrator to warrant the effort, there is little reason to assume that the penetrator will not
succeed.

But of course there is hope: with appropriate techniques, a system can be built that provides
reasonably high assurance of the effectiveness of its security controls—a level of assurance
much higher than that of the system’s overall correctness. The important factor is not the
likelihood of a flaw (which is high), but the likelihood that a penetrator will find one (which we
hope is very low). While we never can know whether a system is perfectly secure, we can build a
system in a way that will make the penetrator’s job so difficult, risky, and costly that the value to
the penetrator of successful penetration will not be worth the effort.

The key to achieving an acceptable degree of security is the systematic use of proper
techniques. Ad hoc security measures provide, at best, insignificantly increased protection that
rarely justifies their expense. At worst, they provide a false sense of security that renders the
users more susceptible than ever to the real threats.

2.2 SECURITY IS AN AFTERTHOUGHT

Despite the publicity about computer security in the press, computer and software vendors have
rarely taken the trouble to incorporate meaningful security measures into their systems. Security,
if considered at all, usually comes at the bottom of a list that looks something like this:

Functions: What does it do?
Price: What does it cost?
Performance: How fast does it run?
Compatibility: Does it work with earlier products?
Reliability: Will it perform its intended function?
Human Interface: How easy is it to use?
Availability: How often will it break?

•
•
•

Security Functions: What protection features does it provide?
Security Assurance: How foolproof are the protection features?

 9

Based on past and current practice, you might say that this entire book is about two of the least
important factors in the design of computer systems.

It is unfair to fault vendors entirely for this lack of attention to security. While customers
may want improved security, they usually have second thoughts when security features adversely
affect other, “more important” features. Since few customers are willing to pay extra for security,
vendors have had little incentive to invest in extensive security enhancements.

A few vendors have taken steps to help the few security-conscious customers who are willing
to invest in additional protection. These customers include not only the government but some
banks, manufacturers, and universities. Several add-on security packages for major operating
systems have been on the market for some time. The most notable of these are CGA Software
Products Group’s TOP SECRET, Uccel Corporation’s ACF2, and IBM’s RACF, all for IBM’s MVS
operating system. Stronger mandatory controls (a subject of chapter 6) designed to be integrated
into the operating system appear in SES/VMS, an enhancement to VMS offered by Digital
Equipment (Blotcky, Lynch, and Lipner 1986), and are under development in the Sperry (now
Unisys) 1100 operating system (Ashland 1985). These packages and enhancements are
commercially viable despite their significant purchase and administrative costs. Several vendors
have made a considerable investment in internal security enhancements to their operating
systems without cost add-ons. These systems include DEC’s VMS and Honeywell’s Multics
(Organick 1972; Whitmore et al. 1973). Control Data has also incorporated security
enhancements into its NOS operating system. Honeywell was the first to offer commercially a
highly secure minicomputer, the SCOMP (Fraim 1983), based on a security kernel, (a subject of
chapter 10). Gemini Computers offers the GEMSOS operating system, also based on a security
kernel (Schell, Tao, and Heckman 1985).

These and several other examples show that there has always been a certain demand for
security features in the user community. But the examples also show that demand is fairly weak
and can easily evaporate if the features should have an adverse impact on cost or any other
functions.

2.3 SECURITY IS AN IMPEDIMENT

A common perception among users is that security is a nuisance. Security measures are supposed
to thwart someone who tries to break the rules; but because of poorly integrated ad hoc solutions,
security measures often interfere with an honest user’s normal job.

Vendors often implement security enhancements in response to specific customer demands.
Such enhancements, made to existing systems at minimal cost, often result in reduced
convenience or poor performance. Vendors commonly adopt the attitude that a customer who
wants security badly enough should be willing to live with the inconvenience.

Many customers take it upon themselves to fix security problems at their own sites. Because
of inherent limitations in the system, fixing security problems often requires restrictive
procedural controls: limited access from remote terminals; restricted physical access to local

 10

terminals. and printers; multiple passwords or logins; frequent password changes; automatic
disconnect after periods of inactivity; and call-back devices. Many of these controls do not
substantially increase the security of the system, but they do foster the notion that security is
painful. Because users and managers do not see a way around the inconveniences, security is
often employed only as a last resort, when a problem has already occurred or a clear threat exists.

2.4 FALSE SOLUTIONS IMPEDE PROGRESS

The computer industry, like other industries, is subject to fads. Fads in the computer security area
can have a serious negative effect on the overall progress toward achieving good security,
because progress stops when people think they have the answer. Since few people have a good
understanding of security, security fixes are particularly subject to snake-oil salesmanship.

One misconception (fortunately short-lived) involved data encryption; that is, encoding
information using a password or secret key so that it cannot be deciphered by unauthorized
individuals. Data encryption is indispensable for communications and is useful for protecting the
media used to store files, but it does not address the general computer security problem. Few of
the penetration techniques used by various “tiger teams” charged with finding security holes in
systems would be thwarted by encryption. The primary problem with file encryption is that it
does nothing to increase the level of trust in the operating system; and if you do not trust your
operating system to protect your files, you cannot trust it to encrypt your files at all the right
times or to protect the encryption keys properly. Nonetheless, simplistic statements are still
occasionally encountered that claim that securing an operating system is unnecessary if all the
files are encrypted. Section 13.2 discusses the legitimate role of encryption in communications
and the relationship of encryption to computer security.

A popular security device is the call-back modem. The idea is that you telephone a computer
from your home or office terminal and identify yourself (via a password) to the modem on the
remote computer through your terminal. The computer’s modem verifies that the password is
correct and tells you to hang up. The modem then looks up your home telephone number in a list,
and calls you back. Nobody can dial into the system and masquerade as you, even if that person
knows your password, unless that person also uses your phone. Call-back devices are attractive
because they do not require any modification to the system being protected—a classic example
of add-on security. The danger in these devices is the risk of being lulled into complacency
because you feel that only “good guys” can get to your system. You may decide that it is never
necessary to change passwords or to enforce any control over the types of passwords people use.
You may become lax about access control within your system, allowing too many of your users
access to too much information. You may forget that half of your security problem is a matter of
keeping your users isolated from each other—not keeping outsiders out.

The worst problem with call-back modems, however, is that they may cause you to forget
that there are other ways people can get into your system. Does your system have a connection to
a commercial network from which users can log in? Can you trust all other systems with which
your system communicates? If one of your users accesses your system via a modem on a
personal computer, how do you ensure that the personal computer has not been penetrated by an
outsider via that modem? Considering the problems that call-back modems cannot solve and

 11

weighing the cost of these devices against simple measures such as better password control, it is
hard to see their value.1

An example involving the use of passwords shows how a security feature intended for one
application can be applied inappropriately to another. Because passwords are so good at
controlling a user's access to the system, they are often used for other types of access control
access to certain applications in a system, access to certain files, or freedom to carry out certain
operations. Password schemes are attractive because they are so easy to implement and to add
onto existing systems.

But passwords are inappropriate for many of these applications, especially when a single
password is issued to several people (for access to a common file, for example. When one person
in the group leaves the company, the password must be changed and the new password manually
distributed. If a break-in by an insider occurs, it is impossible to tell who is at fault. And the
greater the number of people who know the password, the greater the chance that it will be
revealed accidentally.

Another misuse of passwords involves the requirement on some systems that the user at a
terminal reenter the password periodically—supposedly to ensure that the intended user and not
an intruder is at the terminal. This feature is dangerous for two reasons. First, repeated entry of
the password greatly increases the risk that someone will be looking over the user’s shoulder
when the password is entered. Second, the prompt for a password, appearing at unexpected times
during a session, is highly susceptible to spoofing by a Trojan horse (see chapter 7). Section
6.2.1 lists additional ways in which passwords may be misused.

The false sense of security created by inappropriate use of passwords weakens the impetus to
seek better controls. The danger of using such ad hoc solutions to address isolated problems is
that one can lose sight of the fundamental problems.

2.5 THE PROBLEM IS PEOPLE, NOT COMPUTERS

Many organizations believe that computer security technology is irrelevant to real-world
problems because nearly all recorded cases of computer abuse and fraud are non-technical.
Computer crime usually involves exploitation of weaknesses in procedural or personnel controls,
not weaknesses in internal controls. Hence, as long as relatively easy, non-technical ways exist to
commit a crime, technical controls will be viewed as superfluous.

But these organizations often fail to recognize that the computer can protect against flawed
procedural controls. As we shall discuss in section 3.1, technical controls can often be used to
ease the burden of procedural controls. It is distressing, for example, to hear claims that attacks
by former employees represent personnel problems that the computer cannot solve, when the
system can easily be instrumented to defend itself against this threat.

1The idiosyncrasies of the telephone system provide a number of additional ways to defeat most call-back devices,
but that is another story.

 12

Consider, too, what will happen when procedural controls are strengthened to the point that
technical penetration becomes the path of least resistance. Since many years are needed to make
major security improvements to existing systems, a sudden explosion of technical crimes will be
very difficult to counter.

Probably because the computer industry is still in its infancy, sufficient knowledge of
computers to exploit technical flaws seems to be rare among the dishonest. (On the other hand,
perhaps they are so clever that they are not detected.) But as knowledge of computers becomes
more common, we cannot assume that only a few honest citizens will possess the requisite skills
to commit a major crime. Given the low risk of getting caught and the potentially high payoff,
sophisticated computer crime is likely to become more attractive in the future, especially if the
non-technical avenues to crime are sufficiently restricted.

One of the primary arguments that computers cannot prevent most cases of abuse is based on
the observation that computer crimes committed by insiders usually do not involve a violation of
internal security controls: the perpetrator simply misuses information to which he or she
normally has access during, the course of normal work responsibilities. Something akin to
artificial intelligence would be required to detect such abuse automatically. But on closer
inspection, we often find that people routinely gain access to more information than they need,
either because the system’s security controls do not provide adequately fine-grained protection or
because implementing such protection within the architectural constraints of the system is too
inconvenient or costly. The problem appears to be solely one of people, but it is exacerbated by a
technical deficiency of the system. The technical solutions are not apparent because an
organization’s way of doing business is often influenced by the design (and limitations) of its
computer system.

2.6 TECHNOLOGY IS OVERSOLD

There has long been the perception that true computer security can never be achieved in practice,
so any effort is doomed to failure. This perception is due, in large part, to the bad press that a
number of prominent government-funded secure computer development programs have received.
The reasons for the supposed failure of these developments are varied:

• Programs originally intended for research have been wrongly criticized for not fulfilling
needs of production systems.

• Vying for scarce funding, researchers and developers often promise more than they can
deliver.

• Funding for the programs has been unpredictable, and requirements may change as the
programs are shuffled among agencies. Often the requirements ultimately expressed are
inconsistent with the original goals of the program, leading to unfortunate design
compromises.

• Developments are often targeted to a specific model of computer or operating system,
and inconsistent levels of funding have stretched out programs to the point where the
original target system is technologically obsolete by the time the program is ready for
implementation.

 13

• The public does not realize that the first version of an operating system always performs
poorly, requiring significant additional design and tuning before becoming acceptable.
Vendors do not release such preliminary systems, postponing their “Version 1.0”
announcement until the performance problems have been addressed. Government
programs are highly visible, and any problems (even in early versions) tend to be viewed
by critics as inherent characteristics. Worse, contracts are often written in such a way that
the first version is the final product, and additional money is rarely available for
performance tuning.

• Several large government procurements have specified the use of security technology that
was thought to be practical at the time but was in fact based on research still in the
laboratory. When the research failed to progress fast enough to satisfy the needs of the
program, security requirements were waived and the program lost its credibility. Industry
has understood for a long time that developing a new operating system involves far more
than a one-time expense to build it; rather, a high level of continuous support is required
over the life of the system. The federal government seems to have realized this, as well.
Not able to commit to open-ended support, the government has largely ceased direct
funding for secure operating system development, concentrating instead on specific
applications and various seed efforts. A few commercial vendors are now undertaking to
fill the void.

REFERENCES

Ashland, R. E. 1985. “B1 Security for Sperry 1100 Operating System.” In Proceedings of the 8th

National Computer Security Conference, pp. 105–7. Gaithersburg, Md.: National Bureau of
Standards.
A description of mandatory controls proposed for Sperry (now Unisys) operating systems.

Blotcky, S.; Lynch, K.; and Lipner, S. 1986. “SE/VMS: Implementing Mandatory Security in
VAX/VMS.” In Proceedings of the 9th National Computer Security Conference, pp. 47–54.
Gaithersburg, Md.: National Bureau of Standards.
A description of the security enhancements offered by Digital Equipment to upgrade security
on its VMS operating system.

Fraim, L. J. 1983. “SCOMP: A Solution to the Multilevel Security Problem.” Computer 16(7):
26–34. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp. 185–92.
Dedham, Mass.: Artech House (1984.
A minicomputer-based security kernel with sophisticated hardware protection; this system is
a Honeywell product.

Organick, E. I. 1972. The Multics System: An Examination of Its Structure. Cambridge, Mass.:
MIT Press.
A description of Multics—at that time implemented on a processor without hardware-
supported protection rings.

Schell, R. R.; Tao, T. F.; and Heckman, M. 1985. “Designing the GEMSOS Security Kernel for
Security and Performance.” In Proceedings of the 8th National Computer Security
Conference, pp. 108–19. Gaithersburg, Md.: National Bureau of Standards.
A description of a security kernel for the Intel iAPX 286 microprocessor offered by Gemini
Computers.

 14

Whitmore, J.; Bensoussan, A.; Green, P.; Hunt, D.; Kobziar, A.; and Stern, J. 1973. “Design for
Multics Security Enhancements.” ESD-TR-74-176. Hanscom AFB, Mass.: Air Force
Electronic Systems Division. (Also available through National Technical Information
Service, Springfield, Va., NTIS AD-A030801.)
A description of the enhancements incorporated into Multics to support mandatory security
controls.

 15

 Chapter 3

General Concepts

This chapter introduces, at an elementary level, some general concepts of computer security that
apply to all applications; it also introduces terms that will be used repeatedly in later chapters.
Many of the topics discussed here will be covered later in more detail.

3.1 INTERNAL AND EXTERNAL SECURITY

Most of this book addresses internal security controls that are implemented within the hardware
and software of the system. For these internal controls to be effective, however, they must be
accompanied by adequate external security controls that govern physical access to the system.

External controls cover all activities for maintaining security of the system that the system
itself cannot address. External controls can be divided into three classes:

• Physical security
• Personnel security
• Procedural security

Physical security controls (locked rooms, guards, and the like) are an integral part of the

security solution for a central computing facility, but they alone cannot address the security
problems of multiuser distributed systems. As networking becomes a more and more pervasive
part of computing, the role of physical security will continue to diminish. In a large
heterogeneous network, it is probably impossible to guarantee (and risky to assume) that any
system other than your own is physically protected.

Personnel security covers techniques that an employer uses in deciding whom to trust with
the organization’s system and with its information. Most governments have procedures whereby
a level of security clearance is assigned to individuals based on a personal background
investigation and (possibly) additional measures such as polygraph examinations. These
procedures allow the government to assign different degrees of trust to different people,
depending on the needs of their particular job and the depth of their investigation. Personnel
screening in industry is far less formal than in government, and people are usually given “all or
none” access. Where selective access to information is required, it is determined on a case-by-
case basis.

 16

Procedural security covers the processes of granting people access to machines, handling
physical input and output (such as printouts and tapes), installing system software, attaching user
terminals, and performing countless other details of daily system administration.

Internal and external controls go hand in hand, and it is possible to trade off a control in one
area for a control in the other. For example, even the most primitive multiuser systems today
have password protection. The password mechanism is an internal control that obviates the need
for external controls such as locked terminal rooms. In designing a secure system, we generally
strive to minimize the need for external controls, because external controls are usually far more
expensive to implement. Procedural controls are also notoriously error-prone, since they rely on
people each time they are invoked.

3.2 THE SYSTEM BOUNDARY AND THE SECURITY PERIMETER

A system is a vague entity that comprises the totality of the computing and communications
environment over which the developers have some control. Everything inside the system is
protected by the system, and everything outside it is unprotected (fig. 3-1). What is important is
not the generic definition of the term system but the definition as it applies in each particular
case. In any effort to plan for security features, it is crucial to establish a clear understanding of
the system boundary and to define the threats (originating outside the boundary) against which
the system must defend itself. You cannot construct a coherent security environment without
understanding the threats.

Identifying the system boundary hinges on precisely specifying the interface between the
system and the outside world. External security controls enforce this interface; and as long as
those controls are in place, the internal controls protect information within the system against the
specified threats. All bets are off, however, if something that should not be there bypasses the
external controls and enters the system or if the system is threatened from the outside in an
unanticipated way.

For example, a user might walk into the machine room and enter commands on the system
console, or the system administrator might divulge a password to an outsider. These are failures
of external controls that the system cannot defend against. It may, however, be able to defeat
attempted incursions by unauthorized terminals, modems, or users who access the system
remotely, as long as they are constrained to enter the system according to the rules of the system
interface.

The components inside the system are of two types: those responsible for maintaining the
security of the system (those, in other words, that are security-relevant), and all others. The
security-relevant components implement the internal controls. Separating the two types of
components is an imaginary boundary called the security perimeter. The operating system and
computer hardware usually lie within the security perimeter; outside the perimeter are user
programs, data, terminals, modems, printers, and the items that the system controls and protects.
The nature of all components within the security perimeter must be precisely defined, because a
malfunction in any one can lead to a security violation; in contrast, the nature of the components
outside the perimeter is rather arbitrary, subject only to constraints enforced at the time they

 17

enter through the system boundary. A malfunction within the security perimeter has the effect of
expanding the security perimeter to the system boundary, causing components previously outside
the perimeter to become security-relevant.

Figure 3-1. System Boundary and Security Perimeter. The entities collected inside
the system are protected by the security-relevant portions within the security perimeter,
as long as rules about access to the system from the outside are enforced by means of
external security controls. Rules for access to the security perimeter interface are
enforced by the internal controls implemented in the security perimeter.

Just as a precise interface must be identified across the system boundary, a well-defined
interface across the security perimeter is crucial, as well. This interface is enforced by the
security-relevant components. For example, the list of system calls in an operating system or the
electrical specifications of a communications line are interfaces into the security perimeter. As
long as the system boundary is enforced externally, the security perimeter will be maintained by
the security-relevant components. In order to implement the components within the security

terminal user terminal user terminal user

SYSTEM BOUNDARY

terminal
multiplexor

User
Program

User
Program

User
Program

admin.
terminal

administratorLogin
Process

System
File

User
File

user media system media

operator
terminal

operator

user media

line
printer I/O devices

OPERATING
SYSTEM

Admin.
Process

Printer
Spooler

Backup
Process

network
interface

 18

perimeter, great care must go into defining a complete, consistent, and enforceable set of
perimeter interface rules.

3.3 USERS AND TRUST

The user is the person whose information the system protects and whose access to information
the system controls. A person who does not use the system, but who indirectly accesses the
system through another user, is not a user as far as the system is concerned. For example, if your
secretary is responsible for reading your electronic mail on your behalf, as well as the mail of
others in your department, your secretary is the user and, as far as the system is concerned, this
same user has access to all the mail in the department. You must trust your secretary, in addition
to the system, to keep your mail separate from that of others.

3.3.1 Protecting the User from Self-betrayal

The system must assume that the user who owns a given piece of data or who has created that
piece of data, is trusted not to disclose it willfully to another user who should not see it, nor to
modify it in an inappropriate way. Of course, the user might be tricked into mishandling his data,
but that’s a different threat.

Though it may seem obvious, people often lose sight of the fact that computers cannot
possibly protect information if the owner of the information wants to give it away.1 It is in fact
possible to design a system that does not allow users to give others access to their data,
intentionally or otherwise; but such a design would be silly, because a person determined to
disclose information doesn’t need a computer to do so. The ability to read a file is tantamount to
the ability to give that file to someone else.

While it does not make sense to go to great lengths to prevent a user from giving away
information, it does make sense to ensure that the user knows when he or she is doing so. The
access controls on the system must have a well-engineered user interface to minimize accidental
disclosures.

3.3.2 Identification and Authentication

In order for a system to make meaningful decisions about whether a user should be allowed to
access a file, the system (and other users must have a means of identifying each user. A unique
identifier is a name for each user such as a last name, initials, or account number) that everyone
knows, that nobody can forge or change, and that all access requests can be checked against. The
identifier must be unique because that is the only way the system can tell users apart. The
identifier must be unforgeable so that one user cannot impersonate another.

1Various “copy protection” schemes attempt to prevent the user from copying a file (usually on a medium such as a
floppy disk) in order to protect copyrighted software, but these schemes address an entirely different threat from the
data protection threats that this book is about. (They also don’t work very well.)

 19

The act of associating a user (or more accurately, a program running on behalf of a user) with
a unique identifier is called authentication. The authentication process almost always requires
the user to enter a password, but some more advanced techniques, such as fingerprint readers,
may soon be available. The process of identification (associating a user ID with a program) is
easy to confuse with authentication (associating the real user with the user ID), but it is important
to maintain the distinction. The system must separate authentication information (passwords)
from identification information (unique IDs) to the maximum extent possible, because passwords
are secret and user IDs are public. The password need only be presented when the user first
accesses the system. Once the unique ID is determined, the system need not refer to the password
again. The unique ID, on the other hand, is used many times to make access decisions. Since the
entire security of the system may be based on the secrecy of the passwords, the fewer times and
fewer places they are used, the less the risk of exposure will be.

Authentication and identification are general concerns that pertain to systems and programs
as well as to users. Users may need to know which system or which programs on the system they
are interacting with and they need to obtain this information in a way that cannot be forged by
the system or the programs. Moreover, systems on a network may need to authenticate each
other, as if each were a user of the other. In many cases, the ability of a program to impersonate
another program—or of a system to impersonate another system—is a serious security concern.
The authentication techniques for systems and programs are quite different from those for users.
In particular, passwords make very poor authenticators for systems and programs because each
use of a password results in disclosure to the recipient and (therefore) the potential for abuse.
Section 10.4 describes ways that systems and programs identify themselves to users. Section
13.2.2 discusses system-to-system authentication within a network.

3.4 TRUSTED SYSTEMS

Although users must be trusted to protect data to which they have access, the same is not true for
the computer programs that they run. Everybody knows that computer programs are not
completely trustworthy. And no matter how much we trust certain users, we cannot let the
programs they use have total freedom with the data. The best programmers would agree that
even their own programs can make mistakes. It would be nice (but it is usually impractical) to
give programs limited access rights on a case-by-case basis, depending on what the programs
need.

We can group software into three broad categories of trust:

1. Trusted – The software is responsible for enforcing security, and consequently the
security of the system depends on its flawless operation.

2. Benign – The software is not responsible for enforcing security but uses special privileges
or has access to sensitive information, so it must be trusted not to violate the rules
intentionally. Flaws in benign software are presumed to be accidental, and such flaws are
not likely to affect the security of the system.

3. Malicious – The software is of unknown origin. From a security standpoint, it must be
treated as malicious and likely to attempt actively to subvert the system.

 20

The quality of software that falls into each of these groups varies greatly from system to system.
Most software we use daily is benign, whether the software was written by a good programmer
or by an incompetent programmer, and whether that software is a system program or an
application. The software is not trusted because it is not responsible for enforcing security of the
system, and it is not malicious because the programmer did not intend to deceive the user. Some
systems trust software that has received minimal scrutiny, while others consider anything not
written by a trusted system programmer to be malicious. Hence, one system’s trusted software
may be as unreliable as another system’s malicious software.

Within a system, a fine line separates a malicious program from a benign program with many
bugs: there is no guarantee that a buggy benign program will not give away or destroy data,
unintentionally having the same effect as a malicious program. Lacking an objective way to
measure the difference, we often (but not always) consider both benign and malicious software
to be in a single category that we call untrusted. This interpretation is especially common in
environments where extremely sensitive information is handled, and it constitutes a fundamental
tenet of the security kernel approach to building a secure system.

In most cases, the operating system is trusted and the user programs and applications are not;
therefore, the system is designed so that the untrusted software cannot cause harm to the
operating system, even if it turns out to be malicious. A few systems are secure even if
significant portions of the operating system are not trusted, while others are secure only if all of
the operating system and a great deal of software outside the operating system are trusted.

When we speak of trusted software in a secure operating system, we are usually talking about
software that first has been developed by trusted individuals according to strict standards and
second has been demonstrated to be correct by means of advanced engineering techniques such
as formal modeling and verification. Our standards for trust in a secure operating system far
exceed the standards applied to most existing operating systems, and they are considerably more
costly to implement. Trusting all the software in a large system to this extent is hopeless; hence,
the system must be structured in a way that minimizes the amount of software needing trust. The
trusted software is only the portion that is security-relevant and lies within the security perimeter,
where a malfunction could have an adverse effect on the security of the system. The untrusted
software is not security-relevant and lies outside the security perimeter: it may be needed to keep
the system running, but it cannot violate system security.

Within a single system, it is normally not useful to distinguish between different degrees of
trusted software. Software either is responsible for security or is not. It does no good to assign
more trust to some security-relevant programs than to others, because any one of them can do
your system in. Similarly, we usually try to avoid establishing degrees of untrustworthiness. In
most conventional systems where the security perimeter is not precisely defined, however, it is
useful to distinguish between benign and malicious programs. In some instances, certain
programs need not work correctly to maintain security of the system, but they nonetheless have
the potential to cause damage if they are malicious. Such benign programs fall into a gray area
straddling the security perimeter.

 21

3.4.1 Trojan Horses

Most people’s model of how malicious programs do their damage involves a user—the
penetrator—writing and executing such programs from a remote terminal. Certainly systems do
have to protect against this direct threat. But another type of malicious program, called the
Trojan horse, requires no active user at a terminal.

A Trojan horse is a program or subroutine that masquerades as a friendly program and is
used by trusted people to do what they believe is legitimate work. A Trojan horse may be
embedded in a wordprocessing program, a compiler, or a game. An effective Trojan horse has no
obvious effect on the program’s expected output, and its damage may never be detected. A
simple Trojan horse in a text editor might discreetly make a copy of all files that the user asks to
edit, and store the copies in a location where the penetrator—the person who wrote the
program—can later access them. As long as the unsuspecting user can voluntarily and
legitimately give away the file, there is no way the system can prevent a Trojan horse from doing
so, because the system is unable to tell the difference between a Trojan horse and a legitimate
program. A more clever Trojan horse in a text editor need not limit itself to the file the user is
trying to edit; any file potentially accessible to the user via the editor is accessible to the Trojan
horse.

The reason Trojan horses work is because a program run by a user usually inherits the same
unique ID, privileges, and access rights as the user. The Trojan horse therefore does its dirty
work without violating any of the security rules of the system—making it one of the most
difficult threats to counter. Most systems not specifically designed to counter Trojan horses are
able to do so only for limited environments. Chapter 7 presents a detailed discussion of the
problem, along with some implications that may seem surprising.

3.5 SUBJECTS, OBJECTS, AND ACCESS CONTROL

All activities within a system can be viewed as sequences of operations on objects. You can
usually think of an object as a file, but in general anything that holds data may be an object,
including memory, directories, queues, interprocess messages, network packets, input/output
(I/O) devices, and physical media.

Active entities that can access or manipulate objects are called subjects. At a high level of
abstraction, users are subjects; but within the system, a subject is usually considered to be a
process, job, or task, operating on behalf of (and as a surrogate for) the user. I/O devices can be
treated as either subjects or objects, depending on the observer’s point of view, as we will
discuss in section 8.5. The concepts of authentication and identification, discussed in section
3.3.2, apply to all types of subjects, although authenticating subjects internal to the computer
may be implicit. It is particularly important that all subjects have an unforgeable unique
identifier. Subjects operating as surrogates for users inherit the unique ID of the user, but in some
cases users may invoke subjects possessing another user’s unique ID.

A computer program residing in memory or stored on disk is treated as an object, like any
other type of data. But when the program is run, it becomes part of a subject or process.

 22

Distinguishing between the program and the process is important because the same program may
be run simultaneously by different processes on behalf of different users, where each process
possesses a different unique ID. Often we loosely identify a subject as a program rather than as
the process in which the program executes, but it should usually be clear when we are talking
about a running program as a subject versus a program as data.

Like subjects, objects should have unique IDs. Not all systems implement explicit unique IDs
for objects, but doing so is important for a secure system. Section 11.4.2 discusses this topic
further.

3.5.1 Access Control

The primary purpose for security mechanisms in a computer system is access control, which
consists of three tasks:

• Authorization: determining which subjects are entitled to have access to which objects
• Determining the access rights (a combination of access modes such as read, write,

execute, delete, and append)
• Enforcing the access rights

In a computer system, the term access control applies only to subjects and objects within the
system, not to access to the system by outsiders. Techniques for controlling access to the system
from outside fall under the topics of user authentication and identification discussed in section
3.3.2. Nonetheless, the access controls in a network of systems must deal with outsiders and
remote systems, as well as with subjects inside the system. Network access control is covered in
section 13.3.1.

While systems may implement many types of access modes, security concerns usually center
on the difference between read and write. In addition, it is occasionally useful to define access
modes that distinguish between the ability to delete a file and the ability to write zeros into it (for
example) or between the ability to write random data anywhere into a file and the ability to
append information to the end of it only.

Subjects grant or rescind access rights to objects. Usually, a subject that possesses the ability
to modify the access rights of an object is considered the object’s owner, although there may be
multiple owners. Not all systems explicitly identify an owner; and often subjects other than the
owner (such as system administrators) have the ability to grant access.

Associated with each object is a set of security attributes used to help determine authorization
and access rights. A security attribute of an object may be something as simple as two bits of
information—one for read and one for write—indicating the modes of access that all subjects
have to the object. On the other hand, a security attribute may be complex, containing a lengthy
access control list of individual subjects and their access rights to the object. Other examples of
security attributes of objects are passwords, access bits, and security levels.

 23

Some systems assign security attributes to subjects as well as to objects. These may consist
of identifiers or security levels that are used, in addition to the subject’s unique ID, as the basis
for authorization.

Instead of using subject and object attributes as a basis for access control, some systems use
capability lists. A capability is a key to a specific object: if a subject possesses the capability, it
may access the object. Subjects may possess very long lists of capabilities. A more detailed
discussion of capability lists is offered in section 6.2.2.

In talking about how access controls are implemented, we need to distinguish between the
granting of access rights (which happens in advance) and the exercising of rights (which happens
at the time of access), because security violations do not occur until an improper access takes
place. For example, placing confidential information into a public file does not cause any harm
until an unauthorized user reads the file. This distinction may seem rather subtle, but the design
of some systems forces us to apply certain controls at the time access is granted and certain
different controls when the access occurs.

3.5.2 Security Policy

In the real world, a security policy describes how people may access documents or other
information. In order for the policy to be reflected in a computer environment, we must rewrite it
using terms such as subjects and objects that are meaningful to the computer. Strictly speaking,
the computer obeys security properties, while people obey a security policy. We will, however,
loosely talk about the computer’s security properties as if they were a policy of the computer
system. In cases where the distinction between security policy and security properties is
especially important (as when we discuss formal models), we will use more precise terminology.

The computer’s version of the policy consists of a precise set of rules for determining
authorization as a basis for making access control decisions. Authorization depends on the
security attributes of users and information, unique IDs, and perhaps other information about the
current state of the system. While all systems have security properties, the properties are not
always explicit, and the policy on which they. are based may be difficult to deduce. Often the
policy is a hodgepodge of ad hoc rules that have evolved over the years and are inconsistently
enforced. Lack of a clear policy—and not programming errors—is a major reason why the
security controls of many systems are flawed. Section 9.5.1 shows how a security policy is
converted into security properties for a system.

 24

 Chapter 4

Design Techniques

This chapter provides an overview of the aspects of computer system design that are important to
security. It discusses both the architectures of computer systems and the methods by which
systems are designed and built, and it introduces terms that will be used and more thoroughly
covered in subsequent chapters.

4.1 SYSTEM STRUCTURES

In the last chapter we introduced two important interfaces: the system boundary and the security
perimeter. To understand better the design implications of these interfaces, it is necessary to look
closely at how systems are built. We shall group systems into two types: a computer system
consisting of a single machine or closely coupled multiprocessors; and a distributed system that
resembles a single computer system from the outside but actually consists of multiple computer
systems.

The difference between a computer system and a distributed system is reflected in the
internal system structure and may not be apparent to users on the outside. Indeed, some people
insist that a good distributed system be indistinguishable from a computer system. It is
sometimes difficult to decide whether a networked collection of computer systems should or
should not be called a distributed system: the decision depends on the observer’s point of view,
which differs for each application on the network.

Our concern in identifying a distributed system is not so much with terminology as with the
internal security architecture of its networking mechanisms. We view a computer system as a
self-contained entity whose system boundary does not include other systems with which it might
be communicating. Such a system must protect itself and does not rely on assistance from other
systems; information that leaves the system is no longer protected. We view a distributed system
as one whose system boundary includes physically separate and relatively autonomous
processors that are cooperating in some way to present an integrated environment for at least
some applications. Information passing from one processor to another remains within the system
and is protected.

The remainder of this section discusses the structure of computer systems, introducing
concepts that are fundamental to an understanding of computer security. Chapter 13 covers
concepts that pertain specifically to distributed systems and networks.

 25

4.1.1 Structure of a Computer System

The traditional decomposition of a computer system shows hardware, an operating system, and
applications programs, as in figure 4-1.1 There may be multiple applications running
simultaneously and independently, one or more for each active user of the system. The
applications may be the same or entirely different. The users of the system generally interact
only with the applications and not directly with the operating system, though there are important
exceptions. Each application running on behalf of a user can loosely be thought of as a process.

Figure 4-1. Generic Computer System Structure. Each layer uses the facilities of—
and is subject to rules and restrictions enforced by—the layer below it. The interface
between a pair of layers specifies the functions in the lower layer that are available to
the higher layer. The operating system and hardware are security-relevant, lying within
the security perimeter. The applications access the operating system through the
perimeter by means of a well-defined set of system calls. The users are outside the
system. They access the system through the applications or, on occasion, communicate
directly with the operating system.

Years ago, the distinction between the hardware and the operating system was obvious: the
operating system was implemented with bits in memory that could be easily changed, and the
hardware was implemented with circuits that stayed fixed. With many machines containing
microcode or firmware, however, the distinction is now blurred. While many agonize over
spelling out the differences, the differences matter only when we talk about hardware or software
verification—not when we discuss security mechanisms. For the most part, we will treat
hardware in the conventional sense, as the term is applied to contemporary machines, regardless
of whether that hardware is, in fact partially implemented in firmware or software.

The division between the applications and the operating system software is usually more
obvious (and more important, from our point of view) than the division between hardware and
the operating system, although the nature of the software division may vary from system to

1Computer security enthusiasts seem to have a preference for drawing pictures that place the operating system
underneath the applications, while much of the mainframe world puts the operating system above the applications.
This book will adhere to the former, “top-down” tradition.

Hardware

Operating System

Applications

System interface

Security perimeter interface

Hardware interface

Users
Outside system

Not security-relevant (untrusted)
Outside security perimeter

Security-relevant (trusted)
Inside security perimeter

 26

system. Most people think of an operating system as being distinct from the system applications
or processes that are needed to support it. The latter include processes for handling login,
backup, and network interfaces. For security purposes, whether or not such processes are
implemented outside the operating system is unimportant: the processes still lie within the
security perimeter and must be treated as logical parts of the operating system.

A good test to use in deciding whether or not a piece of software should be viewed as part of
the operating system is to ask whether it requires any special, privileges to do its job—hardware
privileges necessary to execute certain instructions or software privileges needed to gain access
to certain data. Although utilities such as compilers, assemblers, and text editors are commonly
provided by the vendor of the system (and written by system programmers), such applications do
not require any privileges, because unprivileged users with programming skills can write and use
their own versions.2 Another common test is to check whether the software can have an adverse
effect on the system if it misbehaves.

The horizontal lines in figure 4-1 separating the users, applications, operating system, and
hardware represent precisely defined interfaces. Usually the security perimeter or operating
system interface is described as a set of functions, or system calls, offered by the operating
system; the hardware interface is described in the machine-language instruction manual. The
operating system, together with the hardware, ensures that the security perimeter interface is
accessed only in accordance with the rules of that interface. The system interface, on the other
hand, is enforced through physical controls external to the system. There are few (if any)
controls on the information that passes across that interface. For example, users are allowed to
communicate freely with the applications in the system, but they can do so only through
permitted physical connections such as terminal ports.

Database management systems, teleprocessing monitors, and other large applications often
constitute mini-operating systems of their own, running on top of the basic operating system and
controlling the execution of several user applications (fig. 4-2). From the perspective of the
operating system, the DBMS is just another application or process without special privileges.3
The DBMS may be responsible for enforcing its own security policy, or the operating system
may do it all. In such a design, the designers must have a very precise definition of the security
requirements in order to tell whether the DBMS is security-relevant. Section 11.3 discusses the
security role of such subsystems.

While most of the security features we will be discussing are intended for systems that
support multiple users simultaneously, the features are usually applicable to single-user systems
such as personal computers that allow serial access by multiple users. Sometimes, however, it is
important to distinguish between a PC whose user has physical control over all of the hardware
and software and a PC whose user does not have direct access to the operating system or

2This is not universally true, however—especially for machines whose native language is a higher-order language,
necessitating use of interpreters to execute the source code.
3Again, this is an idealized view and is not universally true, since some operating systems do not provide the
facilities to support multiuser applications without special privileges.

 27

hardware. This is because, without some physical security, no PC (or other computer) can protect
itself and its data.

Figure 4-2. DBMS Process Structure. To the operating system, the DBMS appears as
just another user application process, while the DBMS controls its own set of
applications running as individual processes within the DBMS process.

4.1.2 System States

A system with the structure shown in figure 4-1 or 4-2 requires some built-in support to enforce
the layering and proper use of the interfaces. While it may be possible to build a system in which
all the layering is enforced by software, the enforcement is tenuous, depending on correct
implementation of the software on both sides of each interface. In order for the operating system
to enforce constraints on the applications successfully, the operating system must have some help
from the hardware.

Most machines have at least two states, domains, or modes of operation: privileged, and
unprivileged. The privileged mode may also be called executive, master, system, kernel, or
supervisor mode; and the unprivileged mode may be called user, application, or problem mode.
When the machine is running in privileged mode, software can execute any machine instruction
and can access any location in memory. In unprivileged mode, software is prevented from
executing certain instructions or accessing memory in a way that could cause damage to the
privileged software or other processes. Once the operating system (running in privileged mode)
loads certain registers, the machine runs applications software in unprivileged mode until that
software makes a call into the operating system, at which time privileged mode is restored.
Privileged mode is also entered when interrupts are serviced by the operating system. Without
hardware-enforced modes of privilege, the only way the operating system can protect itself is to
execute applications programs interpretively—a technique that slows the machine down by
several orders of magnitude.

Hardware

Operating System

DBMS

DBMS
Applications

O.S.
Applications

 28

Many modern machines, including microprocessors, have more than two domains. Several
members of DEC’s PDP-11 family for example, have three protection domains: user, supervisor,
and kernel. The kernel mode has the most access to memory and to privileged instructions, and
the user mode has the least. Having three hardware domains allows for efficient implementation
of the types of system structures shown in figure 4-2. When a machine has more than three
domains the domains may be numbered, with the lowest numbered domain having the most
privilege. Because the domains are usually hierarchical-in the sense that each domain has more
privileges than the domain above it—it is convenient to think of the domains as a series of
concentric rings, a concept introduced in Honeywell’s Multics (Organick 1972). Multics once
proposed as many as sixty-four rings, although in practice systems commonly do not use more
than a handful.

4.2 THE REFERENCE MONITOR AND SECURITY KERNELS

The security of a system can be improved in many ways without fundamentally altering its
architecture. There are also a number of ways to build a fairly secure system from scratch. But
for maximum protection of extremely sensitive information, a rigorous development strategy and
specialized system architecture are required. The security kernel approach is a method of
building an operating system that avoids the security problems inherent in conventional designs
(Ames, Gasser, and Schell 1983). Based on a set of strict principles that guide the design and
development process, the security kernel approach can significantly increase the user’s level of
confidence in the correctness of the system’s security controls. Though by no means universally
accepted as the ideal solution, the security kernel approach has been used more times than any
other single approach for systems requiring the highest levels of security. Following is a very
brief overview of the security kernel approach; chapter 10 covers the topic much more
thoroughly.

The security kernel approach to building a system is based on the concept of a reference
monitor-a combination of hardware and software responsible for enforcing the security policy of
the system. Access decisions specified by the policy are based on information in an abstract
access control database. The access control database embodies the security state of the system
and contains information such as security attributes and access rights. The database is dynamic,
changing as subjects and objects are created or deleted, and as their rights are modified. A key
requirement of the reference monitor is the control of each and every access from subject to
object.

Fundamental to the security kernel approach is the theory that, in a large operating system, a
relatively small fraction of the software is responsible for security. By restructuring the operating
system so that all of the security-relevant software is segregated into a trusted kernel of an
operating system, most of the operating system need not be responsible for enforcing security.
The kernel must be suitably protected (tamperproof), and it must not be possible to bypass the
kernel’s access control checks. The kernel must be as small as possible so that its correctness is
easy to verify.

 29

Compare figure 4-1 (showing hardware, software, and an operating system) to figure 4-3.
The security kernel in the latter figure consists of hardware and a new layer of software inserted
between the hardware and the operating system. The kernel’s software and the hardware are
trusted and lie inside the security perimeter; in contrast, the operating system lies outside the
security perimeter, along with the applications.

Figure 4-3. Security Kernel in a Computer System. The kernel maintains security by
controlling the actions of the operating system, while the operating system maintains a
level of service by controlling the actions of the applications.

In most respects, the security kernel is a primitive operating system. The security kernel
performs services on behalf of the operating system much as the operating system performs
services on behalf of the applications. And just as the operating system places constraints on the
applications, the security kernel imposes constraints on the operating system. While the
operating system plays no role in enforcing the security policy implemented by the kernel, the
operating system is needed to keep the system running and to prevent denial of service due to
errant or malicious applications. No error in either the applications or the operating system will
lead to a violation of the kernel’s security policy.

Building a security kernel does not require building an operating system above it: the security
kernel could just as well implement all the functions of an operating system. But the more
operating-system features a designer puts in a kernel, the larger the kernel becomes and the more
it begins to look like a conventional operating system. In order for us to have any confidence that
the kernel is more secure than an operating system, the kernel must be as small as possible. The
smallness requirement must be ruthlessly enforced during design: the kernel should not contain
any function not necessary to prevent a violation of the security, policy. Issues such as
performance, features, and convenience lie below smallness on the list of kernel design priorities.

Security Kernel (hardware)

Security Kernel (software)

Operating System

Applications

Users

Security-relevant (trusted)
Inside security perimeter

Not security-relevant (untrusted)
Outside security perimeter

Outside system

System interface

O.S. interface

Kernel interface

Hardware interface

 30

4.3 SYSTEM DEVELOPMENT PROCESS

The development of any system involves several steps:

• Requirements: establishing generic needs
• Specification: defining precisely what the system is supposed to do, including

specification verification, which involves demonstrating that the specification meets the
requirements

• Implementation: designing and building the system, including implementation
verification, which involves demonstrating that the implementation meets the
specification

We also use the word correspondence as another name for the verification substeps at which two
descriptions of a system are shown to be in agreement. Usually the more detailed description (for
example, the specification) at a low level is said to correspond to the less detailed description
(for example, the requirements) at a higher level.

Figure 4-4. System Development Process for a Secure System. The security-
relevant aspects of the system development process are shown in two parallel paths.
The informal path is conventional; the functional specifications and implementation are
shown to meet the security requirements through correspondence steps involving
demonstration and testing. The formal path, using mathematical techniques, is
employed for systems where an extremely high level of assurance regarding the
security controls is desired.

The overall development of a system is guided by a system architecture. While most of us
think of a system architecture as a description of the system as built, rather than thinking of it as
a description of the process by which the system is built, a relationship exists between the result
you want to achieve and the way you get there. Many of the desired characteristics of the system

Implementation Implementation

(testing) (proof)

Functional Specification Formal Specification

(demonstration) (proof)

Security Requirements Abstract Model

Informal Development Path Formal Development Path

 31

that help dictate the architecture (such as reliability, maintainability, and performance) have a
profound impact on the development strategy. The system architecture makes itself felt either
directly (through explicit development guidelines) or indirectly (through system goals).

A security architecture describes how the system is put together to satisfy the security
requirements. If the security requirements specify that the system must attain a given level of
assurance as to the correctness of its security controls, the security architecture must dictate
many details of the development process.

Security concerns do not add steps to the development process that are not part of
conventional developments. Rather, the guidelines in the security architecture are a pervasive
influence on all development steps. The left-hand (“informal”) side of figure 4-4 illustrates the
conventional development process with one change: we have replaced system requirements at the
top with the security requirements. The security requirements, a small extract of the total system
requirements, are derived from the system’s security policy (not shown in the figure). The
functional specification and the implementation shown in the figure are complete, not security-
specific extracts. Verification of the functional specification against the security requirements—a
process we call demonstration because it is based on informal arguments—is a far simpler task
than verification of the specification against all functional requirements, since many functions
described in the specification have little effect on security. Clearly verification is made easier if
the functional specification is structured to locate security-relevant functions in as few (and as
isolated) places as possible.

The bottom two phases in the informal path of figure 4-4, the implementation and its
verification (testing), are conventional; there are no shortcuts to fully verifying the
implementation against its specification, even if security is the only concern, because all
functions must be examined or tested to be sure that they do not violate the security constraints.

The development process we have just discussed is called informal because there is no proof,
in the mathematical sense, that the steps are correctly carried out. Because requirements and
specification are written in a natural language (English, French, Latin) that is prone to
ambiguities and omissions, formal mathematics cannot be applied to any of the correspondence
steps.

The right-hand side of figure 4-4 shows a parallel formal development path that might be
used to develop a highly secure system such as a security kernel. Each phase in the informal path
has a formal equivalent. The implementation, consisting of computer programs and hardware, is
unchanged because the programs and hardware are already formal.

The natural-language security requirements are expressed as an abstract model, written in a
mathematical notation, that is derived from exactly the same security policy as are the security
requirements. The natural-language specification is expressed in a formal specification language
amenable to computer processing. The correspondence steps of demonstration and testing are
replaced by mathematical proofs. The horizontal arrows between parallel phases in the figure
indicate equivalence, although no objective proof of that equivalence can be made.

 32

The arrows between layers in the figure are upward, indicating that, in each case, the lower-
layer description of the system corresponds to, satisfies, or is an example of a system described
in the higher layer. In the formal path, especially, all of the rules in the abstract model need not
be expanded in the formal specification, and all of the functions in the formal specification need
not exist in the implementation; it is only necessary that the lower layer avoid violating rules or
requirements of its adjacent higher layer.

The formal path for development is intended as a supplement to, not a replacement for, the
informal path. It augments the informal process enough to provide the appropriate level of
assurance dictated in the security requirements. Which phases of the formal path you carry out
and how thoroughly you do so vary with that degree of assurance.

When you are choosing a development strategy, it is most important that you avoid gaps in
the correspondence process: the boxes in the figure must be connected. Although you can choose
not to write a formal specification, it is a waste of time to develop either an abstract model or a
formal specification without devoting proper effort to the correspondence process. For example,
you may choose to use an abstract model as an adjunct to the security requirements, without a
formal specification; but in that case, you must demonstrate informally that the functional
specification corresponds to the model. Alternatively, you may want to develop both a model and
a formal specification but omit the formal proofs; if so, you must then use informal arguments to
demonstrate correspondence among the implementation, the formal specification, and the model.

Be warned that figure 4-4 is a bit deceiving: in practice, you cannot hope to prove fully that
the implementation meets the formal specification. Such a proof is a theoretical possibility, but it
is not yet feasible. In other words, today’s technology does not permit the right-hand path to be
entirely formal. Nonetheless, the existence of a formal specification allows you to make a much
more convincing, semiformal argument for implementation correspondence than you could get
by testing alone.

REFERENCES

Ames, S. R., Jr.; Gasser, M.; and Schell, R. R. 1983. “Security Kernel Design and
Implementation: An Introduction.” Computer 16(7):14-22. Reprinted in Advances in
Computer System Security, vol. 2, ed. R. Turn, pp. 170-77. Dedham, Mass.: Artech House
(1984).
An overview of the reference monitor concept, the security model, and kernel implementation
issues.

Organick, E. I. 1972. The Multics System: An Examination of Its Structure. Cambridge, Mass.:
MIT Press.
A description of Multics—at that time implemented on a processor without hardware-
supported protection rings.

PART II

Detailed
Concepts

 35

 Chapter 5

Principles of a Security Architecture

Building a computer system requires striking a balance among a number of requirements such as
capability, flexibility, performance, ease of use, and cost. While there is nothing inherently
conflicting about these requirements, features intended to satisfy them often work against each
other and require you to make tradeoffs in the system design. Security is simply another
requirement; and where they conflict, security features must likewise be traded off against other
features, based on the importance of security to the system.

As a purist whose primary goal is to make your system secure, you might not be willing to
give up a single security feature in favor of any other. But with such an outlook you are likely to
fail: others will treat you as a security fanatic who is ignorant of what it means to build a
practical system. By being adamant about security to the detriment of other features, you will
lose most arguments over system design alternatives, and the system you are trying to influence
will probably end up with few meaningful security capabilities. You are more likely to succeed
in your goal of establishing a secure system if you remain pragmatic, keeping the primary goals
of the system in. mind and compromising on nonessential points at appropriate times. Even if
you are building a security kernel for which everyone agrees that security is the most important
goal, performance is almost always very close behind.

If you approach the design of a system with the attitude that you are willing to give in when
necessary, your strategy should be to steer the design of the system in a direction that will avoid
conflicts where possible. Many security features need not adversely affect other features. You
can achieve most of your security goals without conflicts if you establish ground rules or
principles to guide the system design. Once everyone on the design team agrees to these
principles, the design will naturally follow a secure path.

The key to the control of the design process is the security architecture—a detailed
description of all aspects of the system that relate to security, along with a set of principles to
guide the design. The security architecture is not a description of the functions of the system;
such detail belongs in a functional specification. A good security architecture is more like a
design overview, describing at an abstract level the relationships between key elements of the
system architecture in a way that satisfies the security requirements. The security architecture
should also describe the aspects of the system development process (see section 4.3) through
which adherence to the security requirements is assured. The architecture should not constrain
the design in ways that do not affect security.

 36

In the early conceptual stage of system development—even before requirements have been
completely defined—a security architecture can be written that deals with high-level security
issues: the system security policy, the degree of assurance desired, the impact of security on the
development process, and overall guiding principles. A security architecture written at this early
stage is generic, with few details about the specific system to be designed.

When the system architecture is later solidified, the security architecture should be enhanced
to reflect the structure of the system. As the design progresses through stages of more and more
detail, the security architecture becomes increasingly specific. While the security architecture
must evolve in parallel to the system development effort, the architecture must keep ahead of that
effort so that it can help guide the work to be done.

Of course, writing down a security architecture does no good unless people stick to it. The
security architecture must play a dominant role in the development process, and all the
developers must subscribe to it. Even during the implementation phase of a project, individual
programmers will be affected by guidelines distilled from the architecture, through programming
standards, code reviews, and testing.

5.1 CONSIDER SECURITY FROM THE START

Except in research projects, few systems are designed with security as the primary goal from the
start. All too often the approach of the developers is “build it first, secure it later.” From such a
beginning, security is unlikely to be well-integrated into the system. Most designers fail to
appreciate the great cost of retrofitting security.

You do not have to make security your number one goal in order to develop a secure system,
but you do have to think about security from the beginning. Usually several ways are available to
structure a system to satisfy a given set of requirements—some good for security, and some not.
Without a security architecture to guide the early decisions, it is easy to choose a fundamentally
flawed option, after which the cost of adding security controls is many times greater than would
have been necessary had an equally sound alternative been selected.

This book contains many examples of situations where adding security to an existing system
is made difficult by unfortunate design decisions. Practical experience in developing large
systems has shown that, unless security considerations have influenced the early stages of
design, little meaningful security is achieved in the final system. It cannot be stressed too
strongly that, if you have any intention to incorporate security into a system, regardless of the
priority of that security requirement, you must begin to think about it on the first day.

5.2 ANTICIPATE FUTURE SECURITY REQUIREMENTS

The security architecture should attempt to be far-sighted, addressing potential security features
even if there is no immediate plan to use them. Usually it costs little to allow for future security
enhancements, and therefore little is lost if the anticipated security is never needed.

 37

But you must not be overly specific about anticipating security enhancements. For example,
you might allow for an additional field in a protocol header to handle a security label; but when
the time comes to implement the security feature, you may find it necessary to implement a
third-party connection authorization scheme in order to validate the label—a feature that requires
a different protocol design and can affect all existing implementations of that protocol. Another
example involves error handling: while you may have made it easy to add security checks in
many places in the system, such checks may introduce the possibility of new combinations of
failures that existing software does not expect and cannot gracefully handle. A classic example
of a new kind of failure is the inability of software to read a file even though it recognizes that
the file exists.

The keys to incorporating the appropriate hooks for future security enhancements are to
understand computer security requirements in general and to include those requirements
explicitly as possible future needs in a security architecture. Sufficient detail in the handling of
future security needs must be worked out, and such detail must be part of the design.

Anticipating security requirements not only affects the level of effort needed to make the
system more secure in the future, it may also determine whether security in the system can ever
be improved. Experience has shown that the security of many systems cannot be improved
because the functions of the system have been defined in such a way as to depend on
fundamentally insecure characteristics of the system. If the characteristics are changed, the
system will no longer work as expected. In many cases, plugging security holes fixes the
operating system but breaks the applications.

Consider a system that provides a scratchpad directory for use by applications programs that
need to create temporary files, as is done by some versions of Unix. The directory will contain
files belonging to many users on whose behalf the applications are running. But placing many
users’ files in a single directory readable by all users might not be secure. Even the most
rudimentary security enhancements require a separate directory per user, and yet making such a
separation in a clean way could be a vast undertaking if it involves modifying all applications
that use temporary files.1

An area that demands particularly careful design planning is the definition of the security
policy. A change in the security policy can have a catastrophic effect on previously good
applications that violate the new policy, even when the change made in the operating system to
implement the policy is simple. Had the applications been built with the new policy in mind
(even if it were not enforced by the system at the time), the change would have been transparent.
Of course, a documented but unenforced policy can easily be violated; you must exercise strong
discipline over the applications developers. Among the applications that tend to be affected by a
change in security policy are those that manage distributed information, those that maintain
databases accessible to more than one user, and those that implement communications between
users. Classic examples include electronic mail and database management systems. The most

1Solutions to this particular problem in Unix have been proposed that do not require modifying all applications, but
the solutions are not clean.

 38

serious problems for such applications are caused by mandatory access control policies (see
section 6.3).

5.3 MINIMIZE AND ISOLATE SECURITY CONTROLS

To achieve a high degree of confidence in the security of a system, the designer should minimize
the size and complexity of the security-relevant parts of the internal design. A major reason why
operating systems are not secure is that their large size leads to overall incomprehensibility. Of
course, size is also the reason why operating systems are never totally free of bugs, and so will
always be liable to behave unpredictably. But given that complex functional needs outside your
control require you to have a big system, you still have the freedom to structure the system so
that at least some parts (those that have to do with security) are small and well-defined.

If you are enhancing a system to add new security features, you may still follow this
minimization principle, but constraints imposed by the existing architecture will certainly limit
your flexibility. Needless to say, if improving the security of a system requires as much new
mechanism as the system had in the first place, reliability of the new mechanism will be no
higher than that of the original system (unless there are also significant improvements in the
software engineering techniques used in those enhancements). You can always add new and
useful security features, but the level of assurance may not change.

The key to minimizing the security-relevant parts of an operating system is to design the
system to use only a small number of different types of security enforcement mechanisms,
thereby forcing security-relevant actions to be taken in a few isolated sections. This goal,
sometimes called economy of mechanism (Saltzer and Schroeder 1975), is simply a matter of
good software engineering, but it is hard to attain for security in an operating system. The reason
for this difficulty is that security permeates many different functional areas of a system- file
system handling, memory management, process control, input/ output, and a large number of
administrative functions-so that you do not have a security module in a system as you do a
device driver or scheduler.

An example illustrating the proliferation of redundant security mechanisms typical in older
systems that have evolved over the years is the control of file access. One set of applications may
manage its files by requesting a password before opening a file, another may use an access
control list for each file, and another may use a set of access rights assigned in advance to each
user (see section 6.2). Granularity of access control may also differ between applications: a
DBMS worries about access on the record level; a message-handling system worries about
access at the message level; and a document-processing system worries about whole files.
Access control software will therefore be sprinkled throughout these applications. Not only will
the security-relevant software be difficult to find and isolate, each application will have its own
definition of security. Even if all the security software can be isolated in some way, the variety of
mechanisms makes it difficult to design a common security solution. There is little hope for
substantially improving the security in such an environment without thoroughly reexamining
large parts of the system.

 39

All operating systems—even old and complex ones—have some security mechanisms that
control access to basic objects such as files, but often the common mechanism is too inflexible to
be useful for many applications. The message-handling system designed to control access to
individual messages within a file must bypass the operating system’s access controls at the file
level (by giving default read/write access to files for its users) and will provide its own security
controls. If two such applications exist on the same system—for example, a data-base
management system and a message-handling system-there will probably be two different
approaches. Even systems such as Honeywell’s Multics, whose design is based on the economy-
of-mechanism principle, are forced to implement duplicative security controls to handle
messages (Whitmore et al. 1973).

There are other reasons why we find multiple security mechanisms that do almost the same
thing. When new and more flexible mechanisms are introduced in an older system, they are often
incompatible with existing mechanisms; nonetheless, the older mechanism must be retained for
compatibility. Some newer sophisticated mechanisms needed for certain applications are too
inefficient for general use, so they are implemented as optional features. (An optional feature is
not going to receive widespread use: when users are allowed to choose among several
mechanisms, the decision is more likely to be based on the sophistication of the user than on the
dictates of security.)

If the security-relevant mechanisms in the system are simple, easily identified, and isolated, it
is usually possible to implement additional controls to protect them from damage by bugs in
other portions of the system. Certainly the code that makes security decisions should be write-
protected so that it cannot be modified. The databases used to make the decisions should be
isolated and, if possible, protected against modification by other parts of the system.

Isolation of data should not be carried to an extreme, however. Security attributes of files, for
example, are best stored along with other attributes of files, rather than in a separate database,
because the synchronization mechanism needed to maintain the separate database may be
complex and prone to error. In the ultimate effort to isolate security controls that is made in the
security kernel approach, extreme care is devoted to separating the security-relevant mechanisms
into a hardware-protected kernel of an operating system. Security kernel designers go to great
lengths to minimize the size of the kernel, even if it vitiates performance or requires a
significantly more complicated operating system outside the kernel.

5.4 ENFORCE LEAST PRIVILEGE

Closely related to the concept of isolating the security mechanisms is the principle of least
privilege: subjects should be given no more privilege than is necessary to enable them to do their
jobs. In that way, the damage caused by erroneous or malicious software is limited. A strictly
enforced least-privilege mechanism is necessary if any reasonable degree of assurance in the
security of a system is to be attained.

The philosophy of least privilege has several dimensions. The usual meaning of privilege in a
computer system relates to the hardware mechanism that restricts use of special instructions
(such as input/output instructions) and access to certain areas of memory when the processor is

 40

not operating in a privileged mode or domain. A system with only two domains (privileged and
unprivileged) has a difficult time enforcing least privilege except at the coarsest level: the
privileges accorded are either all or none. An architecture with three or more states provides
finer” degrees of control, where each state has access to less memory than the previous state as
you “move out” from the most privileged state. But the hierarchical nature of the domains does
not always match the requirements of applications. A capability architecture with non
hierarchical domains allows the finest degree of control but requires complex hardware support.
Section 8.4 covers hardware protection features that support least privilege.

Similar to the hardware privileges are the software privileges assigned to certain programs by
the operating system. These privileges permit programs to bypass the normal access controls
enforced on user programs, or to invoke selected system functions. There may be a number of
such privileges, providing a fine granularity of control over what a program can and cannot do.
For example, the system backup program may be allowed to bypass read restrictions on files, but
it need not have the ability to modify files. The restore program might be allowed to write files
but not to read them.

While a system with many types of software privileges allows a fine degree of control over
least privilege, privileges should not be used as a catch-all to make up for deficient and inflexible
access controls. It is usually possible to design the normal access controls to accommodate most
system functions without privileges. For example, Multics does not require the backup process to
bypass any controls; the backup process is treated just as any other process is that is explicitly
given read access to files to be backed up. Users can revoke the backup’s read access to a file if
they choose, and thereafter the file will not be backed up. A system that relies on a bewildering
variety of privileges to carry out routine system functions securely probably has poorly designed
access controls.

Another dimension of least privilege is enforced by the way in which the system is built
through techniques such as modular programming and structured design. By establishing
programming standards that restrict access by procedures to global data, for example, a system
designer can minimize the possibility that an error in one area will affect another area. Such
conventions amount to no more than good programming practice; but where security is
concerned, the motivation for strict adherence to these standards must be greater. In particular,
use of a layered architecture (discussed in section 11.1) can go a long way toward increasing the
reliability of a secure operating system.

A final dimension for least privilege involves actions of users and system administrators.
Users and system managers should not be given more access than they need in order to do their
jobs. Ensuring least privilege for a user means deciding exactly what the user’s job is and
configuring the system to constrain the user to his or her duties. The system must provide the
necessary support through flexible, fine-grained access controls and through its overall
architecture.

The area of administrative functions is a particularly good place to enforce least privilege.
Many systems (Unix being the most notorious) have a single “superuser” privilege that controls
all system administrative functions, whether they are security-relevant or not.

 41

Examples of administrative functions that are not security-relevant include mounting tapes,
taking dumps, starting and stopping printer queues, bringing up and bringing down various
background system processes, reconfiguring hardware, and entering certain user attributes. The
functions are privileged because a malicious user of them could wreak havoc on the system, but
misuse is unlikely to compromise security.

Administrative security functions include assigning and resetting passwords, registering new
users, specifying security attributes of users and files, and breaking into someone’s account in
emergency situations. Misuse of these functions (or even slight slips at the keyboard) could
cause lasting security problems.

By isolating day-to-day administrative functions from security administrative functions, and
by using separate privileges for the different types of functions, a system would provide the
capability for a site to give more people access to the administrative functions without risk of
compromising security. Only a very determined malicious user of administrator privilege would
be able to affect the security functions. in a system based on a security kernel, we often go so far
as to make it impossible for a person with administrator privilege to affect security.

5.5 STRUCTURE THE SECURITY-RELEVANT FUNCTIONS

In discussing the system development process in section 4.3, we observed the need to
demonstrate that the functional specification of the system satisfies its security requirements. If
such a demonstration entails careful scrutiny of hundreds of functions in a large system, the
demonstration is not only difficult but of dubious value. It is essential that the architecture of the
system permit the security-relevant aspects of the system to be easily identified so that large
sections of the system can be examined quickly. With a good security architecture, this simply
requires good documentation: the security controls will be isolated and minimized, and there
should be a clean and easily specifiable interface to the security-relevant functions.

If we look at a description of system calls in an operating system, we usually find that many,
if not most, functions have to make some security-relevant decisions. It is not possible to isolate
all security-relevant activities in one place. Any function used to access an object has to
determine access rights, and many functions must check their arguments for validity.
Consequently, it is necessary to identify clearly which checks are security-relevant and which are
courtesy checks for the programmer. In particular, many important checks to prevent denial of
service are not relevant if the security requirements do not address denial of service.

5.6 MAKE SECURITY FRIENDLY

The following three principles should be kept in mind in any effort to design security
mechanisms:

 42

• Security should not affect users who obey the rules.
• It should be easy for users to give access.
• It should be easy for users to restrict access.

The first principle means that, in the average case of a user doing an assigned job, security
should be transparent. When security repeatedly gets in the way, users lose productivity and may
seek a way to bypass the controls. The security controls must be flexible enough to accommodate
a wide range of user activities while fully enforcing the principle of least privilege.

No system can anticipate all possible user activities, so a user will occasionally need to
understand and use the security mechanisms. In some systems the seemingly simple act of giving
or restricting access to a file requires a system administrator action. Such systems view security
as a concern only to system managers. Under such burdensome procedures, system
administrators are likely to give out more access than is needed, and only the most highly
motivated users are likely to take the action needed to protect their information.

The second principle ensures that the user will provide access to information only when
required and will not set up excessively permissive defaults to avoid complex procedures. The
third principle increases the likelihood that the user will protect information when necessary.

A fourth design principle can be identified to help satisfy the preceding three principles:

• Establish reasonable defaults.

This includes both system-defined defaults and a mechanism for user-definable defaults.

A security administrator could argue that users of highly secure systems should constantly be
made aware of their security responsibilities; otherwise, they might forget to take action to
protect especially sensitive information when necessary. An obvious way to keep users on their
toes is to configure the system so that the default action taken by the system is very restrictive
(for example, arranging that nobody but the creator of a file can get access), while building in the
option for a user to overrule the default when necessary. But if users are burdened with the need
to override the default repeatedly in order to do their job, they will find a way to do so
automatically; and an automatic override operates whether it is needed or not.

Some people insist that overriding the default controls should be difficult, requiring
extraordinary effort. The government, in handling classified information, wants to make it
extremely difficult for a user with access to the information to expose that information
voluntarily within the computer, despite the fact that the user is fully trusted not to expose the
information outside the computer. The rationale is that information in a computer is more subject
to careless exposure than information on a sheet of paper. But as has been noted, making
disclosure of one’s own information extremely difficult only deters those who are not determined
to make such a disclosure.

An improperly implemented user-defined default can be dangerous. In some versions of
Unix, for example, the user can specify a default set of access modes to be assigned to all newly

 43

created files during a session. But the mechanism does not model the way people work:
sometimes users operate on private files and sometimes they operate on public files, alternating
between one and the other in the same session. A user who specifies a session default to make
files publicly accessible is probably going to forget to turn off the default when creating private
files.

A better design, used in Multics and eventually added to DEC’s VMS, allows the user to
specify default access modes for files based on the directory in which the file is located. Users
are inclined to use different directories, rather than different sessions, for different aspects of
their job. People can easily adapt their work habits to such a mechanism and are more likely to
give access only where necessary.

These arguments demonstrate that making security friendly requires a thorough
understanding of the applications for which the system will be used. This is much easier to do in
some systems than in others. Designers of general-purpose systems have a difficult time deciding
what the users will do, and in an attempt to please everyone they are likely to offer multiple
redundant mechanisms, thereby violating the economy-of-mechanism principle.

5.7 DO NOT DEPEND ON SECRECY FOR SECURITY

Except in the handling of passwords and encryption keys, a primary goal for the security
architecture of a system is to avoid depending on the secrecy of any part of the system’s security
mechanisms. In other words, it is unsafe to assume that users will not be able to break into a
system because they do not have the manuals or source listings of the software. Of course, a
penetration is certainly harder without the information, but you never know what information the
penetrator has obtained, and the safest assumption is that the penetrator knows everything.

Fortunately secrecy of design is not a requirement for even the most highly secure systems. If
you are building a system from the ground up, you have the opportunity to incorporate the
necessary mechanisms so that even a person who helped develop the system cannot break into it.
But if you are enhancing an existing system, you do not have that freedom, and you may have to
make a guess as to how clever the penetrator will be. In such a case, you might well avoid
publicly describing exactly what security enhancements you have made.

Revealing the internals of a system does not mean revealing ways to penetrate the system.
Even the most secure systems have flaws, detected either as part of a penetration analysis or as a
result of an actual penetration. No system will ever be free of all covert channels (see section
7.2).

Disclosing the design of a system’s security mechanisms can actually improve security
because it subjects the system to scrutiny by a much larger audience. Vendors often find that
their customers report security problems in their systems as bugs before any serious penetration
takes place. Of course, proprietary designs must be appropriately protected, but such protection
should not be a requirement for system security.

 44

REFERENCES

Saltzer, J. H., and Schroeder, M. D. 1975. “The Protection of Information in Computer

Systems.” Proceedings of the IEEE 63(9):1278-1308. Reprinted in Advances in Computer
System Security, vol. 1, ed. R. Turn, pp. 105-35. Dedham, Mass.: Artech House (1981).
A set of principles for the design of protection features in computers- particularly those used
in Multics.

Whitmore, J.; Bensoussan, A.; Green, P.; Hunt, D.; Kobziar, A.; and Stem, J. 1973. “Design for
Multics Security Enhancements.” ESD-TR-74-176. Hanscom AFB, Mass.: Air Force
Electronic Systems Division. (Also available through National Technical Information
Service, Springfield, Va., NTIS AD-A030801.)
A description of the enhancements incorporated into Multics to support mandatory security
controls.

 45

 Chapter 6

Access Control and
 Multilevel Security

The primary purpose of security mechanisms in a system is to control access to information.
Until the early 1970s, it was not generally realized that two fundamentally different types of
access controls exist. Discretionary access control is the most common: users, at their discretion,
can specify to the system who can access their files. Under discretionary access controls, a user
(or any of the user’s programs or processes) can choose to share files with other users.

Under nondiscretionary or mandatory access control, users and files have fixed security
attributes that are used by the system to determine whether a user can access a file. The
mandatory security attributes are assigned administratively (such as by a person called the
security administrator) or automatically by the operating system, according to strict rules. The
attributes cannot be modified by users or their programs. If the system determines that a user’s
mandatory security attributes are inappropriate for access to a certain file, then nobody—not
even the owner of the file—will be able to make the file accessible to that user.

6.1 ACCESS TO THE SYSTEM

Before we worry about access to information within the system, we should pause to consider
control of access to the system itself. For some systems, physical controls are entirely adequate,
but most systems need to be accessible from locations that are not under the physical control of
the site administration.

A system can protect itself in two ways:

1. It can limit who can access the system.
2. It can limit what people can do once they access the system.

The first way requires the system to implement a two-step process of identification (asking you
who you are) and authentication (asking you to prove it), as we discussed in section 3.3.2.

Until technology provides something better, the much-maligned password will continue to be
the most common authentication technique. Despite their drawbacks, passwords, if properly

 46

used, are very effective for user authentication. Following are some time-honored principles for
password management:

• Use passwords only for user authentication (see section 6.2.1), not for access control or
system identification.

• Encrypt passwords stored in the system database in such a way that someone reading
system dumps or the database cannot read the passwords. Using a one-way cipher
(National Bureau of Standards 1985) where, for example, the password is the key to its
own encryption makes it impossible to decipher the database.

• Assign a given password to no more than one person.
• Minimize the number of times a password must be entered by the user (to limit its

exposure).
• Do not store passwords in programs or files that could be revealed by someone reading

the program.
• Minimize the number of different passwords a person has to remember.
• Discourage users from using the same password on different machines.
• Educate users who choose their own passwords about easy-to-guess passwords. Instead

of allowing users to choose passwords, some systems (such as Honeywell’s Multics and
DEC’s VMS) provide an automated password generator that assigns random
pronounceable words (Gasser 1975).

• Have users change passwords occasionally, but not so frequently that they need to write
them down.

• Change a user’s password the day that person leaves the organization. In a large
organization with scores of machines of various sizes, this means keeping good enough
records to be able to find all the systems on which the user has an account.

The National Bureau of Standards and the National Computer Security Center have published
comprehensive guidelines for the creation and management of passwords (Department of
Defense 1985; National Bureau of Standards 1985).

The second way for a system to protect itself is to make available a very limited and
controlled set of functions for users whom it cannot identify. A transaction processing system,
for example, might limit users to a specific set of menu options, with no opportunity for running
arbitrary commands. While such limited service systems have their place, they should never be
used in lieu of proper authentication. This cannot be stressed too strongly: the only appropriate
use for a limited service system as a substitute for user authentication is where it is impractical to
register users in advance, such as on a public terminal in an airport providing flight information
and reservation services.

If you think you can avoid a lot of implementation effort and password management
headaches by implementing a limited service interface for a given application, you are thinking
dangerously. Limiting what a user can do on a general-purpose operating system is
extraordinarily difficult. Try as you might to close the loopholes, there always seems to be a way
for a clever user to break out of the limited system and obtain access to the operating system’s
underlying facilities. Even if you do succeed in containing the user, it may be nearly impossible

 47

to prevent malicious misuse of the limited system, except in the case of extremely limited
systems that provide read-only access to a small amount of data. If a security breach occurs and
you have not taken steps to require proper identification, there is no way to track down the
perpetrator.

As dangerous as they are when used as a substitute for authentication, limited service
systems make sense in cases where you need to limit what certain users (who have been properly
identified and authenticated) can do.

6.2 DISCRETIONARY ACCESS CONTROL

Early systems had no internal access controls; any user could access any file simply by knowing
its name. Access control consisted of an operator’s deciding whether to mount a tape or card
deck for reading or writing. This decision was rarely reliable. For example, the operator might
look at the user name punched on a special ID card at the head of a batch card deck to ensure that
the job requesting a tape to be mounted belonged to the owner of the tape. These ID cards might
contain colored stripes to make them more difficult to forge. Such systems worked despite their
flaws because the value of the information that could be gained by a penetration was rarely worth
the risk or effort.

Access control became a more serious issue with the emergence of disk storage, on which
files of many users could be stored online well before the days of networks or interactive
computing. Indeed, controlling access to disk files was probably the first widespread computer
security concern, because for the first time the system, rather than the operator, was required to
enforce access control.

6.2.1 Passwords for File Access

Very simple password-based access control mechanisms were used to protect files at first; and
even as technology changed from batch computing to online interactive computing, these
password schemes remained the primary protection mechanism.

In a password-based access scheme, each file is given a password. A user can access a file by
providing to the system the password for that file. This password has nothing to do with any
password the user might need to log into the system. Each new user who needs to access the, file
must be notified of the file’s password. In some systems that use passwords on files, only system
managers can assign the passwords; in others, the owner of a file can change the password at
will. There usually must be at least two passwords per file: one to control reading, and one to
control writing.

While passwords are excellent for user authentication, they are unsuitable for file access
control. The following problems (some of which were discussed in section 2.4) render such use
highly dangerous:

 48

• There is no way to revoke one user’s access to the file (by changing the password)
without revoking everyone’s access. This problem is only partially corrected by using
multiple passwords per file.

• There is no way for the system to keep track of who has access to the file, since
passwords are distributed manually without the system’s knowledge.

• Passwords for file access tend to be embedded as character strings within programs that
need to use the files; so one user’s program can be run by another person who does not
necessarily know the passwords for all of the files the program needs in order to operate
properly. Accidental and undetected exposure of passwords is greatly increased whenever
passwords are written down in any form.

• Requiring a user to remember a separate password for each file is an unreasonable
burden. Most likely the user will end up writing down a list of the passwords on a sheet
of paper and taping it to the terminal.

In a large organization where users come and go daily, a password-based protection scheme
for all files becomes impossible to manage.

6.2.2 Capability List

Another type of access control is the capability list or access list. A capability is a key to a
specific object, along with a mode of access (read, write, or execute). A subject possessing a
capability may access the object in the specified mode. At the highest levels in the system, where
we are concerned with users and files, the system maintains a list of capabilities for each user.
Users cannot add capabilities to this list except to cover new files they create. Users might,
however, be allowed to give access to files by passing copies of their own capabilities to other
users, and they might be able to revoke access to their own files by taking away capabilities from
others (although revocation can be difficult to implement).

This type of access control, while much better than passwords, suffers from a software
management problem. The system must maintain a list for each user that may contain hundreds
or thousands of entries. When a file is deleted, the system must purge capabilities for the file
from every user’s list. Answering a simple question such as “who has access to this file?”
requires the system to undergo a long search through every user’s capability list.

The most successful use of capabilities is at lower levels in the system, where capabilities
provide the underlying protection mechanism and not the user-visible access control scheme. We
will discuss this lower-level use of capabilities by hardware in section 8.4.2 and by software in
section 11.6.

6.2.3 Owner/Group/Other

A more effective, but simple and very common discretionary access control scheme
(implemented in Unix, DEC’s RSX and VMS, and many other systems) uses only a few bits of
access control information attached to each file:

 49

These bits specify the access modes for different classes of users. There usually are no more than
four classes: the owner of the file, users belonging to the owner’s group or project, special
system users, and the rest of the world. In a large system where users are grouped by project or
department, most access control needs are satisfied by this technique. The scheme falls apart
when access across specific groups is required. A major drawback of the scheme is its inability
to specify access rights for an individual user: there is no way for Smith to specify that only
Jones, and nobody else, should have access to a file, unless there is a group defined in the system
to which only Smith and Jones belong. This drawback usually results in users giving world
access to their files, even though they only want to make the file accessible to specific users.

6.2.4 Access Control Lists

One of the most effective access control schemes, from a user’s perspective, is the access control
list, or ACL (usually pronounced “ackle”), placed on each file (fig. 6-1). The access control list
identifies the individual users or groups of users who may access the file. Because all the access
control information for a file is stored in one place and is clearly associated with the file,
identifying who has access to a file, and adding or deleting names to the list can be done very
efficiently.

Figure 6-1. Access Control List The scheme above, similar to that used in Multics and
vms, employs a list of identifiers of the form USER. GR0UP, where a * is a wildcard
symbol matching any user or group name. When a user opens a file, the list is scanned
and the allowed access corresponds to the first match. In this example, user Jones in
group CRYPTO has rew access to file ALPHA, while all others in group CRYPTO have
re access. Green has no access (n) unless he is in the CRYPT0 group. All other users
have r access.

One alleged disadvantage of an access control list scheme is performance: the access control
list has to be scanned each time any user accesses (or opens) a file. But with suitable defaults and
grouping of users, access control lists rarely require more than a handful of entries. The only
performance penalty might be due to there being an extra disk I/O required to fetch the ACL
each time a file is opened. This could have a noticeable impact on systems where large numbers
of files are opened in a relatively short time. Another disadvantage is storage management:
maintaining a variable-length list for each file results in either a complex directory structure or
wasted space for unused entries. This tends to be a problem only for systems having huge
numbers of very small files (typical of the way in which Unix systems are used).

R W E R W E R W E

Owner Group Other

Jones.CRYPTO
*.CRYPTO
Green.*
.

rew
re
n
r

Smith.DRUID
.

r
n

FILE ALPHA FILE BETA

 50

Largely because of the complex management required, only a few systems—such as
Honeywell’s Multics, DEC’s VMS, and Data General’s AOS—provide the most general form of
access control list. If performance is a problem, one approach is to employ a combination of
owner/group/other and access control lists. The access control list is only used for files where the
granularity of owner/group/other is insufficient to specify the desired set of users. (VMS uses this
dual approach—but for compatibility with older programs, not for performance.) This approach
is an example of a performance and compatibility trade-off that violates the principle of economy
of mechanism discussed in section 5.3.

6.2.5 Trojan Horse Threats

Discretionary access controls have one major drawback, regardless of the specific
implementation scheme used: they are, by their very nature, subject to Trojan horse attacks. With
discretionary controls, programs acting on the user’s behalf are free to modify access control
information for files that the user owns. The operating system cannot tell the difference between
a legitimate request to modify access control information desired by the user and a request made
by a Trojan horse that the user did not intend. By eliminating some flexibility, a system can limit
the ability to modify access control information to special programs that have privileges. But
there is still no general way, under discretionary controls, to prevent a Trojan horse in one
process from transmitting information to another process via shared objects: files, messages,
shared memory, and so on. See chapter 7 for a more complete discussion of the Trojan horse
problem.

6.3 MANDATORY ACCESS CONTROL

Mandatory access controls prevent some types of Trojan horse attacks by imposing access
restrictions that cannot be bypassed, even indirectly. Under mandatory controls, the system
assigns both subjects and objects special security attributes that cannot be changed on request as
can discretionary access control attributes such as access control lists. The system decides
whether a subject can access an object by comparing their security attributes. A program
operating on behalf of a user cannot change the security attributes of itself or of any object-
including objects that the user owns. A program may therefore be unable to give away a file
simply by giving other users access to it. Mandatory controls can also prevent one process from
creating a shared file and passing information to another process through that file.

Many different mandatory access control schemes can be defined, but nearly all that have
been proposed are variants of the U.S. Department of Defense’s multilevel security policy
(section 6.4). Consequently, it is difficult to discuss mandatory controls apart from multilevel
security. A few general concepts, however, apply to all mandatory policies.

Mandatory controls are used in conjunction with discretionary controls and serve as an
additional (and stronger) restriction on access. A subject may have access to an object only if the
subject passes both discretionary and mandatory checks. Since users cannot directly manipulate

 51

mandatory access control attributes, users employ discretionary controls for their own protection
from other users. Mandatory controls come into play automatically as a stronger level of
protection that cannot be bypassed by users through accidental or intentional misuse of
discretionary controls.

As we will see in later examples, mandatory access controls unavoidably impose some severe
constraints on users with respect to their own data. Because these constraints are so visible, it is
easy to forget that the underlying purpose of mandatory controls is not to restrict the user. If we
simply wanted to prevent users from accessing other users’ files, discretionary controls would be
sufficient. On the other hand, if we wanted to prevent a user from giving away a file, nothing the
computer can do would be sufficient, as it is always possible for a user who can read a file to
pass the contents of the file to another user manually. But if our intention is to prevent a program
(in the form of a Trojan horse) from giving away a user’s file, mandatory controls are needed.
Exactly how a Trojan horse is foiled by mandatory controls is discussed in chapter 7.

In practice, mandatory controls do provide a benefit over discretionary controls, even if
Trojan horses are not a threat, in cases of accident or irresponsibility. Mandatory controls make it
more difficult for a user unintentionally (via an errant program or manual mistake) to give away
information in an unauthorized manner. In fact, a mandatory policy can be set up so that the only
ways users can pass information to other users is by means of pencil and paper or by giving away
their passwords. Using mandatory controls for these purposes is quite reasonable, as long as you
remember that mandatory controls can do little to prevent malicious users from revealing their
own data.

Mandatory security controls have been implemented in all security kernel-based systems (see
chapter 10) and in a handful of conventional (non-kernelized) operating systems. The latter
include Honeywell’s Multics (Whitmore et al. 1973), DEC’s SES/VMS (Blotcky, Lynch, and
Lipner 1986), and Sperry (now Unisys Corp.)’s 1100 Operating System (Ashland 1985).

6.4 MULTILEVEL SECURITY

The idea of multilevel security originated in the late 1960s when the U.S. Department of Defense
decided it needed to develop some way of protecting classified information stored in computers
(Ware 1970). Until that time it was against regulations to process classified information on a
system to which uncleared people had access, because no machine was trusted to protect the
classified data. Today the situation is not much different, but it should change as systems
supporting mandatory controls become more widely available.

6.4.1 Military Security Policy

The Department of Defense has a strict policy for manually handling and storing classified
information, which we will call the military security policy. All information (usually in the form
of a document) possesses a classification, and every person possesses a clearance. In order to
determine whether a person should be allowed to read a document, the person’s clearance is
compared to the document’s classification.

 52

A classification or clearance is made up of two components:

• A security level (also called sensitivity level or just level), consisting of one of a handful
of names such as UNCLASSIFIED, CONFIDENTIAL, SECRET, and TOP SECRET

• A set of one or more categories (also called compartments), consisting of names such as
NATO and NUCLEAR from among a very large number of possible choices used within the
Department of Defense

A classification contains a single security level, while its category set may contain an arbitrary
number of categories. We will write a classification as a security level name followed by a list of
category names: {SECRET; NATO, NUCLEAR, CRYPTO}. In practice the category set is often empty,
and it is rarely larger than a handful of names.

The purpose of the multilevel security policy is to prevent compromise, whereby a user is
able to read information classified at a level for which he or she is not cleared. In particular, the
policy says nothing about the modification or destruction of information.1

The military classification scheme has many parallels in industry, even though the terms used
in industry are different (Clark and Wilson 1987; Lipner 1982). Although industry does not
usually employ the concept of hierarchical security levels, most of the theory and practice for
handling classified information in a computer are directly applicable to techniques for handling
commercially sensitive or “privacy” information. Because a great deal of research has gone into
automating the military security policy, and because the concepts are well-defined, we will
continue to use terms such as SECRET and TOP SECRET. You can directly map these onto terms
used in industry such as PRIVILEGED and COMPANY CONFIDENTIAL. An industry parallel to
categories might be the division of a company into departments (ACCOUNTING, PAYROLL,
PERSONNEL, and so on), subsidiaries, and various product development groups.

6.4.2 A Note on Terminology

To avoid confusion when reading other literature (or perhaps to confuse you more), you should
notice a few things about terminology. In the context of computer security, there is no difference
between a classification and a clearance: one term simply applies to an object, and the other
applies to a subject. This book uses the term access class for both. Elsewhere you will run into
very loose usage of all these terms. Often the terms security level and level are used as synonyms
for classification, which is fine as long as the level and category breakdown of the classification
is not important (it rarely is). In some documents you may see the meanings of classification and
level interchanged from those given here. Again, the distinction rarely matters: access class,
security level, clearance, and classification can all be safely taken to mean the same thing. In the
remainder of this chapter, we will continue to speak about the components of an access class
individually. In the rest of the book, we will note the rare cases where the distinction between the
level and the categories matters.

1Of course, the Department of Defense does care about information destruction, but preventing destruction is not the
main reason for classifying information.

 53

6.4.3 Mathematical Relationships

The security levels in an access class are linearly ordered; for example:

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOP SECRET

One requirement of the military security policy is that, in order to obtain information legally, a
person must possess an access class whose level is greater than or equal to the level of the access
class of the information.

Categories are independent of each other and not ordered. To obtain access to information, a
person must possess an access class whose category set includes all the categories of the access
class of the information.

When categories and levels are combined, several relationships are possible between two
access classes (mathematically called a partial ordering—see section 9.5.3).

1. The first access class dominates the second; that is, the level of the first is greater than or
equal to the level of the second, and the category set of the first contains all the categories of
the second.

2. The second access class dominates the first.
3. The access classes are equal, which is a special case where both 1 and 2 above are true.
4. None of the above is true: the access classes are disjoint and cannot be compared. The first

contains a category not in the second, and the second contains a category not in the first.

The word dominates, when used to express a partial ordering relationship, has a meaning similar
to “greater than or equal to.” While they are not mathematically correct, we will continue to use
the words greater than or less than with respect to access classes and will only use the word
dominates in contexts where a more precise meaning is required.

As an example, consider a document with access class {secret; NATO, NUCLEAR}. A user with
access class { TOP SECRET; NATO, NUCLEAR, CRYPTO } can read the document, because the user
possesses a higher level and all the categories of the document. A user with access class { TOP
SECRET; NATO, CRYPTO} cannot read the document, because the user is missing the NUCLEAR
category.

6.4.4 Multilevel Security Rules

Multilevel security, also known as MLS, is a mathematical description of the military security
policy, defined in a form that can be implemented in a computer. The first mathematical model
of a multilevel secure computer system, known as the Bell and La Padula model (Bell and La
Padula 1973), defined a number of terms and concepts that have since been adopted by most

 54

other models of multilevel security. The Bell and La Padula model is often equated with
multilevel security or MLS, but researchers have developed other models of multilevel security.
In fact, many of the concepts of the Bell and La Padula model originated in work done at Case
Western Reserve University (Walter et al. 1974). Section 9.5.3 discusses the Bell and La Padula
model in detail.

Multilevel security has a number of subtleties that make it a not so-obvious transformation of
the military security policy. Access classes are easy to represent in the computer, and appropriate
checks can readily be made when a user tries to access a file. Enforcing multilevel security in a
mandatory way, so that neither users nor their programs can change users’ clearances or files’
classifications, is also easy to do. This straightforward enforcement of multilevel security is
commonly called simple security in the Bell and La Padula model.

Consider a system with two files and two processes (fig. 6-2). One file and one process are
UNCLASSIFIED, and the other file and other process are SECRET. The simple security rule prevents
the UNCLASSIFIED process from reading the SECRET file. Both processes can read and write the
UNCLASSIFIED file. Despite enforcement of the simple security condition, however, a violation of
the intent of the military security policy can easily occur if the SECRET process reads information
out of the SECRET file and writes it into the UNCLASSIFIED file. This is equivalent to an
unauthorized downgrade (lowering of the access class) of information, except that no access
class of any file has been changed. Thus, while the letter of the policy has been enforced, the
intent of the policy to avoid compromise has been violated. Though the actual compromise does
not take place until the downgraded information is read by the unclassified process, the specific
act that permits the eventual compromise is the writing of information: When a process writes
information into a file whose access class is less than its own, we call the act a write-down. The
write-down problem is a continual source of frustration, because even the best technical solutions
to the problem adversely affect the usability of systems.

Figure 6-2. Security Violation with Simple Security Controls. In this example,
despite the presence of the simple security restriction of multilevel security controls, a
Trojan horse in the SECRET process is able to use the UNCLASSIFIED file as a medium for
passing SECRET information to the UNCLASSIFIED process.

In general, multilevel security requires the complete prohibition of write-downs by untrusted
software. Such a restriction is clearly not present in the world of people and paper: a person with
a SECRET clearance is rarely prohibited from writing an UNCLASSIFIED document, despite having
a desk cluttered with SECRET documents, because the person is trusted to exercise appropriate

Secret File Unclassified
File

Secret Process

Unclassified Process

read write

read readX

disallowed

 55

judgment in deciding what to disclose.2 The restriction on write-downs in a computer is
necessary because a bug or Trojan horse in the user’s program cannot be trusted to exercise the
same judgment. This restriction has been given the rather uninformative name *-property
(pronounced “star-property”) in the Bell and La Padula model-a term that has become accepted
in the computer security community. We will instead use the more descriptive name confinement
property.

To summarize, the multilevel security model has two basic properties (fig. 6-3):

• Simple security: A subject can only read an object if the access class of the subject
dominates the access class of the object. In other words, a subject can read down but
cannot read up.

• Confinement property: A subject can only write an object if the access class of the
subject is dominated by the access class of the object. The subject can write up but cannot
write down.

Figure 6-3. Multilevel Security Rules. A process cannot read an object at a higher
access class (simple security) nor write an object at a lower access class (*-property or
confinement property).

It follows that, in order for a subject to both read and write an object, the access classes of the
subject and object must be equal. Although these properties allow a subject to write into an
object at a higher access class, the write-up capability is often not too useful, and most systems
implementing multilevel security restrict write access to objects that are of an equal access class.
But from the standpoint of information compromise, there is no reason why a write-up need be
disallowed. The Bell and La Padula model of multilevel security also makes use of an append
access mode that allows a subject to attach information to the end of a file it cannot read.
Although conceptually this seems a nice idea, implementing practical one-way writes in reality is
very difficult.

2As a half-serious proviso, it might be noted that UNCLASSIFIED reports written by cleared individuals working on a
classified project are often subject to a manual review before publication, which is a kind of write-down restriction.

SECRET
FILE

UNCLASSIFIED
FILE

SECRET PROCESS

UNCLASSIFIED
PROCESS

SIMPLE SECURITY VIOLATION

CONFINEMENT PROPERTY
VIOLATION

 56

6.5 INTEGRITY

Even though the confinement property of the multilevel security policy controls the writing of
information, its goal is to prevent unauthorized disclosure. The multilevel security policy deals
only with secrecy and does nothing to control unauthorized modification of information.

Soon after the Bell and La Padula model of multilevel security was defined, people began to
wonder how to model the unauthorized modification of information. One crude way is simply to
eliminate the ability to write up. But just as eliminating read-up does not alone prevent the
unauthorized disclosure of information (the confinement property is also needed), eliminating
write-up does not fully prevent unauthorized modification. Something akin to the confinement
property is needed to prevent a process at a higher access class from reading down and being
adversely influenced by information at a lower access class.

The Biba integrity model (Biba 1977) addresses the modification problem by mathematically
describing read and write restrictions based on integrity access classes of subjects and objects
(Biba uses the terms integrity level and integrity compartment). The integrity model looks
exactly the same as the multilevel security model, except that read and write restrictions are
reversed:

1. A subject can write an object only if the integrity access class of the subject dominates
the integrity class of the object (simple integrity),

2. A subject can read an object only if the integrity access class of the subject is dominated
by the integrity class of the object (integrity confinement).

Rule 1 is the logical integrity write-up restriction that prevents contamination of high-integrity
data. Figure 6-4 illustrates the reason for rule 2, the equivalent of an integrity confinement
property.

Figure 6-4. Contamination with Simple Integrity Controls. A low-integrity process is
not allowed to write into and contaminate a high-integrity file; but through some error,
the high-integrity process may receive low-integrity data and may write that data into the
high-integrity file.

It is easiest to think about integrity if you completely ignore multilevel security for a
moment. A high-integrity file is one whose contents are created by high-integrity processes. The
two rules just identified guarantee that the high-integrity file cannot be contaminated by
information from low-integrity processes. Furthermore, the high integrity process that writes the
file cannot be subverted by low integrity processes or data. The integrity class label on a file
therefore guarantees that the contents came only from sources of at least that degree of integrity.

High-integrity
File

Low-integrity
File

High-integrity Process

Low-integrity Process

write read

write writeX

disallowed

 57

When you consider secrecy (that is, multilevel security) and integrity together, you must be
careful not to confuse the secrecy access class with the integrity access class, as they have
nothing to do with one another: secrecy and integrity are independent qualities.3 You may, for
example, use a spreadsheet program obtained from a public bulletin board to display TOP SECRET
data. The process in which the program runs will have low integrity but high secrecy; the output
may be erroneous, but the program cannot compromise the TOP SECRET data.

Conversely, an UNCLASSIFIED process may never have access to any classified information,
but if the process’s job is to perform a system management function that must work correctly to
keep the system running, the process should be of high integrity. You would like to feel sure that
the process cannot be influenced by low-integrity programs or be tricked by running with low-
integrity data.

Although implementing integrity is straightforward, using hierarchical integrity as an adjunct
to multilevel security has not fully caught on. Its application is seen as too complicated for many
purposes. Whereas there are good reasons for having four or five different secrecy levels and ten
or twenty categories, nobody has thought of a reason to use more than a couple of integrity
levels; and on top of that, integrity categories are difficult to apply. Some people have warned
that, with both secrecy and integrity fully in place, it will be all too easy to set up situations in
which processes will be unable to access anything at all.

It has been proposed that eliminating the integrity confinement property restriction (rule 2)
might simplify things. After all, a program of high integrity should be trusted to protect itself
from low-integrity data. Although it is still possible for an “integrity Trojan horse” in that
program to read the low-integrity data and write the data into a high integrity file, one may
wonder how a Trojan horse has gotten into high-integrity program. The integrity confinement
property is probably more suited to containing errors than Trojan horses.

Probably one of the most important reasons why the idea of integrity as an exact dual of
multilevel security has problems in practice is that the notion of integrity is somehow related to
the notion of trustedness. Secrecy, on the other hand, says nothing about trust, while requiring
trusted software for its enforcement. We can construct any number of simple scenarios that
would result in malicious software running at high secrecy access class, but it is hard to think of
a reason why malicious software would be running at a very high integrity level. A long as we
already have to worry about the distinction between trusted and untrusted software for security
purposes, many of the aspects of the integrity model seem superfluous.

Nonetheless, the integrity model is so clean and appealing that aspects of it have been
implemented in several systems, leaving its use up to the system managers. In fact, it is possible
to combine the integrity and secrecy access classes into a single access class that is rarely
separated into the two components; files, processes, and users are then assigned security
attributes that combine both secrecy and integrity. In such a system, the rule for reading a file
would be as follows: the integrity access class of the file must dominate the integrity access class
of the process, and the secrecy access class of the process must dominate the secrecy access class

3Biba originated the confusion by using the same names for both secrecy access classes and integrity access classes.

 58

of the file. This rule combined with the appropriate rule for writing result in a rather complex
series of checks, especially given that both integrity and secrecy access classes are composed of
level and category components.

It may seem at first that integrity addresses the denial-of-service problem by preventing
random destruction of data (which other security techniques do not address). But, there are many
ways to cause denial of service other than by destroying data: executing illegal instructions or
making illegal system calls that halt the system; crashing or slowing down the system by using
up too many resources; and so on. Integrity is strictly a technique to prevent unauthorized
modification.

In the systems where integrity has been implemented, the primary application has been to
avoid modification of certain system programs and system databases that are important to the
operation of the system and yet do not involve information with any secrecy content. For
example, the list of users allowed to access the system might not be secret, but it must be
protected from modification by untrusted software. This protection must be stronger than the
discretionary protection provided for user files, and a mandatory integrity mechanism provides
that type of protection. It has been proposed that integrity categories might be quite useful in a
commercial environment (Lipner 1982)—perhaps more so than mandatory secrecy controls.

REFERENCES

Ashland, R. E. 1985. “B1 Security for Sperry 1100 Operating System.” In Proceedings of the 8th

National Computer Security Conference, pp. 1057. Gaithersburg, Md.: National Bureau of
Standards.
A description of mandatory controls proposed for Sperry (now Unisys) operating systems.

Bell, D. E., and La Padula, L. J. 1973. “Secure Computer Systems: Mathematical Foundations
and Model.” M74-244. Bedford, Mass.: Mitre Corp. Also available through National
Technical Information Service, Springfield, Va., NTIS AD-771543.)
Highly mathematical description of the original Bell and La Padula model.

Biba, K. J. 1977. “Integrity Considerations for Secure Computer Systems.” ESD-TR-76-372.
Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
National Technical Information Service, Springfield, Va., NTIS AD-A039324.)
The Biba integrity model.

Blotcky, S.; Lynch, K.; and Lipner, S. 1986. “SE/VMS: Implementing Mandatory Security in
VAX/VMS.” In Proceedings of the 9th National Computer Security Conference, pp. 47-54.
Gaithersburg, Md.: National Bureau of Standards.
A description of the security enhancements offered by Digital Equipment to upgrade security
of its vms operating system.

Clark, D. D., and Wilson, D. R. 1987. “A Comparison of Commercial and Military Computer
Security Policies.” In Proceedings of the 1987 Symposium on Security and Privacy, pp. 184-
95. Washington, D.C.: IEEE Computer Society.
Argues that a commercial security policy has some characteristics that differ from the lattice
nature of the military security policy.

Department of Defense. 1985. “Password Management Guideline.” CSCSTD-002-85. Ft. Meade,
Md.: National Computer Security Center.

 59

A thorough discussion of password management guidelines.
Gasser, M. 1975. “A Random Word Generator for Pronounceable Passwords.” ESD-TR-75-97.

Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
National Technical Information Service, Springfield, Va., NTIS AD-A017676.)
Versions of this password generator are used in Multics and vax/vms.

Lipner, S. B. 1982. “Non-Discretionary Controls for Commercial Applications.” In Proceedings
of the 1982 Symposium on Security and Privacy, pp. 2-10. Silver Spring, Md.: IEEE
Computer Society.
Proposes a way to use military-style mandatory security controls in a commercial
environment.

National Bureau of Standards. 1985. “Password Usage Standard.” FIPS PUB 112. Gaithersburg,
Md.: National Bureau of Standards.
Another password management guideline, with recommendations suitable for government
and industry.

Walter, K. G.; Ogden, W. F.; Rounds, W. C.; Bradshaw, F. T.; Ames, S. R.; and Shumway, D. G.
1974. “Primitive Models for Computer Security.” ESD-TR-4-117. Hanscom AFB, Mass.: Air
Force Electronic Systems Division. (Also available through National Technical Information
Service, Springfield, Va., NTIS AD-778467.)
An early discussion of a multilevel security model, interesting for historical reasons.

Ware, W. H. 1970. “Security Controls for Computer Systems: Report of Defense Science Board
Task Force on Computer Security.” R-609-1. Santa Monica, Cal.: Rand Corp. (Reissued
October 1979.)
A comprehensive discussion of computer security threats and policy recommendations,
providing the foundation for much of the subsequent government work in this field; now
largely of historical interest only, although many of the concepts are still valid.

Whitmore, J.; Bensoussan, A.; Green, P.; Hunt, D.; Kobziar, A.; and Stem J. 1973. “Design for
Multics Security Enhancements.” ESD-TR-74-176. Hanscom AFB, Mass.: Air Force
Electronic Systems Division. (Also available through National Technical Information
Service, Springfield, Va., NTIS AD-A030801.)
A description of the enhancements incorporated into Multics to support mandatory security
controls.

 60

 Chapter 7

Trojan Horses and
 Covert Channels

When people began thinking about making systems more secure, they naturally speculated about
specific penetration techniques. At first, the approach to securing operating systems was directed
toward closing the holes inadvertently left by designers. These holes typically allowed a
penetrator to gain control of the operating system, or at least to bypass some particular access
control mechanism. Some penetration techniques identified by “tiger teams” searching for holes
were incredibly complex, as were the countermeasures.

The Trojan horse route to penetration, however, was not formally identified until surprisingly
late in the history of computing.1 This route was far easier to exploit than many of the highly
sophisticated penetrations people were trying to thwart. Worse, this simple type of penetration
was fundamentally impossible to prevent on nearly all systems. Only a complete change in the
philosophy of protection and a complete restructuring of the system could come close to
addressing the problem. The most insidious aspect of the Trojan horse attack is that it requires no
discovery and exploitation of loopholes in the operating system. A successful Trojan horse attack
can be mounted through the use of only the most well-documented and obviously desirable
features of a flawless, bug-free system.

Do not assume that the Trojan horse problem is so esoteric that it only applies to computers
entrusted with military secrets. Once you understand how easy it is to carry out a Trojan horse
attack, you may wonder why anyone should have any confidence in the safety of any information
in their system, why more systems are not constantly being penetrated, and why you should
bother to close every small hole in your system while leaving gaping Trojan horse holes that are
so easy to exploit.

One sentence can explain what a Trojan horse is, but chapters are needed to cover all the
implications. Many who initially think they understand the Trojan horse are surprised when
confronted with its ramifications. If you explain the Trojan horse problem to the management of
a large computer installation, the likely response you will receive is “we don’t have that problem
here, because...” But if you ask about that installation’s existing security controls, you will
usually find multiple redundant measures strengthening “conventional” aspects of the system
while leaving wide-open paths for a Trojan horse attack. After such a discussion, you might be

1The term Trojan horse was first used by Dan Edwards (Anderson 1972).

 61

able to convince the management that many of the controls in these conventional areas serve
only to reinforce the iron links in a paper chain.

7.1 TROJAN HORSES AND VIRUSES

Most references define the Trojan horse in one or two sentences. A Trojan horse is a computer
program that appears to the user to perform a legitimate function but in fact carries out some
illicit function that the user of the program did not intend. The victim is the user of the program;
the perpetrator is the program’s developer.

We can identify several key requirements for launching a successful Trojan horse attack:

• You (the perpetrator) must write a program (or modify an existing program) to perform
the illicit act in a way that does not arouse the suspicion of any future user of the
program. The program should perform some interesting or useful function that will entice
others to use it.

• You must have some way of making the program accessible to your victim–by allowing
the victim access to the program, by installing it in a system library (which could require
help from an honest but gullible system administrator), or by physically handing the
victim a tape or disk.

• You must get the victim to run your program. This might happen incidentally (if your
program replaces an existing program that the victim normally uses) or intentionally (if
your program is directly invoked by the victim).

• You must have some way to reap the benefits of the illicit act. If the act is to copy private
information (our primary concern), then you have to provide a repository for it that you
can later access. This is normally quite easy if you have an account on the victim’s
system.

A special type of Trojan horse that propagates itself through a system or network of systems is
the virus (Cohen 1984). “Infecting” a system with a virus usually requires a high level of skill on
the part of the perpetrator but once installed it can cause a great deal of harm and may be
particularly difficult to eliminate.

7.1.1 Trojan Horse Examples

In section 3.4.1 we discussed some simple examples of the Trojan horse threat. Following are a
few more sophisticated examples. of both Trojan horses and viruses:

• A program that plays the game Adventure uses idle time when the user is thinking to scan
the user’s directory and give “world” read access to all the victim’s files. You (the
perpetrator) later log in normally and read the files. The victim might eventually find out
that the access rights were changed, but may still have a hard time figuring out which
program did it and whether anyone read the files.

• A new improved 1ist_directory program that everyone wants to use functions as
advertised but never exits upon completion. Instead,. it pretends to exit, mimicking the
response of the system command processor. The program reads and processes the

 62

victim’s further commands normally (possibly by invoking the real command processor
for each command) and never reveals the fact that it is still there. When the user finally
types 1ogout, the program simulates a genuine logout, but does not really log out. The
next time any user walks up to the terminal and types 1ogin, the program reads the
user’s name and password and discreetly sends you (the perpetrator) a message
containing the user’s password. Then the program mimics a normal login procedure and
finally does exit, returning the user to the command processor. The user never knows that
all the prior input has been monitored, and you now have the user’s password.

• An Adventure game, copied by the user from a public bulletin board where you have
placed it for free distribution, modifies the user’s command search list to cause a search
of one of your own directories before searching the system libraries. In all subsequent
sessions, every time the user types a system command, any one of a number of Trojan
horse programs in your directory may be invoked instead of, or in addition to, the desired
system command. Once the search list is modified, you can get the victim to run any of
your programs practically at will. One of these Trojan horse programs might be an altered
version of show-search-1ist that hides from the user the fact that your directory is
on the user’s list. You would probably also want to include a doctored version of
modify_search_1ist to prevent your own directory from being deleted from the
list. This example shows that, with a little planning on your part, a single mistake by a
user can result in permanent compromise of the user’s security.

• You quietly place your Trojan horse in a public user directory, and give it an interesting
name like Superspreadsheet, hoping some user will find it and try it. Besides operating as
a spreadsheet, the program scans the user’s directories, looking for executable binary files
(other programs) that the user owns and appending a section of Trojan horse code to each
such file. It modifies the calling sequence in those files to transfer temporary control to
the Trojan horse each time one of those programs is called. When one of those programs
is later used–possibly by a different user–the Trojan horse scans that user’s directories,
looking for more files to append itself to. Of course, the operation of the programs
modified by this Trojan horse is not visibly affected. On a system where many users
share each other’s programs, this virus will quickly infect most of the user software in the
system. If system programmers or administrators ever use someone else’s programs, the
virus can infect system programs as well. Since nobody ever looks at object code to see if
it matches compiled code, this virus is unlikely to be detected as long as it does no visible
harm.

Your hope is that someone on a compiler development team will use a program
infected with your virus; your virus is designed to recognize when it is appended to the
compiler, and it will thereafter cause the compiler to append the virus to all compiled
programs automatically. In this way, recompiling a program will not eliminate the virus.

This virus causes no functional harm to the operating system other than using up a
little memory along with each executable program. You can use your imagination to
decide what additional features an interesting virus might have.

A primitive type of virus was installed as a penetration exercise on an early version of
Honeywell’s Multics (Karger and Schell 1974).

 63

As you can see, the illicit activity of the Trojan horse or virus need not hamper or frustrate
the legitimate function of the command in which it is embedded, although the simplest Trojan
horses might just go after the information the particular command already uses. The best Trojan
horses do their dirty work and leave no traces. Modifying the access rights to all the user’s files
can be very damaging, but it is also easily detected and potentially traceable to the program that
caused it. Trojan horses that persist indefinitely (like the virus) can cause a great deal of harm
while they exist, but a program that causes trouble has a chance of being detected eventually. A
clever Trojan horse might even be programmed to delete itself if the user tries to do something
that might reveal its presence. Because most systems keep track of logins, stealing and using a
password is unlikely to work more than a few times before the penetration is detected (although
password theft is probably the easiest route to computer crime and can certainly cause a great
deal of damage).

The common goal in these examples is to allow you (the perpetrator) to read a user’s
information to which you have no access. The Trojan horse either copies the information into
one of your files, or sets up access modes so that you can later read the information directly from
the user’s files. The success of the Trojan horse depends on the extent to which you can retrieve
the information.

So far we have not directly talked about Trojan horses that delete, modify, or damage
information. A Trojan horse or virus whose goal is to modify files can do its job without your
having to log in. In fact, you do not need to have any access to the user’s system at all (provided
that you had some way of giving the program to the user in the first place). A write-only Trojan
horse used unknowingly by a system administrator and acting to modify a system file can be
particularly insidious. In keeping with the general philosophy of this book that computer security
is primarily concerned with information disclosure, we will continue to think of the Trojan horse
as a means of illicitly obtaining read access to information. Although the write-only Trojan horse
attack is somewhat simpler to carry out, solutions to the Trojan horse information disclosure
problem (to the extent that they are solutions) generally address the information modification
problem, as well.

7.1.2 Limiting the Trojan Horse

Preventing a Trojan horse from doing its damage is fundamentally impossible without some
mandatory controls, and keeping a Trojan horse out of your system is extremely difficult. While
simple or special-purpose systems might be protected to a degree, no general-purpose system can
be protected adequately. A few of the techniques discussed here can reduce the possibility of a
successful Trojan horse attack; but these techniques are somewhat dangerous, in that they can
give you a false sense of security. Before adopting any of them, therefore, be sure you
understand their limitations.

Restricting Access Control Flexibility

As was discussed in section 6.2.5, a Trojan horse can defeat any type of discretionary access
control mechanism. As long as it is possible for the legitimate user to write a program that alters
access control information for his or her own files, it is possible for a Trojan horse invoked by

 64

that user to do the same. Since the ability to write programs that alter access control information
is a feature of most modern systems, it is difficult to imagine anyone being willing to eliminate
this ability for the sake of security.

But suppose we do build a system that provides no unprivileged subroutine interface to the
access control mechanism. In such a system, the only way for a user to specify access control
information is by invoking a privileged system utility that sets the information based on input
from the user’s terminal–not on input from another program. (This utility program would have to
make sure it was really reading input from the terminal, and not from a command file, for
example.)

Since we trust users not to give their own files away, it might seem that the Trojan horse
threat to discretionary access control could thus be eliminated.

Notice, however, that several of the examples in section 7.1.1 do not require the Trojan horse
to alter any access control information. For a Trojan horse to copy a user’s files into the
perpetrator’s directory, the system need only allow the perpetrator to create a file manually that
is writeable by the unsuspecting user. To avoid suspicion, the perpetrator might create a file that
is writable by anyone, rather than solely by the specific user being targeted.

Let us then go further and mandate that the system not allow anyone to create a world-
writable file (which is not a particularly useful feature anyway). In that case the Trojan horse
might use a mail utility or an interprocess message to communicate information. If these
facilities do not exist either, the Trojan horse might find a world-readable file belonging to the
user and store the information in it. No one could reasonably suggest that a system not allow a
user to create world-readable files.

These examples should convince you that, except in very limited systems, it is usually not
fruitful to try to prevent a Trojan horse attack by limiting the ways in which users can exchange
information.

Procedural Controls

Within a general-purpose operating system, nobody has come up with a practical scheme for
detecting a Trojan horse. If the system allows any user programming at all, there is no way to
prevent a user from implementing a Trojan horse and convincing another person to use it. As
used here, the term programming includes the ability to write command files, macros, and any
other instructions that enable a user to cause things to happen outside the user’s direct control.

Procedurally, however, users can be warned not to run any program: other than those in the
system libraries, and they can be cautioned not to carry out any action that might accidentally
invoke a “foreign” file in their directory as a command or program. Users need not be prevented
from writing their own programs for their own use (because it would be pointless for a user to
plant a Trojan horse in his or her own program), but users should be suspicious about any
program that someone else has written. The effectiveness of such voluntary restrictions depends,
of course, on the dedication of the users. The interesting aspect of such restrictions is that users

 65

are only protecting themselves (and information entrusted to them): one user’s violating a
voluntary restriction against using an outside program will not compromise any other user’s
private information.

Unfortunately, voluntary restrictions are highly unreliable. Even sophisticated users may
inadvertently violate the rules or be misled into doing so. In our earlier example where the search
list was modified, one-time, possibly accidental use of a Trojan horse renders the user
permanently vulnerable thereafter. The difficulties of the voluntary approach are exacerbated by
the fact that those who would build a Trojan horse are not restricted. One can imagine an open
system in which scores of users litter the system with Trojan horses in the hope that one of a
handful of honest and careful users might one day make a mistake and type the wrong command
name. In a multiuser system that allows data-sharing, there is no practical way to prevent
program sharing.

In contrast to voluntary restrictions, enforced restrictions can be more nearly foolproof. In
one approach (Karger 1987), a trusted mechanism in the system prevents programs called by a
user from accessing files other than those intended by the user based on predefined usage pattern
of each program that the user calls. The Trojan horse can still damage the files it is legitimately
given, but it cannot access additional file; without the user’s knowledge. While such techniques
are an interesting possibility, none has yet been implemented in practice.

System Controls: No Programming

Clearly the best restrictions are ones that the system automatically enforces. Limiting sharing is
not practical, so the only restriction left involves programming.

Eliminating user programming might at first seem fairly easy: just get rid of all the
compilers, assemblers, interpreters, and similar applications. In fact, many systems on which
users do not need to write programs are operated this way. But if the system has a text editor and
a command language, the ability to write command procedures (both batch and interactive) must
also be eliminated, either by changing the command processor or by getting rid of all text editors.
A DBMS that allows users to store complex queries as procedures for later access must be
eliminated or restricted. Even without a command processor or DBMS, many text-processing
tools such as editors and formatters are practically programming languages in their own right;
these would have to be eliminated, too. (Remember that a successful Trojan horse might be as
simple as a 1-line copy command embedded in an editor macro.) Even spreadsheet programs
have features for user programmability.

By the time you eliminate all possibility of writing any type of program on a system, you
have probably limited the use of the system to a few very specialized applications. Certainly no
general-purpose system can be operated that way. But many large systems are in fact special
purpose and need no kind of programmability. Large organizations such as airlines and banks
use their operational computers solely for transaction processing, with separate computers for
development. But even when the operational system has no need for programming, it is rare for

 66

designers to make more than half-hearted efforts to eliminate the ability to write programs.
Usually such efforts are aimed at saving memory and storage rather than at increasing security.

It is frequently argued that even the best efforts at eliminating programming are doomed.
After all, any system on a network is a potential recipient of a Trojan horse from another system
that does allow programming. Moreover, Trojan horses need not always resemble a program. A
list of financial transactions could contain a Trojan horse in the form of illicit transactions. But,
while it is indeed very difficult (or perhaps impossible) to guarantee that no Trojan horse has
entered the system, the guarantee need not be absolute. Through a systematic analysis of all
possible paths into the system, it is possible to weigh the effort a penetrator must make to install
a Trojan horse against the value of the information gained or damage done. A partial closing of
such paths (which, to be of practical benefit, must still be relatively complete) is adequate in
many cases.

Scrutinizing Vendor Software

One route to installing a Trojan horse that we have not considered is via the vendor of the
software. Most organizations certainly trust their vendors not to plant Trojan horses (although
rumors are not lacking about features such as time bombs that inactivate the software when the
rental period expires). Indeed, prior to initial purchase of a software package, there is little reason
for an organization to fear that there might be a Trojan horse in the software specifically targeted
at that organization. Once the software is installed, however, a site with very sensitive data has
good reason to fear updates to that software supplied by the vendor-not because the vendor is
likely to be malicious, but because the vendor probably has no more control over the actions of
its employees than the organization has over its. Imagining a scenario where a disgruntled
employee quits an organization to work as a programmer for a vendor that supplies the
organization with software is not difficult. Unless appropriate control is maintained over the
acquisition of new or updated vendor software, the value of closing all other Trojan horse
channels is limited.

Probably the only practical technique for screening vendor software—a method used by the
government at certain highly secure installations—is to accept software updates from a vendor
only in the form of source code, to be scrutinized manually for malicious code by site personnel
and to be compiled locally. Programs that highlight only the differences between earlier and later
versions of the source code are used as an aid. This technique, though laborious, is considered
useful because of the assumption that a Trojan horse in source code is easy to spot. Nonetheless,
a clever programmer might be able to hide a Trojan horse, especially within a complex program.
Rather than providing 100 percent assurance, the technique of scrutinizing the source code
probably only serves as a deterrent to penetrators by increasing the work required to hide a
Trojan horse.

Mandatory Controls

As was stated in section 6.3, the only effective way to handle the Trojan horse threat is to use
mandatory access controls. Under mandatory access controls, a Trojan horse is prevented from
giving away information in a way that would violate the mandatory access restrictions. Consider,

 67

for example, the multilevel security model discussed in section 6.4.4 and illustrated in figure 6.3.
The confinement property prevents a Trojan horse in a process running at the SECRET access
class from writing SECRET information into an UNCLASSIFIED file. Everything writable by a
SECRET process must have at least a SECRET access class.

It is important to remember that mandatory controls only thwart Trojan horse attacks that
attempt to cross mandatory access class boundaries. The Trojan horse in our example can still
bypass discretionary rules by copying information from the victim’s SECRET file into another
user’s SECRET file. Since it is impractical to assign a different mandatory access class to each
user, mandatory controls are only used to protect information that is more sensitive than
information that is simply private to a single user.

For example, suppose that a corporation allows its competitors to buy time on its computer
system. Corporate proprietary information in that system is assigned a mandatory access
category, and only employees of the corporation are given access to that category. A Trojan
horse used by one of those employees will not be able to pass information to competitors outside
the category, but it will be free to transfer information among users within the category.

7.2 COVERT CHANNELS

A key notion behind the Trojan horse attack is illicit communication through a legitimate
information channel intended for interprocess communication: a file, an interprocess message, or
shared memory. Mandatory access controls can prevent such communication across access
classes. But a system usually allows processes to communicate in numerous other ways. that are
not normally used for communication and are not normally protected by mandatory controls. We
call these other paths covert information channels, or simply covert channels (Lampson 1973;
Lipner 1975).

Covert channels have also been called leakage paths because information can escape
unintentionally. People worry about leakage paths because it is impossible to predict how much
information an errant program might leak through such a channel. The practical impact of
unintentional leakage, however, is usually minor and not a primary concern to us; much more
serious is the intentional leakage caused by a Trojan horse.

Systems abound with covert channels. Every bit of information in the system (that is, every
object) that can be modified by one process and read by another—directly or indirectly—is
potentially a covert channel. Where mandatory controls prevent a Trojan horse from
communicating information through files and other conventional objects, any bit of information
not protected by mandatory controls is potentially an alternate path.

A covert channel’s most important parameter is its bandwidth—the rate, in bits per second, at
which information can be communicated between processes. This bandwidth is a function of the
number of bits in the object and of performance characteristics of the system that determine the
rate at which the object can be changed or modulated.

 68

There are two types of covert channels: a storage channel is any communication path that
results when one process causes an object to be written and another process observes the effect; a
timing channel is any communication path that results when a process produces some effect on
system performance that is observable by another process and is measurable with a timing base
such as a real-time clock.

7.2.1 Covert Storage Channels

Covert storage channels use three types of information:

• Object attributes
• Object existence
• Shared resources

Object Attributes

The easiest-to-use and most common storage channels in systems are usually file names. A 32-
character file name can be changed by one process and read by another process, resulting in a 32-
character message transfer between the processes even if the file itself is not readable or writable
by the processes. This channel can usually be eliminated by designing the access controls so that
file names are objects protected by mandatory access controls in the same manner as the files
are.

The use of file names is one example of the use of file attributes as storage channels. File
attributes are items of information about a file that the operating system maintains in addition to
the data in the file. Examples of other file attributes include length, format, date modified, and
discretionary access control lists. The file attributes may be directly readable (as are file names),
or their values may be indirectly inferred. Unlike file names, however, the values of most
attributes are not directly modifiable by a process, and communicating via the attributes requires
encoding the message to be sent in a form that uses the legal range of values of those attributes.
For a process to change the file length, for example, the process may have to rewrite part of the
file. This file length channel is limited to communicating a relatively small number of bits at a
time, depending on the range of possible lengths. Changing the file format might be easy and
direct, but the formats possible might be very few, leading to a rather narrow channel.
Surprisingly, the access control list often provides one of the largest covert storage channels,
since the list may be quite long and there might be few restrictions on the format of the user
names on the list (see section 6.2 and figure 6.1). The values of the date and time when a file was
last modified are usually difficult to control with any precision. The operating system usually
updates the date and time at relatively long intervals, and the value may be no more accurate than
to the nearest second. The bandwidth of such a channel can be no greater than one bit every 2
seconds; nonetheless, over a long period of time, an undetected Trojan horse can patiently
transmit a significant amount of information by modifying a file at specific intervals.

 69

Object Existence

File attributes are storage objects that are indirectly writable. Storage channels also include any
items of information about the file that can be deduced by a process. For example, the fact that a
given file exists is a bit of information; and even if you have no access to any of a file’s
attributes, you may still be able to infer whether a particular file exists. A simple way to do so
would be to try to access the file and check the returned status condition. Some systems
obligingly tell you whether your problem is file does not exist or you have no
access to the fi1e. If the system can support ten file creations or deletions per second,
the Trojan horse can communicate ten bits of information per second.

If the system does not tell you directly whether a file inaccessible to you exists, you might try
to create a new file with the same name as that file. If the system gives you a
namedup1ication or other error, you will have confirmed that the file already exists. If the
system allows you to create and use the new file, you will have established that the file did not
previously exist.

The single bit of information about existence of a file may not seem like much information,
but some systems strive to provide high-speed file creation and deletion. Thus, though the
information channel is narrow, its bandwidth can be high, especially if multiple files are used.

Shared Resources

The use of file existence as a one-bit covert storage channel is an example of a more general
single-bit channel involving shared or global resources. Almost every system contains certain
resources that are pooled among a number of active processes or users. Such resources include
disk blocks, physical memory, I/O buffers, allocated I/O devices, and various queues for shared
devices such as printers and plotters. Without per-process quotas, these types of shared resources
can be consumed by a single process. For example, one process could submit so many print jobs
that the printer queue fills up. When that happens, other processes on the system simply receive
some kind of error condition when they try to submit a job. A one-bit channel exists between the
sending process that fills the queue and the receiving process that gets the error message. The
sending process can transmit multiple bits in a serial fashion by alternately submitting and then
canceling the last job on the queue. Some systems tell a process how many total jobs there are on
a printer queue; communication via the queue is then easy and does not require filling the whole
queue, and the information about the total number of jobs provides a channel that is wider than a
single bit.

One way to minimize the queue overflow channel (or any shared resource exhaustion
channel) is to use a per-process quota. In our printer queue example, a limit could be imposed on
the number of jobs that any one process might place on the queue. If the system guarantees that a
process will always be able to submit jobs up to its quota, then for all practical purposes the
queue appears to each process as a private, queue, revealing no information about other
processes’ jobs on the queue. But a queue structured in this way is not actually a shared queue,
and all of the benefits of resource sharing are eliminated when resources are statically allocated

 70

to each process. Nonetheless, static allocation is often necessary to ensure complete. closure of
certain high-bandwidth shared-resource covert channels.

A way to reduce the bandwidth of resource exhaustion channels is to limit the rate at which a
process can discover that the resource is exhausted. Usually a process cannot directly ask how
much of a shared resource is available. The only way it can determine how much space is on a
printer queue is to see how many jobs it can submit to the queue. When the process reaches the
end of the queue, the system can delay the process for a certain amount of time before allowing it
to attempt to put additional jobs on the queue. Since it is highly abnormal for a process to
constantly bang away at the end of a queue, delaying a process trying to do so–even for several
seconds-is unlikely to affect the performance of any legitimate operation.

One problem with such a bandwidth-limiting scheme is that the process may have access to
many different shared resources. Therefore the limit must be based on the total number of
resource exhaustion conditions that a process may be able to detect, not just on each resource
individually. We also have to worry about the possibility that several processes can work in
collusion, thereby multiplying the bandwidth by the number of processes.

Probably the simplest way to address the shared resource channel is to audit each case of
resource exhaustion, in order to detect an excessive number of such cases within a given time
interval. The threat of audit and detection might well suffice to deter a penetrator from using this
technique. While auditing is usually not a reliable method of distinguishing between legitimate
and illegitimate actions, resource exhaustion happens rarely enough that establishing a relatively
low audit threshold (minimum number of incidents to trigger an audit) could be a valuable
security measure.

7.2.2 Covert Timing Channels

Because the usefulness of covert storage channels is measured as a bandwidth, in bits per second,
people often mistake certain types of storage channels for timing channels. In order for a covert
channel to be classified as a timing channel, a real-time clock, interval timer, or the equivalent
must be involved. The clock allows the receiving process to calculate relative amounts of real
time between successive events. A channel that does not require a clock or timer is a storage
channel. The distinction is important because, without any way for a process to determine the
passage of time, a timing channel disappears. Storage channels, on the other hand, are not
affected when access to a clock is eliminated.

A simple example of a timing channel is the percentage of CPU time available to a process.
A Trojan horse in one process transmits 1’s and 0’s by using up varying fractions of CPU time at
1-second intervals in a busy loop. The receiving process reads the bits by counting the number of
its own loops that it is able to perform in each interval. If these two processes are the only ones
running on the machine, the receiving process’s loop count in each second is a direct function of
the sending process’s CPU utilization. The bandwidth of this channel depends on the range of
values for the loop count that can be predictably communicated.

 71

Timing channels tend to be noisy because they are affected by processes on the system other
than the ones actually communicating. The noisier a channel is, the lower the effective
bandwidth becomes; however, it is usually possible to minimize the noise caused by other
processes by running late at night, when few other processes are running. An effective Trojan
horse can choose the times it runs.

It is often suggested that timing channels be eliminated by removing the ability for a process
to read a clock. Our example above does not work if the receiving process has no time reference.
But even if the receiving process has no direct access to a clock, there are ways for it to
determine passage of time. For example, the process can measure 0.1-second intervals by
counting characters received from a terminal while the user (who is the penetrator on the
receiving end) holds down a repeat key that enters characters at the fixed rate of 10 per second.
The process may even be able to manufacture its own clock by counting the number of disk
accesses it can make or the number of characters it can write to a terminal between specific
events to be timed. On multiprocessor systems, one process can use program loops to determine
time intervals on behalf of another process. Even if none of these techniques works, the user can
always operate a stopwatch at his or her terminal and count the seconds between events.

Timing channels are insidious for two reasons: there are no formal techniques for finding
them in a system; and there is usually no way to detect their use and hence to audit them.
Whereas storage channels can often be countered by controlling the rate at which specific,
identifiable objects in the system are modified, timing channels do not involve observation of
any identifiable objects.

Computer security technology has little to offer those who wish to find and block timing
channels. Computer security projects to date have failed, by and large, to address the problem in
a systematic way. The best advice for planners designing a new system would be to understand
the timing channel problem from the start of the system design and to be constantly aware of the
threat. Most obvious channels are, uncovered during the design and development process. You
cannot completely close many of the channels you find, but at least you will have a good idea of
where they are and can deal with them on an individual basis.

At the current state of the art in secure operating systems, the timing channel is far more
difficult for a penetrator to exploit than many other avenues. Perhaps someday, when these other
routes are closed, we will have better solutions to the timing channel problem.

7.3 TRAP DOORS

The trap door (Karger and Schell 1974) is an illicit piece of software in an operating system that
provides a way for a penetrator to break into the operating system reliably and without detection.
The trap door is activated by a special command or unlikely sequence of events that the
penetrator can cause at will and that no one else is likely to discover by accident. A trap door is
only useful in software that runs with privileges that the penetrator does not otherwise have;
otherwise, the trap door does not give the penetrator anything not already obtainable. For this
reason, we usually think of trap doors in operating systems and not in applications.

 72

A trap door is much like a bug in an operating system that permits a penetration. Indeed, a
penetration might be necessary to install the trap door in the first place. A trap door may also be
installed by a dishonest employee of the vendor of the operating system. The techniques for
inserting trap doors are much like those for inserting Trojan horses, but they are more difficult to
carry out in an operating system.

Unlike Trojan horses and covert channels, trap doors can only be installed by exploiting
flaws in the operating system or by infiltrating the system’s development team. Hence, trap doors
can be avoided by employing the usual techniques for developing reliable trusted software: no
special techniques are required.

REFERENCES

Anderson, J. P. 1972. “Computer Security Technology Planning Study.” ESD-TR-73-51, vols. 1

and 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-758206.)
The first study to document the government’s computer security problem and the proposed
solutions in the form of the reference monitor and the security kernel; now no longer useful
as a primary technical reference, but historically significant.

Cohen, F. 1984. “Computer Viruses: Theory and Experiments.” In Proceedings of the 7th
National Computer Security Conference, pp. 24063. Gaithersburg, Md.: National Bureau of
Standards.
The term virus was first introduced in this paper.

Karger, P. A. 1987. “Limiting the Potential Damage of Discretionary Trojan Horses.” In
Proceedings of the 1987 Symposium on Security and Privacy, pp. 32-37. Washington, D.C.:
IEEE Computer Society.
Discusses a technique to limit discretionary Trojan horses on the basis of built-in knowledge
of usage patterns, and provides a good overview of the problem and helpful references to
related techniques.

Karger, P. A., and Schell, R. R. 1974. “Multics Security Evaluation: Vulnerability Analysis.”
ESD-TR-74-193, vol. 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division.
(Also available through National Technical Information Service, Springfield, Va., NTIS AD-
A001120.)
A discussion of penetrations of Multics, pointing out several classic types of flaws in various
areas; useful as a guide to detecting flaws in other operating systems.

Lampson, B. W. 1973. “A Note on the Confinement Problem.” Communications of the ACM
16(10):613-15.
One of the first papers to discuss covert channels (called confinement or leakage paths) and
techniques for closing them.

Lipner, S. B. 1975. “A Comment on the Confinement Problem.” ACM Operating Systems
Review 9(5):192-96.
In response to Lampson’s paper, this paper discusses some fundamental problems involved
in attempting to close covert channels in a system with shared resources.

PART III

Implementation

 75

 Chapter 8

Hardware Security
 Mechanisms

It is fortunate that most of the hardware mechanisms needed to implement a secure system are
also required by conventional operating systems; otherwise, there would be little hope of seeing
these features on today’s machines. This is not a coincidence: good protection features are
essential to an efficient and reliable operating system. Even if security is not a major concern,
systems must provide reasonable protection against errant user software. Many of today’s
sophisticated features that protect against malicious software are logical extensions of early
features designed simply to contain bugs in benign user programs.

Some hardware security features are useful only for highly secure systems (such as the
security kernel), but most are commonly found in machines from mainframes through
microprocessors. Some features, though eminently practical, have never been implemented in
exactly the form discussed here, although approximations exist. Numerous theoretical features—
particularly features pertaining to so-called “capability machines”—are little-used or highly
experimental (despite being academically interesting and being studied by all computer science
students). Such features are given only token consideration in this chapter.

This chapter is not written for machine designers, although anyone responsible for the
hardware architecture of a new machine should understand the mechanisms discussed here.
Instead, it is for software designers who have the option of choosing one of several machines for
an application or who want to understand how to use specific security mechanisms. You will be
most likely to use these features if you are developing an operating system or application that
runs on a bare machine, since most of the features are intended to be used by the lowest levels of
the system. Many of the security features in some recent microprocessors (for example, the Intel
80286 and Motorola 68000 families) are not used by most of the popular personal computer
operating systems (Unix and MS-DOS), because the operating systems evolved on earlier
hardware architectures that had few security features.

If you have been exposed to Honeywell’s Multics operating system, you will notice a strong
Multics slant to much of this chapter. Multics is one of the first large commercial operating
systems to have included security as a major goal from its inception. The protection features of
the Multics processor were tailored to the needs of a general-purpose operating system, and
many of the security features offered by other machines have been influenced by the Multics

 76

architecture. Multics is an excellent example to use when discussing protection features because
the protection features of most other machines are a subset of the Multics features. Furthermore,
much of the terminology and philosophy developed in conjunction with the Multics project is
useful for discussing hardware security features. The features discussed here should not,
however, be taken as a description of Multics. Some features are not in Multics, and those that
resemble Multics have been simplified for the purposes of this chapter. Some concepts described
here are also borrowed from Honeywell’s SCOMP, a minicomputer that employs many of the
Multics features but on a far smaller scale (Fraim 1983). The SCOMP hardware also addresses
some areas, such as mapped I/O, that Multics does not.

For a complete description of Multics and its protection features, as implemented on the GE-
645 processor, see the book by Organick (1972). That processor was redesigned as the
Honeywell 6180, whose major new feature was hardware protection rings (Schroeder and Saltzer
1972).

8.1 HARDWARE/FIRMWARE/SOFTWARE TRADE-OFFS

Many security mechanisms that were once implemented in software are now implemented in
hardware. Some features remain in software, either because of their complexity or because the
hardware designers do not want to lock in a particular implementation. For the most part, the
distinction between firmware and hardware is not important to the understanding or use of
security features, and we shall largely ignore the difference. If you should choose to do any
verification of the hardware or firmware, however, the verification techniques are apt to be quite
different. See chapter 12 for a discussion of verification.

You do not need sophisticated hardware to build a secure operating system. Indeed,
theoretically, a secure operating system can be built on a very primitive processor. Hardware
security features are favored over software features for three reasons:

1. The features are alleged to be more reliable and to be correctly implemented.
2. Putting the feature in hardware yields a much cleaner architecture.
3. Hardware permits higher performance (speed of execution) than does software.

Reason 1 is largely a misconception: hardware is fundamentally no more correct than
software; it seems more reliable because it performs simpler functions. If an entire operating
system were to be implemented with transistors and wires it would have at least as many bugs as
the equivalent software (and it would be much harder to fix). Furthermore, unlike software,
hardware is subject to random failure of parts, making it less reliable as it ages. The only way in
which hardware might be considered more reliable is that it cannot be damaged by errant
software, but it is no more reliable in this sense than is software in read-only memory.

Reason 2 is a valid reason that directly affects security. A well-structured architecture
increases the reliability of the overall system.

 77

Reason 3 is also valid. While performance is only indirectly related to security, nobody is
likely to use a security mechanism that unacceptably degrades performance. Performance is one
of the primary reasons for putting security features in hardware.

8.2 PROCESS SUPPORT

A fundamental requirement for a secure operating system is that the system isolate users from
one another while permitting exchange of information through controlled paths. All modem
operating systems support some notion of a process as a surrogate for a user. In a time-sharing or
multiprogramming system, each user may have several processes operating on his or her behalf.

Because multiprogramming is central to the construction of a secure multiuser operating
system, it is important that a process switch be very fast. In a system supporting many users at
once, the process switching overhead can have a significant effect on performance. If this impact
is great enough, software developers may be tempted to avoid process switching where possible.

One common way to minimize process switching is to use a single process for several
simultaneous users, rather than giving each user a separate process. An example is a database
management system that interacts directly with a number of users who submit queries to a
common database (see figure 4-2). The danger of multiplexing a number of users onto a single
process is a greatly reduced level of security, because the hardware’s process isolation
mechanism is no longer used for user isolation.

The minimum hardware support required for multiprogramming is the ability to capture the
internal state of a process so that a suspended process can later be restarted (“dispatched”). This
internal state includes at least the program counter and the processor registers visible to pro-
grams. Early processors required software to store and reload these registers one at a time. Most
processors today perform a bulk load and restore with a single instruction.

There must also be some way of saving the addressable memory (address space) of the
process. On simple machines this may involve keeping a copy of the base and the bounds of each
process’s address space and loading these values into the appropriate registers when the process
is dispatched. The memory itself may stay put, or can be transferred (“swapped out”) to disk by
the operating system when the process is not running.

On machines with more complex memory management, involving segmentation or demand
paging when a process’s address space consist., of noncontiguous pages in physical memory,
much more information must be restored when a process is dispatched. Originally machine!
required software to load a series of memory descriptor registers, individually or in bulk. More
advanced machines use a single descriptor base register that points to a table of memory
descriptors. Under this arrangement, a process restart only requires software to load the single
descriptor base register; however, the process may still be slow to start up if hardware must fetch
many descriptors from memory as the process references different portions of its address space.
A mechanism to retain active memory descriptors in a cache across process switches is therefore
useful. The various technical terms in this and the previous paragraph are discussed more
completely in the subsection of section 8.3.

 78

8.3 MEMORY PROTECTION

Probably the most fundamental hardware requirement for a secure system is memory protection.
On systems that run a single process in memory at a time, on behalf of a single user, memory
protection is needed to prevent the user’s programs from affecting the operating system. On
systems with multiprogramming, memory protection also isolates the process’s memory areas
from each other. The mechanisms behind memory protection go hand-in-hand with memory
management mechanisms designed for efficient use of memory. We shall first cover some of the
important aspects of memory management hardware, and then consider how the features support
memory protection.

8.3.1 Virtual Address Space

A process in execution has a private address space that contains its programs and data. This
address space does not include secondary storage (disk) that the process may access using I/O
instructions. Each word in the process’s address space has a fixed virtual address that the pro-
grams in the process use to access the word. Most systems support some type of virtual memory
that enables the physical location of a word with a given virtual address to vary, possibly
changing each time the process is dispatched.

In executing a memory reference instruction, the hardware computes the virtual address that
identifies the target location of the reference, using a value or offset contained in a field of the
instruction plus some index registers and address registers. The virtual address is then translated,
or mapped, by hardware into a physical address. This translation is transparent to the program.
Early machines did not use the terms virtual address and virtual memory, but we shall apply the
terms liberally to any system that maps memory addresses.

Machines that support indirect addressing determine the target virtual address by following a
chain of one or more pointers (virtual addresses stored in memory), as specified by the
instruction. The effective address is the virtual address of the target location.

8.3.2 Virtual Memory Mapping

The earliest systems that employed any kind of memory management required a process’s
address space to be in contiguous physical memory locations. A base register pointed to the
beginning of the physical memory area, and a bounds register pointed to the end or indicated the
size of the area. A user program running in the process could not reference outside these limits
and could not modify the registers. By automatically adding the value of the base register to all
memory addresses, hardware obviated the need for programs to be concerned about the absolute
location of the address space.

In a large system where many processes with address spaces of different sizes are swapped in
and out of memory, the requirement that a process’s memory be contiguous would result in
fragmentation of physical memory. More efficient use of physical memory is achieved by

 79

dividing physical memory into a number of pages of fixed size, and allowing a process’s address
space to be scattered among these pages. Under this arrangement, swapping in a large process
only requires finding enough total unused pages, not a single large contiguous space.

Scattering a process’s virtual memory among many physical pages requires a set of hardware
mapping registers, each of which points to the start of a page in physical memory that is
accessible to the process (fig. 8-1). The total number of pages available to the process may be
limited by the number of mapping registers, or it may be specified in a single bounds register.

Figure 8-1. Mapping Pages in Virtual Memory. The page number portion of the virtual
address identifies the mapping register to be used in finding the location of the page in
physical memory. Pages 2 and 5 in physical memory are unused by the current
process.

When an instruction references memory, it must indicate which mapping register or which
page is to be used. If we view the virtual memory of a process as a linear address space with
locations numbered beginning at zero, the page selection is done automatically by hardware and
remains transparent to software: a machine instruction specifies a virtual address of a location in
virtual memory and hardware determines the page number or mapping register number by
examining the high-order bits of the virtual address. To the hardware, the virtual address has a
two-dimensional structure:

In a paged system, when a process is ready to be dispatched, the operating system determines

the correspondence between virtual and physical page numbers and sets up a table of page
descriptors in memory. A page descriptor is a pointer to a physical page that contains some
additional control information. As the process is dispatched, software or hardware loads the
descriptors into mapping registers (or into a cache) for high-speed access by hardware on each
memory reference. The loading of registers from the descriptor table may be dynamic—done
transparently by hardware the first time each page is referenced by a program.

8.3.3 Demand Paging

Some modern machines permit a process to have a virtual memory that is many times the size of
the physical memory of the machine; to accomplish this, a demand paging mechanism is used to

PAGE NUMBER OFFSET

pointer to 4
pointer to 0
pointer to 3
pointer to 1
pointer to 6

VIRTUAL ADDRESS

MAPPING REGISTERS

PHYSICAL
MEMORY PAGES

0
1
2
3
4

0
1
2
3
4
5
6

VIRTUAL ADDRESS: PAGE NUMBER OFFSET

 80

move pages between secondary storage and physical memory, as required. The process must be
able to be run without keeping track of which pages are memory-resident. The operating system
constructs a table of page descriptors for the entire virtual memory of the process, setting an “on-
disk” flag in the descriptors whose pages are not in physical memory (fig. 8-2). When the
process references a page, the address translation mechanism sees the “on disk” flag and traps to
the operating system, signaling a page fault. The operating system finds a free page in physical
memory, reads in the page from disk, resets the descriptor to point to the page, and resumes
execution of the process at the point of fault.

Figure 8-2. Demand Paging. In a demand-paged system, some of the pages may not
be in memory. The operating system takes care of reading the contents of the
appropriate page from disk, as needed. Shown are two processes that share some of
the same physical pages.

In order to minimize disk access time, pages in a demand-paged system tend to be small—
equal to the size of a disk block, such as 512 or 1,024 words. Small pages also allow a process to
run with a small amount of reserved physical memory. In a non-demand-paged system, where a
process’s entire address space must reside in physical memory, page size is less critical. The
small size of pages limits their usefulness as a basis for memory protection, as we shall discuss
more completely in section 8.3.5. With declining memory costs and faster disks, these trade-offs
are changing.

8.3.4 Segmentation

In most systems, the virtual address space of a process is divided into at least two distinct
portions, or segments, one for user programs and data (called user space) and the other for the
operating system (system space). The partitioning is usually simple and static. In figure 8-2, for

2
ON DISK

0
ON DISK

1
ON DISK

6
5
4

ON DISK
ON DISK
ON DISK

3
7

ON DISK
6
5
4

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

PROCESS A
DESCRIPTORS

PROCESS B
DESCRIPTORS

0
1
2
3
4
5
6
7

PHYSICAL
MEMORY PAGES

USER SPACE

SYSTEM SPACE

USER SPACE

SYSTEM SPACE

 81

example, all virtual addresses for pages 0–4 are in user space, and virtual addresses for pages 5–8
are in system space. Typically, one copy of the operating system (code and data) lies in memory,
shared by all processes. The figure shows the system space for both processes occupying the
same physical pages. The user space pages are separate, although some systems allow processes
to share selected user pages.

The two-segment scheme is common but limited. The most flexible architecture, the
segmented virtual memory, allows many segments to be included in each process, any of which
can be shared. The virtual address is a two-dimensional value containing a segment number and
a segment offset:

Each segment contains an independent identifiable object—a procedure, a large program, the

process stack, a shared data area, or the like—and segments need not all be the same size (though
there is a maximum, based on the size of the segment offset field). When a process is stepping
through consecutive locations in a segment (during program execution, for example, there is no
notion of overflowing into the “next” segment when the end of the segment is reached: the
segment number of an object bears no relationship to neighboring segment numbers. If the two-
dimensional virtual address is treated as a single large number, the virtual address space can be
described as being full of holes, each corresponding to the addresses that lie beyond the end of
one segment and before the beginning of the next. Though a large number of unused virtual
memory locations lie at the end of each segment, no physical memory is wasted by the existence
of these holes.

Some machines have memory segments but cannot conveniently map segments to distinct
objects, either because the hardware supports too few segments or because the operating system
architecture does not permit it. The segmentation is simply a memory-partitioning convenience,
and memory addresses flow continuously from one segment into the next.

A translation mechanism for virtual memory addresses that accommodates variable-size
segments in conjunction with demand paging requires an extra level of memory descriptor, as
shown in figure 8-3. Notice that the segment offset in the virtual address is composed of a page
number and a word number. Instead of there being one page table for the whole process, as was
the case in figure 8-2, there is a variable length page descriptor table for each segment, and each
process has a variable number of segments. The fixed-size pages permit efficient use of physical
memory, and the variable-size segments permit efficient sharing of segments among processes.
Figure 8-4 illustrates the use of a shared segment. Notice that the segment number of the shared
segment can be different for each process. This permits each process to lay out its virtual address
space as it chooses, without having to establish any “agreements” ahead of time with other
processes that share the same segments.

VIRTUAL ADDRESS: SEGMENT NUMBER SEGMENT OFFSET

 82

Figure 8-3. Virtual Address Translation with Segments. A process has a descriptor
base register that points to the segment descriptor table for the process. In a virtual
address, the segment number selects a segment descriptor that points to the page table
for the segment. The high-order bits in the segment offset constitute the page number,
which points to a page descriptor that identifies the location of the page in physical
memory. The low-order bits in the segment offset constitute the word number, which
identifies the location of the word within the page.

DESCRIPTOR BASE SEGMENT NUMBER
SEGMENT OFFSET

PAGE NUMBER WORD NUMBER

VIRTUAL ADDRESS

pointer to page table

pointer to page

word referenced

SEGMENT DESCRIPTOR TABLE
(per process)

PAGE DESCRIPTOR TABLE
(per segment)

MEMORY PAGE

 83

Figure 8-4. Sharing Segments in a Virtual Memory. Each process has its own
segment descriptor table that specifies page tables for the segments and access modes
to the segments. The shared segment ALPHA has one page table, used by both
processes. ALPHA is referenced as segment number 3 by process A and as segment
number 6 by process B.

8.3.5 Access Control with Memory Management

Where the address space is divided into two segments—system and user, as in figure 8-2—
the process must not be allowed to write into system space when running unprivileged programs
in user mode. When running in system mode, the process is permitted to read and write all of
virtual memory. A context switch from user mode to system mode is accomplished by using a
special instruction that transfers control to one of a set of restricted locations in system space.
Since the partition between system space and user space is static, hardware can easily enforce
these access restrictions based on the privilege mode (context) of the process. For greater
flexibility, however, it is desirable to allow the system software to specify exactly which pages
of the process’s address space are readable and/or writable in each context.

Before machines provided transparent memory management, access decisions were based on
the identity of the physical page. Each physical page was labeled with information such as a key
and some access bits indicating whether the page was readable or writable. Each process was
assigned a key that had been loaded by the operating system into a process status word. The
hardware checked the key on each memory reference, prohibiting access unless the process
status word key matched the memory key and unless the access bits matched the desired read or
write access mode. A design similar to this was used on IBM 360 machines.

The approach of associating access information (keys and access bits) with physical pages
becomes unmanageable when pages are not fixed in memory for the life of a process. Each time
ownership of a physical page changes (as when a page is swapped), the access information has to

PROCESS A

PROCESS B

ALPHA

ALPHA

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

PROCESS A SEGMENT
DESCRIPTOR TABLE

PROCESS B SEGMENT
DESCRIPTOR TABLE

SEGMENT ALPHA
PAGE DESCRIPTOR

TABLE

 84

be modified. And, if two processes share a page—one for reading and one for writing—the
access information has to be changed on each process switch.

With a descriptor-based address translation mechanism, where each process has a private set
of descriptors, a process’s access modes to a page or segment of memory are specified in the
descriptors. There may be two sets of access modes, one for use while the process is running in
user context and the other for use while the process is running in system context:

where the fields W, R, and E are single bits that indicate whether the process has write, read, or
execute access to the specified segment or page of memory. Because the descriptors are already
fetched during address translation, descriptor-based access control imposes little or no additional
overhead in process switching, in context switching within a process, or in swapping processes
into or out of memory.

In figure 8-3, where there are two levels of descriptors, the access information should be
contained in the segment descriptors, not in the page descriptors. Otherwise, it would not be
possible to specify different modes of access for two processes sharing the same segment.

Use of Virtual Memory to Map Objects

When a user program reads a file, it asks the operating system to carry out an I/O operation that
reads the contents of a block of the file into a buffer somewhere in the user space of the process’s
virtual memory. Another way for a program to access a file is for the operating system to map
the file directly onto the virtual address space of the process. The file (or a portion of it) is paged
into memory and the words in the file become accessible through memory reference instructions,
just as if they were words in the process’s virtual memory. The process must keep track of the
starting virtual address of the file; it then computes the virtual addresses of words in the file as
offsets from that starting address. In such an architecture, the entire file system is potentially part
of each process’s virtual memory, although a single process will only have a small number of
files mapped at any one time.

The idea of translating a virtual address into a location in a file is not unlike the concept of
demand paging, by which portions of a process’s virtual memory, are kept on a paging disk and
copied into physical memory when referenced. The difference is that the process specifically
requests that a particular file be mapped into a particular range of virtual memory locations. The
major benefit of mapping files directly into virtual memory is that no privileged I/O is required
to access a file once it is mapped: the normal demand paging and memory management
mechanisms are used. Random access to any location in the file is also made easier, and
performance improves somewhat because a system call is not required on each access; these
benefits, however, are not security concerns.

MEMORY DESCRIPTOR: W R E W R E PHYSICAL ADDRESS

System User

 85

The technique of mapping files into virtual memory, although routine in Multics, is rare
elsewhere. (The feature is available in VMS and probably in other systems, but it is not routinely
used for all file accesses.) Programmers traditionally use read and write system I/O calls for
accessing files; giving programmers a way to access a file as a long string of characters or as an
array of words requires rethinking how applications are designed. To be practical, this technique
must be well integrated into the programming language.

 The simplest way to implement file-to-virtual-memory mapping is to associate a single
segment with an object. Thereafter, the process need simply keep track of the segment number of
each file it has mapped and need not reserve virtual memory space for objects prior to mapping.
Associating hardware segments with system storage objects has advantages from a security
standpoint, because the hardware’s access control mechanisms are used without additional
software control.

In order to represent objects as segments efficiently, however, the range of possible segment
sizes must span several orders of magnitude. It a typical object exceeds the size of a maximum-
length segment, a mechanism must be available for building large objects out of several
segments, and this means that direct access to a word in an object cannot consist of a simple
offset from the beginning of a segment. Mapping multisegment objects onto consecutive
segment numbers in virtual memory leads to an awkward software structure, although it is done
in the SCOMP (with considerable difficulty) because of the small segments. The small segments in
the Intel 80286 cause similar programming difficulties. Even Multics, which supports segments
of up to 218 36-bit words (over 1 million characters), has a multisegment file facility for the
occasional very large file that will not fit into a segment. These multisegment files are not
mapped into contiguous segments, so all applications that might potentially use them must use a
special application package that provides an I/O-style interface for file access rather than direct
memory reference—thereby defeating some of the performance advantages of direct memory
reference to files.

Another performance problem that occurs with multisegment files managed by applications
is the need for a process to initiate (map for the first time) a number of segments each time the
file is opened. Segment initiation is a relatively slow process, comparable in overhead to the
opening of a file in conventional file systems. Moreover, the operating system (which treats each
segment independently and knows nothing about the relationship between segments in a
multisegment file) must maintain separate access control information for each segment in the
file, even though all segments are accessed identically. These performance and overhead
problems have no adverse effect on security per se, except that the poor performance of such
features might drive people to find shortcuts that bypass the security controls.

The preceding discussion indicates that, if you are to represent files as segments efficiently, a
reasonably large file should fit into one segment. It is also necessary that the system support
enough segments for each process to free most processes from concern about terminating
(unmapping) segments no longer in use. If a process runs out of segment numbers as it brings
new objects into its address space, the process must find a segment to terminate that it knows is
not needed by any programs in the process. Determining which segments are no longer in use
and avoiding inappropriate reuse of segment numbers for deleted objects pose a difficult problem

 86

and an undesirable complication—complete cooperation by user applications is required. For
example, when a program is finished with a file or segment, that program cannot simply unmap
the segment because other programs in the process might still retain pointers to virtual memory
locations in the original segment If a new file is later mapped into the same virtual memory
locations thereby inheriting the same segment number, those other programs, using their stored
pointers, will access the wrong file. As in the case of small segments, these problems are security
issues only to the extent that they may so complicate the applications that people will seek
shortcuts that bypass the controls.

In addition to mapping files into virtual memory as segments, executable programs can also
be mapped. On most systems, executable programs are in fact stored in files. Usually, however,
all separately compiled programs that will run in a process must be linked in advance into one
large executable image that is stored in a single file or series of segments. At execution time, the
image is mapped into virtual memory as one or more memory segments. From an access control
standpoint, the image is one object to which the process has execute access permission, and no
finer-grained control on the programs within the image is enforced.

Dynamic linking is a sophisticated capability used in Multics that allows separately compiled
programs to remain in individual segments without prior linking. The first time a program is
called by a process, the segment containing the program is mapped into the virtual address space,
and all linking between the process and the program takes place at execution time.1 An
advantage of dynamic linking (and the ability to retain each program in its own segment) is that
the protection attributes of the program (obtained from its segment) remain enforced by
hardware, thereby permitting different programs in the same process to have different attributes.
The importance of this will become more apparent as we discuss execution domains in the next
section.

8.4 EXECUTION DOMAINS

Hardware features that support execution domains are as pervasive as memory management
features. Even systems that lack memory management or multiprogramming usually support
execution domains. Our use of the term execution domains includes commonly used terms such
as execution mode, state, and context.

When there are two domains, system and user, the domains are hierarchical. The more
privileged domain has access to all of memory and all instructions, and the less privileged
domain has access to a portion of memory and a subset of the instructions. A three-domain
machine is likewise hierarchical. Both two- and three-domain machines are special cases of a
general hierarchical domain architecture based on protection rings, so called because a picture of
the hierarchy is shown as concentric rings (fig. 8-5). The lowest-numbered, innermost ring has
the most privilege; and the highest-numbered, outermost ring has the least. Each ring has access
to at least the same memory as the next less-privileged ring (fig. 8-6). Though Multics has
proposed instituting as many as sixty-four rings, rarely are more than three or four rings used.

1Because of the performance overhead of dynamic linking, even Multics provides a prelinking or binding facility for
collections of programs that are routinely used together.

 87

The International Computers Limited (ICL) 2900 mainframe supports sixteen rings, and most of
them are used on the VME/B operating system (Parker 1981).

Figure 8-5. Hierarchical Domains. The rings of privilege show the most privileged ring
in the center, with less privileged rings as we move outward. The operating system
occupies the innermost rings, users do their programming in intermediate rings, and
certain restricted users might be given access to the outermost rings only.

Figure 8-6. Hierarchical Domain Memory Access. The most privileged domain (ring
0) can access all of memory, while the least privileged domain (ring 4) has the most
restricted access. Memory accessible to the less privileged domains is segregated by
process, whereas the more privileged domains tend to share the same memory across
all processes.

It is easy to understand the purpose of having two rings: to separate the operating system
programs from user programs, but it is less easy to see the purpose of having three or more. One
way of viewing rings is in terms of scope of control. The innermost ring contains the operating
system that controls the whole computer system. Outside it might be a ring in which large
applications—such as database management systems and transaction processing monitors—are
run. These large applications control various user applications in an outermost ring.

RING 0
KERNEL

RING 1
OPERATING SYSTEM

RING 2
OPERATING SYSTEM

RING 3
SYSTEM APPLICATION

RING 4
USER PROGRAMS

RING 5
USER PROGRAMS

RING 6
RESTRICTED USER

RING 7
RESTRICTED USER

Ring 4 Memory
Process A

Ring 4 Memory
Process B

Ring 4 Memory
Process C

Ring 3 Memory
Ring 2 Memory
Ring 1 Memory
Ring 0 Memory

 88

The important security concept here is that the domain mechanism protects each ring from
those outside it and allows each ring to control applications efficiently in the less privileged
rings. The process isolation mechanism is orthogonal to the domain mechanism: a given process
may run in any one of several rings at any one time, moving from ring to ring during execution.
When a process is running in a given ring, that process is protected from damage by other
processes running in the same ring because the system normally isolates processes from one
another. On the other hand, the innermost rings are the ones most likely to choose to share
system-wide data or data belonging to multiple users; and in a given ring, the processes are only
isolated to the extent that the software in that ring chooses to keep its data separate from the data
of other processes.

Hardware that implements a two-domain architecture needs a single process state bit: on if
the process is in system domain, and off if it is in user domain. As was discussed in section 8.3,
the processor determines which segments in memory are accessible in each domain by using
information in descriptors that indicate access modes for each segment in each domain:

If hardware supports many hierarchical domains, maintaining a separate set of W, R, E bits in

each segment descriptor for the access modes for each ring is unwieldy. Fortunately, there are
shortcuts. We know that, if ring n has a given mode of access to a segment, all rings 0 through n
– 1 also have that mode of access. Therefore, for each type of access mode, it is necessary to
specify in the descriptor only the greatest ring having that mode of access. Instead of maintaining
three access mode bits per ring, we have three fields, each containing a ring number (one for
each of the access modes):

We call these three ring numbers (R1, R2, and R3) ring brackets, where

0-R1 is the write bracket.
0-R2 is the read bracket.
0-R3 is the execute bracket.

For example, the set of ring brackets (4, 5, 7) within a segment descriptor would tell us that
the segment was writable from rings 0 through 4, readable from rings 0 through 5, and
executable from rings 0 through 7. As a simplifying assumption, we can assume that the ring
brackets always satisfy the relation

R1 ≤ R2 ≤ R3

since there is little reason to prevent a domain from reading a segment that it is allowed to write,
or to prevent it from executing a segment that it is allowed to read. It is dangerous (and pointless)

SEGMENT DESCRIPTOR: W R E W R E

System User

SEGMENT DESCRIPTOR: R1 R2 R3

 89

for a process to execute a segment from an inner ring that is writable from a less privileged ring,
so it is reasonable to restrict the execute bracket to the range R1–R3; however, such a restriction
only serves to limit the damage caused by errors in an inner-ring program and is not, strictly
speaking, a security requirement.

A segment with brackets (0, 0, 0) is only accessible from within the innermost ring, while a
segment with brackets (7, 7, 7) is readable and writable from all rings. Since ring 0 is the most
privileged, there is little security reason to prohibit access to a segment from a user in ring 0
(though, for reliability, Multics does allow ring 0 to write-protect its segments from itself).

As we saw in figure 8-4, each process that uses a shared segment has its own segment
descriptors and (possibly different) set of access modes to the segment. It might at first seem
useful to allow each process to have a different set of ring brackets for a given segment, so that
two processes that share a segment would have different access to the segment in different rings.
But the set of ring brackets is better treated as a system-wide attribute of the segment—one that
defines the domains in which the segment may be used, regardless of which process uses the
segment. Instead of giving each process a different set of ring brackets for a segment, we can use
the same set of ring brackets for all processes and alter the three access mode bits W, R, and E in
situations where access differs per process. The access mode bits restrict access to a segment in a
way that is more restrictive than that implied by the ring brackets. The segment with ring
brackets (4, 5, 7), for example, is writable from rings 0 through 4 only if the write access mode
bit is also on. The access control information in the segment descriptor thus includes one set of
ring numbers and three access mode bits:

Each process’s segment descriptor table contains this information for each segment; and only the
W, R, E bits may differ among processes sharing the same segment.

8.4.1 Transfer of Control Across Domains

In executing a program, the processor fetches instructions from the sequential virtual memory
locations indicated by a program counter. This sequential flow is altered when the processor
encounters one of three types of transfer instructions that load a new virtual address into the
program counter:

• jump changes the program counter to a specified virtual address.
• call saves the program counter on the process stack and changes the program counter to

a new value.
• return restores the program counter to a value previously saved on the stack.

In general, these instructions may specify arbitrary locations in virtual memory. Whether
instruction execution at that new location takes place or not depends on whether the segment or
page of virtual memory is marked executable and possesses the proper ring brackets.

SEGMENT DESCRIPTOR: R1 R2 R3 W R E

 90

In a system with two domains and two segments—system space and user space—a process
running in the user domain that performs a simple jump to a random location in system space
does not change domains. While the locations in system space may be addressable and
executable by a process running in the user domain, the process will have no system privileges,
and the system code will eventually fail when it attempts an access that is not permissible from
user domain. A domain change is only permitted through a call to prescribed legitimate entry
points in system space. Most machines implement such a call as a trap to a predetermined
location or to a transfer vector in system space. Return to user domain is accomplished with the
return instruction. Hardware does not need to restrict the target location of return, but of
course; you cannot use a return instruction to switch from user domain to system domain.

In a ring architecture, the processor maintains a current ring of execution in place of a single
user/system mode bit. A domain change; can only be accomplished by transferring control
through a call instruction to prescribed locations in special gate segments that are designated
as entry points into an inner ring. The reason for designating some segments as gates is to
prevent a program from calling into a inner ring and executing at an arbitrary location. The
single-bit gate indicator, along with the new ring of the segment, is specified in the segment
descriptor along with the other access control information:

The permissible locations in the gate segment where entry is allowed may be specified in

additional fields in the segment descriptor (Multics has a call limiter field that is the maximum
address to which control can be transferred), but simply restricting entry to location zero of the
gate segment is adequate because multiple entry points can be designated by values passed in
registers:

Even though the ring brackets and mode bits of a segment may specify that the segment is
executable (using any type of transfer instruction) from any ring, the current ring number will
only change if the segment is a gate and a call instruction is used.

Once a process has entered an inner ring through a gate, that gate segment may transfer
control to other segments executable within the new current ring. Some nongate segments, such
as language utilities, are useful in many rings and therefore have an execute bracket that spans all
rings; the current ring of execution remains unchanged when those segments are called. Other
segments are useful only in inner rings and may not be executable or callable from outer rings.
From a security standpoint, an outer ring can only damage itself by calling or transferring
illegally to an inner-ring segment, because the current ring number will not change and the code
will fail. Still, there may be reasons to hide the contents of programs in inner-ring segments by
preventing their execution as well as the reading of their contents (as when a program contains
secret algorithms).

Multics has the additional concept of a call bracket that specifies the maximum ring from
which a segment may be called. Such a feature is more of a convenience than a requirement for

SEGMENT DESCRIPTOR: R1 R2 R3 W R E RING GATE

 91

security, since in any case the gate procedure can check whether it has been called from a ring
within a given range.

8.4.2 Argument Passing Across Domains

Figure 8-7 illustrates a tree of procedure calls that occur within a process as the process traverses
several rings. For simplicity we will assume that each procedure is in its own segment, but
nothing prevents us from prelinking several procedures in the same ring into a single segment.

Figure 8-7. Domain Crossing. Each box represents a procedure within a system
supporting hierarchical domains (rings). The tree of procedure calls spans user,
operating system, and kernel rings.

When procedure A calls procedure B, the current ring remains unchanged because both
procedures are part of ring 4 (the user ring). Procedure B has the same access to information as
procedure A. When procedure B calls procedure C or D, however, there is a ring change, and
therefore procedure C or D can access additional information belonging to ring 2. Procedures C,
D, E, and I are gate procedures into their respective rings. Also shown in the figure is a call
from procedure H to procedure I that drops directly from ring 4 into ring 0. Finally, notice that
procedure G is accessible from and runs within either ring 4 or ring 2. Its execute bracket
includes rings 2 through 4.

When A calls B, programming practices might dictate that B check the arguments passed to it
for validity. While such checks might help find bugs in A, the checks do nothing for security
because A and B have access to exactly the same information. Consequently, A can obtain access
to any information used by B, whether or not B checks its arguments.

On the other hand, procedure D, being a gate into ring 2, is responsible for ensuring that
arguments passed by B cannot harm ring 2. Operating systems typically go to great lengths to

A

B G

C D

E

F G

H

I

RING 4
(USER)

RING 2
(OPERATING SYSTEM)

RING 0
(KERNEL)

gategate

gate gate

 92

check arguments received from user programs. Many of the checks are simple, such as ensuring
than an argument is within a prescribed range of values, and they are often used to catch errors in
user programs rather than to protect the operating system. Other checks are security-relevant,
designed to ensure that one user’s process cannot illegally obtain access to data belonging to
another user, or to ensure that part of the operating system is not damaged. In order to prevent
asynchronous modifications to arguments (by other processes or processors) between the time
they are checked and the time they are used, arguments passed across a gate must usually be
copied into a safe place within the ring of the gate. Argument copying and most general-validity
and access checks are implemented by software in the gate procedure of the inner ring; the ad
hoc nature of these checks means that hardware can do little to help. The software impact of
argument validation is discussed in section 11.2.

Hardware can help significantly in one particular type of argument validation, however:
address validation. In figure 8-7, one way that ring 4 can use procedure B to obtain ring 2
information is to fool D into copying that information into a place accessible to ring 4. As an
example, assume that D is an I/O procedure that writes data from a buffer specified by the caller
into a file also specified by the caller. The calling sequence from B to D might be

call write_file (file-name, buffer_ptr)

where the argument buffer_ptr is a pointer to (a virtual address of) the buffer. The buffer is
supposed to lie in an area of memory accessible to ring 4. If write_fi1e does not check the
validity of the buffer pointer, procedure B may be able to pass a pointer to an area of ring 2’s
memory, thereby causing write_fi1e to write ring 2 data into the file. The normal hardware
access control mechanism does not prevent a ring 4 procedure from constructing a pointer to ring
2 data, nor does it prevent the data from being accessed by the ring 2 procedure. Therefore,
procedure D must carry out some type of pointer validation on the buffer_ptr.

Pointer validation done completely by software tends to be time consuming because of the
number of steps involved: finding and examining the target segment descriptor, fetching indirect
references, validating intermediate addresses, and calculating index information. For better
performance, some hardware support for pointer validation is desirable when the machine has
several rings, segmented virtual memory, multiple levels of pointer indirection, or indexing
information in pointers. Machines that have just two or three rings and simple pointers in which
a one-dimensional virtual memory is statically assigned to domains probably do not need
hardware help.

 There are two general types of hardware pointer validation schemes: explicit and implicit.
The explicit scheme is more common and requires inner-ring software to invoke the validation
mechanism as required. The implicit scheme requires software cooperation but no direct
assistance.

 93

Explicit Pointer Validation

The simplest explicit pointer validation mechanism is a machine instruction that asks some form
of the question, “What mode of access does ring x have to the area of memory designated by
pointer p?” This technique requires software to validate the pointer explicitly, prior to use.

A somewhat more sophisticated mechanism uses a two-instruction sequence: the first
instruction asks the machine to “execute the following instruction using the access rights of ring
x rather than the rights of the current ring”; and the second instruction is a normal memory
reference instruction that uses indirection through the pointer. The second instruction will fail
with an access violation, if access was not allowed in the outer ring x. To eliminate the
possibility of asynchronous modification, the machine automatically suspends interrupts between
the pair of instructions. Each time software makes a reference through a pointer that might have
come from an outer ring, the reference must be preceded by the special instruction. This
technique allows software to postpone validation until the time that the pointer is actually used.

With either technique for explicit pointer validation, software must decide when to check the
pointer: at the point of entry into the inner ring (in the gate procedure), or in conjunction with its
normal use. In figure 8-7, the buffer_ptr passed from procedure B to procedure D; might not
be used until procedure G is called, so the task of validating the pointer appears to lie most
appropriately with G. For procedure D to validate the pointer properly, it would have to know
whether the buffer was to be read or written by G, and it would have to know the length of the
buffer (to ensure that the buffer could not overflow onto an area not accessible to ring 4).

Another complicating factor is that arguments may contain pointers. For example, the
write_file I/O call might require as an argument a data structure containing information
such as file name, location in file to be written, space for returning a status code, and buffer to be
written. The data structure itself is passed by means of a single pointer as an argument. To keep
the structure compact and to avoid moving a great deal of data around on each call, the data
structure contain pointers to the items rather than containing the items themselves. This means
that all the pointers in the structure (as well as the pointer to the structure itself) have to be
validated. Requiring the gate procedure to validate these pointers forces it to be intimately
familiar with the format and use of the data structure, even if the gate’s only role is to pass the
data structure on to another procedure for processing. This requirement violates good software
layering and information-hiding principles.

On the other hand, one could argue that the task of a gate procedure such as D is to make all
appropriate argument checks and to relieve inner procedures from having to make such checks.
For example, procedure G might be a general-purpose I/O routine that can perform I/O on behalf
of either the user or the operating system. If so, procedure G may not know whether the buffer
pointers or embedded pointers passed to it should be validated with respect to the user’s ring or
to the operating system’s ring. Such information might be passed to G by every caller; but if G
happens to be embedded deep in a tree of procedure calls, this extra information must be passed
down by every caller in the tree.

 94

A problem with explicit pointer validation in advance of use is that the information on which
the validation is based (like the segment descriptors) may be changed by other processes or
processors by the time the pointer is used. This is possible even if the pointer itself is copied into
a safe place so that it cannot change.

Ensuring that the segment descriptors have not changed between the time a pointer is
validated and the time it is used may require suspending interrupts and stopping all other
processors (on multiprocessor systems) during the interval. This is rarely a feasible option,
although suspending interrupts on a single-processor system for a brief period by using the
delayed validation approach is possible.

Despite its drawbacks, explicit pointer validation is the only type of hardware assist provided
on most machines. Through various techniques (based largely on programming and calling
sequence conventions), operating system software does the best it can to ensure that the
validation information has not changed. From a security standpoint, perhaps our biggest concern
with this technique—as with any technique that requires explicit software action—is the
possibility that security holes will remain as a result of overlooked or incorrect checks.

Implicit Pointer Validation

The implicit pointer validation mechanism requires little or no software assist and avoids
most of the asynchronous change problems of pointer validation. The hardware automatically
validates every pointer at the time of use. In order to be efficient, the hardware validation cannot
require extra machine cycles, since the vast majority of pointers need no validation. Aside from
the obvious benefit of avoiding software errors, a major advantage of this mechanism is that the
programmer of an inner-ring procedure need not worry about the origin of the pointer.

Automatic pointer validation requires that the pointer contain a field indicating the ring
number of its origin:

This ring number is inseparable from the pointer, staying with it as the pointer is passed between
procedures. When a program finally uses the pointer as an indirect reference, hardware computes
access rights to the target location based on the ring number in the pointer rather than on the
current ring of execution.

Refer again to figure 8-7, where procedure B in ring 4 calls procedure D in ring 2. If B passes
a pointer to D, the pointer looks like this.

indicating that the pointer originated in ring 4. The pointer might get copied from place to place
in ring 2 prior to use; if so, the ring number, of 4 is preserved during copies. When procedure G
makes an indirect reference through the pointer, hardware will validate access to the target based

POINTER: RING VIRTUAL ADDRESS

POINTER: RING = 4 VIRTUAL ADDRESS

 95

on the effective ring number 4, rather than on the current ring; number 2. Pointers originating in
ring 2 have a ring number of 2 and the effective ring for them is 2, correctly validating the
pointer with, respect to the current ring. In both cases, the programmer of procedure G has done
nothing to assist validation.

Since ring 4 constructs the pointer, it is possible for procedure B to lie about the origin of the
pointer and insert a 2 in the RING field. This deception must be prevented by checking the RING
number in the pointer at the time it is first copied into ring 2. Hardware assist to prevent this
form of attack is a special copy_pointer instruction that operates much as any other data
copying instruction does, but performs an additional validation on the ring field to ensure that its
value is no less than the ring of the segment from which the pointer is copied. By using
copy_pointer for all pointer copying, software can safely pass the pointer through several
rings.

The purpose of copy_pointer is not just to save a little software checking: an important
additional benefit is that the pointer need not be copied into the inner ring by the gate procedure;
it can be copied at any later time. The gate procedure need not know anything about the intended
use of the arguments, and the procedure that uses the pointer and does the copy need not know
where the pointer originated, thereby fostering clean software layering.

But procedures do not always have a reason to copy pointers into an inner ring prior to use,
so an additional mechanism exists to allow the pointer to be validated at the time of use even
while still residing in the outer ring. During address calculation, hardware sets the effective ring
number to the maximum of the RING field of the pointer and the ring of the segment in which
the pointer is located. In this way a pointer can remain in ring 4, and a ring 2 procedure can make
an indirect reference through that pointer with assurance that access will be computed relative to
ring 4.

While the pointer validation mechanism discussed here is unique to Multics, it demonstrates
the possibility of freeing software from any concern about the origin of pointers and attendant
access checks in most cases.

Extension to Nonhierarchical Domains (Capabilities)

Our discussions about pointer validation, though based in the context of a ring architecture, apply
equally to all hierarchical domain architectures. Architectures with two domains do not need as
complicated a mechanism as architectures with four or more domains, because the solutions do
not have to be as general.

With nonhierarchical domains, solutions to argument validation are difficult and complex.
Nonhierarchical domains provide greater flexibility for support of mutually suspicious
subsystems (a topic covered more fully in section 11.3) than do ring-based systems, although
proposals have been made for using rings in such systems (Schroeder 1972). The main problem
is that, when domains are not hierarchical, hardware has no simple “greater than” relationship to
use in comparing the relative access rights of two domains. Controlled sharing between mutually

 96

suspicious domains means preventing each domain from accessing the memory of others, while
allowing domains to pass selected pointers to each other’s memory.

When the domains are nonhierarchical, this in effect requires that hardware implement the
concept of an object, where a primitive object is indicated by a special kind of pointer that
identifies a range of consecutive virtual memory locations. A domain that receives a pointer to an
object as an argument from another domain cannot modify that pointer and cannot reference
words outside the range of the pointer. A domain cannot construct a pointer to anything outside
its address space. A pointer that identifies an object is called a capability because the domain that
possesses the pointer has the capability to access the object. Capabilities can be passed freely
between domains. Designs based on such concepts are given such names as object-oriented
architectures, domain machines, and capability machines.

There are two common ways for hardware to manage capabilities. One is to store all
capabilities in special areas of memory that are directly accessible only to privileged programs or
to the hardware. This approach is always used in systems that implement capabilities in software,
but is also used in some hardware architectures. Another, more flexible approach uses tagged
memory, whereby each word of memory contains an extra bit that indicates whether the word
contains a capability or simple data. In both cases, moving a capability from place to place
requires special instructions or system calls.

Several commercial hardware architectures are based on capabilities. These include the Intel
iAPX 432 microprocessor and the midrange IBM System/38.

8.5 INPUT/OUTPUT ACCESS CONTROL

Among the functions of a typical large operating system, input/output tends to be the most
complex. While the hardware to support processes, memory management, and domains is geared
toward the convenience of the programmer, hardware support for input and output seems to work
against any programmer concerned with implementing an easy-to-understand I/O system. People
who search for security holes in an operating system look first at the I/O area, because hardware
rarely, if ever, provides any assistance for secure I/O. The design goals for the hardware that
supports I/O in most large machines are geared toward cost and performance, not security. The
hardware is replete with idiosyncrasies that frustrate attempts to implement a well-structured
secure interface to I/O functions.

Almost universally, I/O is a privileged operation that can be carried out only by the operating
system. All operating systems provide high level system calls to read and write files; in these
procedures, the user need exercise no control over the details of the I/O operation. Some systems,
to enhance flexibility and performance, enable the user to specify many details and may even
allow the user to write channel programs (lists of instructions executed by I/O controllers).
While this flexibility makes it appear as if the user has direct control over the I/O device, the
operating system must carry out many complex internal checks to ensure that the requested
operations in the channel program are secure. Operating systems based on IBM’s 370
architecture are representative of this approach.

 97

Operating systems could be far simpler if they did not have to mediate all I/O operations. The
Multics structure, in which files are mapped into virtual memory segments, avoids the need to
perform explicit I/O for file access, but it does not eliminate the need for operating system-
supported I/O for terminals, tapes, printers, and foreign (non-file-system) disks. Operating
systems must carry out much of the same I/O on their own behalf: they must access their own
system disks and tapes to keep the system running. But in principle, the operating system need
not play a part in providing or controlling access to devices that are owned by a single user or
process. With the proper hardware support, complete control over these devices could be
relegated to applications programs outside of the operating system.

From an access control perspective, a generic I/O instruction issued by a process involves
identifying the following items:

1. The I/O device
2. The affected medium or portion of medium (which particular tape reel, disk pack, or

sector of disk)
3. The locations in memory of the buffers involved in the data transfer
4. The locations where device status information will be stored and where commands to the

device will be obtained

Regardless of their complexity, access requirements of I/O operations can be decomposed into
some combination of these four primitive elements.

Hardware security support for memory management concentrates solely on processor-to-
memory access (shown. on the right side of figure 8-8). When I/O is included, several additional
information paths appear: device-to-medium, device-to-memory, and processor-to-device.
Access control decisions for these interfaces must be based on the identity of the subject
(process) on behalf of whom the device of processor is operating, and on the object (area of
memory or medium) that is affected.

I/O operations initiated by the processor include both control operations to the device
(sending commands, reading status) and requests for data transfers to or from the medium. Some
control operations, such as “rewind tape,” do not require a data transfer; others, such as “write
end-of-file” and “erase disk block,” clearly do. Certain status conditions may indirectly reveal
information about contents of data on the medium (“parity error,” “byte count”), while other
status conditions either are unpredictable hardware conditions or reveal information about the
state of the device controller and are not a function of the data on the medium. For security
purposes, control operations that influence or are influenced by the medium must be viewed as if
they were write or read data transfer operations. A pure control operation is one that involves no
data transfer as a side effect.

 98

Figure 8-8. Access Paths for I/O and the CPU. The processor and the device operate
on behalf of subjects (processes) that access the objects (the memory and the
medium). The device and processor may also access each other as objects. In general,
information flows in both directions along all four paths. Multiple processors and devices
may operate on behalf of different subjects, accessing different areas of memory and
media.

Looking again at figure 8-8, we can view a “rewind tape” operation issued by the processor
as a write from the processor to the device, possibly followed by a write from the device to the
processor or to memory to return the status of “rewind done.” A “read data” operation requires
several steps:

1. Processor sends “read” command to device.
2. Device reads additional command information from memory (location of buffer, number

of words, and so on).
3. Device reads data from medium.
4. Device writes data to memory.
5. Device sends status to processor.

Step 1 illustrates why all I/O operations must be viewed as “writes” to the device—even
those that only read data from the medium or status from the device.

Figure 8-8 is the most general view of the access paths for I/O. Where the device or the
medium is outside the system or security perimeter, the device may be indistinguishable from the
medium, from a security standpoint: reads and writes to the device must be controlled in exactly
the same manner as reads and writes to the medium are. For example, if the device is an
intelligent controller managing a number of disk drives whose firmware is user-supplied and not
under the control of the operating system, the operating system can only control the commands
and data that are written to the controller—not what the controller writes to the individual drives.
Terminals are devices that commonly fall under full user control: sending a command to a
terminal is tantamount to displaying it to the user; anything the processor receives from a
terminal must be treated as if the user entered it. On the other hand, if a controller and the disk
drives it manages can be trusted to carry out requests of the operating system, the controller
effectively becomes part of the operating system (within the security perimeter), and data
transfer to the disk packs—not to the controller—is the important security concern.

MEDIUM

DEVICE

PROCESSOR

MEMORY

read & write medium read & write memory

send commands
return status

send commands
return status

read & write memory

 99

The simplest view of I/O access control treats both the device and the medium as one object,
as if both were outside the security perimeter. Since all I/O operations are data transfers to and
from the device, a process carrying out I/O must have both read and write access to the device. In
figure 8-8, this means that the device-to-medium path can be collapsed, and that the processor-
to-device path is always bidirectional.

Devices in figure 8-8 can also be viewed as autonomous subjects that are trusted to read and
write memory in a manner specified by the processor. (Trusted subjects are discussed in section
10.5.) Such a view mostly affects the security model of the system (a topic covered in chapter 9,
where subjects and objects are enumerated), rather than the hardware architecture. Some
techniques however—particularly the fully mapped technique, covered in section 8.5.4—permit
a device to be treated as an untrusted subject.

From an access control perspective, hardware can support I/O in four ways (from simplest to
most complex):

• Programmed
• Unmapped
• Premapped
• Fully mapped

Programmed I/O is synchronous, in that the processor is in direct control of every word of data
transferred to or from the I/O device. The other three types of hardware support are varieties of
DMA (direct memory access) I/O, whereby the processor tells the controller to begin a lengthy
I/O operation (such as reading one or more blocks of disk), and the controller carries out the
operation autonomously and asynchronously from the processor. Each of these four support
systems has different implications for hardware access control. Much of the discussion that
follows echoes aspects of the SCOMP design. Multics has no hardware support for I/O mediation.

8.5.1 Programmed I/O

Programmed I/O was the only type available before I/O controllers became intelligent enough to
operate autonomously (without the help of the processor). Under programmed I/O, software
loads a register with a word of data to be transferred and executes an I/O instruction with an
argument naming the device. Later, when the transfer is complete, the processor receives an
interrupt (or alternatively, software periodically scans a status register). Even today, programmed
I/O is often used for slow-speed devices such as terminals, especially on microprocessors that
perform only one function at a time and can afford to dedicate the processor to terminal I/O.

Because I/O is carried out through a processor register, no device-to-memory path is
involved in the transfer. The only security concern is whether the process making the request has
access to the I/O device. A straightforward way to support device access is to use a device
descriptor table, which maps a virtual device name into a physical device name, much as a
virtual address is mapped onto a physical address (fig. 8-9). The device descriptor contains
information similar to the segment descriptor:

 100

Instead of using the execute mode for memory access, we have a control mode that specifies
whether the process can carry out a control operation.

If you intend to implement a pure control mode in order to allow a process to manipulate the
device without affecting the medium, you have to be careful to define control operations in a
way that cannot confuse another process sharing the device. For example, a process that has been
given only control access can secretly backspace a tape and cause another process to write
information onto the wrong place on the tape.

Some device characteristics can be changed quite drastically through a control operation,
making it impossible to isolate the actions of one process from those of another that shares the
device. Systems that support such operations might use the control access mode as a privileged
mode of access rather than as a restricted mode.

Figure 8-9. Mapping Device Names. A virtual device name is mapped by hardware
into a physical device name. If the device is in the process’s device descriptor table, the
process has access to the device.

8.5.2 Unmapped I/O

Unmapped I/O is by far the most common type of direct memory access I/O: software sends the
device an I/O command that specifies the physical location of a buffer in memory. The device
acts as a trusted subject and is allowed to read or write physical memory. It is trusted to execute
the command correctly.

Since user programs do not deal with physical addresses, unmapped I/O can be initiated only
by the operating system. The operating system must translate virtual buffer addresses supplied by
the user) into physical addresses. Although hardware could provide a translation for virtual
device names, as described above for programmed I/O, such a translation does not relieve the
operating system of having to validate and carry out the I/O request.

DEVICE DESCRIPTOR: R W C PHYSICAL DEVICE ADDRESS

VIRTUAL DEVICE ADDRESS

phys dev 3
phys dev 6
phys dev 0
phys dev 9
phys dev 4

0
1
2
3
4

DEVICE DESCRIPTOR
TABLE

 101

8.5.3 Premapped I/O

Also called virtual I/O, premapped I/O allows software to specify virtual buffer addresses.
When the I/O instruction is issued, the processor translates these virtual addresses into physical
addresses, using the descriptor tables and mapping registers of the current process; the processor
then passes the resulting physical address to the device. During the translation, the processor
checks whether the process has the correct access permission to the locations to be read or
written. From the device’s point of view, I/O is physical (the device never sees a virtual address);
but from the process’s point of view, the I/O is virtual and access control is enforced by
hardware. As in unmapped I/O, the device must be trusted to access only the desired locations in
memory.

Even if hardware does support virtual I/O, user programs may not be able to issue I/O
instructions without operating system intervention. A mechanism is needed to prevent the
operating system from unknowingly reassigning (for example, through swapping) the affected
pages of memory while user-initiated I/O is in progress. Mechanisms designed to inform the
operating system that DMA I/O is in progress are complex and are rarely seen. The virtualization
frees the operating system from the chore of performing address translation and access control-
but not from the task of managing and keeping track of the I/O operations. The SCOMP comes
close to allowing user-initiated virtual I/O by providing (through a combination of hardware and
software) primitives that specify when pages should be wired down in memory, and by ensuring
that I/O can only take place in pages that have been previously wired.

8.5.4 Fully Mapped I/O

With premapped I/O, the initial translation of the virtual buffer address to the physical address,
together with the associated access check, provides sufficient protection as long as the I/O
controller is a trusted subject that references only the intended physical addresses and obeys the
read/write restrictions that the processor has previously checked. But some I/O controllers are
very complex: some are even microprogrammed with firmware downline-loaded from memory.
In highly secure systems, it may be improper to assign such a high level of trust to hardware and
firmware that are relatively uncontrollable. It is definitely improper to do so if the device itself is
outside the security; perimeter, as when the device resides remotely in a user-controlled area.

A much safer form of virtual I/O consists of hardware carrying out a virtual-to-physical
translation on each memory reference made by the device. The device acts as an untrusted
subject (possibly even containing a Trojan horse), presenting only virtual addresses as it reads or
stores information in memory; translation hardware within the security perimeter does the
mapping and access checks. The translation hardware uses the same memory descriptors that
belong to the process initiating the I/Q. Because the translation and the access check are made on
each word transferred, there is no security problem if the operating system reallocates memory
during the I/O operation (although the I/O operation is likely to abort with an error if a page fault
is encountered while I/O is in progress).

Fully mapped I/O is not a simple enhancement of the premapped approach. Because I/O is
asynchronous, a virtual address presented by an I/O device may not necessarily lie within the

 102

address space of the currently running process. While the I/O device is operating on behalf of
one process, the processor may be operating on behalf of another. Complex address translation
hardware is required to keep track of all processes for which I/O is in progress, so that the proper
descriptors can be fetched from memory during address translation. In effect, each I/O device
must be treated as a separate processor with its own descriptor tables. Translating every address
during high-speed operations that cannot be stalled also has performance implications: unless all
descriptors in the translation path are cached, a translation requiring a fetch of multiple
descriptors from memory may not be able to keep up with the I/O.

Finally—though it is not a security concern here, as it is for premapped I/O—the operating
system must know when I/O to a given page of memory is in progress, in order to avoid a page
fault during I/O. Thus, primitives to wire pages are still needed.

8.6 MULTIPROCESSOR SUPPORT

A multiprocessor system, in which a number of processors share the same physical memory and
run different processes, introduces a host of complexities. Most of these complexities revolve
around the issue of consistent maintenance of shared information, such as descriptor tables that
might be modified at any time during execution of a process. Software is responsible for
handling most of these problems. Hardware helps only by providing a primitive locking
mechanism for communication between processors, using “read-alter-rewrite” or “test-and-set”
instructions that read and write locations in a single indivisible operation. (Such instructions also
simplify interprocess communication on a single-processor system.) Few of these problems are
unique to security, but support by hardware can improve the performance of certain security-
related operations.

Memory management, already very complex, becomes even more so with multiple
processors. These complexities center on descriptor cache management. Each processor usually
has its own memory descriptor cache. When one processor modifies a descriptor in memory or in
its own cache, the other processors must be told to invalidate their copies and to fetch a new
copy from memory. A simple mechanism that accomplishes this is an interprocessor signal
(initiated by software) that forces all processors to purge all descriptors whenever a descriptor is
changed. While a total cache purge is often used on single-processor systems, such purges can
cause serious performance problems on large systems where each user operates several processes
and where descriptors get changed very frequently. (Consider that a descriptor is invalidated
each time a page fault is processed.) A much better (but complex) approach is a mechanism that
invalidates only the descriptor that is changed. The logically simplest approach (which,
unfortunately, is usually impractical from the standpoint of hardware implementation) is to
implement a single descriptor cache shared by all processors; this is also the most secure
approach because it minimizes the chance for error caused by flawed coordination mechanisms.

We have already discussed the problem of argument validation, where the information on
which the validation is based can change between the check and the use of the argument. This
problem is far worse on a multiprocessor system because it is not feasible, without a severe
performance impact, for one processor to disable interrupts or instances of process switching on
other processors for extended periods of time during critical sections of code.

 103

Vendors often build computers first as single-processor systems and enhance them later to
support multiple processors. If multiple-processor support is not considered during the original
hardware design, such enhancement is very painful and introduces a host of software
incompatibilities. Likewise, even with the best hardware support, enhancing an operating system
designed for a single processor to fit a multiprocessor operating system usually requires major
software modifications. Even the best security architecture is not likely to survive such a
hardware/software overhaul. Needless to say, the best time to consider; multiprocessor support in
a system is during the initial system design, when the hooks for multiprocessor support cost
relatively little.

There has been considerable interest, but few practical results, in efforts to prove the
correctness or security of multiprocessor systems. Verification and formal modeling techniques
(subjects of chapters 9 and 12) typically model a system as a single “state machine” with single
thread or execution; consequently, they are not strictly suitable for multiprocessor systems. But
given that the current state of the art of program verification does not permit a full formal proof
of even single-processor systems, the additional uncertainty introduced by multiple processors is
not significant. Multiprocessor handling is best addressed informally as part of implementation
correspondence (see section 12.8).

REFERENCES

Fraim, L. J. 1983. “SCOMP: A Solution to the Multilevel Security Problem.” Computer
16(7):26-34. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp.
185-92. Dedham, Mass.: Artech House (1984).
A minicomputer-based security kernel with sophisticated hardware protection controls; this
system is a Honeywell product.

Organick, E. I. 1972. The Multics System: An Examination of Its Structure. Cambridge, Mass.:
MIT Press.
A description of Multics—at that time implemented on a processor without hardware-
supported protection rings.

Parker, T. 1981. “ICL Efforts in Computer Security.” In Proceedings of the 4th Seminar on the
DoD Computer Security Initiative, pp. L1-L22. Gaithersburg, Md.: National Bureau of
Standards.
Describes the ICL 2900 machine and the VME/B operating system, supporting sixteen
protection rings.

Schroeder, M. D. 1972. “Cooperation of Mutually Suspicious Subsystems in a Computer
Utility.” Ph.D. dissertation, MIT. Project MAC Report #MAC TR-104. DARPA Order
#2095. (Also available through National Technical Information Service, Springfield, Va.,
NTIS AD-750173.)
Discusses mutually suspicious subsystems and proposes a way to use the Multics ring-based
architecture to support them.

Schroeder, M. D., and Saltzer, J. H. 1972. “A Hardware Architecture for Implementing
Protection Rings.” Communications of the ACM 15(3):157-70.
A thorough discussion of protection rings, domain-crossing mechanisms, and argument
validation as used in Multics.

 104

Tangney, J. D. 1978. “Minicomputer Architectures for Effective Security Kernel
Implementations.” ESD-TR-78-170. Hanscom AFB, Mass.: Air Force Electronic Systems
Division. (Also available through National Technical Information Service, Springfield, Va.,
NTIS AD-A059449.)
Discusses hardware protection features that are suitable for a secure operating system (such
as a security kernel).

 105

 Chapter 9

Security Models

Success in achieving a high degree of security in a system depends on the degree of care put into
designing and implementing the security controls. But even the most careful application of the
best software engineering practices is inadequate unless you clearly understand the system’s
security requirements. The purpose of a security model is to express those requirements
precisely.

A security model has several properties:

• It is precise and unambiguous.
• It is simple and abstract, and therefore easy to comprehend.
• It is generic: it deals with security properties only and does not unduly constrain the

functions of the system or its implementation.
• It is an obvious representation of the security policy.

For high-security systems, especially those based on a security kernel, the requirement for
precision is satisfied by writing the model in a formal mathematical notation. However, the
concept of modeling a system does not require the use of mathematical techniques. Even for
medium-grade security, if your goal is to modify an existing system to improve its security.
properties, writing a natural-language model can be well worth your while.

The property of simplicity is satisfied by modeling only the security properties of a system,
and not the functions. It is important to avoid the tendency to turn the model into a formal
specification (a topic of chapter 12) by including too many functional properties of the system
that are irrelevant to the security policy.

9.1 ROLE OF A SECURITY MODEL

There are two reasons why a system may not be as secure as expected: there is a bug in the
security controls; or the definition of what it means to be secure is flawed. The first problem is
one of software reliability and is overcome by good software engineering in conjunction with the
design techniques and principles specific to security that are discussed throughout this book.
Chapter 12 covers formal specification techniques that, in part, address software reliability.

 106

The second problem—defining what you want the system to do—is not a particularly hard
problem for most systems, but it is relatively difficult for security because the definition must be
much more precise. The security model plays a pivotal role in the formal system development
path illustrated in figure 9-1. Figure 9-2 explores several ways to carry out the formal
development path. The goal of each of these options is to demonstrate, to varying degrees of
assurance, that the implementation corresponds to the model.

Paths (a) and (b) do not involve any formal work beyond the definition of the model. Path (a)
assumes that you have developed a formal or informal model but have no additional specification
of the security properties from which to implement the system. (This does not imply that you
have no specification at all: it is assumed that you have a functional specification, but that the
specification does not specifically elaborate on the security requirements expressed in the
model.) In path (b), you have an informal specification of the security properties as an
intermediate step between the model and the implementation. Both paths require informal
arguments and testing to support the correspondence argument.

Because of the huge jump in level of detail between the model and the implementation, the
correspondence argument in path (a) is very tenuous. Consequently, the model is of dubious
value. Path (b), on the other hand, permits you to make a far more credible correspondence
argument. In particular, you can use the informal specification in path (b) as a basis for designing
and implementing the system, just as you would use any functional specification.

Figure 9-1. System Development Paths. The abstract security model is the first step
in the formal development path that corresponds to the informal security requirements
phase.

Implementation Implementation

(testing) (proof)

Functional Specification Formal Specification

(demonstration) (proof)

Security Requirements Abstract Model

Informal Development Path Formal Development Path

This
Chapter

 107

Figure 9-2. Model Correspondence Alternatives. As we add more intermediate levels
of formal specification between the model and the implementation, and as we carry out
proofs between the more formal levels, the overall assurance of the system increases.
The specifications referred to in this figure represent specifications of security properties
not specifications of functional properties.

Paths (c) and (d) employ formal specifications and proofs, and both require a formal model.
Path (c) uses a single formal specification in place of (or in addition to) the informal
specification in path (b). The formal specification incorporates the same level of detail as the
informal specification in path (b), but it is far more precise and unambiguous. The formality of
the specification provides the basis for a mathematical proof that the specification corresponds to
the model. While the correspondence argument between the implementation and the formal
specification remains informal, as in path (b), the argument can be much more precise.

Path (c) significantly raises the level of assurance over path (b). Nonetheless, a large gap
remains between the levels of abstraction of the formal specification in path (c) and of the
implementation. Path (d) shows two or more levels of formal specification between the
implementation and the model, thereby reducing the gaps that must be filled by informal
justification. The state of the art in verification today does not permit us to eliminate the informal
argument between the implementation level and the lowest level of formal specification, and this
informal step remains the weakest link in the overall model-to-implementation correspondence
argument.

The benefit of additional levels of specification beyond the top begins to diminish rapidly.
Too many levels can even reduce the degree of confidence in the correspondence, because the
large number of intermediate proofs increases the probability of error. Even the best automated
verification systems cannot eliminate all sources of human error. Incorporating many levels of
specification also significantly increases the maintenance costs of the specifications and
intermediate proofs, as the system undergoes revisions.

The precise meaning of levels of specification in figure 9-2(d) is addressed more thoroughly
in chapter 12, where we cover paths (c) and (d) and formal proofs. In this chapter, we are

IMPLEMENTATION

INFORMAL or
FORMAL MODEL

Argument/Testing

(a) No Specification
IMPLEMENTATION

INFORMAL or
FORMAL MODEL

INFORMAL SPEC

Argument/Testing

Argument

(b) Informal Specification

IMPLEMENTATION

FORMAL MODEL

FORMAL SPEC

Argument/Testing

Proof

(c) Formal Specification

IMPLEMENTATION

FORMAL MODEL

LOW-LEVEL SPEC

TOP-LEVEL SPEC

Argument/Testing

Proof

Proof

(d) Multiple Spec. Levels

 108

concerned primarily with the development of the model used in all paths and in the informal
correspondence arguments of paths (a) and (b).

9.2 PRACTICAL APPLICATIONS Of A MODEL

People shy away from modeling because of its abstract nature, and many have a difficult time
appreciating its relevance to a real system. Indeed, it is all too easy to get carried away with
modeling details and mathematical formalism to the point where the model does not help you to
design the system. This chapter explains how to develop a model and how to prove that it is a
reasonable description of your security requirements; it also tells you how to apply the model to
the system development process.

9.2.1 Security Model as a Security Specification

When you write a functional specification early in the life cycle of a system, you usually have
not done enough detailed design to specify every possible aspect of the system’s behavior. In
fact, if you write a highly detailed functional specification at this point to cover all unusual error
conditions, you will unnecessarily constrain the design. A functional specification should leave
the designers free to define for themselves the course of action to be taken in the numerous
“don’t care” conditions that will be identified as the design progresses. The functional
specification inmost useful in describing the particular aspects of the system that are needed to
satisfy the obvious requirements of the system. When the system is completed, chances are that
the designers will have exercised reasonable judgment, and that the course of action taken for all
the “don’t cares” will not violate the spirit or unwritten intent of the specification.

But the specification of a secure system cannot leave certain things to chance. Despite good
intentions and knowledgeable designers, subtle security flaws such as covert channels can show
up at any spot where the functional specification. has left a loophole. A functional specification
for a secure system need not cover every function in excruciating detail, but wherever detail is
omitted the specification must constrain the possible designs so that the system cannot
simultaneously meet the specification and violate the intent of the security policy.

Most of us are not accustomed to writing functional specifications with the degree of
precision necessary to close all security loopholes. A security model can help. Used as an adjunct
to the functional specification, the model constrains the design to meet the security requirements
without constraining the functions. Because the model must be proved or demonstrated to obey
the security properties derived from the security policy, a system implemented in accordance
with the model (subject to the vagaries of proving that accordance) will have no security flaws.
The functional specification continues to serve as a guide to the functions of the system, and the
security model serves as a guide to the security-relevant behavior of the functions.

9.2.2 When Is a Model Useful?

It is unfair to imply that the only good way to specify the security properties of a system is to use
a mathematical model—or any modeling technique at all. Modeling requires considerable effort
and is worth doing only if you have the freedom and resources to carry out one of the

 109

correspondence paths in figure 9-2 fully and properly. If your system is already built and your
job is to make major add-on enhancements, an informal natural-language model is probably
adequate for your needs. If you only have the chance to make a few changes here and there to an
existing system (“closing the holes”), you cannot do much to improve security of the system
anyway, and modeling is probably fruitless. Although this chapter focuses on mathematical
models, the process of developing an informal model is conceptually the same.

Fortunately for many organizations, using a model is not synonymous with developing one.
A few security models exist that are sufficiently generic to be tailored to many systems with
minimal alteration. The Bell and La Padula model discussed in section 9.5.3 has been used
repeatedly for security-kernel-based systems.

9.3 TYPES OF SECURITY MODELS

Security models are not easy to classify because models tend to differ markedly from one
another. While people talk about modeling as a general concept, only a handful of security
models have had widespread exposure (Landwehr 1981; Millen and Cerniglia 1984, and even
fewer have been applied to real systems. Nonetheless, certain characteristics are common to this
handful. Do not be discouraged by the relatively small number of different models: this is due
not to a problem with the concept of modeling, but to the widespread applicability of the few
existing models.

A state-machine model describes a system as an abstract mathematical state machine; in such
a model, state variables represent the state of the machine, and transition functions or rules of
operation describe how the variables change. Most of the models described in this book are of
the state-machine type. The idea of modeling a system as a state machine is quite old, but state-
machine models have not played a leading role in software development because modeling all
possible state variables of an operating system is infeasible. The security model deals only with
the most prominent security-relevant state variables, and so is far simpler than a complete state-
machine model of a system.

The access matrix model (Harrison, Ruzzo, and Ullman 1976) is a state-machine model that
represents the security state of the system as a large rectangular array containing one row per
subject in the system and one column per subject and object (fig. 9-3). The entry in each position
of the array specifies the modes of access each subject has to each object or other subject. This
access matrix is one of several state variables of the state-machine model. The transition
functions of the model describe how changes to the access matrix and to other variables take
place.

Another common way to describe the security state of the system is in terms of security
attributes of subjects and objects. The access modes that a subject has to an object are
determined by comparing their security attributes, rather than by looking them up in a matrix. A
model may use both an access matrix and security attributes. All such models based on subject-
to-object access might be termed access models.

 110

Figure 9-3. Access Matrix. The intersection of a row and a column specifies a
subject’s modes of access to an object or to another subject. Allowed modes of access
are read, write, and execute to objects and send to another subject.

A variant on the access model is the information flow model (Denning 1983), which—rather
than checking a subject’s access to an object—attempts to control the transfer of information
from one object into another object, constrained according to the two objects’ security attributes.
The difference between flow models and access models (which we will discuss later in this
chapter) may seem rather subtle, but its most practical effect is that access models do not help
you find covert channels, whereas flow models do so nicely.

Another type of model that has recently been developed is the non-interference model, where
subjects operating in different domains are prevented from affecting one another in a way that
violates the system’s security properties (Goguen and Meseguer 1982). This model is still
undergoing development as it is being applied by Honeywell in the Secure Ada Target research
project (Boebert et al. 1985; Haigh and Young 1986).

9.4 CHARACTERISTICS OF A SECURITY MODEL

People often have a hard time understanding the difference between a model of a system and a
description or specification (such as a formal specification) of the system. When developing a
model for a specific system, it is all too easy to get lost in detail, and the result is a model that
does not serve its purpose.

The primary characteristic of a good model is that it is easy to comprehend. It should be
possible to describe, in natural language, all the important aspects of the model. in a very few
pages, or to explain it in a few minutes. Of course, the precise mathematical version of the model
might be difficult for a non-mathematician to follow, but any person trained in the notation
should be able to understand it easily.

The model must be simple because it is a restatement, in mathematical terms, of the security
properties you want your system to obey. If the restatement is not obvious, you will have a hard
time convincing anyone that the model reflects the intended policy. There is no way to prove
mathematically that a policy written in natural language corresponds to the model, so
“convincing argument” is the best we can do. If you look at the most popular models for
security, their correspondence to the real-world policy will be patently obvious.

read
write

read
write

read
execute

read
write

read

execute

send

send
Object 1 Object 2 Object 3 Subject 1 Subject 2 Subject 3

Subject 3

Subject 2

Subject 1

OBJECTS SUBJECTS

 111

On the other hand, the model will likely have a number of characteristics whose purpose is
not obvious. Because a model tries to be mathematically perfect (complete and consistent) in
defining the properties that represent the policy, it often calls for the inclusion of restrictions or
additional properties that were not originally intended. For example, suppose you were to model
multilevel security that controls disclosure of information. As we have seen in section 6.4, such a
model would have to include restrictions on writing, as well as reading, information. Without the
write restriction, the model might not be strong enough to prevent someone from circumventing
the read restriction that is the primary goal of the policy.

9.5 STATE-MACHINE MODELS

State-machine models were originally favored because they represent a computer system in a
way that mimics the execution of an operating system and hardware. A state variable is an
abstraction for each of the bits and bytes in the system that change as the system is running.
Thus, every word in memory, on disk, or in registers is a state variable. The state transition
functions are abstractions of system calls into the operating system that describe exactly how the
state can and cannot change. While other promising techniques to modeling do exist, as
discussed in section 9.3, the state machine concept is so pervasive that everyone doing modeling
work should understand it.

A security model does not deal with all state variables and functions of the system. It is up to
you to choose the security-relevant variables and functions to be modeled.

Developing a state-machine security model involves specifying the elements of the model
(variables, functions, rules, and so on), along with a secure initial state. Once you have proved
that the initial state is secure and that all the functions are secure, mathematical induction tells
you that if the system begins in a secure state, the system will remain in a secure state, regardless
of the order in which the functions are invoked.

The following specific steps are involved in developing a state machine model:

1. Define the security-relevant state variables. Typically, the state variables represent the
subjects and objects of the system, their security attributes, and access rights between
subjects and objects.

2. Define the conditions for a secure state. This definition is an invariant that expresses
relationships between values of the state variables that must always be maintained during
state transitions.

3. Define state transition functions. These functions describe changes to state variables that
may take place. They are also called rules of operation because their purpose is to
constrain the types of changes that the system may make, rather than to specify all
possible changes. The rules may be very general and may allow functions that your
system does not have; however, your system cannot modify the state variables in a way
that the functions do not allow.

4. Prove that the functions maintain the secure state. To make sure that the model is
consistent with the definition of the secure state, you must prove for each function that if

 112

the system is in a secure state prior to the operation, the system will remain in a secure
state after the operation.

5. Define the initial state. Pick a value for each of the state variables that models how the
system starts out in an initially secure state.

6. Prove that the initial state is secure in terms of the definition of the secure state (step 2).

The above description may seem a bit abstract for those accustomed to writing computer

programs and not mathematical descriptions of programs. Section 9.5.1 describes, step by step,
how a security policy is translated into a complete model, using a simple example of multilevel
security that resembles (but is definitely not) the Bell and La Padula model (discussed in section
9.5.3). We shall discuss how the model is proved to satisfy the secure state invariant, after which
we shall consider some additional constraints that the model may have to satisfy (and that are not
listed in the above steps).

9.5.1 Example of a State-Machine Model

Consider the following real-world security policy:

Policy: A person may read a document only if the person’s clearance is greater than or
equal to the classification of the document.

This policy is a simplified statement of the military security policy discussed in section 6.4. 1.
Our goal is to develop a model for a computer system that enforces the intent of this policy. For
now we shall assume that there are no other rules in the policy.

We must first develop some computer abstractions of the elements of the policy, restating the
policy in terms of those abstractions. We shall make the following substitutions:

 Real-world Item Computer-world Abstraction

 person subject
 document object
 clearance access class
 classification access class

The resulting translation of the policy is as follows:

Property (a): A subject may read an object only if the access class of the subject is
greater than or equal to the access class of the object.

Equating both clearance and classification with access class is valid only because we know that
both have identical structures and interpretations (as was discussed in section 6.4). Instead of
using subject and object, we could have said process and file, but these words have a fairly
specific connotation in the computer world, and their use would unnecessarily restrict the ways
in which person and document are represented. Some models do use more specific terms when
the real-world policy has different rules for different types of objects.

 113

Although the abstractions we have made are valid, property (a) does not guarantee the intent
of the original policy. As was noted in section 6.4.4, there has to be a corresponding write-down
(confinement property) restriction:

Property (b): A subject may write an object only if the access class of the object is
greater than or equal to the access class of the subject.

This property is more constraining than the real-world policy because people can write
documents at lower access classes.

STEP 1. DEFINE THE STATE VARIABLES

Our state variables correspond to the computer-world abstractions of the policy, plus some
additional variables that we will use in later examples:

 S = set of current subjects
 O = set of current objects
 sclass(s) = access class of subject s
 oclass(o) = access class of object o
 A(s,o) = set of modes, equal to one of:
 {r} if subject s can read object o
 {w} if subject s can write object o
 {r,w} if both read and write
 ∅ if neither read nor write
 contents(o) = contents of object o
 subj = active subject

The symbol ∅ designates the empty set.

The subjects and objects are modeled as members of the sets S and O. The two-dimensional
access array A, which resembles the access matrix in figure 9-3, is but one way to represent all
subjects’ current access rights to all the objects.

We have defined two variables that are not directly mentioned in property (a) or property (b):
contents(o) which represents the state of (the information contents of) each object; and subj,
which is the identity of the subject that is currently active and is invoking the transition
functions. You can think of subj as a variable that is equal to one of the current set of subjects
and that may change to an arbitrary value at any time (thereby modeling the process switching
that takes place in a real system). Since these two variables are not mentioned in the properties,
we might consider them not to be security-relevant; but there are reasons you might want to
include them in the model, as we shall discuss in later examples.

The state of the system at any one time is expressed as a set of values of all the state
variables:

{S,O,sclass,oclass,A,contents,subj}

 114

STEP 2. DEFINE THE SECURE STATE

The definition of the secure state is a mathematical translation of property (a) and property (b)
into an invariant:

 Invariant: The system is secure if and only if, for all s ∈ S, o ∈ O,
 if r ∈ A(s,o), then sclass(s) ≥ oclass(o),
 if w ∈ A(s,o), then oclass(o) ≥ sclass(s).

The notation s ∈ S means “s is contained in set S.”

Although they are straightforward, we cannot prove that our translation and our definitions of
the state variables accurately portray the original policy. It is thus very important that the
properties in the model be so simple and obvious that no one will question their correspondence
to the real-world policy.

Neither the properties nor the invariant says whether any subject can in fact read or write any
object. In other words, all values of A may be null, and the system would still be secure
according to the invariant. A different policy might require certain accesses to be allowed, but in
general security policies do not place any constraints on the usefulness of the system.

STEP 3. DEFINE THE TRANSITION FUNCTIONS

A transition function can be viewed as a procedure call to a system service routine requested by a
subject, where the service desired is a specific change to the state variables. The parameters to
the function are specified by the subject and must be checked by the system for validity before
the system carries out any state change. This system call view of transition functions is a bit
simplistic-since state changes may occur that are not initiated by any subject (for example,
asynchronous events and interrupts)-but the view is adequate for our purposes.

Table 9-1 summarizes the transition functions that we shall discuss in the remainder of this
chapter. The first two will be introduced here, and the remainder will be covered in later
sections.

 1. Create_object (o, c) Create object o at class c.
 2. Set_access (s, o, modes) Set access modes for subject a to object o.
 3. Create / Change_object (o, c) Set class of o to c and create.
 4. Write_object (o, d) Write data d into contents(o).
 5. Copy_object (from, to) Copy contents(from) to contents(to).
 6. Append_data (o, d) Add data d to contents(o)

Table 9-1: Transition Function Examples. Listed are the transition functions used in
our example of a state-machine model.

 115

We define two simple functions: Create_object adds a new object to the set of known
objects; and Set_access changes a subject’s access to an object. In these examples we use the
convention of placing the prime symbol ' in front of a state variable to refer to the new state.
Unprimed variables refer to the value in the old state:

Function 1: Create_object (o,c)
 if o ∉ O
 then 'O = O ∪ {o} and
 'oclass(o) = c and
 for all s ∈ S, 'A(s,o) = ∅.

Function 2. Set_access (s,o, modes)
 if s ∈ S and o ∈ O
 and if {[r ∈ modes and sclass(s) ≥ oclass(o)] or r ∉ modes) and
 {[w ∈ modes and oclass(o) ≥ sclass(s)] or w ∉ modes}
 then 'A(s,o) = modes.

While these functions look like computer programs with mathematical operators, there are
some important differences between the way a computer program is interpreted and the way
these mathematical statements are expressed:

• The purpose of a function is to specify relationships between variables in the previous
state and in the new state. The = sign in a function should be read as a statement of
mathematical equality, and not necessarily as an assignment, even though an assignment
to values in the new state might be implied.

• The function does not imply any specific ordering of statements (or algorithm) for an
operation. It should be viewed as a statement of what has happened to the state when the
operation is completed.

• The function is atomic; that is, its effects are indivisible and uninterruptible. Specified
state changes happen all at once, without the passage of any time “during” a state
transition. This assumption of atomicity becomes important in modeling systems with
multiple processors (see section 8.6). It also means that you have to be careful in
multiprogramming systems (with single processors) not to ignore inadvertently the
effects of asynchronous processes. These issues tend to involve detail in the formal
specification more than in the model, but the conceptual problems are the same.

• Finally, the function is a description of all allowed state transitions. If the new value of a
variable or element of an array is not explicitly forced to change, the value must not
change. Thus, in an expression such as

if cond then ...
if we omit the else clause and do not say what happens when cond is false, there must be
no change to the state.1

1Some formal specification languages assume quite the opposite (see section 12.2).

 116

The Create_object operation adds the requested object as a one element set {o} to the set of
current objects O (if that object is not already in the set) and sets the access class of that object
equal to the requested value. It also sets the object’s column of the access matrix A to null, so
that no subject has access to the object. The Set_access operation sets new access modes in any
element of A, as long as those new modes are consistent with the invariant. In keeping with our
conventions, all other columns of A(s,x), where x ≠ o, remain unchanged.

Notice that both operations allow a subject to have less access to an object than the maximum
permitted by the security properties. We might view the ability to reduce the access modes as a
form of discretionary access control. Our policy says nothing about this discretionary access
control, and therefore places no constraints on restricting access further than is required by the
mandatory rules.

STEP 4. PROVE THE TRANSITION FUNCTIONS

Normally, once convinced that your functions are fairly simple and correct, you would define
most of them before attempting to prove them rigorously. But it is always wise to try to prove the
first few functions just to see if you are on the right track.

For each function, you must prove the following theorem:

Invariant and Function imply 'Invariant.

where the prime symbol signifies that the invariant is being applied to the new state. In other
words, the theorem says that each function must maintain the secure state.

Although we shall not go through the proof here, notice that Create_object would violate the
invariant if it did not initialize to null the column of the access matrix corresponding to the new
object. We could have initialized that column in any of a number of other secure ways, but this
one allows maximum flexibility, since Set_access can later be called to set any access desired.
Most systems in fact set some initial access modes on newly created objects, often to values
specified by the caller. Because we initialized the mode to null, we can model a create function
in our system as a sequence of calls—Create_object, followed by Set_access. Since the system
is proved secure before, between, and after this pair of function calls, a system that carries out
both functions as a single indivisible call is also secure.

STEPS 5 and 6. DEFINE AND PROVE INITIAL STATE

A last but very important item is the initial state. Mathematically, the initial, state is expressed as
a set of initial values of, all the state variables in the system:

{S0,O0,sclass0,oclass0,contents0,subj0}.

In order to prove that this initial state is secure, we have to specify restrictions on these initial
values.

 117

The simplest initial state consistent with the invariant is one without, any objects or subjects:

Initial State (1): S0 = ∅ and O0 = ∅

We do not have to define the initial values of any of the other state variables, since the state is
secure regardless of their values. Eventually of course, we must add to the model a function to
create subjects as well as objects; otherwise, the system would never arrive at a state in which S
≠ ∅.

Another, more realistic secure initial state allows for an initial (arbitrary) set of subjects and
objects, all of the same initial (but arbitrary) access class c0:

Initial State (2): For all s ∈ S0, o ∈ O0
 sclass0(s) = c0
 oclass0(o) = c0
 A0(s,o) = {r,w}

The initial access matrix A0 allows all initial subjects read and write access to all initial
objects. This initial state is very general, because it places no constraints on the number of
subjects and objects; it does, however, require all the subjects and objects to be of the same
access class.

9.5.2 Adding Constraints to State-Machine Access Models

A key element of the philosophy underlying the state-machine models we have discussed so far
is the concept of a secure state, where the definition of security is completely embodied in an
invariant: you can take a snapshot of the system at any time and determine whether the system is
secure based on the invariant, without regard to what happened in previous states. Nonetheless,
an invariant alone does not quite specify all the security properties you may have intended. This
is because security is not only a property of the current state of the system, but a property of
sequences of states. Hence, we need a revised definition of security that covers relationships
between variables in two successive state transitions, as well as within individual states. In this
revised model, though each transition function may obey the invariant, a function may not be
secure because the specific transition from the previous state was not permitted.

Specifying properties about transitions requires adding constraints to the definition of
security in the model. In terms of proof, a constraint is handled just as the invariant is: you must
prove that the constraint is satisfied by each function. A constraint differs from an invariant
because it talks about the relationships between values in two consecutive states-before and after
each transition function.

 118

Constraints on transitions are needed for several reasons:

• Nonsecure transitions: the old and new values of variables must maintain a “secure”
relationship (as we shall see below).

• Controls on subjects: subjects should not be allowed to invoke certain operations under
certain conditions.

• Controls on information: a model that talks about information contents must control
transitions that modify information.

Nonsecure Transitions

We now rewrite function 1, Create_object, slightly, so that it allows the access class of an
existing object to be changed:

Function 3: Create/Change_object (o,c)
 'oclass(o) = c; and
 if o ∉ O then 'O = O ∪ {o}; and
 for all s ∈ S, 'A(s,o) = ∅.

As before, access to the changed or created object is removed for all subjects, so the function
satisfies the invariant. But the function now allows what we would normally consider a severe
security violation: the possible downgrading of the access class of an object.

The reason for this problem is that the original set of security properties said nothing about
the possibility that access classes of objects might change. Suppose, however, that the properties
are augmented with the additional statement:

Property (c): The access class of an object cannot decrease.

The Create/Change _object is now clearly in violation of the new property. Because the
concept of downgrading involves a particular type of state transition, converting property (c) into
a mathematical statement requires a constraint rather than an invariant:

Constraint 1: For all o ∈ O, 'oclass(o) ≥ oclass(o)

This constraint states that the access class of an object can only increase or stay the same in the
new state.2 Notice the use of the ' symbol in the constraint to distinguish between the new and
old states.

2Of course, a function that obeys this constraint must also obey the secure state invariant, so that the access matrix
reflects allowed accesses based on the object’s new access class. In a system obeying a multilevel security policy,
such a change to the access matrix can result in a covert channel between the subject that invokes the function and
other subjects whose access to the object was removed. One way to avoid this complication is to enforce a
tranquility constraint, as is done in the Bell and La Padula model (section 9.5.3), where access classes cannot change
at all.

 119

Controls on Subjects

Other constraints on transitions restrict the operations that subjects may invoke. A commonly
needed constraint prevents subjects from changing the access attributes of objects to which they
have no access. It would not be proper, for example, to allow an operation that enabled a subject
to give itself access to any object. As in the previous example, the security properties must be
augmented, this time to constrain the modification of access modes:

Property (d): A subject may modify another subject’s access to an object only if the
first subject can read the object.

In the constraint that follows, we for the first time use the state variable subj, which is the
identity of the active subject:

Constraint 2: For all o ∈ O,
 if r ∉ A(subj,o)
 then for all s ∈ S, 'A(s,o) = A(s,o).

Of course, Set_access does not satisfy this constraint, and a proof would therefore fail.

Since our simple model has only one function that changes access modes, we could have
written a simpler constraint that applies only to the one object referenced by the Set_access
function, but the above constraint is more sound because it prevents any operation of the model
from violating the security properties. It is important to write constraints in as general a manner
as possible, without reference to the specific operations in the model. If you include operation-
specific information in a constraint, you are likely to miss some cases where the intent of your
requirement is violated—especially if you later enhance the model and forget why the original
constraints are there.

Controls on Information

One limitation of the state-machine access model and its rules and constraints is the fact that only
changes to access rights (and not to information itself) are constrained. This is acceptable in
many cases because the purpose of the model is to formalize the security policy, rather than the
functions of the system. But suppose that we do want to model an operation on data contents,
such as:

Function 4: Write_object (o,d)
 if o ∈ O and w ∈ A(subj,o)
 then 'contents(o) = d.

Since Write_object does not change any variables mentioned in the invariant or in any of the
constraints we have specified so far, it is secure according to our model. This operation also
intuitively appears to obey the security properties, because it prevents you from writing into an
object unless you have explicit write access, and because you can only get write access if the
proper access class relationship is satisfied (as enforced by the invariant) at the time the access

 120

matrix is modified. Still, there is nothing in any of our formal statements (invariants or
constraints) that justifies our confidence that this function satisfies the security properties. If we
remove the important check for w ∈ A(subj,o), the function still obeys the invariant and
constraints but clearly violates property (b) about writing into objects.

The model (but not the policy) is insufficient because it only expresses the potential access
of subjects to objects (as represented by the access matrix), and does not consider whether
information is actually read or written. We have chosen to interpret the phrase “may write” in
property (b) as “has write access to,” as reflected in the access matrix. If you want to model the
functions that read and write information, then information must be mentioned in the definition
of the secure state.

We can fix the problem by changing the mathematical interpretation of property (b), but
another way to achieve the same result is to add an explicit property statement:

Property (e): A subject may modify an object only if the subject has write access to the
object.

This property translates into the statement:

Constraint 3: For all o E O,
 if w ∈ A(subj,o)
 then 'contents(o) = contents(o).

This constraint is sufficient to satisfy property (e) but is very restrictive, inasmuch as it
allows no change to an object if the object is not writable—even as a side effect of an operation.
Nonetheless, it expresses a useful property that allows us to prove the security of Write_object.

If you want to carry out a similar enhancement to the model to specify a Read_object
function you must add yet another state variable—this time one that models the place where the
contents of an object are read into. (Without such a variable, you would not be able to express
Read_object as a state transition.) However, you will not be able to express any useful
constraints on the reading of information (try it). Such constraints can only be addressed through
a flow model (see section 9.6).

Since including functions that reference the contents of objects complicates the model and its
proof, what would motivate us to try to do so? Historically, the contents of objects have not been
included in functions of models because the secure state definition does not mention them.
Where the intent of the model is to address the access policy, and not implementation details, it
is undesirable to clutter the model with such operations as Write_object and Read_object that
trivially obey the access matrix A, given that it is just as easy to show during correspondence
proof that the implementation of such functions in the system obeys the constraints of the matrix.
For example, it may be adequate to show how the read and write restrictions in the matrix map
onto the read and write bits in memory descriptors, and how, all machine instructions are
constrained by the modes in the memory descriptors.

 121

As abstract modeling has been used in more and more systems, however, it has become
evident that information can be read and written in a real system in many ways—some by
software, and some by hardware—that do not obey the access matrix in any obvious manner.
People are uncomfortable when their system has numerous functions that manipulate information
not represented by state variables in the model. Consequently, there is a temptation to add this
information (and additional rules about operations on this information) to the model, so that
some meaningful properties of these operations can be stated and an attempt can be made to
prove them.

You will have to decide for yourself how far you want to go, but be warned that each
additional state variable and its attendant operations will significantly complicate the model and
its proof. Demonstrating correspondence of the implementation to a simple abstract model may
be far more convincing than mapping to a very detailed complex model. Remember that a
security model is supposed to represent only the security-relevant behavior of the system, not all
variables and all operations in a system. If you want more detail, you should write a formal
specification.

When to Use Constraints

A security model might need constraints as part of its security definition for any of several
reasons; and just as you cannot prove that your invariant is an adequate statement of the policy,
you cannot prove that you have all the necessary constraint. The adequacy of the constraints has
to be accepted on faith.

In a typical model it is possible to come up with a large number of interesting constraints,
many of which the functions trivially satisfy. It is also possible to define constraints that are true
but have very complex proofs. Most constraints, however, merely express facts about the
functions you have chosen to represent in the model, and so are not security-relevant. The best
way to determine whether a constraint is necessary is to judge whether it is an obvious extension
of the security properties. If it is not, leave it out—unless you have reason to believe that its
omission might leave a security loophole. There is no formal way of determining whether a flaw
is possible (other than proof by existence: finding and demonstrating a specific flaw), but the
simpler your model is, the easier the task of anticipating flaws becomes.

It is most important to realize that formulating constraints on state transitions is an integral
part of defining a system’s security requirements.

9.5.3 The Bell and La Padula Security Model

One of the first security models—and by far the most often used—was developed by David Bell
and Leonard La Padula to model the operation of a computer that obeys the military security
policy (Bell and La Padula 1973; Bell and La Padula 1973-74). The work by Bell and La Padula
grew out of earlier work at Case Western Reserve University (Walter et al. 1974). The goal of
the model is to specify rules for multilevel operation of a computer; the precise description of the
military security policy that permits such an operation is called the multilevel security policy (see
section 6.4).

 122

Because the Bell and La Padula model became the best-known formalization of the
multilevel security policy, the concept of multilevel security is often equated with the Bell and
La Padula model. In fact, however, several other models also satisfy a multilevel security policy.
Each tends to express the policy in different ways, but the same policy is used by all. We shall
consider the Bell and La Padula model in this section and a related class of information-flow
models in section 9.6.

Models such as the noninterference model do not express a multilevel security policy
directly; instead, they employ a more general policy, of which multilevel security is a special
case. In the future, people may actually favor these more general models because they can be
used to support other kinds of specialized models (multilevel security is often viewed as being
overly restrictive for many applications).

In formalizing the multilevel security policy, the Bell and La Padula model defines a
structure of an access class (with classification and category set as components) and establishes
the partial ordering relationship between access classes that we call dominates. Section 6.4
discusses the meaning of dominates and the structure of an access class.

In mathematical notation, we write the dominates operation as a simple ≥ symbol, although
in this instance the symbol does not indicate a numerical comparison. Thus, “A dominates B” is
written A ≥ B. To avoid confusion, we do not reverse the symbol and write B ≤ A (“B is
dominated by A”), nor do we write A > B (“A dominates but is not equal to B”). We shall use the
conventional meaning of = to indicate equality in comparisons of two access classes.

The operation ≥ is described as a partial ordering on access classes. A partial ordering
relation ≥ has the following mathematical properties between access classes A, B and C:

Reflexive: A ≥ A
Antisymmetric: if A ≥ B and B ≥ Α, then A = B
Transitive: if A ≥ B and B ≥ C, then A ≥ C

The biggest mistake you might make is to assume that

if A ⁄≥ B, then B ≥ A.

This shows that it is not always possible to compare two access classes using a dominates
relationship. Speaking loosely, people say that A and B are disjoint in such a case; but because A
and B may have elements of their category sets in common, a more mathematically correct term
is incomparable.

 123

Besides defining a partial ordering, the dominates relationship has two properties that make it
a lattice. Given any two access classes A and B (whether or not they are comparable):

• In the set of all access classes dominated by both A and B, there is a unique greatest
lower bound that dominates all the others.

• In the set of all access classes that dominate both A and B, there is a unique least upper
bound that is dominated by all the others.

You need not be concerned with the question of why such a partial ordering is called a lattice,
but you should understand that the ability to express a security policy as a lattice is a
fundamental requirement of many models of security.

Given a finite set of access classes, we can use the lattice property to define two important
unique access classes: SYSTEM HIGH, which dominates all other access classes; and SYSTEM
LOW, which is dominated by all other access classes. It is easiest to think of SYSTEM HIGH as an
access class that contains the highest possible security level and all possible categories, and to
think of SYSTEM LOW as an access class that contains security level zero and no categories.
However, nothing prevents us from defining other values. For example, in a system that contains
no information classified less than SECRET, the value of SYSTEM LOW is SECRET with no
categories.

The security policy of the Bell and La Padula model has mandatory and discretionary
components. The discretionary component is represented in an access matrix that is structured
much as the access matrix A(s,o) is in our example model. In addition to having read and write
access modes, the discretionary component includes append, execute, and a control modes-the
last of which indicates whether a subject can pass to other subjects the access rights it has to the
object. The mandatory component of the policy, consisting of the simple security property and
the confinement property that were introduced in section 6.4, is enforced by restricting the
accesses that are granted, based on a comparison of the access class attributes of subjects and
objects.

Unlike our example model, the Bell and La Padula access matrix models a discretionary
policy only, not the mandatory constraints. This means that changes to the access matrix are
constrained exclusively by control mode and not by access classes. At the time that access to an
object is granted, both the discretionary check and the mandatory check are made.

There are about twenty functions or rules of operation in the Bell and La Padula model,
having to do with modifying components of the access matrix, requesting and obtaining access to
an object (as when opening a file), and creating and deleting objects; and each function is proved
to preserve the definition of the secure state. No functions explicitly read or write the contents of
objects: the model implicitly assumes, in an implementation, that, all access to objects is
preceded by the appropriate access request and that reads and writes take place in accordance
with the access that was granted. In a typical operating system, for example, the act of requesting
access may take place at the time a file is opened for reading or writing, and subsequent reads or
writes are limited to the modes of access granted at the time of opening.

 124

In addition to proving the mandatory security policy, the functions obey a rather severe
constraint of tranquility that prevents the access classes of objects from changing. This constraint
is necessary because, if the access class of an object can change, accesses that have already been
granted may no longer obey the secure state definition. If already-granted accesses are removed,
a covert channel might result. A gross complication to the model is avoided by requiring
tranquility.

Bell and La Padula developed their model based on Multics concepts and have provided a
“Multics interpretation” of the model (Bell and La Padula 1975), but people soon realized that
the model was generic enough to apply to many systems. The thinking was that, since the proof
that the functions in the model preserve the security properties need be done only once, each new
system thereafter could merely map its functions onto the model’s generic functions. But few
secure system developments have chosen to use the Bell and La Padula functions, opting instead
for their own functions based on the Bell and La Padula security policy. As a result, when people
talk about the Bell and La Padula model, they usually refer only to the simple security and
confinement property conditions, not to the functions that constitute the bulk of the model and its
proofs.

One primary reason why the functions of the model have been ignored is that performing the
system-specific mapping was perceived to represent at least as much effort as rewriting and
proving a new set of functions specific to the system. Furthermore, security models today are
written in specification languages that are processable by machine (Bell and La Padula’s was
written and proved by hand), and the act of transcribing the Bell and La Padula functions into the
specification language can be as much work as writing new functions. Machine processing is the
most reliable way to carry out an error-free proof (although the machine does not actually save
much manual labor).

The Bell and La Padula model, in attempting to be as applicable as possible to real systems,
introduced the concept of trusted subjects—subjects for whom the confinement property checks
that are prescribed in the rules of operation (and the tranquility constraint) do not necessarily
apply. Remember that the confinement property’s control over write-downs serves mainly to
prevent accidents and to defeat Trojan horse attacks. In the real world, we can view trusted
subjects as special processes or users that are trusted not to violate security even without
enforcing confinement. Trusted processes are used for various system functions (such as backup)
and to carry out the direct wishes of users and system administrators who want to be sure that no
untrusted software is interfering. (See section 10.5 for an explanation of trusted processes for
security kernels.) Among practitioners, there has probably been more controversy and
misunderstanding about the notion of trusted subjects than about any other single aspect of
secure systems.

Should you decide to study the Bell and La Padula model in more detail, bear in mind that
terminology in the fast-moving field of computer security has changed significantly. Most of the
terms used in this chapter and in this book (except for access class—see section 6.4.2) are
commonly used today but were not in use at the time the Bell and La Padula model was
developed. To make matters worse, terms originated by Bell and La Padula have come to mean
different things over the years. In particular, the *-property defined by Bell and La Padula

 125

includes the read-up restriction as well as the write-down restriction—even though today it is
almost exclusively applied to the write-down restriction.

9.6 INFORMATION-FLOW MODELS

One deficiency of the classical proof techniques used for state-machine models cannot be
addressed by adding invariants or constraints. This deficiency involves the flow of information,
rather than the control of security attributes of subjects and objects. We touched indirectly on the
topic of information flow in section 9.5.2, when we talked about proving the security of
information modification; in general, however, constraints on information flow can be expressed
only by information flow models. Many people consider information-flow models useful only
for finding covert channels, because with suitable constraints on information modification (as in
our example) there are no information channels via normal objects of the system. For this reason,
information-flow analysis—the act of analyzing a system for adherence to the information-flow
model—is often equated with covert channel analysis.

With most systems, in the absence of some kind of information-flow analysis, you have no
assurance that your proved model represents a secure system. For example, a system adhering to
the Bell and La Padula model may be riddled with covert channels. It is in fact possible to locate
covert channels directly in the Bell and La Padula model, despite strict adherence to the
confinement property designed to thwart Trojan horse attacks.

Meaningful flow analysis requires a detailed formal specification, not an abstract state
machine model. This is because the variables that participate in covert channels are not
necessarily represented in an abstract model. Section 12.7 discusses the flow analysis of formal
specifications in detail. Flow analysis has also been attempted directly on computer programs
(Tsai, Gligor, and Chandersekaran 1987), but such work is in its early stages. The complexity of
flow in programs is usually such that the analysis requires excessive manual effort.

Although flow models require detailed specifications, our abstract model offers the readiest
example to demonstrate why flow analysis is needed. Consider the following operation:

Function 5: Copy_object (from,to)
 If from ∈ O and to ∈ O and w ∈ A(subj,to)
 then 'contents(to) = contents(from).

This function copies the contents of one object into another, if the subject has write access to the
destination object. The function is not secure because, in failing to check for read access to the
from object, the to object may be written with information to which the subject has no access,
and the subject might later read the object. What is missing from the “If” expression is the
condition r ∈ A(subj,from).

It is impossible to write a constraint or invariant capable of detecting such an omission.
While we were able to write a constraint to prevent illegal modification to information (see
constraint 3 in section 9.5.2), there is no general way to express a constraint on the illegal
reading or transfer of information as done by Copy_object.

 126

You might argue that, mathematical difficulties aside, it is a simple matter to scan all
functions and check for references to contents(o) not qualified by r ∈ A(subj,o). In general,
however, such a constraint is unrealistic. For example, there is nothing wrong with the following
function

Function 6: Append_data (o,d)
 If o ∈ O and w ∈ A(subj,o)
 then 'contents(o) = contents(o) ∪ {d}

which adds data d to the contents of an object. The proper test is made to see that the subject can
write the object; yet no security reason exists to require that the subject have read access to the
object. A constraint that prevents unqualified references to contents(o) would prevent us from
including this legitimate function in the model.

In a real system, many objects (such as buffer pools, quota variables, and global counters) are
modified by all subjects (and need to be read in order to be modified, as in Append_data),
despite not being directly visible to the subjects. Distinguishing between such legitimate read
references to objects and references that do violate the security requirements (as in
Copy_object) is very difficult, requiring a thorough analysis of each function in which such
references occur.

Flow analysis can be meaningfully applied only to operations in a system that are used by
untrusted subjects, such as processes possibly containing Trojan horses that violate the
confinement property. Trusted subjects are specifically trusted not to exploit covert channels and
are therefore not restricted by the confinement property. As was stated in section 3.3, users are
trusted not to give away their own data; and so they, too, constitute trusted subjects in this sense.
Therefore, functions in a model that are intended to be invoked directly by users, and not by
potentially untrusted software, are not subject to flow analysis. (A user who does decide to give
away data is not likely to bother with a low-bandwidth covert channel when there are far easier
ways to do it.)

In carrying out flow analysis on a model or some level of specification, you have to be very
careful that the more detailed specification or implementation does not introduce flows not
identified at the level at which the analysis was carried out. Most correspondence-proof
techniques do not specifically look for additional flows, because they are more concerned with
proving that the invariants and constraints still hold at the lower level. For this reason, flow
analysis has been criticized as giving users a false degree of confidence in the security of their
system. If you fail to recognize the possibility of additional flows at the lower level, the flow
analysis of the upper level represents nothing more than a safety check to show that you have not
introduced insecure operations at that upper level. The only way to be absolutely sure that your
system is free from nonsecure flows is to do the analysis on the code, but (as was stated above)
this is often impractical.

 127

9.7 INFORMAL MODEL-TO-SYSTEM CORRESPONDENCE

In this section we shall discuss the informal correspondence arguments in steps (a) and (b) of the
development alternatives illustrated in figure 9-2. The concepts presented here are a prerequisite
to understanding the formal paths (c) and (d) that will be covered in chapter 12.

The security model describes a state machine equipped with a small set of primitive
operations that manipulate a small set of security-relevant state variables. A real system (also a
state machine) has hundreds of operations and thousands of state variables. The task of proving
that the variables and functions in a real system correspond to, or map into, those in the model is
clearly formidable. Since an informal correspondence effort cannot achieve mathematical
perfection, there is no point in trying. But you can carry out the correspondence to any
intermediate level of detail, depending on the degree of assurance you seek.

The biggest payoff in confidence for a given amount of effort is achieved simply by having
all key designers of the system understand the model and its rules, before any high-level design
of the system is begun. With security foremost in their minds, the designers will be unlikely to
violate the security requirements in any fundamental way.

If the system is designed in a pure top-down manner, the first stage of design is to identify
the interface functions (without discussing the internal details of their implementation) and the
principle objects that those functions manipulate. At a high level of design, where the functions
and objects are described in general terms, it is possible to carry out a cursory model
correspondence. More detailed mapping requires a detailed functional description of each
operation, including all parameters that are passed through that interface, and a precise
description of the changes made to objects and variables in the system.

9.7.1 Mapping the Functions

It would be nice if you could produce a straightforward one-to-one correspondence between
operations in the system and operations in the model. But in general the system will have more
complex functions that map into sequences of model functions. For example, a create_fi1e
function of the system may have the same effect as consecutive calls to Create_object and
Set_access in the model. Such a mapping is permissible because our inductive proofs tell us that
any sequence of transitions is secure.

You will also encounter many cases where several functions in the system map into the same
operation. in the model. In our example, give_access and delete_access both
correspond to Set_access, but with different parameters. Another case of many-to-one mapping
arises when the system has several functions that deal with similar operations on different types
of objects: delete_fi1e, delete_directory, delete_device, and so on. Of course,
you do not need to implement every type of operation for every type of object permitted by the
model.

You must be careful when a function in the model is implemented with a sequence of
functions in the system. Proofs of the model assume that operations are atomic, and consequently

 128

they say nothing about the state of the system “in the middle of” an operation. If a function in the
implementation only partially completes an operation in the model—carrying out only some of
the required state changes—then the subsequent state of the system is not defined in the model
and may not be secure. You can safely split an operation into pieces only if you can demonstrate
that the pieces always occur in sequence, that they are always completed, and that no other
operation of the system can take place in the middle of the sequence.

9.7.2 Mapping the Variables

State variables in the system will not map one-to-one with those in the model because the model
has simple generic variables such as subjects and objects, whereas the system has several types
of subjects and objects. Typically, you have to identify the key subjects and objects of the
system, as well as the variables that contain their security attributes. You must also show how
subject and object existence is expressed in terms of variables in the system. If you have an
access matrix, you must identify how it maps onto the system’s access control mechanism. For
example, each column in the access matrix corresponding to an object of type file might be
represented in the system by a file header containing an access control list. The access control
bits in the perprocess descriptor segment used by hardware in section 8.3.5 are a low level
manifestation of a portion of a row of the access matrix.

9.7.3 Unmapped Functions and Variables

Probably the biggest problem in showing the correspondence between a system and a model
involves functions and variables in the system that do not manipulate security-relevant
information and therefore do not correspond to anything in the model.

For example, functions such as write_file and rename_file might not reference state
variables in the model. In such cases you have to judge whether the variables mentioned in the
functions are in fact security-relevant. If you decide that they are, and you have no way to map
them into the model, then the model is lacking a security-relevant aspect of the system and must
be changed. If you decide that they are not, then you still have to make sure that any access to
subjects or objects made by the function obeys all implied access rules of the model. In our
model we did not originally have a Write_object, because we assumed that any function writing
into an object would obey the access modes in the access matrix A. Without a Write_object
function in the model, we would have to show that a write_file operation in the system
checks the proper access rights.

You should resist the temptation to beef up your model with additional functions that only
serve to make the mapping more nearly complete. Any increase in confidence that you gain by
having a fuller mapping is offset by the increased complexity of the mapping and of the proofs of
the model. You cannot escape the fact that the informal correspondence process is manual and
subjective: adding excessive detail in an attempt to achieve perfection merely increases the
chance for error and confusion. Using a formal specification technique (figure 9-2(c) or (d),
discussed in chapter 12) will bridge the code-model gap more soundly than adding detail to the
model will.

 129

REFERENCES

Bell, D. E., and La Padula, L. J. 1973. “Secure Computer Systems: Mathematical Foundations
and Model.” M74-244. Bedford, Mass.: Mitre Corp. (Also available through National
Technical Information Service, Springfield, Va., NTIS AD-771543.)
Highly mathematical description of the original Bell and La Padula model.

———. 1973-74. “Secure Computer Systems.” ESD-TR-73-278, vols. 1–3. Hanscom AFB,
Mass.: Air Force Electronic Systems Division. (Also available through National Technical
Information Service, Springfield, Va., NTIS AD-780528.)
A further description, also highly mathematical, of the original Bell and La Padula model.

———. 1975. “Secure Computer Systems: Unified Exposition and Multics Interpretation.”
ESD-TR-75-306. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also
available through National Technical Information Service, Springfield, Va., NTIS AD-
A023588.)
Provides a Multics interpretation of the Bell and La Padula model.

Biba, K. J. 1977. “Integrity Considerations for Secure Computer Systems.” ESD-TR-76-372.
Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
National Technical Information Service, Springfield, Va., NTIS AD-A039324.)
The Biba integrity model.

Boebert, W. E.; Kain, R. Y.; Young, W. D.; and Hansohn, S. A. 1985. “Secure Ada Target:
Issues, System Design, and Verification.” In Proceedings of the 1985 Symposium on Security
and Privacy, pp. 176–83. Silver Spring, Md.: IEEE Computer Society.
The Secure Ada Target is a research project to use a capability-like mechanism for building
a secure operating system that supports Ada programs.

Denning, D. E. 1983. Cryptography and Data Security. Reading, Mass.: Addison-Wesley.
A thorough study of cryptographic techniques, access controls, and database security,
presented in textbook format with many exercises, examples, and references.

Goguen, J. A., and Meseguer, J. 1982. “Security Policy and Security Models.” In Proceedings of
the 1982 Symposium on Security and Privacy, pp. 11–20. Silver Spring, Md.: IEEE
Computer Society.
An approach to modeling a secure system based on the noninterference principle; a version
of this model is employed in the Secure Ada Target research project.

Haigh, J. T., and Young, W. D. 1986. “Extending the Non-Interference Version of MLS for
SAT.” In Proceedings of the 1986 Symposium on Security and Privacy, pp. 232–39.
Washington, D.C.: IEEE Computer Society.
The technique used by the developers of the Secure Ada Target to apply a noninterference
model to a capability-style protection mechanism.

Harrison, M. A.; Ruzzo, W. L.; and Ullman, J. D. 1976. “Protection in Operating Systems.”
Communications of the ACM 19(8):461–71. Reprinted in Advances in Computer System
Security, vol. 1, ed. R. Turn, pp. 81–91. Dedham, Mass.: Artech House (1981).
A formal mathematical description of an access matrix model.

Landwehr, C. E. 1981. “Formal Models for Computer Security.” Computing Surveys 13(3):247–
78. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp. 76–107.
Dedham, Mass.: Artech House (1981).
An overview of formal modeling techniques that have been applied to secure systems;
contains many references.

 130

Millen, J. K., and Cerniglia, C. M. 1984. “Computer Security Models.” MTR9531. Bedford,
Mass.: Mitre Corp. (Also available through National Technical Information Service,
Springfield, Va., NTIS AD-A166920.)
A summary of sixteen specific models, intended to guide the developer in making a selection.

Tsai, C-R.; Gligor, V. D.; and Chandersekaran, C. S. 1987. “A Formal Method for the
Identification of Covert Storage Channels in Source Code.” In Proceedings of the 1987
Symposium on Security and Privacy, pp. 74–87. Washington, D.C.: IEEE Computer Society.
Describes use of the Shared Resource Matrix (see section 12.7.2) to find covert channels
directly in source code.

Walter, K. G.; Ogden, W. F.; Rounds, W. C.; Bradshaw, F. T.; Ames, S. R.; and Shumway, D. G.
1974. “Primitive Models for Computer Security.” ESD-TR-74-117. Hanscom AFB, Mass.:
Air Force Electronic Systems Division. (Also available through National Technical
Information Service, Springfield, Va., NTIS AD-778467.)
An early discussion of a multilevel security model, interesting for historical reasons.

 131

 Chapter 10

Security Kernels

The security kernel approach is the single most often used technique for building a highly secure
operating system. However, it does not follow that you can buy one easily, that you can build
one easily, that most secure systems are based on a security kernel, or even that most people
agree that the security kernel is the right way to go. Indeed, many researchers believe that the
security kernel is the wrong approach and are working on alternatives. But to date, for the
highest-security systems, the security kernel has shown more promise than any other single
technique.

The security kernel concept was developed by Roger Schell in 1972 and has commonly been
defined (Anderson 1972; Ames, Gasser, and Schell 1983) as the hardware and software that
implements the reference monitor abstraction we introduced in section 4.2. Sixteen years after
the idea was first proposed, only a handful of security kernels have been implemented, few are
commercially available, and rarely are they being used for practical applications. This seeming
lack of progress is due not to a problem with the kernel approach, but to a lack of interest in
security on the part of vendors, as we discussed in chapter 2. With today’s heightened interest in
security in both industry and the government, you can expect additional commercially developed
kernel-based systems to emerge in the next few years.

The first security kernel, developed by MITRE as a government-sponsored research project
to prove the concept, ran on a DEC PDP-11/45 (Schiller 1975). Another notable research security
kernel is the UCLA Data Secure Unix for the PDP-11/45 and 11/70 (Popek et al. 1979). The
Department of Defense, under a project called Guardian, sponsored the design and formal
specification of a security kernel for Multics (Schiller 1977), but the kernel was never
implemented. Government sponsored developments that led to functioning systems (which have
seen limited use) include KVM—an enhanced version of IBM’s VM/370, developed by System
Development Corp. (now part of Unisys) (Gold et al. 1979)—and KSOS—a kernel intended to
support Unix that was developed by Ford Aerospace and Communications Corp. to run on the
PDP-11/70 (McCauley and Drongowski 1979; Berson and Barksdale 1979). Two commercial-
grade security kernels are available: Honeywell’s STOP, which runs on the SCOMP, an enhanced
version of the company’s Level 6 minicomputer (Fraim 1983), and the Gemini Computers’
GEMSOS, which runs on the Intel iAPX 80286 microprocessor (Schell, Tao, and Heckman 1985).

 132

10.1 THE REFERENCE MONITOR

In section 4.2 we introduced the abstract concept of the reference monitor, whereby all accesses
that subjects make to objects are authorized based on information in an access control database
(fig. 10-1). The specific checks that are made and all modifications to the access control database
are controlled by the reference monitor in accordance with a security policy. The multilevel
security policy implemented by most reference monitors is discussed in section 6.4.4, and an
example of a model of a policy is provided in section 9.5.1.

In the early days of computing, we used the term monitor to identify the program in the
system that controlled the actions of other programs. As these monitors became bigger, they
began to be called operating systems, and the term monitor was relegated to the most primitive
types of operating systems. The reference monitor is a special-purpose monitor that deals only
with access control to resources. Usually, other security-relevant functions of the system lie
within the security perimeter but are not part of the reference monitor (these are often called
trusted functions—see section 10.5). All non-security-relevant functions of a system (functions
that lie outside the security perimeter) are managed by the operating system.

Figure 10-1. Reference Monitor. All attempts made by subjects to reference objects
are monitored and constrained in accordance with a security policy embodied in the
reference monitor, using access control information stored in a database. Important
security events are stored in the audit file.

The concept of the reference monitor would merely be academic without having a practical
way to implement one. The security kernel was the proposed approach. While there may be other
ways to build systems that satisfy reference monitor concepts, no other approach is as well-
developed. For this reason, people tend to equate the reference monitor concept with the security
kernel approach, and—particularly in discussions of principles, rather than of implementation
details—the terms are often used interchangeably. You should try to keep an open mind,

Reference
Monitor
(policy)

Subjects Objects

Audit File

Access Control
Database

 133

however, and be willing to accept the possibility that other types of reference monitors may
someday exist.

10.2 THE THREE PRINCIPLES

The reference monitor and the security kernel must satisfy three fundamental principles:

• Completeness: it must be impossible to bypass.
• Isolation: it must be tamperproof.
• Verifiability: it must be shown to be properly implemented.

We shall examine each of these principles in detail, focusing on their design implications.

Realistically, no large system is likely ever to satisfy all three principles fully. The goals of
the security kernel approach are to follow these principles as closely as possible—nobody would
claim that a large system based on a security kernel guarantees perfect security.

10.2.1 Completeness

The principle of completeness requires that a subject not reference an object without invoking
the reference monitor. It implies that all access to information must be mediated by the kernel. At
first, you might think that this principle is quite reasonable, and that most operating systems
today probably attempt to adhere to it. There are, however, a number of important differences
between the unequivocal demand made by the completeness principle and the way operating
systems are generally implemented.

An operating system usually considers the information in a system to lie in obvious places
such as files, memory, and I/O buffers; and the operating system makes reasonable attempts to
control access to these objects. The completeness principle is not satisfied with an ad hoc
definition of the objects. Any repository of information, regardless of its size or intended use, is a
potential object.

Among the additional objects where information can be stored are file names (which
themselves constitute information), directories (which may include information about files),
status registers, and active dynamic data maintained by the operating system and containing
information about logged-in users, processes, resources consumed, and so on. You might
recognize some of these items as potential covert channels (see section 7.2). The completeness
principle insists that you make an explicit decision as to how the kernel will enforce access to
each of these objects.

The completeness principle also places requirements on the hardware that supports a kernel-
based system. If the kernel is to permit efficient execution of untrusted programs without
checking each machine instruction, the hardware must ensure that the program cannot bypass
access controls specified by the kernel. All references to memory, registers, and I/O devices must
be checked for proper access through mechanisms such as memory management with access
control (section 8.3). The kernel must be able to isolate processes from each other (section 8.2),

 134

and to ensure that the processes cannot communicate without kernel mediation. A computer that
allowed all processes unconstrained access to a common page of physical memory, for example,
would not be a suitable base for a security kernel.

10.2.2 Isolation

The isolation principle—which states that the kernel must be tamperproof—is, like the
completeness principle, a common-sense goal for most systems. Even the most primitive
operating systems make a reasonable effort to protect themselves, at least against most accidental
and casual attempts at break-in.

Enforcing the isolation principle in a practical way requires a combination of both hardware
and software. The primary hardware feature that enables the kernel to prevent user programs
from accessing kernel code or data is the same memory management mechanism that the kernel
uses to prevent processes from accessing each other’s data. User programs must also be
prevented from executing privileged instructions that the kernel uses to control the memory
management mechanism. This requires some type of domain control, such as protection rings
(section 8.4).

In a system equipped with the necessary hardware features, there is little chance that a user
program could succeed in a direct attack on the kernel by writing the kernel’s memory, executing
a privileged instruction, or modifying the kernel software. While you might be tempted to
provide additional isolation by fixing the kernel code in hardware read-only memory, direct
writing of the kernel software is rarely a profitable route to penetration. A far more common
penetration technique involves tricking the system into running your (the penetrator’s) own
program in privileged mode, thereby giving you control of the system without your having to
touch either the kernel or any of its data (Karger and Schell 1974).

10.2.3 Verifiability

The principle of verifiability is addressed through relentless devotion to a number of design
criteria:

• Employing state-of-the-art software engineering techniques, including structured design,
modularity, information hiding, layering, abstract specification, and the use of
appropriate high-order languages

• Emphasizing simplicity of functions at the kernel interface
• Minimizing the size of the kernel by excluding functions not related to security

If you keep these goals in mind while building a kernel, you will be able to convince yourself
and others that the kernel is correct by using a combination of techniques:

• Code inspection
• Thorough testing
• Formal mathematical specification and verification

 135

It is important to understand that the kernel approach does not require the use of a specific
verification technique. Your choice depends on the degree of assurance you seek. If you do not
intend to devote any appreciable effort to demonstrating its correctness, however, then
developing a kernel is a waste of time.

Code inspection and thorough testing are of course commonly used for most systems, yet
most systems are replete with bugs. Unless we do something different with these techniques, we
have little reason to expect that they will work better for a security kernel.

The primary technique that supports the verifiability argument for a security kernel is the
development of a mathematical model of security. The model precisely defines security, and the
functions in the model are formally proved to be consistent with this definition. The model must
be structured in a way that lends itself to some kind of correspondence demonstration—that is, to
an argument that the kernel implementation adheres to the model. Chapter 9 discusses security
models in detail, and section 9.7 provides guidelines for demonstrating this correspondence
informally.

When the reference monitor approach was first proposed, it was thought possible to build a
kernel that would be small enough to be verified by exhaustive testing. Model-to-implementation
correspondence in such a case would consist of testing all possible security states of the system
as defined by the model—or at least enough states to satisfy the tester that a security bug would
be highly unlikely, given the designer’s dedication to structuring and simplicity in the kernel’s
design. But except with respect to experimental kernels having limited functions, exhaustive
testing is out of the question. While testing is certainly important, few people now believe that
testing alone can provide enough assurance: some additional model-to-code correspondence
work is required.

For a time, people had the dream of formally verifying (mathematically proving) this
correspondence by relating the bits in memory to the abstract model. A number of formal
specification languages, proof techniques, and automated tools were developed to help bridge the
huge gap in level of detail between model and code. Some of these techniques, already under
development for other reasons, were adapted to security correspondence. It quickly became
evident, however, that, (like exhaustive testing), complete formal correspondence would not be
practical for a long time, and that less-than-perfect assurance would have to suffice. Formal
specification and verification are discussed in chapter 12.

If you are using state-of-the-art software engineering techniques, the process of developing
and proving a model, writing an informal system specification, and informally showing
correspondence between the code and the model will get you at least 80 percent of the way to
full assurance. Writing a formal specification will get you another 10 percent of the way there,
and all the known formal verification techniques will add at most another 5 percent. While many
may quarrel with these percentages, few will argue that the effort to do formal verification is
only justified in the highest-security environments.

Rather than trying to develop your own security model from scratch, you should seriously
consider using or building upon an existing model—either the Bell and La Padula model

 136

discussed in section 9.5.3 or one of the handful of others discussed in section 9.3. If you decide
to write a formal specification (an entirely feasible and useful exercise), use one of the
specification languages discussed in chapter 12, and look at examples of secure systems
specified in that language (Landwehr 1983). If you decide to go all the way and do proofs of
your specification, you must obtain the automated processing tools appropriate for the
verification system you have selected. It is useless to try to prove a specification by hand,
without having a tool to check your proof (specific tools are listed in section 12.1).

If you want to go one step further and verify the code, stop and think again. There are no
practical tools for proving a complete code correspondence of a large system or for checking the
correctness of such a proof, so a proof of this kind would have to be supported by a huge manual
effort. You are exceedingly unlikely to be able to do a convincing manual proof, given that the
proof would have to be many times larger than the code and the specification combined. Section
12.8 gives you some feel for this process, though most of it is theory since only small examples
have been carried out in practice. While people are still working on developing practical code
proof techniques, your best bet for code correspondence is to carry out an informal
demonstration, using systematic code review in conjunction with the formal specifications. Such
an effort need not be greater than that required for any good code review process, but the use of a
formal specification to guide your review will add credibility and objectivity to the process.
Code correspondence can and should be used to guide system testing as well.

10.3 VIRTUALIZATION AND SHARING

In the face of a mandatory security policy, the kernel must be able to isolate subjects (processes)
from one another so that, where the policy requires, it can prevent the actions of one subject from
influencing another subject—even if the subjects want to communicate. This would be easy to do
if processes had no way of interacting, but in most real-world systems such physical resources as
memory, I/O devices, I/O media, and communications lines cannot be permanently allocated to
individual processes without considerable cost or inconvenience. These resources must be shared
among processes—carved up into portions that are dynamically assigned to processes as the need
arises. Processes must then be prevented from accessing each other’s resources. The easiest way
to control resource access is to virtualize the resources. This means that a process accesses a
resource by using a virtual name or virtual address that the kernel maps into a physical name.
Because the mapping is under control of the kernel, the kernel can prevent two processes from
sharing a portion of a resource that should not be shared. In chapter 8 we discussed ways by
which hardware can manage a virtual address space for both memory and I/O devices. Physical
regions of secondary storage media (disks) are virtualized using a file system, where processes
use file names or virtual disk addresses rather than physical addresses. Section 11.4 discusses
some issues in the design of secure file systems.

In addition to having the kernel control access to the resources, complete isolation requires
that the kernel prevent a process from knowing the physical addresses and physical identifiers of
its portions of dynamically allocated resources, because any dynamic resource allocation
mechanism is a potential path for a covert storage channel. For example, in a system that swaps
processes between memory and disk, revealing to a process the physical location of its memory
might allow the process to infer something about the activities of other processes, especially if

 137

the process knows the memory allocation algorithm. A covert channel is possible if one process
can modulate its usage of memory in a way that another process can observe. The kernel could
try to hide such channels on a case-by-case basis, but the best general solution is to avoid the
problem by only revealing virtual information to processes.

There are a couple of cases where the virtualization principle need not apply. First, when a
resource is statically allocated to a number of processes and is not dynamically reallocated, the
shared resource is equivalent to several unshared resources (one per process). Identifying
physical locations or other information about the resource only reveals static information that
cannot be used as a basis for covert communication. Second, if the resource is allocated by the
direct actions of users (who do not originate covert communication), the principle again does not
apply. As an example, revealing to a process the physical address of a terminal from which a
user logs in is not a source for a covert channel (and is not a security problem, unless the policy
states that the user’s physical location or terminal line is sensitive information). But if a process
can reserve a terminal line on its own and can either choose the line number or find out the line
number that it has been given, then another process can determine that the line was reserved, and
a covert channel between the processes is possible.

As we discussed in section 7.2.1, completely eliminating covert channels introduced by
dynamically shared resources is probably impossible. The simplest way to avoid such channels is
to minimize dynamic reallocation. In view of the declining cost of memory and hardware, it
might be more feasible (and certainly it is easier and more secure) to allocate memory and disk
space statically, than to go to great lengths to hide storage channels.

Of course, you do not want to eliminate interprocess sharing completely, or you might as
well use an array of isolated microcomputers, one per process. No matter how cheap hardware
becomes, you still want to be able to share data (as permitted by the security policy). Keep in
mind that information sharing, as opposed to physical resource sharing, is the real goal of a
multiuser computer system. Physical resource sharing is a practical necessity (or necessary evil)
that the security kernel must manage in order to provide a secure information-sharing
environment.

10.4 TRUSTED PATH

Figure 4.3 showed a clean, layered structure in which all trusted code is contained in the kernel,
while users interact with the system through untrusted applications and the operating system. In
practice, this structure does not work out perfectly. Users and system administrators must carry
out a number of functions in any system through direct interaction with the kernel, without
intermediate layers of untrusted software. These include the login function, specification of an
access class (on a multilevel system), and administrator functions such as changing security
attributes of users and files.

We must prevent a Trojan horse in the user’s process from being able to mimic the login
sequence, thereby tricking the user into giving away his or her password (one of the examples we
discussed in section 7.1.1). In a multilevel system, users must be able to determine, from a
trusted source, the access class of the process with which they are interacting. For certain

 138

functions, administrators must be able to verify the correctness of the output they receive on their
terminal to make sure that it did not come from a Trojan horse. For all of these situations, we
need a mechanism that effectively authenticates the kernel to the user (in addition to the usual
mechanism that authenticates the user to the kernel).

Such a mechanism is provided by some form of trusted path or secure path, whereby the user
has a direct communications link to the kernel or to trusted software. An easy, but costly way to
provide a trusted path is to give each user two terminals—one for normal work, and one
hardwired to the kernel. A more realistic technique is for users to establish the trusted path
through their normal terminal, by causing an event that signals the kernel to grab the terminal
away from untrusted software. This secure attention signal must be one that untrusted software
cannot intercept, mask, or fake. On an asynchronous ASCII terminal line, the signal might be an
out-of-band condition (such as a BREAK that is entered at the keyboard) or a line condition
caused by momentarily turning terminal power off. If the kernel is able to intercept all characters
entered at the terminal, any character can be chosen as a secure attention character.

Depending on the characteristics of the hardware, the kernel may have to go to great lengths
to ensure that the user’s process cannot place the terminal or line controller in a mode where the
secure attention character might be missed. Early attempts at implementing a trusted path
consisted of special lights on the terminal controlled by the kernel, or a special area of the screen
reserved for kernel communications, but the flexibility of most terminals today is such that the
kernel would have an extremely hard time preventing such a mechanism from being spoofed by
a Trojan horse.

The requirement for a trusted path presents a serious problem when the user’s terminal is in
fact an intelligent device or a personal computer. The trusted path must persist from the user’s
keyboard, through any software in the terminal or PC, to the kernel in the host. Likewise a
trusted display must persist from the kernel to the user’s screen. The only way to ensure the
integrity of such paths is to verify the trustworthiness of the software in the terminal or PC, and
to ascertain that the software cannot be modified or adversely influenced by commands from the
user’s process in the host. For a PC, such assurance may only be obtainable by implementing a
security kernel or other form of trusted software in the PC. Although there is no technical reason
why a PC with the appropriate hardware architecture cannot run a security kernel—and, in fact,
security kernels have been built for microprocessors (Schell, Tao, and Heckman 1985)—these
difficulties have led to the requirement in some applications that only dumb terminals be used
with kernel-based systems.

In a high-security environment where mandatory controls are present, a personal computer
must always be treated as a computer and not as a terminal. Even if the PC is a single-user
computer and the user owns all the data in the PC, mandatory security rules require that the PC
protect the user’s data from improper modification or disclosure that might result from
malfunctions and Trojan horses in applications running on that PC. A PC that interacts with a
host kernel-based system, even if only through a terminal-emulator program, does so as a host on
a network and must face scrutiny regarding network security issues that go far beyond those of a
single computer system—whether or not the PC has a security kernel. See chapter 13,

 139

particularly section 13.5, for a discussion of network security issues as they pertain to security
kernels.

10.5 TRUSTED FUNCTIONS

In addition to the trusted path, trusted functions are needed on most systems, and the difficulty of
integrating these trusted functions is another reason why the ideal layering of the kernel-based
system is often violated. The administrator interactions and user logins that we discussed in
section 10.4, plus a number of administrative functions such as backup, are functions that must
be trusted to maintain the security, of the system but that are usually carried out by autonomous
processes rather than by the kernel layer running in an inner domain protected by the hardware.
Logically, such functions are part of the trusted software, and therefore they should be
considered part of the kernel; but architecturally they run as processes outside the kernel and use
services of the kernel just as though they were untrusted processes. The only difference between
trusted processes and untrusted processes is that the former may be privileged to modify kernel
databases and to bypass certain requirements of the security policy.

Trusted functions, also called trusted processes, are controversial because early kernel-based
systems had nearly as much software running in the form of trusted processes as they had
running in the kernel, substantially increasing the quantity of trusted code. Nobody could come
up with a good reason why trusted code running outside the kernel should be subject to less
scrutiny than code in the kernel, yet it was difficult to come up with a rigorous definition of what
these processes were supposed to do: the security policy for trusted processes is not as obvious
and straightforward as are the simple security and confinement properties. Moreover, some of
the verification tools did not permit proofs of trusted process properties. Trusted processes were
viewed suspiciously as a catch-all category for software that is needed to maintain the security of
the system but that nobody wants to verify.

Today the tools are a little better, and proofs of properties of trusted processes are feasible,
but some of the controversy remains. Some people view the interface between trusted processes
and the kernel as a special kind of interface for trusted subjects—processes that do not need to be
constrained as much as untrusted processes. The kernel provides most of the same functions for
trusted processes as it does for untrusted processes, but it bypasses normal security checks if a
process possesses trusted-subject privileges.

Other people assert that the only important interface is the external interface into the security
perimeter. The trusted processes clearly run within the security perimeter and in a sense are just
extensions of the kernel. The interfaces between the trusted processes and the kernel are no more
special than other interfaces between portions of software within the kernel. There is one security
policy, and it must be enforced consistently everywhere around the security perimeter; no special
policy is needed for the interface between the kernel and trusted processes.

Operating-system designers are often faced with making a decision about whether to
implement a function as an autonomous process or to implement it as part of the operating
system that is distributed across all processes. Usually the function is more efficient when it is
inside the operating system, but maintenance is far easier (and the design may be simpler) when

 140

it is outside. Kernel designers are faced with the same decisions. For example, the login function
is often handled by a (trusted) process rather than directly by the operating system or kernel. But
clearly that process must be trusted as much as the kernel and must enforce the same security
policy. It is hard to make a convincing argument either that the policy enforced by the login
process or its degree of verification should depend on a design or implementation detail.

From a purist’s point of view, the only trusted subjects are people: users and administrators.
Users are trusted to protect information to which they have access, and administrators are trusted
to protect the kernel and to specify security attributes of users. Like other interfaces into the
kernel, the interfaces for these trusted subjects (implemented through the trusted-path mechanism
we discussed in section 10.4) must be constrained by the security policy, except that certain rules
(specifically, the confinement property of the Bell and La Padula model) may not apply to
people. Whether the software that implements such functions runs as a separate process or runs
within a privileged domain is an implementation detail.

10.6 KERNEL SECURITY POLICIES

Almost universally, the security kernel approach has been applied to systems that enforce a
multilevel security policy (see section 6.4). In particular, the mandatory and discretionary
policies of the Bell and La Padula model (section 9.5.3) are the ones most commonly used.
While few people doubt that the security kernel is a good place to enforce a mandatory security
policy, a great deal of controversy has surrounded the discretionary policy.

We saw in section 6.2.5 that a Trojan horse can easily bypass discretionary access controls
without violating any rules. This is true even if the controls are enforced in a security kernel.
Nobody questions the usefulness of discretionary access controls; but many doubt whether, given
this vulnerability to Trojan horses, it pays to go to the effort of implementing the controls in a
kernel. After all, the kernel is supposed to be as small and simple as possible, and the cost to
implement anything in a kernel is quite high because of the verifiability requirement.
Discretionary access controls can easily be implemented in the operating system outside the
kernel. Such controls can also be implemented within an expanded security perimeter that
includes more than just the kernel.

The kernel typically provides two types of functions to support discretionary access controls.
One function is an explicit kernel call that allows a user (or a process) to set the access rights to
an object. The other function is the act of enforcing those rights on each access to the object (as
part of the complete mediation principle). The kernel function that sets access rights on an object
must of course check to make sure that the user or process has sufficient right to do so (for
example, by ensuring that the user owns the object or that the object is contained in a directory
that the user can modify), but the function places no constraints on the access rights that the user
or process may specify. The definition of discretionary access control requires that a user be
allowed to give away a file to anyone as a matter of discretion.

Thus, while the kernel faithfully enforces the access rights on an object, it does not restrict
the values to which those rights may be set, thereby leaving discretionary access controls wide
open to a Trojan horse attack.

 141

It appears, at first, that the root of the vulnerability of discretionary access control is the fact
that a program in the user’s process can give away access rights. Consequently, it is occasionally
proposed that this capability be eliminated by providing a trusted path such that only the user can
set access rights. As we established in section 7.1.2, however, such a restriction is nearly
useless—unnecessarily constraining the flexibility of the system, while doing nothing to defeat a
Trojan horse.

You may conclude that, in order for the effort to implement discretionary access control in
the kernel to be justified, you have to prove that you can prevent a Trojan horse from entering
the system (or from entering a specific set of applications). In section 7.1.2 we discussed some
ways to limit the occurrence of a Trojan horse through procedural controls. In a fairly closed
system where no user programming is allowed or where the only users who are able to write
programs are trusted, it is possible to increase your level of confidence that no Trojan horse can
get into places where it would do much harm. You must be very careful, however, that you do
not close the system to such a degree that your need for a security kernel is dubious. If you go so
far as to require all your users to be cleared for access to all the information in the system, then
you do not need much security.

Another way to minimize the occurrence of a Trojan horse is to use an integrity policy (see
section 6.5) in which integrity access classes are assigned to subjects and objects based on some
measure of their reliability. The kernel will prevent high-integrity programs and data from being
contaminated (modified) by lower-integrity programs. If you login at a high integrity level, your
process will only be able to run high-integrity programs, and you need not worry about
accidentally using a low-integrity program that might contain a Trojan horse.

The integrity technique has a practical limitation: all programs used in a high-integrity
process, including any that run in the operating system and all system applications needed by the
process, must be of high integrity. This makes the use of normal-integrity tools such as compilers
and text editors impossible in conjunction with these high-integrity programs. In general, using a
level of integrity above that of the average system utility is practical only for very special cases.

In summary, the jury is still out on the usefulness of discretionary access control in the
kernel. While most security kernels do implement a discretionary policy (because the
government’s Criteria (see section 1.2) requires that such controls lie within the security
perimeter), you will have to judge for yourself whether it is appropriate for your kernel to do so.

10.7 KERNEL IMPLEMENTATION STRATEGIES

In general, a security kernel resembles an operating system and uses conventional operating-
system design concepts. The hardware support required for a security kernel is also largely
conventional. The kernel must control all subjects and objects within the security perimeter, and
therefore it must provide support for processes, a file system, memory management, and I/O.
Nothing in the three principles of the reference monitor approach inherently dictates an
architecture fundamentally different from that of conventional operating systems. In fact, these
principles are worthwhile guidance for the design of any operating system.

 142

Most of the differences between a kernel and an operating system are quantitative and follow
from the high priority given to the three principles in comparison to flexibility, functions,
performance, cost of development, ease of use, and other factors that are normally more
important to an operating system. The most direct quantitative impact is caused by the
verifiability principle, which dictates that the kernel have a primitive interface and be much
simpler and smaller than a full operating system, while at the same time insisting that it be
closely scrutinized (and therefore more costly to build in relation to its size).,

But if we look at the kernelized system as a whole, including the operating system and all the
applications, the architectural aspect that differs most from conventional systems is the existence
of an additional operating-system layer on top of the kernel that compensates for all the functions
that the primitive kernel does not provide and so keeps the system running smoothly. The kernel
approach does not require such an operating system, but a properly constructed kernel is, by def-
inition, too primitive and inconvenient to use directly for an interface to applications. A kernel
also does little to prevent denial of service unless denial of service is expressed as a security
requirement.

Since few of us are in a position to build a complete system from scratch (including all
hardware and software), we shall discuss in this section some of the early trade-offs you might
make in planning to kemelize an existing system. Chapter 11 covers additional design topics
pertaining to both kernels and conventional systems that are not covered here or in preceding
sections.

Suppose that you are given an existing insecure operating system (ISOS) running on top of a
reasonably modern computer (RMC). You will be subject to one of the following constraints
(fig. 10-2), which are listed in order from most restrictive to least restrictive:

(a) Identical operating system: You must support the existing ISOS with minimal or no
changes, and you must support all existing applications with no changes (object code
compatibility). You must be able to support all future releases of ISOS with minimal
effort on your part for each new release.

(b) Compatible operating system: You may completely redesign the existing ISOS, but you
must support all existing applications with no changes to the applications.

(c) New operating system: You need neither retain the existing ISOS nor support existing
applications. You are building a new secure operating system (SOS), and any
resemblance to the original is incidental.

We shall now discuss implementation issues for each case.

 143

Figure 10-2. Kernel Implementation Strategies. There are three ways to incorporate
a security kernel into an insecure operating system (ISOS) on given computer hardware
(RMC): the first (a) retains most of the ISOS code and applications, the second (b)
redesigns the operating system but retains the ISOS interface, thereby preserving the
applications; and the third (c) is a completely redesigned SOS with a new interface and
applications.

10.7.1 Case (a): Identical Operating System (Virtual Machine)

This case is at once the most restrictive and the most realistic. In most cases where security is
the only motivation for improving a system, you are required to use as much of the code from an
existing operating system as possible, and you must maintain full compatibility with existing
applications. A further constraint may be that you must avoid the need to issue a new release of
your system every time the original operating system is changed.

In this approach, the original operating system is used almost intact, and the kernel is
implemented as a new layer within the existing system. The only practical way to implement this
strategy is through a virtual machine monitor (fig. 10-3), such as IBM’s VM operating system. In
this case, the kernel is the virtual machine monitor, whose interface is nearly identical to that of
the original hardware. The kernel supports multiple virtual machines (with a copy of the
operating system running in each machine), in a manner analogous to the way in which an
operating system supports multiple processes. The operating system, unaware that it is being
controlled by the security kernel, carries out its own functions of multiprocessing and memory
management as if it were on the bare machine. In this structure, the virtual machines occupy
isolated areas of memory; sharing memory is not usually possible because the operating systems,
unaware of each other, do not have the necessary coordination mechanisms. With a few
modifications, however, or with an operating system that is already able to run as a virtual
machine, some sharing could be permitted (under control of the kernel, of course).

RMC HARDWARE RMC HARDWARE RMC HARDWARE RMC HARDWARE
Original System (a) Identical OS (b) Compatible OS (c) New OS

RMC INTERFACE

ISOS INTERFACE

RMC INTERFACE

RMC INTERFACE

ISOS INTERFACE

RMC INTERFACE

ISOS INTERFACE

RMC INTERFACE

SOS INTERFACE
APPLICATIONS

APPLICATIONS APPLICATIONS NEW
APPLICATIONS

ISOS
ISOS

EMULATOR
SOS

ISOS KERNEL KERNEL KERNEL

 144

Figure 10-3. Virtual Machine Monitor Approach. In this architecture, the kernel
supports multiple virtual machines, each of which runs a copy of the original operating
system. Each operating system may service multiple applications and users. The kernel
enforces the vertical isolation between virtual machines but not between processes on
the same machine.

The virtual machine approach has been used quite successfully in KVM because both the

hardware (the IBM 370) and the original operating system (VM/370) were already structured to
support virtual machines. Certain hardware features are crucial to practical implementation of a
virtual machine monitor, so this approach is not suitable for all systems.

In this architecture, the kernel’s idea of a subject is in fact a virtual machine. Each virtual
machine has a unique identifier and a set of security attributes on the basis of which the kernel
makes its access decisions. Because the kernel does not manage (nor necessarily know about) the
processes operating above that virtual machine, the kernel cannot perform any finer-grained
access control over those processes. The kernel carries out actions requested by the operating
system in each virtual machine and cannot trust the operating system to distinguish between the
requests of different users. As far as the kernel is concerned, each machine is a single subject.

The operating system running in each virtual machine protects itself and the integrity of that
machine, and the kernel protects itself and the integrity of the overall system. Such an
architecture requires a hardware base with at least three states or domains, one for the kernel, one
for the operating system, and one for all the applications. Furthermore the architecture requires
that the original operating system be able to run outside the most privileged state of the
machine—something it probably is not accustomed to doing. It is unlikely that you will get away
without making any changes at all to the original operating system; but if the operating system is
well-structured to begin with, the changes may be very minor.

If we want each virtual machine to take on the role of a surrogate for a single user, the kernel
must permit no more than one user to access each machine. The user may have multiple

Hardware

Kernel

ISOS ISOS ISOS

User
Processes

Virtual Machines
(Subjects)

A B C D E
USERS

 145

processes on that virtual machine, but all processes have the same access rights (enforced by the
kernel) as the virtual machine. This single-user virtual machine is represented in the leftmost
ISOS in figure 10-3. The kernel’s enforcement of access control to the granularity level of the
virtual machine is equivalent to enforcing access to the level of a single user. On the other hand,
it might be desirable to allow a virtual machine to be used by several users, as represented by the
other two ISOS’s in figure 10-3. Since ISOS is a multiuser operating system, this is a natural
thing to do. In this case the kernel cannot distinguish between the actions of different users on
the same machine. For access control purposes, the users must be considered as members of a
group, and the kernel’s access enforcement is to the level of granularity of a group of users.

Which of the two approaches—single- or multiple-user virtual machines—you adopt depends
on your security policy and on pragmatic issues such as performance. “Sliding” a virtual
machine monitor beneath an existing operating system is well-known to have an adverse impact
on performance. If the hardware is optimized to support a virtual machine concept, however, the
impact might not be too great. But in a system with a hundred simultaneously logged-in users,
the overhead involved in maintaining a virtual machine per user could be intolerable. On the
other hand, if the security policy requires the kernel to distinguish between the actions of
programs run by different users, there is no secure alternative.

Even though the kernel’s security policy cannot distinguish between the operating system
and the applications, there is no reason why the operating system cannot continue to enforce its
own security policy over the applications. While we cannot trust the operating system to enforce
its security policy with the same level of assurance we have in trusting the kernel, that does not
necessarily render the operating system’s controls useless. In particular, conventional
discretionary access control (already a feature of most operating systems) will continue to be
enforced even if the operating system is running on top of a kernel. The kernel might enforce
more stringent mandatory security controls that the operating system does not provide.

In a virtual machine architecture, the kernel can manage a file system on secondary storage
in a number of ways. One way is to provide each virtual machine with a private area of disk in
which the operating system manages its own file system. (In KVM each VM is given access to
its own minidisk area of disk.) The kernel mediates the I/O to the disk but does not interpret the
contents of a virtual machine’s disk area. But in order to allow sharing of information, the kernel
must allow two virtual machines to access the same disk area in accordance with the security
policy. Whether this is workable depends on how easily the operating system is able to
coordinate sharing a file system with another machine.

10.7.2 Case (b): Compatible Operating System (Emulation)

Even if you are lucky enough to be free to redesign the internals of the operating system, you
will doubtless be constrained by existing applications. In figure 10-2(b), your constraints are to
use the existing RMC computer and to implement the same ISOS interface (so that applications
do not know the difference between the real ISOS and the ISOS emulator). You have complete

 146

freedom to define an interface between the ISOS emulator and the kernel. This approach was
proposed for the KSOS project, where a Unix emulator was to run on top of the security kernel.1

The most straightforward way to realize this approach is to implement the operating system
emulator as a program within each user’s process, running in a domain outside the kernel but
with more privileges than the user programs enjoy (fig. 10-4). In this case, unlike the situation in
the virtual machine monitor approach, each subject is a process that operates as a surrogate for a
single user. But like the virtual machine system, this architecture requires a machine that has at
least three domains. In general, the emulator that runs in each process acts as a translator,
rendering operating system functions into kernel calls, rather than as a complete operating
system, because the emulator only controls a single user’s process and cannot freely share
information with its counterparts in other processes. Nonetheless, a properly constructed
emulator can maintain a certain amount of global control over users in all processes. With some
luck, sections of the code for the emulator can be obtained unmodified from the original
operating system, because most operating systems are already built to distribute a portion of their
outer layers among the processes in the system.

Figure 10-4. Operating-system Emulator. A program running in an intermediate
domain of each process emulates operating-system calls, using combinations of kernel
calls.

Since you are designing both the emulator and the kernel, and since you are constrained only

by the ISOS interface at the top and the hardware at the bottom (and perhaps by the desire to use
some existing code), you can make the optimum engineering choice of the split in functions
between them. But some common problems arise in attempts to kernelize an operating system in
this way, because of incompatibilities between the security policy that the kernel must enforce
and the characteristics of the interface to be emulated:

• Some functions of the interface are not secure according to the new policy and cannot be
emulated.

• Some functions of the interface, though secure, are exceptionally difficult to emulate.

1The Unix emulator was later abandoned as a result of budgetary constraints.

KERNEL

ISOS EMULATOR

APPLICATIONS

USERS

KERNEL DOMAIN

SYSTEM DOMAIN

USER DOMAIN

A B C D E F G

 147

In section 5.2 we discussed some examples in which applications depend on functions of an
operating system that are insecure. You are most likely to encounter such problems when you try
to enforce mandatory controls on a system that depends on the ability to communicate or share
information among many or all processes. In particular, you cannot emulate functions that reveal
global dynamic status about the system if the kernel enforces mandatory controls. These
functions are not a problem in the virtual machine approach because each machine runs its own
complete operating system in its own security domain and can function quite well without being
aware of other machines.

A function that is secure but difficult to emulate under mandatory access controls is one that
maintains an interprocess synchronization mechanism, in the form of locks that are shared by
several processes. On the “vanilla” system, there might be a system-wide database (in memory)
containing information about locks, such as the list of processes waiting on each lock. The lock
manager enforces access control on the locks, so that a process may only use a lock when
permitted by the process that created the lock. But mandatory controls do not allow any single
system-wide object to be read and written by all processes: the locking mechanism has to be
redesigned to use multiple databases—one per access class. Because the system may support a
huge number of different access classes, the databases must be dynamically created in memory
(assuming that the kernel supports shared memory) each time a process of a new access class is
activated, and they must be deleted when the last process of a given access class terminates.
Reliably deleting objects, so as to avoid filling memory with thousands of unused lock databases,
is a difficult design problem.

Another function—secure, but difficult to emulate—provides access control for small objects
such as records or interprocess messages. A kernel with a primitive file system is unlikely to
support many types of objects, so a simple way to manage small objects is to store one object per
file. While such a scheme is not hard to implement, its performance implications and storage
requirements might make it impractical. A much more complex scheme might be required,
whereby multiple objects are stored on a per-access-class basis, as are the locks in the previous
example.

Before undertaking a project to kernelize an existing operating system, you should carefully
analyze each function to be emulated and determine exactly where the function might fail under
the kernel’s security policy. Most of the problems you identify will involve additional error
conditions that can usually be implemented in a compatible way, or functions that do not work in
quite the same way but are not used much anyway. You may however, run into a few show-
stoppers, where fixing the problem nullifies so many applications that you must abandon hope of
emulating the existing operating system.

If you find that a function will work but is very difficult to implement, you might decide to
place part of it in the kernel. A locking mechanism, for example, is much easier to implement in
the kernel, where it can know about all processes. But you should make such decisions carefully
and with good reason, or before you know it the kernel will be as big as the original operating
system, and the emulator will be little more than an empty shell.

 148

10.7.3 Case (c): New Operating System

The third case arises when you are designing your own system from scratch, and thus have the
rare freedom (within reason) to define your own operating system interface. This case of course
assumes that you are designing a complete operating system and not just a kernel. In case (c) you
are allowed to define an operating system interface that is compatible with the security policy
enforced by the kernel. The interface might closely match the functions provided by the kernel,
either on a one-for-one basis or through simple mappings of operating system functions to kernel
functions. With the flexibility afforded by the freedom to choose an interface, you can probably
design both a kernel of minimal size and an operating system that performs well. With
appropriate hardware support (see chapter 8), your fully functional secure operating system need
perform no worse than any insecure operating system that has similar functions.

The SCOMP is an example of a kernelized system with a specialized operating system. On top
of the kernel is a simple operating system that provides more application-friendly features than
the bare kernel does.

The structure of the system will resemble that in figure 10-4, with a portion of the operating
system code running in each process under control of the kernel. But because there is no
compatibility constraint on the type of sharing that the operating system must implement, you
can design both the file system’s and the operating system’s internal databases to use kernel
primitives to share information in accordance with the security policy. This flexibility minimizes
the need to implement special-purpose functions in the kernel.

If you have a multilevel security policy, for example, a process running at SYSTEM LOW
(see section 9.5.3) outside the kernel can write information readable by all other processes. Such
a process can manage a large number of administrative functions affecting system databases that
are read (but not written) by other processes. These include the user registration file,
configuration information, sysgen parameters, and start-up procedures.

A SYSTEM HIGH process outside the kernel can handle functions that must be able to read
system-wide information written by all processes. Such a process can read (but not write) any
file in the system without special privileges. Examples of applications of this type are processes
that handle audit or accounting logs or that monitor system usage.

You cannot go too far with this notion of untrusted processes for system functions. The
system backup process, for example, only requires read access to files and might therefore seem
to be a good candidate for a SYSTEM HIGH untrusted process. But if you ever want to restore the
files you have backed up, you will be unable to believe any of the access class labels or kernel
data written by backup. In general, backup and restore operations must be implemented within
the kernel or as trusted functions (see section 10.5).

REFERENCES

Ames, S. R., Jr.; Gasser, M.; and Schell, R. R. 1983. “Security Kernel Design and
Implementation: An Introduction.” Computer 16(7): 14–22. Reprinted in Advances in

 149

Computer System Security, vol. 2, ed. R. Turn, pp. 170–76. Dedham, Mass.: Artech House
(1984).
An overview of the reference monitor concept, security models, and kernel implementation
issues.

Anderson, J. P. 1972. “Computer Security Technology Planning Study.” ESD-TR-73-51, vols. 1
and 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-758206.)
The first study to document the government’s computer security problem and the proposed
solutions in the form of the reference monitor and the security kernel; now no longer useful
as a primary technical reference, but historically important.

Berson, T. A., and Barksdale, B. L. 1979. “KSOS—Development Methodology for a Secure
Operating System.” Proceedings of the NCC 48: 36571. Reprinted in Advances in Computer
System Security, vol. 1, ed. R. Turn, pp. 155–61. Dedham, Mass.: Artech House (1981).
A description of the development and verification techniques used in the Kernelized Secure
Operating System research project for the PDP-11 /70.

Fraim, L. J. 1983. “SCOMP: A Solution to the Multilevel Security Problem.” Computer 16(7):
26–34. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp. 185–92.
Dedham, Mass.: Artech House (1984).
A minicomputer-based security kernel with sophisticated hardware protection controls; this
system is a Honeywell product.

Gold, B. D.; Linde, R. R.; Peeler, R. J.; Schaefer, M.; Scheid, J. F.; and Ward, P. D. 1979. “A
Security Retrofit of VM/370.” Proceedings of the NCC 48: 335–44.
Describes the KVM security kernel.

Karger, P. A., and Schell, R. R. 1974. “Multics Security Evaluation: Vulnerability Analysis.”
ESD-TR-74-193, vol. 2. Hanscom AFB, Mass.: Air Force Electronic Systems Division.
(Also available through National Technical Information Service, Springfield, Va., NTIS AD-
A001120.)
A discussion of penetrations of Multics, pointing out several classic types of flaws in various
areas; useful as a guide to detecting flaws in other operating systems.

Landwehr, C. E. 1983. “The Best Available Technologies for Computer Security.” Computer
16(7): 86–100. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp.
108–22. Dedham, Mass.: Artech House (1984).
An overview of all past and ongoing secure system projects, with many references.

McCauley, E. J., and Drongowski, P. J. 1979. “KSOS—The Design of a Secure Operating
System.” Proceedings of the NCC 48:345–53. Reprinted in Advances in Computer System
Security, vol. 1, ed. R. Turn, pp. 14553. Dedham, Mass.: Artech House (1981).
A description of the design of the KSOS security kernel for the PDP-11.

Popek, G. J.; Kampe, M.; Kline, C. S.; Stoughton, A.; Urban, M.; and Walton, E. J. 1979.
“UCLA Secure Unix.” Proceedings of the NCC 48: 355–64.
The UCLA security kernel for the PDP-11.

Schell, R. R.; Tao, T. F.; and Heckman, M. 1985. “Designing the GEMSOS Security Kernel for
Security and Performance.” In Proceedings of the 8th National Computer Security
Conference, pp. 108–19. Gaithersburg, Md.: National Bureau of Standards.
A description of a security kernel for the Intel iAPX 286 microprocessor offered by Gemini
Computers.

 150

Schiller, W. L. 1975. “The Design and Specification of a Security Kernel for the PDP-11/45.”
ESD-TR-75-69. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also
available through Defense Technical Information Center, Alexandria, Va., DTIC AD-
A011712.)
Historically important as the first formal specification for a security kernel.

———. 1977. “Design and Abstract Specification of a Multics Security Kernel.” ESD-TR-77-
259. Hanscom AFB, Mass.: Air Force Electronic Systems Division. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-A048576.)
A worked example of a formal specification of a security kernel for a, large operating system
(though the system was never implemented).

 151

 Chapter 11

Architectural
 Considerations

This chapter covers a number of miscellaneous topics pertaining to the design and development
of secure systems, as well as to their applications. It applies to both security kernels and
conventional designs.

11.1 OPERATING-SYSTEM LAYERING

Although the concept of layering is not unique to secure operating systems, it is particularly
useful for them because it promotes a structured design that can help satisfy some assurance
needs. A layered operating system is one whose internal structure looks like a stack of systems,
each having an interface for use by the layers above (table 11-1).

Layers in a system are strictly hierarchical: the lower layers provide primitive functions, and
the higher layers use the primitive functions to provide more complex functions. By employing
the technique of data hiding, the software in each layer maintains its own global data and does
not directly reference data outside its layer. Each layer knows only about its own data and about
the set of functions available to it below; it knows nothing about higher layers except such
information as can be deduced from interactions across the interface. The rule is “downward
calls only.”

One way we can view the functions of the layers resembles the way we view layers in a
kernel-based system implementing a virtual machine (refer to figure 10-3), where each of the
three layers is a complete mini-operating system providing functions in all necessary areas:
object management, process management, I/O, and so on. The mini-operating systems in the
higher layers have more functions and are more complex than those in the lower layers. In such a
structure, there is no reason why any layer need use functions belonging to a layer other than the
one immediately below. The primary difference between the layering inside the operating system
in table 11-1 and that in figure 10-3 is that inside the operating system there is no need to enforce
vertical isolation between portions of the upper layers, as there is between processes or virtual
machines. Performance of operating systems layered in this way tends to be poor because many
of the frequently used simple functions that are implemented in the lower layers can be accessed
only by a cascade of calls through multiple upper layers.

 152

Table 11-1. Operating-system Layers. Each layer provides a set of functions for the
layers above it, using functions available to it in the layers below. Everything at or below
layer 8 in this example is within the operating system (or security kernel). This
architecture resembles that of PSOS (Neumann et al. 1980).

Another view constrains each layer to a particular subset of functions, as in the example in
table 11-1. The hierarchical structure. (downward calls only) is maintained, but no single layer
provides enough interfaces to be usable as an operating system in itself. A layer may directly call
functions several layers down, bypassing intermediate layers. In table 11-1, for example, a user
application in layer 10 may be, permitted to read and write a file by directly calling layer 4,
without necessarily passing through intermediate layers.

The structure whereby a layer services a single functional area is more efficient, because the
layer need not participate in functions of the lower layers; but it is also more error-prone,
because software in a higher layer may be able to bypass intermediate layers and directly access
objects that the intermediate layers should handle. In table 111, for example, layer 5 creates
directories using the files provided by layer 4. If programs in layer 6 (or above) always call layer
5 before calling lower layers, the integrity of the directories can be maintained by layer 5. But if
a program makes a direct call from layer 10 into layer 4, for example, that program might be able
to write into a file containing a directory without the directory manager’s knowledge. To handle
this type of problem gracefully, each layer must provide pass-through interfaces to functions in
layers beneath it, allowing lower-layer functions to be used only where the data-hiding
constraints of the layer are not violated. In our example, the directory layer would provide pass-
through calls for the open-file function in the file layer, but only after checking the
arguments of the open-file call to make sure that files containing directories are not opened.

Regardless of how the layers are interpreted, security decisions usually must be made by
most layers. Normally, having a single “security layer” is impossible because each layer has its
own set of objects that require secure management. It would be nice if, for example, the
operating-system interface layer in table 11-1 could validate the legitimacy of all system calls,
since that would relieve the lower layers of the duty to check their arguments. But the ability to

Layer Function

10 user applications

9 command language interpreter

8 operating system interface

7 device input/output

6 high-level processes

5 directories

4 files

3 segments

2 pages

1 low-level processes

0 hardware

Outside
Operating System

Inside
Operating System

 153

do so, especially for the pass-through calls, might require that the interface layer know about
details of the lower-layer data structures, thereby violating the data hiding principle of layering.
If a whole operating system existed in each layer, with no pass-through functions, such
knowledge would not be required because each layer would fully protect all its objects.

In most systems, the layering structure is enforced during development, rather than at run
time, using design guidelines and development tools such as compilers that prevent out-of-layer
references. When in execution, the entire operating system runs in one or two domains, and the
hardware has little or no role in preventing erroneous software in the operating system from
violating the layering. While the layering structure looks as though it could be handled by
hardware that supports hierarchical domains, there is little security advantage in adopting this
strategy because the entire operating system (or security kernel) is security-relevant. Once a
system call passes through the operating system interface. and satisfies the initial checks of its
arguments, any lower layer can cause a security violation if it misbehaves.

In summary, layering supports design verification by promoting a clean architecture and
reducing the chance for design and implementation errors. Some verification techniques model
the layering structure (see section 12.6.2). Using hardware to enforce layering during execution
may add robustness to the system in the face of programming errors, but it adds little measurable
security.

11.2 ASYNCHRONOUS ATTACKS AND ARGUMENT VALIDATION

In section 8.4.2 we discussed hardware techniques for checking pointers passed as arguments
between domains. Pointer validation is a special case of argument validation performed by all
operating systems prior to carrying out a user’s system call request. Where a system supports
multiple processors and multiprogramming, there exists a class of problem referred to as the
asynchronous attack, whereby one process passes pointers to parameters (residing in its virtual
memory) to the operating system, and another process (with access to the same memory
containing the parameters) modifies the parameters between the time the operating system
validates them and the time they are used. The first process (the one making the system call) is
suspended during the call so that it cannot modify the parameters, but any other process or
processor may be able to run during the call. Another term that has been used to describe this
problem is TOC/TOU (“time of check/time of use”).

As we discussed in section 8.4.2, the safest solution to the TOC/TOU problem is for the
operating system to copy the parameters to a location safe from asynchronous modification prior
to validation. But it is also necessary for the operating system to prevent an asynchronous change
to all information on which the validation depends, not just to the parameters themselves. We
spoke earlier, for example, of a segment descriptor that is modified between the time access to
the segment is determined and the time the segment is referenced. Another example, at a higher
level, involves a system call to read a file. The operating system must first read a directory to
find out the caller’s mode of access and to obtain the location of the file on disk. By the time the
file on disk is read, the file may have been deleted and a new file put in its place—a file to which
the caller did not originally have access. Of course, operating systems can handle these cases

 154

through the use of appropriate locks, but each case must be handled in its own way: there are no
generic solutions.

While locking helps avoid the TOC/TOU problem in situations where tables and operating-
system databases are involved in checking access, a user’s database that is randomly located
somewhere in a process’s address space cannot be locked by the operating system. In situations
where such data take part in an access check, the data may have to be copied into the operating
system in total.

Asynchronous actions that change the contents of memory can also occur as a result of I/O
operations. A classic penetration of OS/360 involves writing a channel program that is valid at
the time it is checked by the operating system prior to the start of I/O, but causes itself to be
modified (overwritten with the data being read) in a way that invalidates the prior check. Thus,
you are not necessarily safe from the TOC/TOU problem even if your system runs on a single
processor and your operating system prevents a process switch between time of check and time
of use.

11.3 PROTECTED SUBSYSTEMS

A protected subsystem is an application program outside of the operating system that carries out
functions for a group of users, maintains some common data for all users in the group, and
protects the data from improper, access by users in the group. The subsystem itself is protected
from tampering. A database management system that maintains a database shared by a group of
users is a protected subsystem. The operating system, via conventional access controls, prevents
users from tampering with either the database or the DBMS itself. The database can only be
accessed through proper calls to the DBMS. Most transaction monitors are also subsystems. A
program such as a compiler is not a subsystem because the compiler runs with the access rights
of the user that called if, operating on data accessible only to that user.

Smith process

Green process

Jones process

DBMS
process

DATABASE
ALPHA

(Smith) DATABASE
BETA

(Smith,Green)

DATABASE
GAMMA

(Green,Jones)

Figure 11-1. Protected Subsystem in an Active Process. In this structure, the DBMS
runs as a process that is inherently no different from a user process. The operating
system’s normal access-control mechanism prevents all but the DBMS process from
accessing the database files. The DBMS must control individual users’ access to
different files and different portions of files.

 155

One key problem in supporting a protected subsystem is how to prevent user programs from
accessing the subsystem’s shared data directly, while allowing the subsystem access to the data.
In most systems, the easiest way to implement such a scheme is to run the subsystem in its own
process with its own access rights and its own files (fig. 11-1). User processes send requests to
the subsystem via shared memory or interprocess messages. The subsystem remains permanently
active, ready to process a request at any time.

When subsystems are supported in individual processes, they tend to require centralized
system management to ensure that they are always active. Users cannot write their own
subsystems and change them as they see fit. But these management problems are not as
important a consideration as a security problem: the operating system cannot tell on whose
behalf the subsystem is working at any given time. The subsystem is responsible for enforcing
access to data belonging to a number of users, even though the subsystem is apt to be far less
trustworthy than the operating system. As far as the operating system is concerned, all files used
by the subsystem belong to a single user (DBMS, in figure 11-1). The security controls in the
operating system only keep the subsystem’s database separate from other processes.

A related way to support subsystems, employed in Unix via its set-uid mechanism,
involves activating a separate subsystem process on each request made by another process (fig.
11-2). The subsystem process runs with the identity of the subsystem and not with the user’s
identity: At any one time, multiple subsystem processes may be operating on common data. This
technique has all the same security problems as the single process, because each of the multiple
processes takes on the identity of the same user, but it does minimize the need for centralized
management of subsystems.

In yet another approach, the subsystem runs as just another program in the context of each
process that uses it, thereby taking advantage of the operating system’s process isolation
mechanisms to separate the actions of different users. In order to prevent the applications fro
damaging the subsystem’s data, this approach requires a machine whose hardware supports
hierarchical domains (see section 8.4). The subsystem runs in an inner domain that is more
protected than the user program but less protected and less trusted than the operating system. The
subsystem must still be trusted to manage data shared among several users, but the operating

Smith process

Green process

Jones process

DBMS process

DBMS process

DBMS process

DATABASE
ALPHA

(Smith) DATABASE
BETA

(Smith,Green)

DATABASE
GAMMA

(Green,Jones)

Figure 11-2. Protected Subsystem Activated on Request. The subsystem is
activated as a separate process each time it is needed, while retaining its own identity
separate from that of the invoking process.

 156

system can enforce a certain degree of control over the data: the data can be protected from
processes outside a given group of users as well as from programs running in domains less
privileged than that of the subsystem.

The maximum number of domains in a system that contains hierarchical domains is usually
limited to a small number such as 3, 4, 7, or 16. As illustrated in figure 8-5, domains tend to be
reserved for specific functions-the innermost ones for the operating system, the outermost ones
for users, and some intermediate ones for subsystems. Recall that access control to files is based
on the user identifier of the process and on the domain in which the process is running; there is
no further distinction among programs within the same domain.

This structure works very well when the system supports just one or two subsystems, since
each can run in its own domain. But with a limited number of domains, the use of subsystems
must be centrally managed; and in a large system with scores of subsystems, there are too few
domains. If several subsystems are placed in the same domain and are used by the same process,
the operating system or hardware cannot distinguish between the programs of one subsystem and
those of another. In figure 11-3, both the MAIL and DBMS subsystems run in the same domain.
If both subsystems are used by process P1, they share the same user identifier, SMITH;
therefore, both have access to the same files. Where two subsystems are mutually suspicious this
is a security problem. There are several ways around this problem (Schroeder 1972), but none is
very attractive. While it nicely addresses the performance problems of the other approaches, the
use of hierarchical domains for subsystems can only succeed in a few special cases and is not a
general solution.

OPERATING SYSTEM OPERATING-SYSTEM DOMAIN

DBMS MAIL PRIV SUBSYSTEM DOMAIN

P1 P2 P3 USER DOMAIN

SMITH JONES GREEN

Process P1

Figure 11-3. Mutually Suspicious Subsystems. Process P1, with access rights of
user SMITH invokes both the DBMS and the MAIL subsystems. The subsystems run as
part of process P1, but in a more privileged subsystem domain. The access rights of a
program in the subsystem domain run by P1 are based on the same identifier SMITH so
there is no way for the DBMS subsystem to protect itself from the MAIL subsystem. This
is a classic problem with hierarchical domains.

 157

Hierarchical domains are poor vehicles for protected subsystems because there is, in general,
nothing hierarchical about access rights of different subsystems. We need a more generalized
domain structure, where subsystems run in private domains that are isolated from each other and
from their callers, and where no practical limit constrains the total number of domains on a
system. This need has driven many researchers to design hardware that can support a generalized
domain or capability architecture (see section 11.6), and a few commercial systems have been
built around this concept. The IBM System/38 and Intel iAPX 432 are examples. But the
hardware designs are more radical, and little experience has been accumulated in building secure
operating systems on these machines. Such domain machines are viewed in practice as offering a
means to improve software reliability, because a software problem in one domain cannot affect
software in another domain. Building a secure operating system or security kernel on such a
machine remains an area of research.

11.4 SECURE FILE SYSTEMS

The file system is the primary focus of access control in an operating system. Following are
some important aspects of file system design that affect the implementation of secure file
systems.

11.4.1 Naming Structures

Early in the development of the first secure operating systems, certain file-system-naming
structures were recognized to be better than others for secure sharing of files. The simplest
structure is the flat file system wherein file names are maintained in a global name space stored
in a single system-wide directory. Any process or user can ask for any file by name, and access
to a file is determined by looking up information about the file in the directory.

Flat file systems make poor secure file systems because there is no way to hide the existence
of a file from a user. Nobody has yet come up with a way to hide the file names in such a system.
Even if the operating system refuses to tell you directly whether a file of a given name exists,
you can always infer it by attempting to create another file of the same name and checking to see
whether you get a “name duplication” error message. Some measure of security can be attained
by forcing people to use mundane file names so that the name itself will not reveal any useful
information, but in general the existence of the file (as well as the name of the file) must be
hidden. This problem makes flat file systems particularly inappropriate for mandatory security
controls, because the file name and file existence are ideal covert storage channels (see the
example in section 7.2.1).

Most attempts to make flat file systems secure involve some type of qualifier (such as a
mandatory access class) that is automatically attached to the file name and distinguishes between
two files of the same name that were created by different processes having different security
attributes. In effect, the system maintains two or more versions of the file, one for each access
class at which the file is created. But the approach has serious functional (not security) problems,
because it requires a process that wants to read a file to know which qualifier to use (when it has
access to more than one version).

 158

One way to prevent covert channels in a flat file system is to prevent processes from
choosing file names. In this approach, each file is assigned a unique ID by the operating system
at the time of its creation. A process can create a file whenever it pleases, but it cannot select the
name; and all processes must use the unique ID for future access to the file. This approach is
adopted by the KSOS security kernel. While it works well for files that are created and used by
programs, users cannot be expected to remember system-generated unique IDs. In order to allow
users to name files, the system must maintain a directory that maps user-selected file names to
unique IDs. Such a directory is none other than a global name space, posing the same security
problems as a flat file system.

The other file-naming structure is the hierarchical file system, wherein a collection of files is
contained within a directory and directories are contained within other directories (fig. 11-4).
The name of a file is specified as a path name—a series of directory names beginning at the root
directory and ending with the file’s parent directory, followed by the name of the file in the
directory.

Access to directories, which contain names and pointers to files and other directories, is

controlled in a manner similar to access to files, except that directories are readable and writable
only indirectly through special system calls. When you create a file, you have to specify the
directory in which it is to be created. If you want to create a file whose existence you want
hidden from another user, you create the file in a directory that the user cannot read. A user
without read access to a directory cannot infer anything about its contents or about the hierarchy
below that directory.

ROOT
UNCLASSIFIED

DIR_1
UNCLASSIFIED

DIR_2*
SECRET

FILE_1
UNCLASSIFIED

DIR_3*
SECRET

FILE_2
SECRET

FILE_3
SECRET

DIR_4*
TOP

SECRET

DIR_5
SECRET

FILE_6
SECRET FILE_4

TOP
SECRET

FILE_5
TOP

SECRET

SECRET can read or write but not delete
UNCLASSIFIED can delete but not read

* Upgraded Directories

Figure 11-4. Multilevel Secure Hierarchical File System. Boxes represent directories,
and capsules represent files. A directory contains a list of files and other directories,
plus information on access control and file system management. Shown is one way to
organize a multilevel file system so that the access classes increase as you go down
the tree.

 159

To prevent covert channels in a multilevel secure hierarchical file system, we must avoid
write-downs or confinement property violations (see section 6.4.1) in directories, by preventing a
process from creating an object (a file or directory) in a directory unless the process has write
access to the directory. This means that a TOP SECRET process cannot create a file in a SECRET
directory. However, a SECRET process can create an object in a SECRET directory and then
upgrade the object to TOP SECRET. The TOP SECRET process can thereafter write into the object. In
this way, a tree of directories and files is created in which access classes stay the same or
increase as you go down the tree.

In a multilevel hierarchical file system, an object whose access class is greater than its
parent’s is an upgraded object that cannot be deleted by a process running at the object’s access
class. The object can only be deleted by a process running at the parent’s access class—even
though that process cannot read the object. This causes some difficulties because a process at the
parent’s access class cannot find out (and cannot be permitted to determine) whether an upgraded
directory is empty; the system must permit the directory to be deleted by that process even if the
directory is full of files and other directories. Despite this difficulty, hierarchical file systems are
far preferable to flat file systems when multilevel security is involved.

11.4.2 Unique Identifiers

A highly secure system needs an unambiguous way to identify subjects and objects uniquely for
access control and administrative functions. Guaranteeing uniqueness of subject identifiers is a
manual job, because subject unique IDs are based on user names assigned administratively and
centrally. Object unique IDs present a more difficult management problem, because not all
objects are manually created and because user-assigned object names cannot be trusted to be
unique.

Ideally, the unique ID for an object is a number that is generated by the system when an
object is created and is never reused for another object in the life of the system. Normally the
user or process also specifies a human-readable name for the object, but the unique ID is the
basis of access control decisions. It is important to avoid assigning two unique IDs to the same
object. It is convenient—though not essential—to avoid changing the unique ID of an object
unnecessarily.

You may notice that the unique ID name space appears to be the same global name space that
we said was a bad idea in section 11.4.1. Because you do not specify unique IDs yourself when
you create objects, however, and because you use the conventional (for example, hierarchical)
name to access the object, using system-assigned unique IDs for ambiguity resolution and other
functions listed below avoids all of the problems of a global name space.

One purpose served by the unique ID is to permit the system to determine whether two
objects are the same. Without a unique ID, this is harder than you may think, because the same
file may be identified in many different ways—especially where file names can change, where
files can have multiple names, or where files are accessible through indirect links, as in Unix or
Multics. Knowing whether two objects are the same is necessary in order to determine whether
or not to revoke access when security attributes of object change.

 160

Object unique IDs are also used for administrative functions, such as backup and retrieval.
Without a unique ID, it is impossible to ascertain whether a backed-up image of a file written
long ago is the same file that currently resides on the system or is a completely different file that
just happens to have the same user-defined name. A security violation could result if the wrong
file is retrieved.

Even if the contents of a file are completely erased and rewritten, its unique ID need not be
changed, because it remains the same file for purposes of access control. If a file is deleted and a
new one is created in its place with exactly the same access attributes, it can safely be assigned
the same unique ID; but in general the operating system does not bother to keep track of the
access attributes or unique IDs of deleted files. If the access attributes of a file change, the
unique ID need not change, since the process that changed them possessed the right to access the
file both before and after the change. Unique IDs generated by the system have gained a
reputation as a source of covert channels. In order to ensure uniqueness of IDs, one approach to
generating unique IDs is to use the value of a counter that is advanced each time an object is
created. But if a process can see the unique IDs of two successive objects it has created, it can
determine whether another process has created an object in the interim. This results in a covert
storage channel.

To counter this problem, a better source for unique IDs is a real-time clock whose resolution
is sufficiently small that no two successive objects will have the same unique ID. This eliminates
the covert storage channel but permits the exploitation of timing channels by providing in effect,
a process-readable system clock. While this timing channel may not be new (the system probably
already provides a clock for user processes), the unique-ID clock may be more accurate than a
low-resolution clock that processes need for their usual timing functions.

When a unique-ID generator is based on a clock that must be manually set each time the
system is booted, the clock may be set wrong through human error. If the clock is set to a time in
the past, unique IDs of previously created objects may be duplicated, and serious security
problems can result. If the clock is set to a time in the future, no secure way exists to restore the
clock to its proper value without finding and deleting all objects that have been created in the
interim.

11.5 SECURITY GUARDS

The security guard is a low-cost add-on security mechanism that addresses a particular class of
multilevel security problems. In many environments, users need to communicate with a system
even though certain of those users cannot be allowed direct access to the system because of
weaknesses in the system’s security controls. The users may need access to a restricted set of
data, and the system may not be strong enough to protect other highly sensitive data residing on
that system.

Figure 11-5 shows an example of a guard that permits users logged into a system running at a
Low access class to submit queries to a database running on a system at a HIGH access class. The
two systems are not allowed to communicate directly because neither is trusted. The guard is a
trusted (usually kernel-based) system that is allowed to communicate with both systems

 161

simultaneously; it is trusted to prevent a nonsecure flow of information from HIGH to LOW. The
guard accepts queries from the LOW system and passes them to the HIGH system unmodified:
this is perfectly safe. The response to the query is received by the guard and displayed to a
human reviewer to ensure that it contains no information above the LOW access class.

In a similar manner, a guard can be used for access to a LOW database by users on a HIGH
computer. In this case the human reviewer must examine the queries, not because the HIGH user
might try to disclose information but because the HIGH computer cannot be trusted to prevent
disclosure.

Fully automated guards have been used for one-way traffic, such as sending mail from a
LOW to a HIGH system. The only information that the LOW system needs to receive in response
to a message it has sent is an acknowledgment that the message was accepted by the guard. The
guard has enough store-and-forward capability to ensure that little or no information about the
status of the HIGH system can be deduced by the LOW system, thereby minimizing the
possibility that a covert channel will occur. Section 13.5 discusses why secure one-way traffic
cannot generally be supported on a network.

Automated guards have also been implemented to handle database: queries, where the

queries and responses are highly structured and can be thoroughly checked so that the possibility
of covert communications from HIGH to LOW is remote. For the most sensitive applications,
how- ever, you must assess the Trojan horse threat before deciding whether the automated guard
approach is suitable (Denning 1984).

While the guard concept may seem “low-tech,” it is the only practical way to carry out
various applications on many existing systems. Without a guard, the function is carried out using

low
process

low
process

high
process

high
process

DATABASE

Queries

Responses

USER

HUMAN REVIEW

LOW COMPUTER
(untrusted)

SECURITY GUARD
(trusted)

HIGH COMPUTER
(untrusted)

Figure 11-5. Security Guard. Queries from the LOW to the HIGH system are passed
essentially unmodified, while responses are manually filtered for HIGH system data
content. Where the guard computer enforces process isolation with suitable assurance
(for example, if the guard is based on a security kernel) the low and high processes
running on the guard need not be trusted.

 162

pencil-and-paper messages.1 The guard itself has to be developed using advanced computer
security principles. The Department of Defense has developed several guards, one of which is
based on a security kernel (Woodward 1979; Denning 1984).

11.6 CAPABILITY-BASED ARCHITECTURES

In section 6.2.2, we discussed the concept of a capability list for access control and noted that
capabilities have enjoyed more success as a low level mechanism than as a user-visible one. In
section 8.4.2, we examined how to use capabilities, supported by hardware, as pointers to
implement nonhierarchical domains. While researchers have always shown a great deal of
interest in capabilities, most capability systems remain research systems; only a very few (such
as IBM’s System/38 and the Intel iAPX 432) have been built commercially.

Despite the fact that capabilities are touted as a protection mechanism, using them for secure
systems raises a fundamental problem. As a key to an object, a capability can be passed freely
between domains, and possession of a capability is sufficient to permit access. Indeed, a primary
advantage of capabilities is their ability to be given away without the system’s having to keep
track of who has access to what. Each application can manage its own capabilities as it pleases.

The flexibility to pass a capability to someone else is acceptable if the capability is for an
object that you own, but it is unacceptable if the capability is for an object that you do not own.
For example, a subsystem that processes data on behalf of one user, and thereby receives some
capabilities for the data, should not be allowed to pass those capabilities to other users. The
opportunity for a Trojan horse to propagate capabilities in an unconstrained manner makes pure
capabilities useless for enforcing mandatory access controls.

A number of researchers have addressed this deficiency, in various ways (Karger 1987;
Boebert et al. 1985; Newmann et al. 1980; Rajunas et al. 1986). Some place controls over the
propagation of capabilities by constraining the locations in which they can be stored. Others
place additional constraints on access, beyond those specified in the capability. One approach is
to use capabilities only as temporary keys for active processes and to redistribute the keys on
each new access, in a manner similar to checking for access at the time a file is first opened.

Rather than being used as a mechanism by which users may control access, capabilities can
act quite effectively as an underlying protection mechanism. Some of the efforts currently under
way are likely eventually to give us a way to build a secure system with greater ease and
flexibility than current approaches allow, but in the short run the conventional machine
architecture with conventional mechanisms appears to be the most practical.

1In many environments a person reads messages on one terminal and retypes the message into another terminal,
because the two systems cannot be trusted to be electrically connected.

 163

REFERENCES

Ashland, R. E. 1985. “B1 Security for Sperry 1100 Operating System.” In Proceedings of the 8th
National Computer Security Conference, pp. 1057. Gaithersburg, Md.: National Bureau of
Standards.
A description of mandatory controls proposed for Sperry (Unisys) operating systems.

Blotcky, S.; Lynch, K.; and Lipner, S. 1986. “SE/VMS: Implementing Mandatory Security in
VAX/VMS.” In Proceedings of the 9th National Computer Security Conference, pp. 47-54.
Gaithersburg, Md.: National Bureau of Standards.
A description of the security enhancements offered by Digital Equipment to upgrade the
security of its VMS operating system.

Boebert, W. E.; Kain, R. Y.; Young, W. D.; and Hansohn, S. A. 1985. “Secure Ada Target:
Issues, System Design, and Verification.” In Proceedings of the 1985 Symposium on
Security and Privacy, pp. 176-83. Silver Spring, Md.: IEEE Computer Society.
The Secure Ada Target is a research project to use a capability-like mechanism for building
a secure operating system that supports Ada programs.

Denning, D. E. 1984. “Cryptographic Checksums for Multilevel Database Security.” In
Proceedings of the 1984 Symposium on Security and Privacy, pp. 52-61. Silver Spring, Md.:
IEEE Computer Society.
Discusses, among other things, the Trojan horse problem in an automated security guard.

Kahn, K. C.; Corwin, W. M.; Dennis, T. D.; D’Hooge, H.; Hubka, D. E.; Hutchins, L. A.;
Montague, J. T.; Pollack, F. J.; and Gifkins, M. R. 1981. “iMAX: A Multiprocessor
Operating System for an Object-Based Computer.” In Proceedings of the 8th Symposium on
Operating System Principles, ACM Operating Systems Review 15(5): 127-36.
Another capability-based system.

Karger, P. A. 1987. “Limiting the Potential Damage of Discretionary Trojan Horses.” In
Proceedings of the 1987 Symposium on Security and Privacy. pp. 32-37. Washington, D.C.:
IEEE Computer Society.
Discusses a technique to limit discretionary Trojan horses on the basis of built-in knowledge
of usage patterns; also provides a good overview of the problem and good references to
related techniques.

Landwehr, C. E. 1983. “The Best Available Technologies for Computer Security.” Computer
16(7): 86-100. Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp.
108-22. Dedham, Mass.: Artech House (1984).
An overview of all past and ongoing secure system projects, with many references.

Neumann, P. G.; Boyer, R. S.; Feiertag, R. J.; Levitt, K. N.; and Robinson, L. 1980. “A Provably
Secure Operating System: The System, Its Applications, and Proofs.” Computer Science Lab
Report CSL-116. Menlo Park, Cal.: SRI International.
The design and formal specification (using old HDM) of a capability-based operating system.
The system was never implemented, but it evolved into the Secure Ada Target.

Rajunas, S. A.; Hardy, N.; Bomberger, A. C.; Frantz, W. S.; and Dundau, C. R. 1986. “Security
in KeyKOS.” In Proceedings of the 1986 Symposium on Security and Privacy, pp. 78-85.
Washington, D.C.: IEEE Computer Society.
A capability-based operating system for IBM mainframes.

Schroeder, M. D. 1972. “Cooperation of Mutually Suspicious Subsystems in a Computer
Utility.” Ph.D. dissertation, MIT. Project MAC Report #MAC TR-104. DARPA Order

 164

#2095. (Also available through National Technical Information Service, Springfield, Va.,
NTIS AD-750173.)
Discusses mutually suspicious subsystems and proposes a way to use the Multics ring-based
architecture to support them.

Woodward, J. P. L. 1979. “Applications for Multilevel Secure Operating Systems.” Proceedings
of the NCC 48: 319-28.
A discussion of various applications for security kernels, with a specific discussion of
security guards.

 165

 Chapter 12

Formal Specification
 and Verification

In section 4.3 we looked at an overview of the typical informal system development process and
saw how that process is supplemented by formal techniques. The formal specification and formal
verification phases of the formal system development paths (fig. 12-1) are used to increase the
level of assurance that a system will meet its security requirements.

In chapter 9 we discussed mathematical concepts for defining a security model of a system,
and in section 9.1 we summarized several paths—formal and informal—for demonstrating
correspondence of the system to the model (illustrated in figure 9-2). Section 9.7 discussed
specific techniques for following the informal paths without having to use a formal specification.
The formal techniques for showing correspondence covered in this chapter closely follow the
philosophy of the informal techniques, and reviewing section 9.7 will help you put these formal
techniques into perspective.

Figure 12-1. System Development Paths. The formal specification satisfies the phase
of system development corresponding to the informal functional specification.

Implementation Implementation

(testing) (proof)

Functional Specification Formal Specification

(demonstration) (proof)

Security Requirements Abstract Model

Informal Development Path Formal Development Path

This
Chapter

 166

Despite the similarity in some of their formal methods, you should distinguish between the
process of writing a formal model and the process of writing a formal specification. Formal
specifications are only useful for systems that must maintain the highest degree of security,
whereas models have a much broader applicability. You need to have a model in order to write a
specification, but the converse is not true. The purpose of formal specification is to describe the
functional behavior of the system in a manner that is precise, unambiguous, and amenable to
computer processing. The purpose of the computer processing is to carry out various forms of
analysis on the specification with minimal chance of human error. The primary goal of the
analysis is to prove properties about the specification. The computer processing does not help
you design and build the system: designers and implementers must read the formal specification
and manually develop the software (and hardware) that satisfies the intent of the specification,
much as they would use a natural-language specification.

A formal specification can be used to prove many properties about the design of a system,
but our primary concern is the correspondence of the specification to the security model. Proving
that the specification conforms to the functions, invariants, and constraints of the model is one
step in the formal verification of a system.

Another step in the verification consists of proving that the implementation adheres to, or
corresponds to, the formal specification. Unlike the specification proof, a complete formal
implementation proof of a large system is but a dream with today’s technology, although a great
deal of research is in progress and the theory is well-understood. We may have to await much
more advanced tools (perhaps even artificial intelligence) before we see a fully verified operating
system. But even if we cannot formally verify all the code, the formal process gives us the
advantage of a precise (and verified) specification from which to carry out an informal (largely
manual) argument to support that correspondence.

When we think of formal specification, the concept of multiple layers of specification is
usually predominant (fig. 12-2). The intent of the layering is to divide the large gap in abstraction
between the model and the code into several smaller and (it is hoped) more manageable steps.
The top layer looks most like the model, and the bottom layer looks most like the code. Proofs
between the layers ensure correspondence from top to bottom. The various ways to decompose a
system into layers are covered in section 12.6.

While we discuss formal specification as if the goal were to verify formally the accuracy of
the specification and to prove code correspondence, a formal proof of the specification is not a
mandatory part of the development process. The discipline of formally specifying a system can
be of significant benefit even if no formal verification is carried out; however, if you do not
follow through and invest some substantial effort in showing specification and code
correspondence, writing a specification will be a waste of time. It is particularly common to see
formal specifications, written early in the design of a system and proved to be secure, lying on a
shelf gathering dust as the system is implemented because nobody has taken the time to keep the
specifications up to date.

 167

Figure 12-2. Specification Layers. A formal specification may consist of several
layers—the top layer most resembling the model, and the bottom layer most resembling
the code. If verification is to be performed, the formal proof takes place between each
pair of layers except with respect to the code.

12.1 FORMAL SPECIFICATION TECHNIQUES

Doing a credible job of specifying and/or verifying a system requires a collection of languages
and automated tools. Only a handful of formal specification languages have been applied to
sizable systems. The following four are the most popular of these:

• Gypsy Verification Environment (GVE), developed by the University of Texas (Good,
Akers, and Smith 1986)

• Formal Development Methodology (FDM), developed by the System Development Group
of Unisys (formerly System Development Corp.) (Scheid et al. 1986)

• Hierarchical Development Methodology (HDM), developed by SRI International (Crow et
al. 1985)1

• AFFIRM, developed by the Information Sciences Institute at the University of Southern
California (Thompson and Erickson 1981)

These systems are large and complex and differ greatly from one another. Each has notable
strengths and weaknesses, and none is entirely free of problems (Cheheyl et al. 1981; Kemmerer
1986). The field of formal specification and the tools developed to handle specifications are by
no means mature. These systems are called methodologies because they not only incorporate a
specification language and related tools but prescribe a way of designing a system. While you

1The new, enhanced version of HDM is under development. The old HDM (Robinson, Silverberg, and Levitt 1979),
though now obsolete, is the source of many concepts on which new HDM and other work in the field is based; and
the old tools, particularly the MLS flow-analysis tool, are still in use.

IMPLEMENTATION

LOW-LEVEL SPEC

INTERMEDIATE-LEVEL SPEC

TOP-LEVEL SPEC

MODEL

Argument/Testing

Proof

Proof

Proof

Code
Correspondence

FORMAL
SPECIFICATION

Specification
Correspondence

 168

can accomplish a great deal using only the specification language, you will obtain the greatest
benefit if you adopt the design approach that these systems recommend.

The most common way to view a system (and the way employed by FDM and HDM) is as an
abstract state machine—the same approach that is used for an abstract model. This means that
the system has state variables and state transition functions. In fact, to a large extent, state
machine specifications are no more than complex models. The difference between a state-
machine model and a state-machine specification lies in the degree of detail; the latter looks far
more like a description of a real system than like an abstract statement of rules and relationships.

Gypsy specifications are significantly different from those written in FDM or HDM. Instead of
modeling an abstract state machine with state variables, Gypsy employs specifications of the
inputs and outputs of the individual procedures in the implementation, modeling a system in a
manner that closely resembles the way it is written as a hierarchy of nested procedure calls. This
technique has enjoyed some success as being the one most amenable to code proofs.

AFFIRM uses a form of specification called algebraic that describes the functions of a system
by specifying the cumulative effect of a sequence of nested function calls. Algebraic
specifications have not yet received much use for secure systems, so we shall not dwell on them
in detail.

12.2 PROPERTIES OF FORMAL SPECIFICATIONS

At first glance a formal specification looks much like a computer program, with its logical and
arithmetic statements, but the notation is quite different. Figure 12-3 is an example of a formal
specification. The language of this example specification is not an existing language, but it
resembles the style of Ina Jo (the language used in FDM) and Special (the language used in old
HDM). The notation of a formal specification language is much richer than that of a programming
language and allows you to express logical operations and relations not possible in a computer
program—especially those involving set theory. The following will help clarify some of the
notation used in the example:

type1: SET_OF type2 type type1 is a set with elements of type type2
var:typename identifier var is of type typename
'var value of var in new state
{var1,var2} set of elements
var1 ∪ var2 set union
var1 IN var2 TRUE if var1 is an element of set var2
exp1 | exp2 boolean OR of two expressions

 169

Figure 12-3. Formal Specification of Security Model. The variables proc_class and
file_class are arrays indexed by parameters identifying processes and files,
respectively. Each element of the two-dimensional access matrix is a set that contains
zero or more of the values "r" or "w". While all data types used in this specification are
listed, most do not need to be elaborated.

The functions in the specification are equivalent to function or procedure calls in a system; but
unlike a computer program, the body or effect of the function is a nonprocedural description of
the function and not an algorithm. The effect asserts what is true after the function completes,
without saying how the function is implemented.

TYPES
 process Process name
 file File name
 class Access class
 mode: "r" | "w Possible modes
 modes: SET_OF mode A set of modes

CONSTANTS
 init_procs (p:process): boolean Arbitrary constants
 init_files (f:file): boolean used for initial state
 init_class: class

VARIABLES
 proc_class (p:process): class Access class of process p
 file_class (f:file): class Access class of file f
 access (p:process, f:file): modes Access modes for p to f
 file_exists (f:file): boolean TRUE if file f exists
 proc_exists (p:process): boolean TRUE if process p exists
 cur_proc: process Current process

AXIOM Partial ordering of class
 FOR_ALL (c1:class, c2:class, c3:class)
 (cl >= c1)
 & (IF c1 >= c2 & c2 >= c1 THEN cl = c2)
 & (IF cl >= c2 & c2 >= c3 THEN cl >= c3)

INITIAL
 proc_exists = init_procs &
 file_exists = init_files &
 (FOR_ALL (p:process, f:file)
 SUCH-THAT (proc_exists(p) & file_exists(f))
 (proc_class (p) = init_class) &
 (file_class (f) = init_class) &
 (access (p, f) = {"r","w"}))

 170

Figure 12-3. Formal Specification of Security Model (continued). Shown are
functions to create a file, give a single access mode, and rescind an access mode.

The statements in the functions are mathematical expressions and should not be read as if
they were assignment statements in a computer program. For example, the two statements

'var = var + var2
var2 = 'var - var

are equivalent expressions, stating a relationship between the old and new values of var and the
old value of var2. The two statements

 ('var2 = 'var + 5) & ('var = 3)
 ('var = 3) & ('var2 = 8)

are also equivalent. No order of evaluation is implied by an ordering of expressions.

/* Create file f with access class c */

FUNCTION create_file (f:file, c:class)
 IF NOT file_exists (f) File must not already exist
 THEN 'file_exists (f) Make it exist
 & 'file_class (f) = c Set its access class
 & FOR_ALL p:process SUCH_THAT proc_exists(p)
 'access (p, f) = NULL Give nobody access

/* Give process p access mode m to file f */

FUNCTION give_access (p:process, f:file, m:mode)

 IF (proc_exists (p) & file_exists (f)) Process and file must exist
 & ((m = "r" & Mode requested is r and
 proc_class (p) >= file_class (f)) file is readable or..
 |(m = "w" & Mode requested is w and
 file_class(f) >= proc_class(p) file is writable
 THEN 'access (p, f) = access (p, f) U {m} Add mode to access rights

/* Rescind process p access mode m to file f */

FUNCTION rescind_access (p:process, f:file, m:mode)
 IF (proc_exists (p) & file_exists (f)) Process and file must exist
 & (m IN access (p, f)
 THEN 'access (p, f) = access (p, f) - {m} Take away requested mode

 171

It is easy to write an expression that cannot be true:

'var = 3 & 'var = 4

If this is the sole expression in the effect of a function, the function is attempting to force the new
value of var to two different values, rendering the function inconsistent and any proof of the
specification in valid. Nonetheless, although it is useless to do so, there is no harm in writing a
false expression as a condition, as in:

IF 'var = 3 & 'var = 4 THEN . . .

Effects of functions state what must be true after a function is invoked; consequently, if the
effect of a function can never be true, the function is inconsistent. For example, assume a
function has the following statement as its sole effect:

IF a = b THEN var = 6 ELSE 'var = 7

This says that old value of var is 6 when a = b . If a is not equal to b, the new value of var is set
to 7. Because an effect of a function must always be true, this function can be inconsistent if it
can be called when a = b and var does not equal 6. Placing undue constraints on the old values
of variables is dangerous unless the specification shows that the function is not called under
circumstances where the effect cannot be true. Some languages allow you to specify
preconditions that state when the function can be called.

This last example shows that determining the inconsistency of a function depends on other
functions of the specification. In general, it is meaningless to write an effect that constrains the
old value of a variable to a specific value or values unless you can guarantee that the constraint
will always be true. In general there must be some way to force an effect to evaluate to true
through assignments of values to variables in a new state.

A specification may be nondeterministic in several ways:

 'var > 3
 'var = 3 | 'var = 4
 'var1 = 'var2

The first statement says that the new value of var is greater than 3. A function with such a
statement is nondeterministic unless another statement in the function further constrains var .
The second statement allows var to have one of two possible values. The last statement says that
the new values of two variables are equal. It is nondeterministic if no other statement in the same
function specifies a value for one of them, but it is inconsistent if the function constrains the new
values to be different.

The ability to make nondeterministic statements is of great benefit when you are writing
formal specifications, because it allows you to say what is allowed without constraining the
implementation and without forcing you to include unnecessary detail. One of the common
forms for a function in a secure system is as follows:

 172

if security checks fail
then return “security error”
else (perform function or return “other error”)

This effect prevents the function from being performed if the security checks fail, but it does not
specify under what other conditions it may not be performed. The nondeterministic else clause
allows for optional completion of the function under conditions not specified. Because a function
that has no effect when it is invoked is as secure as it would be if it never were invoked, this
function is just as secure as if it had been written without the or return "other error" clause or if
it had been written with a detailed description of the conditions that cause "other error". Since
detailed descriptions just add clutter to a specification and do nothing to help prove the security
of the functions, the detail can be omitted.

One final important convention applies to our specification: if a variable or array element is
not specifically shown to change in a function or in one branch of a conditional (if statement), it
is assumed to remain unchanged; and when we specify a new value for one element of an array,
the other elements must not change. Though this no-change convention may seem intuitively
obvious (it is clearly the convention used in programming languages), most verification systems
must be told explicitly when variables do not change. This is because verification systems take
the mathematical view that a function specification is like a theorem that must be proved true
under the assumption that variables not specifically constrained can take on any possible values.
This mathematical view of specifications, which conflicts with the programming view, is a
source of some frustration and requires the user to insert numerous no-change statements
throughout the specification. These no-change statements may increase the size of a specification
by as much as 50 percent. In general, developing a tool that views a specification as resembling a
program (and so figures out when variables mentioned in one part of a function do not change in
another part) is a difficult theoretical problem.

12.3 EXAMPLE OF A FORMAL SPECIFICATION

Our example of a formal specification applies to a system that satisfies the formal model
discussed in chapter 9. The variables and rules of the model are repeated in figure 12-4 for
convenience. The definition of the secure state and any other constraints of the model will be
addressed later, when we discuss proving the specifications.

The model has two functions: one to create an object, and one to specify access modes in the
access matrix. While we could have translated the model directly into a formal specification (as
you might do if you were going to write the highest of several levels of specification), it is more
informative here to show a specification for a slightly more concrete system and then illustrate
how that specification maps to the model. The specification in figure 12-3 is a partial description
of a system that uses an access matrix (as in the model) but has processes and files instead of
generic subjects and objects. The create_file function is similar to the Create_object
function of the model. The give_access function is different from Set_access, in that it adds a
single access mode (either "r" or "w") to a set of modes for an entry in the access matrix, rather
than resetting the entire entry with a new set of modes. The function rescind_access takes
away an access mode.

 173

The data types of the file, class, and process identifiers are not defined in this
specification. Just as nothing in the model nor in its proofs depends on how subjects, objects, or
access classes are represented, the functions in this specification and proofs of this specification
do not depend on the data types of these items. You might be tempted to assign names or
numbers to files, but it is better to eliminate such detail in the specification.

While it is not necessary to say how the types are represented, it is often necessary to state
certain properties that apply to the types. For example, we have included an AXIOM stating that
the >= relation on data items of type class defines a partial order. Without this axiom, the
system that processes this specification would not know how to interpret the >= operator on
variables of the unspecified data type class.

All of the parameterized variables (arrays) in figure 12-3, such as file_class and
file_exists, appear to be of infinite extent. Clearly the implementation must have an upper
bound on the number of files, but this limit is unimportant in our specification, as in many

State variables:
 S = set of current subjects
 O = set of current objects
 sclass(s) = access class of subject s
 oclass(o) = access class of object o
 A(s,o) = a set of modes, equal to one of:
 {r} if subject s can read object o
 {w} if subject s can write object o
 {r,w} if both read and write
 Ø if neither read nor write
 contents(o) = contents of object o
 subj = active subject

Rule 1. Create_object (o, c):
 if o ∉ O
 then 'O = O ∪ {o};
 'oclass(o) = c;
 'A(s,o) = Ø.

Rule 2. Set_access(s,o,modes):
 if s ∈ S and o ∈ O
 and if {[r ∈ modes and sclass(s) ≥ oclass(o)] or r ∉ modes}
 and
 {[w ∈ modes and oclass(o) ≥ sclass(s)] or w ∉ modes}
 then 'A(s,o) = modes.

Figure 12-4. Example of Formal Model. This example is identical to the one
discussed in detail in chapter 9.

 174

others: it is far easier to prove properties about a specification if such limits are omitted, in all
but the most detailed specifications.

12.4 SPECIFICATION-TO-MODEL CORRESPONDENCE

Proving that a specification corresponds to a model amounts to proving that the specification is
one example of a system that obeys the model. If the variables and functions in the specification
map one-to-one with the variables and functions in the model, little more than inspection should
be required to prove the correspondence. But in general it is necessary to write mappings
between the model and specification.

Figure 12-5 describes these mappings in mathematical terms, using the example specification
and the model. The mappings for types, parameters, and variables are nearly one-to-one with
those in the model. The purpose of the parameter mappings is to show how dummy variables
used in the mapping translate into variables in the specification.

Since arrays in both the model and the specification are of infinite extent, it is acceptable to map
slev(s), for example, onto proc_class(p) without bounding the value of s. If proc_class
were finite, containing only access classes of processes that exist, the mapping would have to be
qualified to constrain s to values that are elements of S. Expressing the mapping of a finite subset
of values of s onto values of p would also be quite complicated. The only difficult mapping in
the example is that of Set_access. This function of the model maps to a combination of calls to
give_access and rescind_access (no ordering implied).

Since we are mapping this specification to the model, we must prove that the specification
adheres to the same definition of the secure state and to any additional constraints that we have
proved about the model. The mappings for the variables and functions in figure 12-5 allow us to
translate the definition and constraints of the model into terms of the specification, by simple
substitution (figure 12-6). It is necessary to prove the following theorem for each function in the
specification:

if INVARIANT and body of function
then 'INVARIANT and CONSTRAINTS

where 'INVARIANT represents the INVARIANT with all references to variables replaced by their
new values.

The mapping for Constraint 1 in figure 12-6 is trivially satisfied by our specification,
because file_class never changes for any file that already exists. For purposes of illustration
we have also included Constraint 2 and its mapping, even though it is not satisfied by our
specification (nor by the model, as we discussed in section 9.5.2): both give_access and
rescind_access fail to check for "r" access by the current process before modifying the
access matrix.

 175

12.5 TECHNIQUES FOR PROVING SPECIFICATIONS

Proving specifications is so complex and error-prone that nobody trusts manual proofs; an
automated tool is needed. These tools, called theorem provers, vary in sophistication from proof
checkers that ensure the correctness of manual steps to artificial intelligence aids that grind away
for hours on their own. Integrated specification and proof systems automatically generate the
necessary theorems, based on the axioms, functions, invariants, constraints, and other elements
of the specification.

Mappings for Types

 subject process
 object file
 access class class
 access mode mode

Mappings for parameters
 s:subject p:process
 o:object f:file
 c:access class c:class
 m:access mode m:mode

Mappings for variables
 O SET_OF (f:file SUCH_THAT file_exists(f)}
 S SET_OF (p:process SUCH_THAT proc_exists(p)}
 olev(o) file_class(f)
 slev(s) proc_class(p)
 A(s,o) access(p, f)

Mappings for Functions
 Create_object(o,c) create_file(f,c)
 Set_access(s,o,modes) if r ∈ modes
 then give_access (p, f, "r")
 else rescind_access (p, f, "r")
 and
 if w ∈ modes
 then give_access (p, f, "w")
 else rescind_access (p, f, "w")

Figure 12-5. Mappings between Specification and Model. The variables and rules
of operation in the model depicted in figure 12-4 are mapped onto the variables and
functions in the specification of figure 12-3.

 176

The current state of the art, in proving specifications has advanced sufficiently to make it
feasible to prove constraints and invariants on large specifications containing thousands of lines,
with reasonable confidence that the specification is indeed secure. (“Reasonable confidence” is
the best we can achieve because theorem provers cannot detect all possible inconsistent ways to
write a specification. If you work at it, you may be able to make the system prove false
theorems—that is, formulas that are not true.) You can expect to expend far more effort in doing
the proof than in writing the specification, however, so you should not take the decision to do
proofs lightly. Again, there is value in writing a specification even if no proofs are done.
Furthermore, proofs of specifications rarely detect true design errors: by the time you get to the
proof stage, you will have manually caught most such errors. The inability to prove a portion of a
specification is usually attributable to a typographical error or to a specification that was written
in a legitimate and secure form that the proof system nonetheless cannot handle. Still, a proof
does give you confidence that your specification (on which, presumably, you are basing the
design of the system) does not have a serious security flaw.

MODEL

Invariant: The system is secure if and only if, for all s ∈ S, o ∈ O,
 if r ∈ A(s,o) then sclass(s) ≥ oclass(o),
 if w ∈ A(s,o) then oclass(o) ≥ sclass(s).

Constraint 1: For all o ∈ O,
 'oclass(o) > oclass(o).

Constraint 2: For all o ∈ O,
 if r ∉ A(subj,o)
 then for all a ∈ S, 'A(s,o) = A(s,o).

SPECIFICATION
 INVARIANT

 FOR_ALL (p:process,f:file) SUCH_THAT (file_exists(f) AND
proc_exists(p))
 (IF "r" IN access (p,f)
 THEN proc_class (p) >= file-class (f))
 & (IF "w" IN access (p,f)
 THEN file_class (f) >= proc_class (p))

 CONSTRAINTS

 FOR_ALL f:file SUCH_THAT file_exists (f)
 'file_class (f) >= file_class (f)

 FOR_ALL f:file SUCH_THAT file_exists (f)
 IF NOT ("r" IN access (cur_proc, f))
 THEN FOR_ALL p:process SUCH_THAT proc_exists (p)
 'access (p, f) = access (p, f)

Figure 12-6. Mappings of Secure State and Constraints. The definition of the
secure state and the constraints of the model map directly to an INVARIANT and
CONSTRAINTS by simple variable substitution from the mappings in figure 12-5.

 177

12.6 METHODS OF DECOMPOSITION

At one extreme, you can have a specification that is very abstract and closely resembles the
model (as does our example); in such instances you must deal with the difficult task of
convincingly demonstrating the correspondence between the code and the specification. At a
much more detailed level, the specification might closely match the operations visible at the
interface to the system—function for function, and parameter for parameter. Such a specification
will be very complex and unreadable, and a formal proof that it corresponds to the model may be
impractical. These alternatives are shown qualitatively in figure 12-7. At an even more detailed
extreme, the specification represents the internal procedures of the system rather than the visible
interface. The correspondence proof to the model may be extremely difficult (or at least no easier
than the second case), but the correspondence to the code may be close enough to permit a partial
proof.

Several specification techniques deal with these large differences in levels of abstraction in

various ways. They correspond, roughly, to the techniques used in FDM, old HDM, and Gypsy,
although some techniques are used by more than one methodology.

12.6.1 Data Structure Refinement

The data structure refinement method, used in our example and in FDM, employs a refinement
of detail at different levels of abstraction. Each layer of specification is a state machine that
completely describes the system. The top layer is highly abstract and combines multiple data
types, variables, and functions into a few simple functions. The second layer adds more detail,
possibly dividing generic functions about subjects and objects at the top layer into specific
functions about specific types of objects. Once the second layer is written and has been shown to
map into the upper layer (in the sense that we mapped the specification into the model in our
example), the upper-layer specification is no longer needed. The second layer is a more concrete

Figure 12-7. Extremes of Specification Detail. A detailed specification will make the
code correspondence simpler but the formal proof harder (and maybe impractical),
whereas a highly abstract specification will make the code correspondence impractical
or unconvincing.

IMPLEMENTATION

ABSTRACT
SPECIFICATION

MODEL

IMPLEMENTATION

DETAILED INTERFACE
SPECIFICATION

MODEL

PROCEDURE
SPECIFICATION

MODEL

IMPLEMENTATION

Unconvincing Argument

Easy Proof

Easy Argument

Hard Proof

Very Hard Proof

Proof?

 178

description of the system and, when proved to satisfy the mapped invariants and constraints,
satisfies the same security properties as the top layer.

Similarly, we can add more detail at the next-lower layer and have yet more functions. Once
we add a layer, do the mappings to the upper layer, and complete the proofs, we no longer need
the upper layers (unless we someday need to modify and re-prove the lower layer). The bottom
layer (the one closest to the implementation) may closely correspond to variables and functions
in the code, making it a very precise and detailed description of the interface to the system and a
specification from which designers can implement a system.

The data structure refinement technique does not provide you with any clues for designing
the internals of the system. The lowest level of specification only describes the system interface;
it says nothing about the design. Making a credible code correspondence argument that the
underlying software accurately implements this specification requires traditional software
engineering techniques such as code inspection and testing.

12.6.2 Algorithmic Refinement

In contrast to the data structure refinement technique, whose lowest layer specification presents
the external view of the system, the algorithmic refinement technique, used in HDM and
illustrated in table 12-1, allows you to specify some of the internal structure of the system. The
technique most directly applies to systems designed with internal layers, as discussed in section
11.1. The technique views a system as a series of layered abstract state machines. Each machine
makes available a set of functions for use by the machine above. The implementation of each
function in a machine consists of an abstract program that calls functions in the machine below.
(For simplicity, only call statements are shown in the programs in the table, but in general the
programs may contain the usual semantics of programming languages.) The lowest-level
machine provides the most primitive functions of the system-those that cannot be further
decomposed.

The abstract machine concept is best illustrated with an example of a three-layer machine
implementing a file system (table 12-2). The bottom, most primitive machine (machine 0) knows
only about disks, disk blocks, and memory. It provides a few primitive functions, such as

disk_block_read (disk_name, block_address, buffer_address)

and knows nothing about the concept of files or access control.

Machine 1 provides a primitive flat file system, with functions typical of a file system
manager:

file descriptor = open(file_index)
file_read(file_descriptor,offset,buffer)

where file_index is simply an integer pointing to the file on disk. The implementation of
functions in machine 1 consists of abstract programs that use the functions of machine 0 to create
a file system out of disk blocks, using file indexes (stored on disk blocks) to keep track of
multiple files and using file descriptors stored in memory to keep track of open files.

 179

Layer Formal Specifications Abstract Programs

 interface to system

↓

N top-level machine
(interface specification)
func A
func B

proc AN proc BN
 call AN – 1 call BN – 1
 call CN – 1 call AN – 1
 return return

N – 1 intermediate machine
func A
func B
func C

proc AN – 1 proc BN – 1 proc CN – 1
 call AN – 2 call BN – 2 call CN – 2
 call CN – 2 call AN – 2 return
 return call AN – 2
 return

N – 2 intermediate machine proc AN – 1 proc BN – 1 proc CN – 1

.

.

.

.

.

.

 . . .
 . . .
 . . .

1 intermediate machine proc A1 proc B1

0 primitive machine proc A0 proc B0

Table 12-1. Algorithmic Refinement. The approach of specifying layered abstract
machines allows the internal structure of a system (below the top-level interface) to be
modeled. The top-level machine provides the functions visible at the interface to the
system.

Machine 2 implements a hierarchical file system containing directories and files within
directories. It provides file names as strings of characters and functions for access control to
files. It implements directories (using files in machine 1) that store names of files and access
control information.

In the algorithmic refinement technique, the highest-layer machine implements the interface
to the system as it appears to users. Each function call at the interface results in a possible
cascade of calls to lower-layer machines.

 180

Abstract Machine Data Structures Functions

Machine 2 Files
Directories

Create/delete files/directories
Read/write files
Access control functions

Machine 1 Files
File descriptors

Create/delete files
Read/write files

Machine 0 Disk blocks Read/write disk blocks

Table 12-2. Example of Three-Machine System. The higher-level machines provide
increasingly more complex file system functions.

When you write a specification using this technique, you write two things for each abstract
machine: a formal state-machine specification that resembles a single-layer specification of the
sort used in the data structure refinement technique; and an abstract program for each function in
the machine, providing an algorithmic description of the function in terms of calls to functions in
the lower-layer machine. Code correspondence proofs using a specification such as this require
proving that the abstract programs at all layers correspond to the real programs in the system.

Proof of a specification developed with these techniques first requires proving that the
highest-layer machine specification corresponds to the model, in a manner identical to the one
used to prove a specification in the data structure refinement technique. Then, in a manner
analogous to (but mechanically quite different from) proving the consistency of mappings
between layers, we must prove that the abstract program for the highest-layer machine correctly
implements its specification, given the specification of the functions of the next-lower-layer
machine. The process is repeated down to the lowest layer, at which point we must assume that
the specification of the lowest layer primitive machine is implemented correctly. In the overall
proof, it is necessary to specify how data structures in each machine are mapped onto data
structures in the next-lower machine.

Each layer in the real system corresponds to a layer of the specification, with functions that
closely match the functions in the abstract programs. As a result, it should be much easier to
argue for correspondence between the specification and the code in this case than if you had only
an interface specification, as in the data structure refinement technique. In fact, it has been
proposed (but never proved) that someday it might be possible to write a translator that converts
an abstract program into a computer-language program.

Unfortunately, the algorithmic refinement technique suffers from several drawbacks that
make its use a bit more theoretical than practical (though pieces of practical systems have been
developed using this technique and show promise for the near future). The primary drawback is
the difficulty involved in carrying out proofs of the abstract algorithms. It is much more difficult
to prove an algorithm than to prove a mapping, and such a proof becomes intractable for all but

 181

fairly small algorithms. Abstract program proofs differ little from concrete program proofs; the
only reason there is greater hope of proving abstract programs is that these programs can be
written in a highly restricted language that need not deal with many details of real programming.

Another drawback—this one far from fatal—is that the top-level specification is quite
complex because it represents the real interface to the system. Because the specification is so
close to the real system, proving its correspondence directly to the model has all the same
problems with level of detail that we faced with the data structure refinement technique, where
we proposed a single very detailed specification between the model and the code (the leftmost
extreme of figure 12-7).

The reason this second drawback is not fatal is that nothing restrains us from applying the
multiple levels of the data structure refinement technique above the top-level abstract machine
(fig. 12-8). Using this method, we can have the best benefits of both worlds; do not go to your
corner software store looking for an off-the-shelf system that implements this combination of
techniques—at least for a few years.

12.6.3 Procedural Abstraction

Gypsy’s specification technique might be called procedural abstraction. Gypsy directly models
the way a system is implemented: as a set of nested procedure calls. As in the algorithmic
refinement technique, each function in a Gypsy specification is equivalent to a function in the
implementation, but Gypsy does not require the system to be built in layers, as does HDM. The
specification of a Gypsy function describes how the function manipulates its arguments, not how
the function affects a global state of the system. Gypsy goes further than HDM and FDM in
allowing you to specify the functions of every internal procedure in the system, not just the
interface to the system or to each layer.

Because Gypsy specifications are so closely aligned to the code (in fact, the Gypsy language
includes a PASCAL-like programming language), Gypsy might be viewed as more a program-

Algorithmic Refinement
Top-level Abstract Machine · · ·

Intermediate-level Abstract Machine · · ·
Bottom-Level Abstract Machine

Data Structure Refinement
Top-level Specification · · ·

Intermediate-level Specification · · ·
Bottom-level Specification =

Figure 12-8. Combination of Specification Techniques. Though not yet
demonstrated in practice, a merge of both the data structure refinement and
algorithmic refinement techniques can achieve the benefits of both.

 182

proving system than a specification system. But Gypsy does permit you to write specifications
without code and to prove abstract properties about those specifications without writing the
programs. When used in this manner, the specification for the set of top-level procedures
accessible from outside the system resembles the specifications for the top-layer interface
machine in HDM and for the bottom-layer interface in FDM.

12.7 INFORMATION-FLOW ANALYSIS

The concept of information flow was introduced in section 9.6 as a way of addressing
deficiencies in the state-machine modeling technique-where the concept of a secure state and
constraints on state transitions are insufficient to prevent certain nonsecure information flows,
such as covert channels-while permitting legitimate functions. Information-flow analysis is a
general technique for analyzing leakage paths in a system (Lampson 1973; Denning 1983); it is
applicable to any security model. The technique can be applied to programs or to specifications,
although the rules governing the two applications are different. At present, we shall discuss how
to apply information-flow analysis to nonprocedural formal specifications, in order to support the
proof that a specification meets a mandatory multilevel security policy. Later, in section 12.7.2,
we shall briefly discuss the use of flow analysis with programs.

Before beginning any flow analysis effort, you must realize that the flow analysis of the
specification—like any other proof of the specification—is only meaningful to the extent that the
implementation corresponds to the specification. While this should be an obvious point, many
people seem to focus on flow analysis as being particularly vulnerable to deficiencies in state-of-
the-art of proving correspondence, when in fact flow analysis is no more vulnerable than other
techniques.

You might convince yourself of the need for flow analysis by noting that our example
specification in figure 12-4 has several covert channels. The example allows for a number of
write-downs (see section 6.4.4), by permitting the actions of a process at a high access class to be
detected by a process at a lower access class. One such case is in the file_exists array, where
a high process can create a file and a lower process can determine that the file already exists by
trying to recreate the file and noting that the access array did not change. (Although they are
not shown, we presume that the complete system has functions that return information about
what accesses are allowed, either by asking directly or by attempting an access and getting a
failure.)

Using the multilevel security policy as our requirement, we find that the complete statement
of an informations flow policy is very obvious:

Flow Policy: If information flows from object A to object B in a state transition, the access
class of B must dominate the access class of A.

It seems apparent that this policy fulfills the intent of the multilevel security policy.

In theory, if you can eliminate all flow violations in a system (or in a model of a system), the
system (or model) has neither covert nor overt channels, and there is no need to perform any of

 183

the invariant or constraint proofs about secure states and state transitions.2 Unfortunately,
deciding what is and what is not a flow is not always easy; and tools that perform flow analysis,
because they are ultraconservative in finding flows, are usually insufficient to justify our
declaring a specification completely clean. You usually have to carry out an error-prone informal
analysis to vindicate the apparent flow violations. For these practical reasons, the invariant and
correspondence proofs add considerably to the assurance in the security of the specification, even
though flow analysis theoretically might be sufficient. (Real systems are also never completely
free of real flow violations, so the manual analysis would be required even if the tools were
perfect.)

An information flow can be viewed as a cause-and-effect relationship between two variables
w and v. In any function where v is modified and w is referenced, there is flow from variable w to
variable v (written w → v) if any information about the value of w in the old state can be deduced
by observing the value of v in the new state. For simplicity, we do not explicitly show the new
value in the notation (as in w → ' v), but the understanding is that the flow always moves from a
variable in an old state to a variable in a new state.

When analyzing functions in a model or specification, if we cannot tell ahead of time
whether a particular function will result in a flow, we play it safe and flag it anyway. Such is the
case when the flow occurs only under certain conditions that are not explicit in the definition of
the function being analyzed. In fact, when looking at isolated functions, we can never tell
whether a potential flow is an actual flow. Only by looking at the system as a whole can we
identify the real flows. Thus, when we talk about a flow in a function, we almost always mean a
potential flow. Sometimes it is possible to rewrite the function or specification so as to eliminate
the potential flow. In such a case, the potential flow is called a formal flow because it appears
only as a result of the form in which the specification is written.

The process of flow analysis includes both finding the flows and proving that they do not
violate flow policy. The functions are observed one at a time, each expression in the function is
analyzed, and each flow between a pair of variables is written as a flow statement. (Rules for
finding the flows from expressions are covered in section 12.7.1.) A given function may yield
many flow statements. A flow may occur only under certain conditions, depending on the values
of other variables, so in general a flow statement has the following form:

Flow Statement: If condition, then A → B

where condition is some expression, and A and B are variables.

To decide whether a flow expressed in a flow statement is safe according to the flow policy,
we generate from each flow statement a flow formula having the following form:

Flow Formula: If condition, then class(B) ≥ class(A)

2As we shall see later, sometimes the proof of a flow formula requires you to write and prove an invariant as a
lemma. Such an invariant might closely resemble the secure state invariant that you would prove about the model.

 184

where condition is the same as in the flow statement, class(x) means “the access class of x,” and
≥ is a symbol meaning dominates. Proving that there are no flow violations in a function requires
proving that each flow formula is true. If the formula cannot be proved, it may represent a real or
formal flow violation that must then be justified. To assist you in proving the flow formulas, you
may use invariants or constraints in the specification provided that the specification has already
been proved to satisfy the invariants and constraints, or you may write new invariants that you
subsequently have to prove.

Notice that the flow formula is defined in terms of the access classes of variables. Probably
the most restrictive aspect of information-flow analysis for multilevel security is the need to
define an access class manually for every variable in the specification—even for internal state
variables that are not objects according to the security policy. If you choose the wrong access
class, a flow violation will show up, so you do not have to worry about introducing an
undetected error in this process. But in many cases, no matter what access class you pick, a
formal flow violation will be committed in some function somewhere, even though the
specification may be secure and may exhibit no covert channels. Sometimes you can eliminate a
flow by rewriting the specification, but that may make the specification so obscure that
correspondence to the code is extremely difficult to demonstrate.

Information-flow analysis is something of an art. The rules for deciding when information
flow is possible are complex and difficult to apply by hand. In practice, flow analysis is rarely
done on a system at the level of an abstract model. While a flow analysis of a model can indeed
catch many potential flow violations, it will also miss most of the interesting ones. This is
because a model leaves out many details of a system, such as state variables and functions that
do not affect the security state of the system as represented in the access matrices. Yet it is
precisely these internal state variables that provide the paths for covert channels. Flow analysis
on a model can catch these only if the operations on such variables are represented in the
functions of the model.

12.7.1 Flow Rules

At the current state of the art, automated flow tools work syntactically. Semantic assumptions
that the flow tool makes about a specification are based solely on the syntactic style in which the
specification is written, not on what the specification says: if you write the same secure function
in two different ways you may get different flow formulas, some of which are true and some of
which are false. The false formulas are due to the ultraconservative nature of the analysis, which
finds all possible flows but also flags many formal flows.

Syntactic flow analysis is based on a number of simple rules. Given a form of expression in a
specification, a flow rule specifies the potential flows. Following are examples of two simple
flow rules:

Flow Rule 1. In the equality statement with a single new-value operator,

' v = expression

 185

where expression is an arbitrary expression containing no new values, there is an unconditional
flow from all variables mentioned in expression to v. This includes all variables appearing as
parameters of functions and indices of arrays in expression.

Flow Rule 2. To find the flows in the statement,

if condition then statement-1 else statement-2

where statement-i are of the form of the statement in flow rule 1, analyze statement-1 and
statement-2 for flows according to flow rule 1. When condition is true, all the flows in statement-
1 occur; when condition is false those in statement-2 occur. There are also unconditional flows
from all variables mentioned in condition to all variables that are the target of flows in statement-
1 and statement-2.

The preceding rules, though too simple to take care of all cases (especially those where the
new value of a variable appears in the expression), can be used to analyze some of the
expressions in the examples in table 12-3.

Examples 1 and 2 illustrate flow rule 1, where a flow occurs from any variable in an
expression—even when it is in a parameter of a function in an array index—to the new value of
the variable. We do not bother with flows from constants: constants are considered to have
SYSTEM LOW access class, so any flow from a constant is safe. In the example, the function f (x)
is a constant function of the variable x. In example 2, we have an array var that is a variable;
consequently, we have to show that a flow occurs from the specific array element to the new
value, as well as from the variable used as the array subscript. Example 3 illustrates flow rule 2,
where the flows in each branch of a conditional statement are conditional and where an
unconditional flow occurs from the variable a mentioned in the condition. The latter flow occurs
because the value of w can be deduced from the new value of v. You may argue that, if in
example 4 we end up with ' v = 6, we do not know much about w, but information flow analysis
does not try to quantify the amount of flow: that is a job for a covert channel analysis of the
resultant system, which serves to determine the bandwidth of any covert channels revealed by
information-flow analysis (see section 7.2).

In example 6, a flow tool operating according to our rules would indicate a flow that was not
there. According to flow rule 2, we should indicate the flow w → v; but no such flow exists,
since v is set to the same value regardless of w. By moving the assignment to ' v outside the if
statement, we can make the formal flow disappear.

Example 7 contains statements in which the new value of a variable appears in places other
than on the left-hand side of an = sign, making our flow rules inappropriate for such cases. The
example illustrates that flows only originate from old values of variables, not from new values. It
also shows that, even though v is not the target of any flows according to flow rule 1, it still is
the target of a flow from w, thereby violating flow rule 2. Syntactically, examples 6 and 7 are
nearly identical, yet the flows they exhibit are different.

 186

Example Flows Rationale

1. ' v = x + f (x) + 5
 [f (x) is a constant]

w → v
x → v

Flow from old values to
new values in expression;
no flows from constants.

2. ' v = var(w) w → v
var(w) → v

3. if a = 1 then ' v = w else ' v = x
if a = 1 then w → v
if a ≠ 1 then x → v
a → v

Unconditional a → v
because ' v depends on w.

4. if w = 1 then ' v = 5 else ' v = 6 w → v

5. if w = 1 then ' v = 2 else ' v = w w → v

6. if w = 1 then ' c = 1 and
 ' v = x
 else ' c = 3 and
 ' v = ' c

w → c
x → v

No w → v because ' v = x
unconditionally.

7. if w = 1 then ' c = 1 and
 ' v = ' c
 else ' c = 3 and
 ' v = ' c

w → c
w → v

No c → v because old value
of c is irrelevant.

8. if w = 1 then ' c = 2 and
 ' v = ' c + 1
 else ' v = ' c – 1

if w ≠ 1 then c → v
w → v
w → c

9. if w = 1 then ' c = a and
 ' v = ' c + 1
 else ' c = a and
 ' v = ' c – 1

a → c
a → v
w → v

No w → c because ' c = a
unconditionally.

10. ' v = a a → v

11. ' a = c c → a

12. if a = b then ' w > v “everything” → w
Nondeterministic
assignment is flow from all
variables.

Table 12-3. Examples of Flow Analysis. This table illustrates the flows that result from
various types of expressions that might appear in a specification.

The rules for finding flow depend not only on the specification language but on the specific
security properties that the flow analysis is intended to support. In particular, net flow after a
succession of state transitions depends on the order in which the functions are invoked. For

 187

example, if our specification has two functions-one whose effect is example 10 in the table, and
the other whose effect is example 11—the net flows for 10 followed by 11 are as follows:

a → v and c → a

just as indicated in the table. But if 11 is followed by 10, the new value of v depends on the
original value of c, and the original value of a is irrelevant. The new value of a after the first
statement serves as the old value of a for the second.) The net flow is thus

c → a and c → v

apparently indicating that there is a flow c → v that we did not find when we analyzed the
statements in the table independently. (The flow from a has also disappeared).

In general, this omission of a flow would indicate a fatal flaw in the flow analysis technique
by which you examine functions individually; but if we look at the flow formulas that we have to
prove for multilevel security, such an omission can introduce no new flow violations. While the
net flow depends on the order of the functions, the security relationship we want to prove about
the flows does not. The two flows a → v and c → a require us to prove that

class(v) ≥ class(a) and class(a) ≥ class(c)

Transitivity allows us to conclude that

class(v) ≥ class(c)

which is exactly the same formula that we would need to prove if we had detected the flow c →
v. While order of statements affects the flows, order has no effect on the multilevel security
analysis of the flow formulas. The transitivity of the multilevel security relationship we have
termed dominates permits us to use flow analysis to determine whether individual functions are
secure and allows us to declare an entire specification secure if all the individual functions are. If
we were to use flow analysis to prove a non-transitive security relationship that depends on the
order of function calls, we would have to worry about all possible sequences of functions and
would have little hope of analyzing a specification for flow in a practical manner.

Another important note about flow analysis relates to nondeterminism. If a function contains
a nondeterministic expression involving a new value of a variable, the variable may take on any
of several values, and the selection of the new value may depend on any other state variable in
the specification. Hence there is a potential flow from all variables in the specification to the new
value—even from variables not mentioned in the function. Unless you have an invariant or
constraint that limits the new value to one specific value, or unless the variable’s access class is
SYSTEM HIGH, it will be impossible to prove that the function is secure. You would have to
supplement the flow analysis with some type of informal argument that the nondeterminism is
secure. Thus, while nondeterminism is an important convenience in writing formal

 188

specifications, it should not be used (except to a very limited extent) in specifications that are
subjected to flow analysis.

One way out of this dilemma is to write two or more levels of specification, where the top
level is very general and nondeterministic and the lower level is fully deterministic. The flow
analysis need (and should) only be performed on the lowest level. Another trick is to write a
deterministic expression that sets the new value to some unspecified, but constant, function of
other variables:

' w = f (x,y,z)

For flow analysis purposes, it does not matter what the constant function f is, so no elaboration
on the definition of f is needed. You only need to list all the variables that might be input as
parameters to that function. If the flows x → w, y → w, and z → w are secure, and if the
statement accurately represents all possible dependencies on the new value of w, the
nondeterminism is eliminated with little adverse impact on the generality of the specification.

12.7.2 Flow Analysis Process

Because the syntactic flow analysis technique only flags potential flow violations, additional
covert channel analysis is required to determine whether the violations are real. There are no
tools that help you do this, since it requires looking at the specification as a whole and deducing
or proving additional properties. A typical argument to support the contention that a flow is not
real would be based on the fact that the specification lacks certain functions that could exploit the
flow. If the function is later added to the specification, the violation could become real even
though no existing function changes.

As a very simple example, consider example 8 in table 12-3, and assume that the flow c → v
is a violation. If we can prove that w is always 1, we will establish that this flow never occurs,
but doing so requires that we examine the entire specification for places where w is set. Even if
we prove that w ≠ 1, we risk reintroducing the flow each time we add a new function that might
affect w. Thus, when we add a function to the specification, we do not have to re-prove the flow
formulas for existing functions; but we do have to rejustify all the failed proofs that depended on
knowledge of other functions.

Formal flow analysis is ruthless, requiring you to look at every reference to every state
variable of the system. In fact, flow analysis is not valid unless every variable is involved,
because it is all too easy for a covert channel to sneak in via a variable that has not been
examined. Because flow analysis of a specification only tells you whether or not the
specification is secure—and nothing about the security of the implementation—it would be best
to do flow analysis on the code. But, though the state of the art of flow analysis seems to work
fairly well with detailed formal specifications, it does not work well with code. (Some effort with
respect to code flow analysis has shown promise (Tsai, Gligor, and Chandersekaran 1987).)

Finding flows by hand is hard and tedious, although it has been done on fairly large
specifications. It is best done with one of several automated flow analysis tools (sometimes

 189

called flow table generators) that perform a simple syntactic analysis of a machine-readable
specification and generate tables of potential flows with the proper conditions. The flow tables
are examined either manually or with the aid of another tool that attempts to prove that each flow
is allowed. Flow analysis tools are available for old HDM (called the MLS formula generator)
(Feiertag 1980), FDM (Eckmann 1987), and Gypsy (Haigh et al. 1987).

Because flow tools require that you assign access classes to all variables, they flag many
internal flows as potentially insecure even though the net effect may be secure. Therefore a flow
tool works best on a specification whose internal variables are largely segregated according to
access class. For example, if all variables referenced in functions available to a process are
treated as arrays indexed by process ID, a great many potential flows will be avoided. Whether
such a specification accurately reflects the implementation depends on the underlying
architecture.

Another technique for covert channel analysis—the Shared Resource Matrix (SRM)
(Kemmerer 1983)—is very similar to flow analysis in the way it which it detects covert channels.
In addition to looking at each function individually, however, the SRM requires a process called
transitive closure that analyzes the specification as a whole. The SRM technique does not require
you to assign access classes to all internal variables, thereby eliminating a significant source of
frustration in flow analysis, and does not require determinism. But as a result it cannot prove that
individual functions are secure in isolation. Transitive closure takes into account interactions
between functions, and detects cases where adding a seemingly secure function to an existing
secure system renders the result insecure. The SRM technique has been used successfully on
several projects, but the analysis has been largely manual: tools to support the technique simplify
the matrix generation but do not assist in any proofs. All potential channels, even trivial ones,
have to be manually examined and justified. Because you do not have to specify access classes
of internal variables, the SRM technique is much better suited to examining code than is flow
analysis, although experience in using it for this purpose has been minimal (Tsai, Gligor, and
Chandersekaran 1987).

12.8 CODE CORRESPONDENCE PROOFS

The theory for proving programs correct has been around for many years (Floyd 1967; Hoare
1978), but practice lags far behind and will remain so for the foreseeable future. There are a
number of reasons for this lag:

• The proofs become exceedingly complex as programs become larger, so that the proof
effort is many times greater than the effort to write the program.

• Popular high-order programming languages are not designed for provability, making
proofs hopeless without severe programming restrictions.

• The few languages that were designed for provability suffer from inefficiencies that make
them unsuitable for many applications.

• Tools to assist program proofs (either to check the correctness of proofs done manually or
to carry out proofs on their own) and proof techniques are in their infancy. Theorem
provers designed for specification proofs are not suitable for programs.

 190

Nobody doubts that it is possible to prove the correctness of programs, but few people believe
that it is practical or cost effective to do so, even for the most highly secure systems. The largest
high-order language program ever proved was on the order of 1,000 lines.

Unlike specification proofs, for which it is only necessary to prove fairly simple selected
properties related to security, proving that a program satisfies its specification entails proving the
complete correctness of the program. This is because there is no a priori way to determine
whether any aspect of a program will affect its specification. Some researchers have concentrated
on proving programs directly, using flow analysis (and without using a specification), thereby
minimizing the need to do correctness proofs of the system. Such techniques are in their infancy,
however.

Even though we cannot do the proofs of a program formally, we can talk about the process as
if it were possible, use formal techniques when practical, and use informal demonstration when
proofs are infeasible. Regardless of the specification technique we are using, program proof
means showing that a procedure meets its formal specification—one procedure at a time
corresponding to one function in the specification. In the algorithmic refinement technique in
table 12-1, we have top-level procedures that implement the functions in the interface
specification and lower-level procedures that implement functions in intermediate abstract
machine specifications. If we use only the data structure refinement technique, we do not have
the benefit of internal layers of specification to break the proof into smaller pieces, and therefore
we must prove that the entire implementation corresponds to the lowest-level (interface)
specification. But with either specification technique, the proof approach is the same.

The initial steps in the proof of a procedure require mapping variables, parameters, and types
in the formal specification of the function onto global variables, types, and parameters used in
the procedure—much as we mapped the top-level specification into the model, or levels of
hierarchical specification into each other. In the Gypsy system, the specification language is
integrated with an implementation language, so the specification already uses the same data
types and variables as are used in the program. But if your program is written in PL/I, C, or
PASCAL, there will be no obvious correspondence, and a mapping will be required.

The technique of program proof requires the programmer to write. down entry assertions and
exit assertions for each procedure in the system. Entry assertions state relationships between all
global variables in the system and parameters to the procedure that are true upon entry to the
procedure. Exit assertions state properties that are true upon return from the procedure fig. 12-9).
Proving that a program is correct involves proving that it meets its exit assertions. The following
formula is to be proved:

Entry assertions and effects of code imply exit assertions.

The effects of code are the accumulated sequential effects of all the statements in the procedure.
In general, though, you cannot do a proof of a procedure in one fell swoop. Instead, the
procedure is divided into sections of code, and a verification condition is written that states the
formula to be proved for each section.

 191

If the procedure is a simple function that executes an in-line sequence of statements based on
its parameters and then returns, the effects of code may be easy to determine. If the procedure
calls nested procedures, the entry assertions for the nested procedures must be proved to be
satisfied by the program at the point each procedure is called. Then the exit assertions for the
nested procedure can be taken as the effects of code for the procedure call statement.

Through the use of entry and exit assertions, each procedure can be proved in isolation—
looking only at the assertions, and not at the body of any other called procedure. If a procedure is
modified but its entry and exit assertions remain the same, the proofs of procedures that call it
need not be redone. In fact, a primary benefit of this approach is that you can design a system as
a tree of procedure calls with only entry and exit assertions and no code. You can then
implement and prove the procedures in any order, redoing a proof only when an assertion used in
that proof changes. Gypsy benefits greatly in this respect because the programs and assertions
are integrated, and it is easy to track when a procedure changes that might affect assertions used
elsewhere.

Figure 12-9. Use of Entry and Exit Assertions. It is necessary to prove that, given the
entry assertions for proc1, the statements in the procedure satisfy the entry assertions
for all called procedures, as well as satisfying the exit assertion for proc1.

 Program Assertions
 ←⎯ entry_proc1
 procedure
 s1
 s2
 s3
 ←⎯ entry_proc2
 call proc2
 ←⎯ exit_proc2
 s4
 s5
 ←⎯ entry_proc3
 call proc3
 ←⎯ exit_proc3
 s6
 return
 ←⎯ exit_proc1

Verification Conditions
 1. entry_proc1 & S1 & S2 & S3 → entry_proc2
 2. entry_proc1 & S1 & S2 & S3 & exit_proc2 & S4 & S5 → entry_proc3
 3. entry_proc1 & S1 & S2 & S3 & exit_proc2 & S4 & S5 & exit_proc3 & S6 → exit_proc1

 192

As you can see in figure 12-9, the verification conditions get quite large as you accumulate
statements and exit assertions from called procedures, even if many of the statements and
assertions are irrelevant to subsequent assertions. A way to reduce these is to insert intermediate
assertions manually at various points in the program; these assertions must be proved true upon
reaching the points at which they appear, after which they can be used as given for proofs
beyond that point. The intermediate assertions leave out details that are not necessary for further
proofs. Nothing prior to an intermediate assertion need be examined to prove subsequent
assertions. You cannot introduce an error with an incorrect intermediate assertion, because the
proof of a false assertion will fail. If the intermediate assertion contains insufficient detail to
prove subsequent assertions, the proof of a verification condition will fail. In practice, the only
places where intermediate assertions are useful are at branches and loops. A loop invariant is an
assertion that states properties that are true each time through a loop. If the loop can be shown to
terminate (another hard problem), the effects of code for the loop are represented by the loop
invariant.

The entry and exit assertions for a procedure that implements a function in the formal
specification are taken from the formal specification of that function. The entry assertions come
from invariants, axioms, and other criteria in the specification, and the exit assertions include the
specified effects of the function. Automated tools (called verification condition generators that
understand program semantics and can create these assertions from specifications and programs
have been developed in experimental examples, but tools to generate these conditions for
practical use with sizable programs are still a long way off. Because the verification condition
generator must be intimately familiar with the semantics of the language, and because most
popular programming languages do not have formally defined semantics, such tools have only
been developed for certain languages designed for provability. Of course, each combination of a
programming language and a specification language requires a different tool. The tool that is
closest to practical application is in the Gypsy system, where proofs of small programs have been
successfully carried out.

REFERENCES

Boebert, W. E.; Franta, W. R.; Moher, T. G.; and Berg, H. K. 1982. Formal Methods of Program
Verification and Specification. Englewood Cliffs, N.J.: Prentice-Hall.
A mathematical text on formal program verification and specification that offers in-depth
study of the topic.

Cheheyl, M. H.; Gasser, M.; Huff, G. A.; and Millen, J. K. 1981. “Verifying Security.”
Computing Surveys 13(3):279–339.
An overview of four popular specification verification systems: Gypsy, old HDM, FDM, and
AFFIRM.

Crow, J.; Denning, D.; Ladkin, P.; Melliar-Smith, M.; Rushby, J.; Schwartz, R.; Shostak, R.; and
von Henke, F. 1985. “SRI Verification System Version 1.8 User’s Guide” and “Specification
Language Description.” Drafts. Menlo Park, Cal.: SRI International Computer Science
Laboratory.
These references for enhanced HDM are still in draft form, and the system itself is still under
development.

Denning, D. E. 1983. Cryptography and Data Security. Reading, Mass.: Addison-Wesley.

 193

A thorough study of cryptographic techniques, access controls, and database security,
presented in textbook format with many exercises, examples, and references.

Eckmann, S. T. 1987. “Ina Flo: The FDM Flow Tool.” In Proceedings of the 10th National
Computer Security Conference, pp. 175–82. Gaithersburg, Md.: National Bureau of
Standards.
A flow tool for the Ina Jo language.

Feiertag, R. J. 1980. “A Technique for Proving Specifications Are Multilevel Secure.” Computer
Science Lab Report CSL-109. Menlo Park, Cal.: SRI International.
A mathematical description of a flow model and of a flow-analysis technique implemented in
a tool to find covert channels in HDM specifications.

Floyd, R. 1967. “Assigning Meaning to Programs.” In Mathematical Aspects of Computer
Science, ed. J. T. Schwartz, pp. 19–32. Washington, D.C.: American Mathematical Society.
A description of the assertion technique for proving program correctness.

Good, D. I.; Akers, R. L.; and Smith, L. M. 1986. “Report on the Language Gypsy: Version
2.05.” Report #48. Institute for Computer Science and Computing Applications, University
of Texas at Austin.
The Gypsy reference manual.

Haigh, J. T.; Kemmerer, R. A.; McHugh, J.; and Young, W. D. 1987. “An Experience Using
Two Covert Channel Analysis Techniques on a Real System Design.” IEEE Transactions on
Software Engineering, SE13(2):157–68.
A comparison of the Shared Resource Matrix methodology and the Gypsy flow-analysis tool.

Hoare, C. A. 1978. “An Axiomatic Basis for Computer Programming.” Communications of the
ACM 12(10):576–81.
A theoretical description of the use of a verification condition generator to produce theorems
for proving programs.

Kemmerer, R. A. 1982. Formal Verification of an Operating System Kernel. Ann Arbor, Mich.:
UMI Research Press.
The full details of the UCLA security kernel research project’s verification.

———. 1983. “Shared Resource Matrix Methodology: An Approach to Identifying Storage and
Timing Channels.” ACM Transactions on Computing Systems 1(3):256–77.
The major alternative to flow analysis for identifying covert channels in a specification.

———. 1986. “Verification Assessment Study.” C3-CR01-86, vols. 1–5. Ft. Meade, Md.:
National Computer Security Center.
A massive study of four verification systems (Gypsy, enhanced HDM, FDM, and AFFIRM)
using several large common examples, complete with critiques and comments by users and
developers.

Lampson, B. W. 1973. “A Note on the Confinement Problem.” Communications of the ACM
16(10):613–15.
One of the first papers to discuss covert channels (called confinement or leakage paths) and
techniques to close them.

Robinson, L.; Silverberg, B.; and Levitt, K. 1979. “The HDM Handbook.” Vols. 1 and 2. SRI
Project 4824. Menlo Park, Cal.: SRI International.
Describes old HDM and the Special specification language.

Scheid, J.; Anderson, S.; Martin, R.; and Holtzberg, S. 1986. The Ina Jo Specification Language
Reference Manual—Release 1. TM 6021/001/ 02. Santa Monica, Cal.: System Development
Corporation (now Unisys).

 194

The Ina Jo specification language is used in FDM.
Thompson, D. H., and Ericksen, R. W., eds. 1981. “AFFIRM Reference Manual.” Marina Del

Rey, Cal.: USC Information Sciences Institute.
This document can be read as both a description of AFFIRM and a reference manual.

Tsai, C-R.; Gligor, V. D.; and Chandersekaran, C. S. 1987. “A Formal Method for the
Identification of Covert Storage Channels in Source Code.” In Proceedings of the 1987
Symposium on Security and Privacy, pp. 74–87. Washington, D.C.: IEEE Computer Society.
Describes use of the Shared Resource Matrix to find covert channels directly in source code.

 195

 Chapter 13

Networks and
 Distributed Systems

Most books and reports on network security focus on encryption. To many people-including
some experts-network security is encryption, and the sole purpose of network security is to
prevent wiretapping. But the total network security problem is far more than the wiretapping
threat, and encryption is just part of the solution.

Understanding network security entails understanding network architectures, from the
standpoints of protocol design and of physical construction and topologies. It also entails
understanding how encryption techniques can be applied to solve part of the network security
problem. In the first two sections that follow, we shall develop some terminology important to
network security and some fundamental concepts of networking and encryption; then we shall
undertake a detailed discussion of network security architectures.

13.1 OVERVIEW OF NETWORKING CONCEPTS

This section gives you a quick overview of various salient characteristics of network
architectures. This overview assumes that you have some prior knowledge of networking
concepts and that you understand the reasons for the various types of network architectures; it
concentrates on presenting facts and terminology and is not intended to be a tutorial on
networking.

13.1.1 Protocol Hierarchies and Models

The purpose of a network is to provide a mechanism for two peer communicating entities to
exchange information. The entities—which may be computers, operating systems, programs,
processes, or people—are the users of the network’s services. The network provides an interface
composed of a set of functions, much as an operating system provides an interface consisting of
system calls fig. 13-1). The description of this interface is the functional description of the
network. Typical functions in a network interface enable the entities to send and receive
messages, to obtain status information, to identify remote peer entities with which to
communicate, and so on.

 196

Figure 13-1. Use of Protocols. The pairs of communicating entities, {AN,A'N}, {BN,B'N},
and so on, use the network service to implement protocols PN and QN. Several sets of
entities may obey the same or different protocols using the same network service. The
network service is accessed via function calls through an interface.

In order for two entities to understand each other they must agree on a common protocol.
The definition of a protocol includes data formats of messages and sequences of messages. A
protocol definition must take into account the types of functions provided by the interface to the
network service on which that protocol depends: the protocol description is specified in terms of
the generic function calls to that interface.

A network is constructed as a hierarchy of layers, each of which implements a specific type
of network service. If we look inside the network service in figure 13-1, we see that the service
itself is composed of communicating entities that exchange information with their remote peers,
implement their own protocols, and use services of a lower-layer interface (fig. 13-2). The layer
N–1 entities constitute the network service for layer N. Notice that AN can choose from among
several lower layer entities, thereby forcing its communication with A'N to employ a specific
lower layer protocol.

The purpose of a protocol model is to provide a framework for describing the layered
services of a network in a manner independent of the specific protocols that are used within the
layers. Each layer of a model provides a network service to the layer above, and within each
layer reside the communicating entities that implement one or more protocols appropriate to the
layer. The ISO Reference Model, illustrated in figure 13-3 as it might be employed in a packet-
switched network, is a familiar example. (ISO is the International Standards Organization.)
Another notable model is the Arpanet Reference Model, used by the Department of Defense. A
model does not prescribe any specific protocols; it defines only the general characteristics of
protocols in each layer.

NETWORK SERVICE

SYSTEM ONE

NETWORK SERVICE

SYSTEM TWO

INTERFACE INTERFACE

CN
BN

AN

C'N
B'N

A'N

PROTOCOL QN

PROTOCOL PN

PROTOCOL PN

Function
Calls

 197

Figure 13-2. Communicating Entities. Within layer N, AN communicates with its
remote peer A'N by means of a common protocol PN, employing services of layer N – 1
through an interface to entities AN–1 or BN–1. The layer N – 1 entities likewise
communicate with their peers by means of lower-layer protocols PN–1 and QN–1.

The primary function of a protocol layer is to transmit and receive data on behalf of the
communicating entities in the layer above. The entities pass messages across the interface to a
lower layer, along with control arguments. A layer treats the messages passed to it as data and
wraps the data with header and/or trailer information (such as destination address, routing
controls, and checksum) that is needed by the layer to process the message as requested through
the control arguments from the layer above. These wrapped messages are then passed into the
layer below along with additional control information, some of which may be forwarded or
derived from the higher layer. By the time a message exits the system on a physical link (such as
a wire), the original message is enveloped in multiple nested wrappers—one for each layer of
protocol through which the data have passed (fig. 13-4).

Figure 13-3. ISO Open Systems Interconnection Reference Model. A protocol is
used within a layer by a pair of peer communicating entities. Protocols in layers 4-7 are
end-to-end or host-to-host; lower-layer protocols are used for individual physical links.
Not all lower-layer protocols need to be alike: only communicating pairs within a layer
must use the same protocol.

AN-1

BN-1

SYSTEM ONE

A'N-1

B'N-1

SYSTEM TWO

AN
BN

CN

A'N
B'N

C'N

Layer N - 1 protocol QN-1

Layer N - 1 protocol PN-1

Layer N protocol PN

Layer N protocol PN

Layer N protocol QN

Physical
Data Link
Network

Transport
Session

Presentation
Application

1
2
3
4
5
6
7

Physical
Data Link
Network

Transport
Session

Presentation
Application

Physical
Data Link
Network

Physical
Data Link
Network

HOST PACKET SWITCH PACKET SWITCH HOST

Q1
Q2
Q3

P1

P2

P3

R1

R2

R3

P4

P5

P6

P7

 198

Figure 13-4. Nested Headers on a Message. Each protocol layer wraps its own
header and trailer around the data passed to it from above. The data field of protocol
layer N contains a complete message received from protocol layer N + 1.

Good protocol layering requires that a layer not look at or depend on the contents of the data
field that it receives from the layer above: communication of control information between layers
(for example, requests to open and close connections, specifying source and destination
addresses) should be done through function calls and arguments, and not by reference to the data
contents of the messages.

13.1.2 Characteristics of Protocols

Security issues tend to center on four of the layers in the ISO model, allowing us to view
protocols in terms of a four-layer model in which several of the ISO layers may be collapsed into
one:

• Application (ISO 5,6,7)
• Transport (ISO 4)
• Network (ISO 3)
• Data link (ISO 1,2)

This view is not universal. On occasion, the session layer (layer 5) might need to implement
certain security services offered by an application or transport layer; and at times, we need to
distinguish between the physical layer and the data link layer. But for our purposes it is easiest to
focus on these four layers. Please note that what we say here about protocols is merely typical of
existing protocols operating at given layers: it is not a hard and fast requirement of all such
protocols.

Both the data link and network protocol layers provide a datagram network service.
Datagrams are packets of information composed of a header, data, and a trailer. The header
contains information (such as destination address) needed by the network to route the datagram,
and it may also contain other information (such as source address and security labels). The trailer
contains little more than a checksum.

HEADER 1 HEADER 2 HEADER 3 ORIGINAL
MESSAGE TRAILER 3 TRAILER 2 TRAILER 1

HEADER 1 DATA 1 TRAILER 1

HEADER 2 DATA 2 TRAILER 2

HEADER 3 DATA 3 TRAILER 3

ORIGINAL
MESSAGE

MESSAGE SENT

LAYER 1
PROTOCOL

LAYER 2
PROTOCOL

LAYER 3
PROTOCOL

 199

The communicating entities that make use of a datagram service must specify the destination

address (via control information) and the data for each message to be transmitted. The data link
and network protocols package the message in a datagram and send it off. The datagram service
does not support any concept of a session or connection, and it maintains no memory of whom it
is talking to once a message is sent or received. Such memory, if needed, is the responsibility of
the user of the datagram service (the next-higher protocol layer). Retransmission and error
checking are minimal or nonexistent. If the receiving datagram service detects a transmission
error (through a checksum, perhaps), the datagram is usually ignored, without notifying the
receiving higher-layer entity.

The transport layer provides a highly reliable communications service for entities wishing to
carry out an extended two-way conversation. The service employs the concept of a connection or
virtual circuit, with open and close commands to initiate and terminate the connection, in
addition to the usual transmit and receive functions. Information is accepted by the transport
layer for transmission as a stream of characters and returned to the recipient as a stream.

The application layer provides functions for users or their programs and is highly specific to
the application being performed. A single exchange at the application layer (called, a session)
might include an electronic mail message transfer, a file or database copy, or a user’s query/
response transaction with a database management system. A session can be very short or can last
for days. A given application layer protocol may employ multiple connections at the transport
layer to accomplish its job.

13.1.3 Network Topologies and Components

Today’s network topologies are designed to handle two distinct needs: wide-area and local-area
communications. A common wide-area network technology is based on packet switching. The
physical structure of a packet-switched network, illustrated in figure 13-5, resembles a random
sprinkling of nodes or packet switches interconnected in an arbitrary fashion. A packet switch is
connected to neighboring packet switches and may be the point of entry into the network for one
or more hosts. The software in the host communicates with its adjacent packet switches by
means of a network-layer protocol, sending datagrams (packets) into the network that are routed
to the destination host—via multiple intermediate destinations if necessary—in a manner
determined by routing algorithms in the packet switches. These routing algorithms are adaptive
to a limited extent: they take the dynamics of the network into account, altering the path taken by
successive packets between two hosts depending on the network load and the status of the
communications lines.

DESTINATION SOURCE SECURITY LABEL OTHERS ...DATA... CHECK

HEADER TRAILER

 200

Figure 13-5. Packet-switched Network. The packet-switching nodes (PS) are usually
small dedicated computers, interconnected by high-speed long-distance telephone
lines. Hosts may connect directly to the packet switches or via front-end processors
(FEPs).

A local-area network (LAN) has a number of characteristics that distinguish it from a wide-
area network. These include throughput that is several orders of magnitude higher, extremely
short delay, and large total carrying capacity (bandwidth). The most common LAN topologies
employ a broadcast medium, in which a datagram transmitted by one host to another host is in
fact received by many or all hosts, with the understanding that only the intended recipient will
bother to read the datagram. There is no routing in a broadcast medium. Figure 13-6 shows a
typical picture of a broadcast local-area network using a bus topology, where hosts are linked to
the bus through interface units that contain varying amounts of intelligence and may be
integrated as I/O controllers into the hosts themselves.

Figure 13-6. Local-area Network. The popular Ethernet has this bus architecture,
whereby each host (connected to the network via an interface unit), has the ability to
receive all the traffic on the LAN.

13.2 ENCRYPTION

Though not a solution in itself, encryption is an important component of most network security
solutions. In order to devise a security architecture for a network, you must understand where
encryption can help and where it cannot. We shall review here some of the fundamentals of
encryption that pertain to networking (we are not concerned with techniques that are only useful
for encrypting files on disks, for example), and we shall then cover the primary network
applications. Fortunately, you do not have to be an expert in cryptography to understand these

HOST PS PS FEP HOST

PS

PS FEP HOST PS HOST

PS FEP HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

IU

HOST

 201

applications: unlike section 13.1, this section is a brief tutorial and does not require much prior
knowledge of the topic. Several books offer more detailed coverage of encryption (Denning
1983; Meyer and Matyas 1983). A good survey of network security and encryption is provided in
an article by Voydock and Kent (1983).

We have not yet talked about what it means to have a secure network (that is the topic of
section 13.3), but we can make some general statements about the purpose of encryption in order
to give the techniques discussed here their proper perspective. The primary goal of encryption is
to allow peer entities to communicate by using their common protocol over an unprotected path
in a manner that is as secure as if the path were physically protected. Depending on your
definition of security (that is, depending on how you define the threats), encryption may achieve
that goal quite satisfactorily or may not help at all. For example, a goal of protection from
eavesdropping by a wiretapper is readily satisfied by encryption, but a goal of preventing denial
of service—where the threat is someone cutting an unprotected wire—cannot be addressed by
encryption. Encryption between two entities can be implemented at any protocol layer, but for
present purposes it is easiest to think of encryption as taking place between two computer
systems over a physical link, where the encryption is implemented in a box that serves as each
computer’s link interface. We shall discuss later what it means to encrypt at other protocol
layers.

13.2.1 Fundamentals of Encryption

A cipher is a mathematical algorithm that transforms a string of source data (plaintext) into
unintelligible data (ciphertext), and vice versa, in a way that uniquely depends on the value of a
cryptographic variable or key. If you do not have the key, you cannot carry out either
transformation.

A secret key cipher is one for which both encipherment and decipherment require the same
key; consequently, the sender and the receiver must share secret information.1 The most popular
secret key algorithm (besides various classified algorithms used by the Department of Defense)
is the Data Encryption Standard (DES) specified by the National Bureau of Standards (1977).
This algorithm is available from several vendors in the form of an integrated circuit chip that is
used in a number of commercial encryption products. Secret keys are also called symmetric keys.

A public key (asymmetric key) cipher always has two different keys: one private, and one
public. A message enciphered with either key can be deciphered only with the other key.2 The
public key is easily calculated from the private key via a simple mathematical transformation,
but it is not possible (or more precisely, it is computationally infeasible) to determine the private
key from the public key. Each user has a unique private key, which is kept secret and from which
the user calculates a public key to be distributed to others. In a typical application, the sender
enciphers a message with the receiver’s public key, and only the receiver can decipher the
message. Only the receiver (not the sender) possesses secret information. In contrast to DES,

1Strictly speaking, the two keys need not be the same, but it must be possible to derive either key from the other.
2This concept of enciphering with either key is somewhat simplistic and applies only to certain public key ciphers,
but it is sufficient for this discussion.

 202

there is no one generally accepted public key algorithm, and hardware is not readily available;

but the RSA algorithm has a number of useful properties (Rivest, Shamir, and Adleman 1978), in
which there is a considerable interest today. Because public key algorithms (even the hardware
implementations) are computationally very slow (tens of characters per second), their use is
limited to selected applications such as key management (section 13.2.4).

For communications we are particularly interested in stream ciphers, which are able to
transform a message in serial fashion as characters or blocks of data enter a communications
network. Either public or secret key ciphers can be used in the streaming mode.

Encryption Modes

Ciphers for serial encryption have several modes of operation, each providing certain capabilities
for communications. We shall look briefly at the modes defined for DES. Similar modes are used
by other algorithms.

In the simplest block mode—also called electronic code book—a block of plaintext (64 bits
or 8 characters in DES) and a key are combined to yield a block of ciphertext (fig. 13-7a). Every
block of plaintext is encrypted independently of preceding blocks. This mode is unsuitable for
most communications applications because transmission of repetitive plaintext blocks will yield

Figure 13-7. Encryption modes. In block mode (a), each block is independently
encrypted. In chaining modes, (b), the ciphertext for a block depends on the previous
blocks in the message.

CIPHER CIPHER CIPHER

CIPHER CIPHER CIPHER

KEY
PLAINTEXT

BLOCK n

CIPHERTEXT
BLOCK n

KEY
PLAINTEXT

BLOCK 1

CIPHERTEXT
BLOCK 1

KEY
PLAINTEXT

BLOCK 2

CIPHERTEXT
BLOCK 2

KEY PLAINTEXT
BLOCK n

KEY PLAINTEXT
BLOCK 1

KEY PLAINTEXT
BLOCK 2

IV

IV

a. Block Mode b. Chaining Mode

 203

repetitive ciphertext, permitting easy cryptanalysis via a one-for-one substitution or known
plaintext attack.

This problem of repetitive plaintext is addressed through the use of a chaining mode (fig. 13-
7b). Encryption still takes place in blocks, but the calculation of the ciphertext for a block uses
three inputs: the plaintext block, the key, and a feedback value based on the previous block of
information. Even with highly repetitive sequences of plaintext, the ciphertext has the
appearance of being a random stream. A single bit change in one block of the plaintext
propagates indefinitely into the subsequent ciphertext. To start out the process, an initialization
vector (IV) is used in place of a feedback value, as input to the first block.

Because chaining modes have distinct starting points where the IV is fed into the calculation,
some means of synchronization between sender and receiver is essential. The sender and receiver
must agree on the IV as well as on the key, and they must have a way to signal the start of a new
message. They must also be able to determine block boundaries. The design of chaining modes
addresses various types of synchronization problems that could be introduced by errors during
transmission: errors where bits in the ciphertext change, and errors where there are extra or
dropped bits. Without synchronization, the received plaintext stream would be continuously
unintelligible.

Two types of chaining modes use different approaches in addressing the synchronization
problem. In cipher block chaining, where the ciphertext for each block is used as the feedback
value into the next block, a bit error in the ciphertext propagates no more than two blocks into
the deciphered plaintext. But cipher block chaining does not deal well with lost or extra bits or
characters in the ciphertext where block framing can be lost. Once framing is lost, it can only be
restored by some out-of-band technique (unencrypted signal) that resynchronizes the blocks.
Thus, block chaining is suitable only for applications where dropouts are unlikely and where
framing can be maintained: in synchronous lines at the data link layer, and in protocols that use
frames, packets, or datagrams. On synchronous lines, the encrypted data stream is constantly
changing—even when the sender is transmitting nothing but continuous synchronization (SYNC)
characters.

Cipher feedback mode deals with dropped or extra characters or bits (which are most
prevalent on asynchronous lines) by means of a combination of chaining and shifting of
characters within a block. An extra or lost character in transmission affects no more than the next
block or two of characters in the plaintext because framing is restored on each character
boundary through use of unencrypted start and stop bits. The disadvantage of this technique is
that only one character (rather than a whole block) is transmitted for each pass through the
encryption algorithm, slowing down the encryption by a significant factor. Fortunately,
asynchronous lines do not usually operate at high enough speeds for performance to be a
problem.

Because it is relatively simple to implement, single-bit cipher feedback is common on
synchronous lines, where the encryption device ignores character boundaries and cycles single
bits through the encryption algorithm.

 204

Link and Packet Encryption

Encryption is employed in different ways in different protocol layers, but these ways break down
into two main types: link encryption and packet encryption. Link encryption is restricted to
physical-layer and data-link-layer protocols in which the information is transferred in a
continuous stream of bits or characters and where there is no concept of a message. In most
protocols above the data link layer, communication takes place in the form of distinct packets or
datagrams. Many data-link-layer protocols, such as HDLC and CSMA/CD, also use packets called
frames. From an encryption standpoint, these frames must be treated as packets and not as bit or
character streams.

Link encryption is the simplest (and safest) form of encryption and is the preferred method
when the only needed security is protection of the physical wire or radio link. It is commonly
used on point-to-point synchronous or asynchronous lines. In link encryption, the encryption
boxes on the ends of the link synchronize at a well-defined point and then employ a chaining
mode to encipher all the data between them indiscriminately. If there are no data to transmit, the
transmitting box sends continuous fill characters that are enciphered as if they were data; as a
result, an observer of the traffic on an encrypted link sees random characters or bits, whether or
not any information is being transmitted. If cipher block chaining is used, a means must be
provided for the transmitter and receiver to resynchronize if an error occurs. This is
accomplished by sending an out-of-band signal (such as a BREAK) or a unique bit pattern (such
as a stream of zeros or ones). In cipher feedback mode, with character framing on the line,
synchronization is automatic.

On links that are shared by multiple nodes—especially local area networks composed of
rings and buses—and in all higher layer protocols, information is transmitted in frames or
packets of fixed or variable sizes. Packet encryption avoids synchronization problems because
the chaining process is restarted on each packet. If a receiver misses or ignores some packets,
subsequent packets can still be deciphered without error because each packet is independent of
previous packets from the point of view of the encryption mechanism: a transmission error in
one packet will not propagate to subsequent packets. Packet encryption is often called end-to-end
encryption, because it was first employed at the network or transport layers between end host
systems on a wide-area network; but packet encryption is also needed at the data link layer, if the
information is processed in frames.

Packet encryption differs substantially from link encryption because a part of the packet
header is not encrypted. Parts of the header must remain unencrypted because the header
contains information needed by the recipient in order to decipher the message. (For example, a
recipient communicating with a number of systems may need to see a source address in order to
determine which of several keys to use for decryption.) Moreover, if encryption occurs at a
higher-layer protocol, any additional headers appended by lower-layer protocols will be (and
must remain) unencrypted. If the destination address of a datagram in a packet-switched network
were encrypted, for example, the packet switches in the network (which do not know the key)
would not be able to route the datagram to its proper destination.

 205

13.2.2 Security Services

Although we have talked so far about encryption as a way of preventing an observer or
wiretapper from reading traffic on a communication path, encryption can address various other
threats, and it has a number of vulnerabilities to those threats. Somewhat unconventionally, we
shall consider security concerns as classified into the following categories:

• Confidentiality – ensuring that the information is not subject to unauthorized disclosure
(is not readable to the wiretapper through passive wiretapping or eavesdropping)

• Integrity – ensuring that the information is not subject to unauthorized and undetected
modification (selective modification by the wiretapper through active wiretapping or
tampering)

• Inference – ensuring that the wiretapper is not able to deduce anything about the
information (by means of traffic analysis)

• Authentication – ensuring that communicating entity that receives a messages knows the
peer entity that originated the message

• Denial of service – ensuring that the wiretapper is not able to destroy information

As has already been noted, encryption is not a general solution to denial of service, and we
shall not cover denial of service here as a security threat. The other four categories are discussed
in the subsections that follow.

Confidentiality

Stream ciphers are very safe against eavesdropping if used properly, but some residual
vulnerabilities remain, even with the best techniques. These vulnerabilities center on the fact that
a stream cipher requires a distinct synchronization point—an identifiable beginning of message.
The information following the beginning of a message is subject to simple cryptanalysis or the
known plaintext attack.

Chaining ciphers generate changing ciphertext despite the existence of repetitive plaintext
within a message, but two messages beginning with identical plaintext will begin with identical
ciphertext (until they reach blocks that differ). This is a vulnerability when messages are frequent
and short, as in packet encryption; it is less of a vulnerability when messages are very long and
non-repetitive, or when synchronization is infrequent, as in link encryption. In the extreme case
of character-at-a-time terminal-to-computer communications over a packet switched network,
where large numbers of messages differ in only one character, individual encryption of packets
would result in a simple, predictable, one-for-one substitution of plaintext packets with
ciphertext packets.

One way to address this vulnerability is to randomize or prewhiten messages by inserting a
random block of plaintext at the start of each message before encryption. The receiver discards
this first block after decryption. This inserted block does not have to be random or secret: it
simply needs to be different each time, and the receiver does not have to know what it is in
advance. A simple counter such as a sequence number or time of day is often used. Sequence
numbers are a convenient choice when encrypting messages at the transport layer, because

 206

transport protocols already have a sequence number in the header of each message that can be
included in the encrypted data. You have to be sure, however, that the sequence number is
sufficiently wide that it does not repeat often: 8-bit sequence numbers are far too short, and even
16-bit numbers may be inadequate.

Instead of inserting extra data at the start of each message, you can whiten messages by
altering the initialization vector for successive messages. Because both the transmitter and the
receiver must use the same IV, they must maintain synchronization so that they alter the IV in
the same way each time. One way to do this is for the sender to transmit the IV in unencrypted
form at the start of each message (the IV need not be secret, as long as it never repeats).

Integrity

An active wiretapping threat is one in which a wiretapper selectively modifies ciphertext in
transit so as to spoof the receiver. A wiretapper who cannot read the ciphertext may nonetheless
know the format of the transmissions and may know exactly which characters to change in order
to cause the desired effect on the plaintext. In a chaining mode, it is not possible for a wiretapper
to make a specific change to specific characters in a message: changing one bit in the ciphertext
causes an unpredictable change to one or two blocks in the plaintext. While such an effect
generally results in destruction of information (denial of service) rather than in selective
modification, the fact that destruction is limited to two blocks permits the wiretapper to erase
parts of a message selectively—a security threat in some cases.

It is the responsibility of the receiver of the information to protect itself from the adverse
effects of selective destruction, using a validation technique such as a checksum inserted by the
transmitter. Checksums must be calculated on the plaintext and encrypted along with the rest of
the message; otherwise, the wiretapper could simply alter the checksum to compensate for the
modifications made. Some types of checksums may not be able to detect tampering, if the
wiretapper can change the ciphertext in such a way as to preserve the original checksum. More
sophisticated manipulation detection codes employ algorithms, such as a cyclic redundancy
check (CRC), whose values are more difficult to control by modifying the ciphertext.

A message authentication code (MAC) is a cryptographic checksum that is calculated using a
chaining mode of encryption and a secret key whose value cannot be predicted without knowing
the key. The MAC may consist of little more than the feedback value that emerges after the last
block of encryption. A message with an appended MAC can be safely transmitted in unencrypted
form without fear of undetected modification. Most encryption techniques, used in conjunction
with a MAC, will detect the insertion of false information into a data stream or into the message:
without possessing the encryption key the wiretapper cannot generate a decipherable message
that passes the MAC check.

Replay is a threat that occurs when the wiretapper records a stream of previously transmitted
ciphertext and retransmits the stream at a later time. A serious security problem would arise if,
for example, a wiretapper could capture the encrypted login sequence of one user’s session and
retransmit the sequence at a later time in place of his or her own login sequence. In lines
employing link encryption, a potential for replay exists at each synchronization point.

 207

One obvious way to detect replay is to change the key frequently, but this introduces
complex synchronization and key distribution problems. Inserting a random block at the start of
each message (or after each synchronization point) does not detect replay, because the receiver
ignores the random block. The primary way to address replay is to insert a sequence number or
time stamp in the message, which the receiver checks before considering the message to be valid.
To prevent false rejections, the receiver must account for missing, delayed, out-of-order, or
duplicate packets that can occur in a large network. The time stamp or sequence number must of
course be protected by encryption or a MAC. This sequence number may be the same one used to
whiten packets to prevent cryptanalysis.

Inference

In physical link encryption, a wiretapper sees a steady stream of random bits or characters,
whether or not any communication is taking place: the only information the wiretapper may be
able to discern is an occasional synchronization signal. In packet encryption, the observer sees
individual packets and can discern a number of things: the existence and rate of packets, packet
lengths, and unencrypted packet header information (such as source and destination addresses).

Other than flooding the network with dummy packets to confuse the wiretapper, there are no
good solutions to the traffic analysis problem. Fortunately, in most environments an
eavesdropper cannot gain anything useful from such information, and the threat can usually be
ignored. In only a few high-security environments is there a concern that traffic patterns on a
network might reveal sensitive information.

The lack of concern about traffic analysis is often justified on the grounds that the transmitter
is not trying to communicate with the wiretapper. This seems a reasonable assumption, since the
transmitter is the “good guy” who is responsible for the data being communicated; but as we
have observed time and again in earlier chapters of this book, we often have to contend with the
Trojan horse threat (a topic of chapter 7). The encryption device or protocol entity performing
encryption is of course trusted not to disclose information intentionally, but the application
software in the host outside the box or above that layer (which is where the data originates) is
not. Any of the items in a packet header observable to a wiretapper is a potential covert channel
(see, in particular, section 7.2.1), if it can be modulated by the application and observed by a
wiretapper. The Trojan horse in the application, being forced to communicate through the trusted
encryption layer, cannot directly contact the wiretapper but may have direct or indirect control
over packet lengths, destination addresses, and (in the extreme) data link synchronization signals
(Padlipsky, Snow, and Karger 1978).

Packet headers and lengths provide a major path for covert channels because so much of the
information is directly under the control of the application. You can minimize the Trojan horse
threat by encrypting . as much of the packet as possible, but heroic efforts are not worthwhile,
because some information will always remain unencrypted. If you are willing to accept reduced
flexibility, you can control the range of values of header fields (for example, by allowing the
application to select from only a small fixed set of destination addresses) and pad all packets to
the same length prior to encryption; but even these measures only reduce the bandwidth of the
covert channel, without eliminating it. On a local-area network with a rate of several hundred

 208

packets per second, even 1 bit of information per packet results in a high-bandwidth covert
channel.

We shall discuss the importance of the covert channel further in section 13.5.

Authentication

Authentication—knowing whom you are talking to—means making sure that the entity with
which you are communicating is not masquerading as someone else by lying about its identity
(by altering the source address that is contained somewhere in its messages). In a sense,
authentication is an automatic feature of encryption; if you assume that nobody else knows the
encryption key, the ability to communicate with another entity implies possession of the key and,
therefore, proper authentication. Authentication does not require encryption if the remote entity’s
messages are protected by a MAC. While, in theory, you could use a MAC to protect only the
source address of a message, and not the data, it is unsafe to provide authentication without some
kind of integrity protection of the entire message, because it does no good to know who
originated a message if the message might have been modified en route.3

If you share the same key with a number of entities, you have to trust them all to identify
themselves accurately, because any one could masquerade as another. For this reason, the safest
approach is to use pairwise keys: a separate key for each pair of communicating entities. The
pairwise authentication process is closely related to key management (covered in section 13.2.4).
We shall discuss some of the general concepts here.

When initializing a communication, two encryption boxes residing outside their host systems
can authenticate each other by exchanging handshakes of some type. Since the host trusts its
encryption box to authenticate the remote box, the host software can be sure that it is
communicating with software on a specific remote host (or more precisely, with someone
attached to the specific remote encryption box). Encryption does nothing to help software in the
host to distinguish between different entities (processes or applications) on the remote host: the
hosts must trust each other for this higher-level authentication.

Unless you carefully analyze how authentication is used in your system, it is very easy to be
misled into believing that you have more protection than you actually do. Authentication is
particularly confusing because the authenticated identifier (the network address of an entity) is
valid only for the protocol layer at which the authentication occurs. Since each protocol layer
potentially has its own addressing mechanism, the authentication of a source address on the
protocol header of a lower-layer protocol packet does not necessarily say anything about the
authenticity of the address in an embedded (higher-layer) protocol packet.

For example, encryption at the transport layer may allow transport layer entities to
authenticate host addresses appearing in the protocol headers of the transport layer; but unless
that authenticated host address is checked by the application-layer protocols, the authentication

3On the other hand, if your threat is minimal, so that you are worried only about wiretappers masquerading by
sending false messages rather than by modifying existing messages, authentication by itself could be useful.

 209

will be useless. In particular, application-layer protocols such as file transfer and electronic mail
employ their own addressing mechanisms that are far removed from transport-layer addresses.
While a mapping from electronic mail address to transport address occurs on the transmitting
side as a mail message is passed down to lower-layer protocols, the reverse mapping is not done
on the receiving end, since the addressing information is already present in the header of the
mail. Thus, if you get mail that claims to be from Jones at system Alpha, you might have no
assurance that the message came from either Jones or system Alpha because your receiving mail
system might not have checked the host name in the mail protocol header against the
authenticated host address received by the transport layer.4 Normally, when there is no
encryption (and no authentication), protocols have no reason to double-check these addresses on
the receiving end. A similar anomaly is possible at the boundary between the data link and
network layers.

13.2.3 Integrating Packet Encryption into a Protocol Architecture

When two entities first wish to communicate using packet encryption, they must undergo an
initialization process whereby they identify each other and negotiate the encryption keys. The
handshaking might involve an exchange of information with a key distribution center (discussed
in section 13.2.4). These exchanges mark the start of a cryptographic session. In order to avoid
the overhead of reinitializing on every message, the two entities must keep track of this session
for a period of time until they decide they have finished communicating. For confidentiality and
integrity protection, they may have to keep track of certain additional information for each
session—such as sequence numbers, as we discussed earlier.

Since an entity at any protocol layer might simultaneously communicate with a number of
remote entities, it must keep track of multiple cryptographic sessions. At the application or
transport layer, a cryptographic session directly corresponds to a network session or virtual
circuit: the protocol at those layers already keeps track of sessions or circuits, and adding the
additional cryptographic session state information is straightforward. At the network or data link
layer, where datagrams or frames are used, the concept of a session has to be artificially created
because the protocol entities do not normally keep track of whom they are talking to. In some
cases the session concept can be introduced transparently to a layer by a cryptographic module
that postprocesses the datagrams, but it is better to integrate the concept directly into the
protocols. (The thorniest problem with implementing sessions transparently consists of figuring
out when to end the session and when to purge the state information.)

The need to maintain the state of a cryptographic session and the need to exchange
cryptographic information at the start of a session should make it apparent that, when packet
encryption is employed in a given protocol layer, the encryption becomes an integral part of the
protocol specification of the layer and is best designed into the protocol from the beginning.
Inserting packet encryption into a protocol after the fact usually requires a major redesign of the
protocol, because it affects both message formats and sequences of exchanges. For higher layer

4This problem should not be confused with the name-to-address translation problem that we shall discuss in section
13.4.2.

 210

protocols, it is impossible to squeeze encryption between two adjacent protocol layers in a
transparent manner without severely upsetting the layered architecture and performance.

To a certain extent, it is possible to insert encryption transparently into existing protocols at
lower layers. This is most easily and most commonly done at the physical layer (where
encryption is performed by a device that transforms individual bits) or at the data link layer
(where encryption is based on characters, and there is no concept of a frame). Packet encryption
can be inserted transparently at the data link and network layers because it is usually feasible to
nest an existing data-link-layer or network-layer datagram inside an encrypting protocol at the
same layer, by inserting the encrypting layer underneath the layer to be encrypted. You should be
aware, however, that—while nesting approaches are the second most common technique used—
they are complex to implement and can adversely affect performance.

13.2.4 Key Management

In order to minimize the risk of exposure in a secret key system, a secret key should only be
shared by the two entities that are communicating. Each entity must remember a separate key for
each other entity with which it is currently communicating. In practice, however, a group of
communicating entities often shares the same key. In such a case, if one of the entities is
compromised, the others are, too.

Because keys get “stale” after repeated use (the greater the amount of information encrypted
with a given key, the easier cryptanalysis becomes), it is necessary to change keys periodically
(an interval called a cryptoperiod). Manual rekeying is the most commonly used technique today
(both in the government and in industry); by this means, keys are created at a central key
distribution center (KDC), and the printed list or magnetic tape of keys is hand-delivered by
courier to each site and physically entered into the encryption devices.

Key Distribution Center

Manual key distribution is a major management burden, sufficient to limit the use of encryption
to the most sensitive applications. In many applications, key management—and not the cost of
encryption hardware—is the reason encryption is not applied. One way to minimize the burden is
to employ an automated KDC that distributes the keys over the network on demand. When two
systems wish to enter into a cryptographic session, they exchange messages with the KDC, which
sends them both a key for that session. When the session is over, the systems discard the key.
The KDC generates a new key for each session. If a session between two systems lasts for days or
weeks, the systems may want to ask the KDC periodically for a fresh key.

Because the KDC resides on the network just as any other computer system does, interaction
with the KDC must be authenticated and, for the most part, encrypted. The key for this
authentication is a per-system secret master key. Each system must permanently store its own
master key: the KDC must maintain a database with the identifiers and master keys of all the
network entities. The master keys are changed only rarely because little information is encrypted
with them.

 211

But the master keys must still be manually entered into each system initially. There is no
secure way to transmit master keys on the network: any such technique would require encrypted
communications, which would require a second level of master key in each system. Key
hierarchies can be constructed where the keys highest in the hierarchy are changed least often (or
never) and the lowest keys are changed frequently (perhaps hourly or daily) and automatically.
No matter what the architecture, however, you cannot get around the need to enter a secret
master key manually at least once into each system. If you ever change these master keys, the
new master keys should also be entered manually, since redistributing master keys over the
network based on previous master keys does little to improve security.

The KDC concept has been criticized on many counts—some valid, and some unfounded. One
misconception is that KDCs make a network unreliable because they present a single point of
failure. This problem is easily solved by using multiple KDCs; the protocol that allows a system
to switch to an alternate KDC is not very complex. A bit more complex is a mechanism to
distribute the network database to multiple KDCs.

Another unfounded criticism is that large numbers of key distribution messages place an
excessive load on the network. In fact, the amount of traffic generated for key distribution at the
start of each session is minuscule in comparison to the amount of data traffic for sessions of
average length.

A valid criticism of the KDC concept (but usually not a serious problem) points to the extra
delay for key distribution at the start of each cryptographic session. The delay can be many times
that of a normal session initiation for a virtual circuit, especially if the KDC is remote and the two
systems that wish to communicate are on the same local area network. Most higher-layer (end-
to-end) protocols, however, can easily adapt to potentially long delays because they must
accommodate communication over long distances. Network and data link layers tend to be
unaffected by delays because their protocols do not require acknowledgments.

The most serious valid criticism of the KDC concept addresses the management required for
large networks. The KDC is one system on the network that must know the identity (and the
master keys) of all other systems. In many networks, it is impractical to require all systems to be
centrally registered and administered; furthermore, it may be impossible to identify a central
authority that all systems on a network are willing to trust. An approach permitting a hierarchical
KDC structure, in which each community of systems has its own KDC, is easier to administer but
requires complex protocols.

Public Key Distribution

A public key distribution system avoids some (but by no means all) of the management burden
of the KDC. Such a system has no central registry to distribute keys. Each operating system
creates its own private key, which it keeps secret, and then computes the corresponding public
key. The public keys for all systems are stored in a file readable by anyone on the network.
Using the RSA algorithm, you encrypt a confidential message to be sent to another system with
the recipient’s public key. If you receive a message from a system that you can decrypt with its

 212

public key, you can be sure that the message came from that system. The public key mechanism
thereby provides the same degree of mutual authentication that the secret key mechanism does.

As was noted earlier, public key algorithms are very slow and impractical for many
applications. The performance problem is minimized by using the public key algorithm only for
key distribution and session initiation, where its benefits are greatest. Once two systems
authenticate each other, they exchange a randomly generated secret key for the session and
employ a fast secret key algorithm such as DES for all subsequent communications. There is no
advantage to using a public key algorithm once a secret key has been established.

The public key distribution technique requires establishment of a central registry of systems
that lists the public keys. As in the KDC approach, that registry must be trusted and protected
from tampering, since reliable authentication depends on obtaining the correct public key for a
system.5 The registry must authenticate itself to other systems, which implies that each system
must know the public key for the registry. But unlike the KDC, the registry need not be kept
secret, and no secret information need be shared by systems prior to session initiation. The
registry can freely be duplicated, and portions can be copied and stored locally. A new system
can even add itself to the network automatically by creating its own private key and sending the
public key to the registry. A system can change its private and public key at any time by sending
an update message to the registry. Almost all network management is decentralized.

Public key distribution techniques have seen very limited use because they are fairly new (the
theory was not developed until the late 1970s, and an intellectual debate continues over their
immunity to cryptanalysis) and because hardware is not readily available. The extremely long
keys involved (hundreds to thousands of bits) has also limited the techniques’ practicality.
Nonetheless, because of the greatly simplified key distribution they allow, we may someday see
public key techniques predominate over secret key distribution centers—even before encryption
itself becomes a routine part of computer communications.

13.3 A NETWORK SECURITY ARCHITECTURE

Secure networks have been studied much less than secure computer systems, and few practical
examples of them exist. While it is easy to find pieces of network security solutions (particularly
those employing encryption), finding an example of an integrated secure distributed system is
much harder. The problem is not in the technology but in the lack of an accepted architecture for
a distributed system. It is easy for us to draw a generally accepted picture of a computer system
as being composed of hardware, an operating system, and applications (figure 4-1); but
distributed systems are much more complex, and no simple picture of such a system has yet
emerged. In this section we shall consider just one of many possible ways to characterize a
secure distributed system. This section discusses the security problems of distributed systems
that are addressed by currently available computer and network security techniques.

5If a MAC is employed on the individual registry entries so that nodes can authenticate entries as valid, the online
server that distributes the registry need not be trusted or protected. Such a MAC must be based on a network-wide
public key known to all nodes, whose private key in each case is known only to the trusted entities that create the
registry.

 213

Our goal in defining a network security architecture is to draw as much of a parallel as
possible between a network architecture and a computer system architecture—employing the
same technology wherever possible, and inventing new techniques only where necessary to
accommodate the differences between networks and computers. Many of the concepts to which
we shall refer are similar to those discussed in chapters 3 and 4.

13.3.1 Network Subjects, Objects, and Access Control

A secure network is a set of communications mechanisms that provides to its subjects a specific
type of service at a given protocol layer (fig. 13-8). The subjects (users) are the communicating
entities that use the secure network, implementing their own protocols to communicate among
each other. The nature of these subject-to-subject protocols is of no concern to the trusted
network. The network consists of all the elements that make up the protocols, from a given layer
down; the internal layers of the secure network are invisible to the subjects. This concept of
hiding functions and protocols is consistent with that of a layered protocol model. Exactly what
types of subjects (processes, computers, people, and so on) the secure network supports depends
on the entities supported by the layer you choose to call your secure network (table 13.1) and on
the security policy that the secure network is to enforce.

Figure 13-8. A Subject’s View of a Secure Network. Two subjects (peer protocol
entities) communicate with each other using services of any underlying secure
network. The security perimeter is the interface to those underlying services. The
secure network within the perimeter provides services at protocol layer N – 1.

PROTOCOL LAYER 1 PROTOCOL LAYER 1

PROTOCOL LAYER 2 PROTOCOL LAYER 2

PROTOCOL LAYER N - 3 PROTOCOL LAYER N - 3

PROTOCOL LAYER N - 2 PROTOCOL LAYER N - 2

PROTOCOL LAYER N - 1 PROTOCOL LAYER N - 1

SUBJECT A SUBJECT A'
(PROTOCOL LAYER N) (PROTOCOL LAYER N)

PROTECTED
PHYSICAL

PATH

PROTECTED
LOGICAL

PATH

PROTECTED
LOGICAL

PATH

PROTECTED
LOGICAL

PATH

PROTECTED
LOGICAL

PATH

UNPROTECTED
LOGICAL
PATHS

interface interface

SYSTEM ONE SYSTEM TWO
SECURITY PERIMETER

 214

We can draw a parallel between the structure shown in figure 13-8 and that of a computer

system in which the network is a trusted operating system and the subjects are processes that
invoke functions at the interface to the system. Like the trusted operating system, the network
manages shared resources and mediates access to those resources by the subjects under its
control, in accordance with a security policy. We can also draw a parallel between the internal
layering of the secure network and the layering within a secure operating system (see section
11.1 and table 11-1). Of course the details of implementation of the layers inside the secure
network are quite different from those of a secure operating system.

The policy enforced by the secure network has the sole goal of determining which pairs of
subjects can communicate. Unlike a security policy for a secure computer system, a security
policy for a network does not have to deal with objects as permanent information stored in a
system. It is possible for the secure network to enforce a security policy by directly controlling
subject-to-subject access; however, it is usually more convenient to employ the concept of a
network object as an intermediary through which two subjects may exchange information. The
network object plays the same role played by a file in a computer system that is used for process-
to-process communication: one process writes the file, and another reads it. The network security
policy, expanded to cover subject-to-object access, then begins to look much like a computer
system security policy.

Just as the types of network subjects differ, depending on the protocol layer at which security
is implemented, the types of network objects may differ as well. Examples of network objects
include messages, frames, datagrams, virtual circuits, and files (table 13.1). Network objects can
have widely varying characteristics. Some objects (such as datagrams) are fleeting, existing only
between the time they are transmitted by one subject and the time they are received by another.
Objects such as physical links are permanent. Virtual circuits may exist for an arbitrary amount
of time, from seconds to days. Messages, packets, and datagrams are accessible to only one
subject at a time. Virtual circuits and some physical links are simultaneously accessible to a pair
of subjects. A LAN bus is accessible to a large number of subjects.

ISO Layers Subjects Objects

5,6,7 (application) Users Files, Electronic Mail, ... many
others

4 (transport) Processes, Applications Connections, Virtual Circuits

3 (network) Hosts, Networks Datagrams, Packets

1,2 (data link) Nodes on end of link, Nodes on bus Frames, Datagrams, Physical
Links

Table 13-1. Subjects and Objects in Protocol Layers. The types of subjects and
objects supported by the secure network depend on the layer at which security in the
network is implemented. At protocol layers 4 and above, the subjects (users and
processes), are the same as those usually supported by a secure operating system.

 215

Just as the types of network subjects differ, depending on the protocol layer at which security

is implemented, the types of network objects may differ as well. Examples of network objects
include messages, frames, datagrams, virtual circuits, and files (table 13.1). Network objects can
have widely varying characteristics. Some objects (such as datagrams) are fleeting, existing only
between the time they are transmitted by one subject and the time they are received by another.
Objects such as physical links are permanent. Virtual circuits may exist for an arbitrary amount
of time, from seconds to days. Messages, packets, and datagrams are accessible to only one
subject at a time. Virtual circuits and some physical links are simultaneously accessible to a pair
of subjects. A LAN bus is accessible to a large number of subjects.

The secure network in figure 13-8 carries out its subject-to-object access control in a manner
identical to that employed by a secure operating system. Because the subjects and objects are
under full control of the secure network service within each system, access mediation based on
discretionary and mandatory security policies is implemented by means of the same techniques
as are used in an operating system and most likely by the same mechanisms as exist within the
operating system. For example, subjects may be implemented as processes on a system, and
objects may be implemented as memory segments or buffers under the control of memory
management mechanisms.

If the trusted network service operates at the transport layer (layer 4), the subjects are
processes and the network security policy can be identical to the security policy of the operating
system. In other words, the secure operating system and the secure network service work
together and present an integrated secure system that enforces a single security policy, whether
dealing with network objects or with system objects.

If the trusted network service operates at the data link layer, the network service cannot
distinguish between different processes on the same computer and cannot enforce selective
access control to the granularity of a process. The security policy enforced by such a network—
where subjects are nodes, and objects are datagrams—bears little relationship to any policy that
might be enforced by the operating system running on the nodes.

13.3.2 Network Security Perimeter and Protected Path

As in the case of a secure computer system, we must draw a security perimeter—a boundary
between trusted and untrusted mechanisms. This security perimeter surrounds everything within
the highest protocol layer that constitutes the secure network.

In the discussion that immediately follows, it is assumed that a single security policy is
enforced throughout a specific collection of systems on the network at a single protocol layer, in
a manner similar to the enforcement of security at a single interface within a computer system. It
is further assumed that you have selected a suitable layer based on the security policy you want
to enforce and on the types of subjects and objects you want to protect. A network can enforce
multiple nested policies—one for each layer—but it is very difficult to devise meaningful nested
security policies. We shall talk later about more complex arrangements in which the security
policy is not enforced uniformly throughout a network.

 216

In order to maintain the integrity of the security perimeter around a pair of geographically
separated systems (as in figure 13-8), you must have a protected path between the systems. This
path is similar to the trusted path between users and the security kernel (see section 10.4), but in
this case the path protects the integrity of communications between two trusted systems rather
than between a user and a trusted system. As with the user’s trusted path, providing a protected
path between systems means ensuring that communications between the systems are physically
secure and that all devices and other systems supporting the communications are secure and
trusted. The protected path ensures that the entire set of software and hardware within the
security perimeter operates as a single coordinated entity, even though the entity is physically
distributed. Because the path at the lowest (physical) layer (as shown in the figure) is protected,
communication between peer entities in any given layer within the secure network is also
protected.

13.3.3 Distributed Secure System

Taken together, a network of several systems—each of which contains a portion of the trusted
network service as in figure 13-8, and each of which implements the same security policy—is a
distributed secure system. The trusted portions of the individual systems interact via secure
paths, and the untrusted portions are managed within each system in accordance with the
common security policy.

This simplistic view of a secure network, while properly portraying the network from the
point of view of subjects in the computer systems, does not represent the way in which the secure
network is implemented. We rarely have the luxury of physically enclosing everything
throughout the network below a given layer of protocol within the security perimeter. For long-
distance communications, for example, software from the transport layer down through the data
link layer might be protected within the security perimeter of a single computer system, but the
public telephone lines between systems are not protected. In a packet-switched network, the
packet switches that route datagrams between the hosts might not be protected.

When physical protection does not extend from end to end (between subjects in different
systems), we must replace the physical protection with logical protection through encryption.
From outside the security perimeter, the logical view of the secure network remains the same as
in figure 13-8; but the architectural view is like the one shown in figure 13-9, where the software
and hardware in the lower protocol layers are not trusted. The security policy of the network is
enforced only by the intermediate layers within the security perimeter, and security does not
depend on correct operation of the untrusted lower layers. Logically, encryption does no more
than provide the equivalent of a protected path between the two computer systems at protocol
layer 3, making up for the lack of physical protection at layers 2 and 1. Because of this protected
path at layer 3, the logical paths between protocols above layer 3 (up to layer N – 1) are also
protected.

 217

Figure 13-9. Actual View of a Secure Network. The security perimeter surrounds a
portion of the protocol tower in each system. The layers beneath that portion (and
everything between the end systems), are untrusted. Encryption between the lowest
trusted layers is used to enforce the protected path between the systems.

Encryption provides a protected path between the two systems in figure 13-9 by ensuring that
information transmitted by the trusted network service at layer 3 in one system is received by its
peer in the remote system without being observed or altered en route by an outsider. Encryption
also provides authentication, ensuring that the two systems are communicating with each other
and not with a masquerading system. Encryption does nothing to support the network security
policy enforced on the subjects that are above the security perimeter (the insiders with legitimate
access to the network services over which each computer system has control). The policy
regarding insiders is enforced by conventional computer security controls, as we discussed
earlier.

While a security architecture for a network must precisely specify the highest protocol layer
at which the security policy is to be enforced uniformly throughout the network (the upper limits
of the security perimeter), it need not specify a fixed lower limit at which encryption is to be
performed. Encryption is only necessary where physical protection of the lower layers cannot be
provided between a given pair of systems. Within a local area network, for example, where the
systems are physically protected but the wires between the systems are not, encryption might be
employed at the data link layer and implemented within the interface units (see figure 13-6). If
some of these hosts communicate over a public packet-switched network, where the packet
switches are not trusted, encryption must be employed in the network or transport layers to
secure the paths to remote systems. Adjacent machines in a computer room connected by a
protected physical wire need employ no encryption. Of course, for communications to be
possible, both ends of a given protocol layer must employ encryption at the same time.

PROTOCOL LAYER 1 PROTOCOL LAYER 1

PROTOCOL LAYER 2 PROTOCOL LAYER 2

PROTOCOL LAYER 3 PROTOCOL LAYER 3

PROTOCOL LAYER N - 2 PROTOCOL LAYER N - 2

PROTOCOL LAYER N - 1 PROTOCOL LAYER N - 1

SUBJECT A SUBJECT A'
(PROTOCOL LAYER N) (PROTOCOL LAYER N)

UNPROTECTED
PHYSICAL

PATH

UNPROTECTED
LOGICAL

PATH

ENCRYPTED
PROTECTED

LOGICAL
PATH

PROTECTED
LOGICAL

PATH

PROTECTED
LOGICAL

PATH

UNPROTECTED
LOGICAL
PATHS

interface interface

SYSTEM ONE SYSTEM TWO

SECURITY
PERIMETER

 218

In addition to compensating for the lack of physical protection of paths between computer
systems, encryption can minimize the need to trust some of the network mechanisms within a
system. For example, software and hardware that constitute the data link layer need not be
trusted if encryption is used at the network layer. The data link layer sees only encrypted data
passed to it by the network layer. But realistically, even with encryption, it is difficult to avoid
having to trust lower-layer protocols when those layers are implemented in a computer system
(as in figure 13-8), because the software in lower-layer protocols usually needs special privileges
(for example, to perform I/O). Privileged software can corrupt the operating system and cause a
security violation, even if its normal function is only to process encrypted traffic. Using
encryption to eliminate the need to trust lower layers is most useful in situations where the
lower-layer protocols are implemented in separate physical devices (such as front-end processors
or packet switches in figure 13-5). In such cases the devices can remain entirely untrusted and
unprotected.

Interestingly, the reverse situation can also occur; in such a case the separate physical front-
end device is the only trusted component of a secure network, and the hosts (including each
host’s operating system) are untrusted. In figure 13-6, for example, the interface units operating
at the data link layer may employ encryption to provide a secure data link service to untrusted
hosts as subjects.

13.3.4 Mutually Suspicious Systems

Together, the systems in a secure distributed system constitute a security domain that operates
under a common management and implements a common security policy at a common protocol
layer. Each system within the domain is equally responsible for security of the system. Using
encryption or physical protection, we can logically isolate the secure distributed system as a
whole from other computer systems on the same physical network that are not trusted to be
members of the domain. In figure 13-10, a secure distributed system composed of systems A, F,
and C exists in one domain. The other systems on the network are not part of that domain.

The existence of the untrusted system E along the physical path between A and F does not
necessarily prevent establishment of a protected path between A and F at a suitably high protocol
layer. For example, a secure virtual circuit can be established between subjects on A and F with
encryption at the transport layer, where E is an intermediate gateway that handles the network
layer protocol.

But what if a subject on system A wants to communicate with a peer on system B, where B is
not part of the same security domain? System A must treat B as lying outside its security
perimeter; the protocol layers within the security perimeter of A cannot trust their peer layers on
the remote system (fig. 13-11). The entire remote system—and not just the subject at protocol
layer N —is treated as an untrusted subject, and each protocol layer within the security perimeter
of system A must be able to communicate with an untrusted peer without compromising its own
security or the security policy enforced on the subjects in system A.

 219

Figure 13-10. Security Domains. Systems A, F, and C lie in the same security domain.
They can trust each other to enforce the same security policy. Lines represent physical
connectivity.

By allowing an exchange with an untrusted system in figure 13-11, we have built an
additional interface into the security perimeter (besides the interface at protocol layer N – 1 for
local subjects). This interface, which is shown as a heavy vertical dashed line in the figure,
provides direct access to functions of the secure network that are hidden inside the security
perimeter of the distributed system in figure 13-9. Whereas the distributed system’s security

A B C D

E F G SECURITY
DOMAIN

PROTOCOL LAYER 1 PROTOCOL LAYER 1

PROTOCOL LAYER 2 PROTOCOL LAYER 2

PROTOCOL LAYER 3 PROTOCOL LAYER 3

PROTOCOL LAYER N - 2 PROTOCOL LAYER N - 2

PROTOCOL LAYER N - 1 PROTOCOL LAYER N - 1

SUBJECT A ENTITY A'
(PROTOCOL LAYER N) (PROTOCOL LAYER N)

UNPROTECTED
PHYSICAL

PATH

UNPROTECTED
LOGICAL

PATH

ENCRYPTED
PROTECTED *

LOGICAL
PATH

PROTECTED *
LOGICAL

PATH

PROTECTED *
LOGICAL

PATH

UNPROTECTED
LOGICAL
PATHS

interface

SYSTEM A SYSTEM B

SECURITY
PERIMETER

Figure 13-11. Mutually Suspicious Computer Systems. From the point of view of
system A, system B is a single untrusted subject. The protocol layers within the
trusted portions of system A must remain suspicious of their peers.

 220

policy in figure 13-9 deals with subjects and objects at a single protocol layer, an expanded
security policy is required for the situation in figure 13-11—one that specifies the types of
objects handled by each of the protocol layers within the security perimeter. While these new
layers must handle several new types of objects, the security policy need address only one new
type of subject: an untrusted remote system. That remote system has multiple interfaces into the
perimeter at different layers, but from an access control policy viewpoint it is a single monolithic
subject. As far as that policy is concerned, the peer entity inside subject B with which subject A
communicates in figure 13-11 is indistinguishable from any other part of the untrusted remote
system.

A multiple-protocol-layer security policy is apt to be complex, since it must resolve issues of
access by subjects at one level of abstraction to objects at a different level of abstraction. For
example, in order to specify what happens when subject A opens a connection at the transport
layer to entity A', the policy must account for the fact that the transport-layer objects (messages)
are converted to one or more packets, or datagrams at the lower layer and are individually
transmitted to the remote subject at the data link layer. The remote subject cannot be trusted to
reassemble the datagrams into the original message nor to respond appropriately to any of the
protocols. Each protocol layer within the security perimeter of system A must protect itself from
deception by or malfunction in system B. This requirement is not quite as hard as it seems, since
good protocols are usually fairly robust in the face of protocol errors on a remote system. The
complexity lies in the definition of the security policy for such interactions.

Encryption is not required to extend the security perimeter at layer 3 in figure 13-11, as it
was in figure 13-9, because the security perimeter of system A does not extend to system B.
Encryption or physical protection must nonetheless be employed between the systems, however,
in order to create a protected path for confidentiality of communications. Encryption is also
needed if the systems want to authenticate each other, for the same reasons that users must have
a protected path in order to authenticate themselves to an operating system (see section 10.4. But
authentication is only necessary if the security policy requires the remote systems to be
individually identified. It is not needed if the policy treats all remote systems alike, giving them
all access to exactly the same objects without distinguishing among them.

The discussion here has been from the point of view of a single security domain on the
network. A network may contain a number of secure distributed systems—each residing in its
own security domain, each implementing a different security policy, and each viewing the
systems in the other domains as suspicious. In the extreme, each system on the network may lie
in its own domain and not trust the others at all.

13.4 NETWORK SERVERS

A distributed system often consists of a collection of computer systems that trust each other but
generally serve their own local users, plus server systems that provide various types of services
to other systems and users. Because these servers usually maintain data that are shared by a
number of other systems, they bear some of the responsibility for enforcing the network security
policy.

 221

13.4.1 Authentication and Authorization Servers

Some servers, in effect, help to implement a portion of the security policy. The key distribution
center that we discussed previously is an authentication server: anyone can use the KDC to
determine whether a given message is authentic (was transmitted by a claimed source). A public
key distribution center is also an authentication server.

The KDC is also often used as an authorization server to decide who can talk to whom, based
on a security policy and attributes of systems stored in its database. It can enforce this
authorization via selective key distribution—although, in general, an authorization server only
provides information and does not directly enforce the authorization. For example, the public key
distribution center cannot enforce anything (because the keys it gives out are public), but it can
provide authorization information for others to use.

13.4.2 Name Servers

A name server is an entity on the network that provides a way to translate the name of an entity
into the network address of the entity. Usually the name is human-readable. Like an
authentication server, a name server is a central registry of network entities. Name servers are
necessary in large distributed systems whether or not security is an issue, because users cannot
be expected to know the network addresses of all the services they use, and because each system
on the network cannot store the names of all possible services. The name server allows services
to move around on the network, and it can provide the addresses of alternate services if the
primary service is not responding. Name servers are usually accessed by distributed applications
on a system and not directly by users: the user enters into the local system the name of the
service to be accessed (for example, “news wire service”), and the local system then interrogates
the name server for the network address in order to make the remote connection to the service.

It is not often realized that the name server needs to be a highly trusted entity, as a name-to-
address translation error can render useless all the rest of the network security and authentication
controls. Suppose you are logged into your local system and want to send a file to a remote
system omega on which you have an account. You enter the command “remote copy to
omega” into your local system, and the remote_copy program invokes the trusted network
service on the local system to send a message to the name server asking, “What is the network
address of omega?”. The name server returns the value 345678.0987, and your application again
invokes the trusted network to establish a connection to that system. The secure network
connection is set up, possibly with the aid of an authentication server that assures remote_copy
that it is really talking to 345678.0987, and the file is copied in complete privacy between your
local system and that remote system. Of course, you as a user have no idea whether 345678.0987
is really omega: you have to believe the name server. Even if the name server is trusted, you
have to trust the programs on your own system to provide the name server with the correct
information, as you requested. Thus, for the maximum degree of security, each system needs a
protected path to the name server.

Because name servers tend to be involved at the beginnings of sessions and need to be
trusted, it is convenient to combine them on the same computer systems with authentication

 222

servers. But it is important to understand that the function of name-to-address translation is quite
different from the function of authentication.

13.4.3 Other Servers

Distributed systems have a number of other shared services, such as bulk file storage, hardcopy
output, and remote interfaces to other networks. Most of these are potentially security-relevant.
A file server, for example, might contain files belonging to many different users. Instead of
treating the file server as a subject, the trusted network service in the distributed system has to
include the file server within the security perimeter, and the services of the file server have to be
covered by the security. policy. If the file server handles part of the file system for a distributed
operating system, the file system is logically part of the operating system.

Techniques have been proposed and implemented in experimental systems where file servers
need not be trusted (Rushby and Randell 1983). Such designs rely on encryption and
authentication to prevent the file server from mixing files of different users. While the potential
for residual covert channels may make the technique unsuitable for some applications, the ability
to keep the file server outside the security perimeter is attractive because it reduces the number
of special-purpose systems on the network that have to be trusted.

In practice, the use of distributed applications and shared servers (secure or otherwise) is still
in its infancy, and few practical results have been obtained by securing such systems. But
security is a serious problem in a distributed system—much more so than in operating systems.
Perhaps it is not too late to design security into these systems from the beginning, before industry
locks itself into fundamentally nonsecure approaches that can never be retrofitted.

13.5 SECURITY KERNEL ON A NETWORK

A distributed system like the one shown in figure 13-8 is really a distributed operating system. If
the secure operating system in each system is a security kernel, and you want to enforce the same
policy (with the same level of assurance) on the distributed system as you have within the kernel,
the security kernels in the individual systems must cooperate in some manner. One way to
accomplish this is to allow the kernels to communicate directly with one another, exchanging
control information as needed to coordinate the exchange of traffic. This technique requires a set
of trusted kernel-to-kernel protocols—and of course a protected path between the kernels. Such
kernel protocols have very difficult synchronization requirements that must await solutions to
still-open research issues.

A much easier technique is to keep the kernels as disjoint as possible, relying on each kernel
to enforce subject-to-object access within its own computer system and minimizing the amount
of trusted control information that must be exchanged between kernels. It turns out that, for a
multilevel security policy, the only trusted control information that needs to be exchanged is the
access class of the network objects; the transmitting kernel inserts an access class label on a
message based on the access class of the subject that created the message, and the receiving
kernel uses that access class to determine who on its own system may read the message. If the
trusted network service operates at the transport layer, a label is required only when the virtual

 223

circuit is established, and not on each message that is exchanged over that circuit. The kernels
must still trust each other to insert and obey the access class labels according to their common
policy, but no information other than the labels need be managed or exchanged between the
kernels. In particular, the kernels do not have to know the identifiers or attributes of each other’s
subjects.

In order for the system to label network objects securely, some portion of the network
protocols in each kernelized system must be trusted to insert the correct label, and the labeling
function must be integrated into the protocol architecture. Such labeling capability is
incorporated as an option in the protocol header of the Arpanet’s IP datagram at the network
layer. Trusted labeling can be provided in various ways without trusting all of the network
software that implements these protocols, but in general adding trusted labeling with the same
degree of assurance as is possessed by the kernel entails trusting a considerable amount of
network software.

The protected path between security kernels is best provided by physical security or link
encryption. With packet encryption, unless you can close the high-bandwidth covert channel
between an untrusted application and a wiretapper of a line (which is very difficult, as we
discussed in section 13.2.2), the secure distributed system has a serious vulnerability that is not
present when each kernel-based system is isolated. You need to evaluate this vulnerability in
detail, early in the design of the distributed system, because it can be a waste of time and energy
to close the covert channels in the isolated systems (to protect yourself against malicious, but
authorized users) if you cannot protect yourself against wiretappers (malicious unauthorized
users).

When a kernelized system communicates with an untrusted system, the kernel must treat the
untrusted system as a single subject that is unable to enforce or provide any reliable labeling.
With a multilevel security policy, this means that the untrusted system may communicate with
subjects on the kernelized system at only a single access class, which the kernel determines by
authenticating the remote system and knowing (from internal tables) the correct access class.

When two kernelized systems communicate, it may occasionally be desirable for one-way
communication to occur between a subject at a high access class and a subject at a low access
class. The multilevel security policy permits an UNCLASSIFIED process (for example) to create an
UNCLASSIFIED datagram, and a SECRET process to read the datagram. In effect, the UNCLASSIFIED
process does a write-up to a SECRET process. Because the reverse communication is not possible
(the SECRET process cannot send to the UNCLASSIFIED process), the only protocols that will work
in a one-way mode are those at the network or data link layers, where two-way handshakes are
not required to establish a session or virtual circuit. In practice, few applications call for a pure
one-way transmission over a network; the only users of a datagram service are higher-layer full-
duplex protocols. Even if the purpose of establishing a virtual circuit is to transmit information in
only one direction (for example, to send a file or electronic mail), the virtual circuit protocols are
two-way and will not work. Thus, while the security policy may not prohibit one-way
communication, there is little reason for a kernel-based network to provide such a service.

 224

13.6 FUTURE OF SECURE DISTRIBUTED SYSTEMS

In contrast to the items discussed in most of the other chapters in this book, the secure distributed
system model presented in this chapter is more of a proposal than a description of proven
technology. No examples of commercial distributed systems address all dimensions of the
computer security problem while concurrently providing a wide range of services for general-
purpose applications. The model presented here does show, however, that the architecture of a
secure distributed system can be mapped into that of a secure computer system, employing most
of the same concepts. The technology and applications of encryption to support the distributed
nature of the system are well understood, although few examples exist of systems that implement
the most flexible of the public key management alternatives.

More work is particularly needed in defining an appropriate security model for a distributed
system comprising multiple security domains, and in describing and implementing the various
types of servers that are needed to support a coherent distributed-system architecture. Because
work in the latter area is still in its infancy—even for distributed systems that have no security—
we need to exercise caution in defining security architectures that apply to current network
implementations but do not generalize to future systems. At the same time, we must balance this
cautionary approach with the realization that the use of networks is growing continuously,
constantly increasing the vulnerability of the computer systems that use them.

REFERENCES

Davies, D., ed. 1981. The Security of Data in Networks. Los Angeles, Cal.: IEEE Computer
Society.
A collection of classic articles and papers on network security, focusing on encryption, with
a tutorial introduction; contains a comprehensive annotated bibliography of articles.

Denning, D. E. 1983. Cryptography and Data Security. Reading, Mass.: Addison-Wesley.
A thorough study of cryptographic techniques, access controls, and database security,
presented in textbook format with many exercises, examples, and references.

Glahn, P. G. von. 1983. “An Annotated Computer Network Security Bibliography.” RADC-TR-
83-251. Griffiss AFB, N.Y.: Rome Air Development Center. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-A139578.)
A massive compilation of 675 annotated references on network and computer security.
Although all of the references are unclassified, some may be hard to obtain.

Meyer, C. H., and Matyas, S. M. 1983. Cryptography: A New Dimension in Computer Data
Security. New York: Wiley-Interscience.
An up-to-date text on cryptography by leading experts in the field.

National Bureau of Standards. 1977. “Data Encryption Standard.” FIPS PUB 46. Gaithersburg,
Md.: National Bureau of Standards. Reprinted in Advances in Computer System Security, vol.
1, ed. R. Turn, pp. 59–74. Dedham, Mass.: Artech House (1981).
The DES data encryption standard.

Padlipsky, M. A.; Snow, D. W.; and Karger, P. A. 1978. “Limitations of End-to-End Encryption
in Secure Computer Networks.” ESD-TR-78-158. Hanscom AFB, Mass.: Air Force
Electronic Systems Division. (Also available through Defense Technical Information Center,
Alexandria, Va., DTIC AD-A059221.)

 225

Discusses covert channels that are present when end-to-end encryption is used in a packet-
switched network. The conclusions apply to local area networks as well.

Rivest, R. L.; Shamir, A.; and Adleman, L. 1978. “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems.” Communications of the ACM 21(2):120–26. Reprinted in
The Security of Data in Networks, ed. D. Davies, pp. 158-64. Los Angeles, Cal.: IEEE
Computer Society.
A description of the RSA public key encryption algorithm.

Rushby, J., and Randell, B. 1983. “A Distributed Secure System.” Computer 16(7):55–67.
Reprinted in Advances in Computer System Security, vol. 2, ed. R. Turn, pp. 228–40.
Dedham, Mass.: Artech House (1984).
A design for a distributed collection of Unix workstations on a local area network that
supports mandatory security controls.

Voydock, V. L., and Kent, S. L. 1983. “Security Mechanisms in High-Level Network Protocols.”
Computing Surveys 15(2):135-71. Reprinted in Advances in Computer System Security, vol.
2, ed. R. Turn, pp. 309–46. Dedham, Mass.: Artech House (1984).
A good survey of network security threats and the use of encryption; covers many of the
topics discussed in this chapter, and is a good source of further references.

 226

 BIBLIOGRAPHY

This bibliography is designed as a supplement to the reference lists concluding various chapters
of the text. It is not an exhaustive list of works on computer security, but instead mentions only
the primary general books and reports that are up-to-date and will be most useful to you in
further study. Preference has been given to sources that incorporate or elaborate on prior work.
For a more complete list of literature on a specific topic, and for pointers to original research, see
the relevant reference list within the text, and refer to the works cited in those items.

The NTIS and DTIC numbers in many of the entries (here and in the various reference lists
provide a secondary source for the documents through the National Technical Information
Service in Springfield, Virginia, and the Defense Technical Information Center in Alexandria,
Virginia. Some documents are available only as technical reports directly from the organization
that produced them.

GENERAL BOOKS AND PERIODICALS ON COMPUTER SECURITY

Abrams, M. D., and Podell, H. J. 1987. Tutorial: Computer and Network Security. IEEE
Computer Society Order No. DX756. Los Angeles: IEEE.
A compilation of papers on computer security, with a tutorial introduction, covering a
variety of topics. Many of the papers are from journals and conference proceedings
referenced elsewhere in this book.

Computer. 1983. "Computer Security Technology." Computer 16(7) (July 1983).
This special issue of Computer contains a number of computer security articles, many of
which are cited in the chapter references.

Davies, D., ed. 1981. The Security of Data in Networks. Los Angeles, Cal.: IEEE Computer
Society.
A collection of classic articles and papers on network security, focusing on encryption, with
a tutorial introduction; contains a comprehensive annotated bibliography of articles.

Denning, D. E. 1983. Cryptography and Data Security. Reading, Mass.: Addison-Wesley.
A thorough study of cryptographic techniques, access controls, and database security,
presented in textbook format with many exercises, examples, and references. This book
should be on the shelf of every computer security library.

Department of Defense. 1985. DoD Trusted Computer System Evaluation Criteria. DOD
5200.28-STD. Washington, D.C.: Department of Defense. (U.S. Government Printing Office
number 008-000-00461-7.)

 227

The DoD criteria for evaluating and rating operating systems according to a scale based on
security features and assurance. This document discusses many of the computer security
concepts covered in this book.

Glahn, P. G. von. 1983. "An Annotated Computer Network Security Bibliography." RADC-TR-
83-251. Griffiss AFB, N.Y.: Rome Air Development Center. (Also available through
Defense Technical Information Center, Alexandria, Va., DTIC AD-A139578.)
A massive compilation of 675 annotated references on network and computer security.
Although all of the references are unclassified, some may be hard to obtain.

IEEE Computer Society. 1987. "Special Issue on Computer Security and Privacy." IEEE
Transactions on Software Engineering SE-13(2) (February 1987).
A special issue on computer security, with papers on verification, operating systems, and
networking.

Lobel, J. 1986. Foiling the System Breakers: Computer Security and Access Control. New York:
McGraw-Hill.
A discussion of all aspects of computer security and access control—physical and
technical—written for a non-technical audience.

National Computer Security Center. 1987. Trusted Network Interpretation. NCSC-TG-005. Ft.
George G. Meade, Md.: National Computer Security Center.
An interpretation of the Trusted System Evaluation Criteria for networks and network
components.

Turn, R., ed. 1981, 1984. Advances in Computer System Security. Vols. 1 and 2. Dedham,
Mass.: Artech House.
A collection of computer security papers from journals and conferences. Many of the papers
listed in the various chapter reference lists are reprinted here.

CONFERENCE PROCEEDINGS

American Institute of Aeronautics and Astronautics, and American Society for Industrial
Security. 1985-87. Aerospace Computer Security Conference: Protecting Intellectual
Property in Space. New York, N.Y.: AIAA.
This conference covers all aspects of computer security—technical and non technical—
although it is not a primary outlet for technical research on operating systems or
verification.

IEEE Computer Society. 1980-88. Proceedings of the IEEE Symposium on Security and Privacy.
Washington, D.C.: IEEE Computer Society Press.
An annual conference covering topics of computer security, formal techniques, network
security, and (occasionally) encryption. It is a primary outlet for reports of current computer
security research.

International Federation of Information Processing. 1983-87. Computer Security: (various
subtitles). Proceedings of the IFIP/Sec. Amsterdam, The Netherlands: Elsevier Science
Publishers B.V.
Topics covered include auditing, physical security, risk analysis, contingency planning,
computer crime, legal issues, and encryption. There are occasional operating system security
papers—usually presenting overviews of recent developments.

National Bureau of Standards. 1978-88. Proceedings of the National Computer Security
Conference. Gaithersburg, Md.: National Bureau of Standards.

 228

An annual conference, jointly sponsored by the National Computer Security Center and the
National Bureau of Standards, covering a mix of technical and non-technical topics.
Oriented toward government needs, the conference emphasizes the Criteria (Department of
Defense 1985).

SIGSOFT. 1980, 1981, 1985. “Proceedings of VERkshops I, II, and III.” In Software
Engineering Notes (July 1980, July 1981, and August 1985).
This is a small, highly technical conference, sponsored by SIGSOFT (a special interest group
of the ACM), held at random intervals; its focus is research on formal verification.

 229

 INDEX

Page numbers in italics refer to figures; page numbers in boldface refer to tables.

*-property, 55, 124

Abstract machines, 178, 179
Abstract model, 30, 31–32, 105–30. See also

Security models
Access class, 52, 112

dominates relationship between, 53, 122,
183-84

partial ordering of, 53, 122
SYSTEM HIGH/SYSTEM LOW, 123, 148

Access control, 22–23, 45–46. See also
Multilevel security

discretionary, 45, 47–50
input/output, 96–102
limiting Trojan horses with, 63–64
mandatory, 45, 50–51
with memory management, 83–86
network, 213–15

Access control list (ACL), 49–50
Access list, 48
Access matrix model, 109, 110

Bell and La Padula model, 123
ACF2 (software), 9
ACL. See Access control list (ACL)

Address. See Virtual address space
Adleman, L., 202
AFFIRM, 167, 168
Akers, R. L., 167
Algebraic specifications, 168
Algorithmic refinement, 178–81
Ames, S. R., Jr., 28, 131
Anderson, J. P., 131
Application mode, 27
Applications programs, 25, 26
Argument validation, 153
Arpanet Reference Model, 196
Ashland, R. E., 9, 51
Assertions, entry and exit, 190–92
Assurance, security control, 31
Asynchronous attack, 153–54
Atomic functions, 115
Authentication. See also Password(s)

vs. identification, 18–19, 45–46
provided by encryption, 208

Authentication server, 221
Authorization, 22
Authorization server, 221

 230

Bandwidth, covert channel, 67
Barksdale, B. L., 131
Base and bound registers, 78
Bell, David E., 53–54, 121, 124
Bell and La Padula security model, 53–54,

118 n.2, 121–125
security policies, 140

Benign software, 19
Berson, T. A., 131
Biba, K. J., 56
Biba integrity model, 56–57
Block mode encryption, 202
Blotcky, S., 9, 51
Boebert, W. E., 110, 162
Broadcast medium, 200

Call-back modem, 10
Call bracket, 90–91
Capability, 96

architectures based on, 162
system subject, 23

Capability list, 48
Capability machines, 75, 96
Categories, security, 52, 53
Cerniglia, C. M., 109
Chaining mode encryption, 203
Chandersekaran, C. S., 125, 188
Channel programs, 96
Cipher, 201
Cipher block chaining, 203
Cipher feedback mode, 203
Clark, D. D., 52
Classification, information, 51, 52, 112
Clearance, security, 51, 52, 112
Code correspondence, 30, 31, 189–92
Code inspection, 135
Cohen, F., 61
Completeness principle, 133–134
Computer security, xi-xii, 3

internal and external, 15–16
in networks (see Network and distributed

systems)
penetration (see Trojan horses)
policy (see Policies on computer

security)

procedural controls (see Procedural
security)

provided by encryption, 205–9
reasons for failure of, 7–13
secrecy, integrity, and denial of service,

3–4
subjects, objects and access control, 21–

23 (see also Access control)
system boundary and the security

perimeter, 16–17
system design and (see Computer system

design for security; Security
architecture)

Trojan horses (see Trojan horses)
trusted systems, 19–20
trusted systems evaluation criteria, 4–6
users and, 18–19

Computer system design for security, 24–32.
See also Security architecture;
Security models

boundary (see System boundary)
correspondence (see Correspondence,

system)
reference monitor and security kernel,

28–29
system controls to limit Trojan horses,

65–67
system development process, 30–32, 165
system structures, 24–27

Confidentiality, provided by encryption,
205–206

Confinement property, 55, 123–124
Copy protection, 18 n.1
Correspondence, system, 30–31

code-specification, 189–92
model alternatives, 107
model-to-system, 126–28
specification-to-model, 174–75

Covert channels, 67–72
analysis, 125
bandwidths of, 185
in networks, 223
modulation of, 67
noise in, 71
storage, 68–70
timing, 68, 70–71

 231

Crow, J., 167
Cryptography. See Encryption
Cryptoperiod, 210
Cyclic redundancy check (CRC), 206

DAC. See Discretionary access control
Database management systems (DBMS), 26,

27
Data encryption. See Encryption
Data Encryption Standard (DES), 201
Datagrams, 198
Data hiding, 151
Data link layer, 198
Data structure refinement, 177–78, 181
Decomposition, 177–82

algorithmic refinement, 178–81
data structure refinement, 177–78
procedural abstraction, 181–82

Default controls, 42
Defense, U.S. Department of, 46

computer security at, xi, 4–6, 50, 51–52,
131, 162, 201

Demand paging, 79, 80
Demonstration model, 30, 31–32
Denial of service, 3–4, 58, 205
Denning, D. E., 110, 161, 182, 201
Device descriptor table, 99, 100
Directories. See Files
Discretionary access control, 45, 47–50

access control lists, 49–50
capability list, 48
owner/group/other controls, 48–50
passwords for file access, 47–48
security kernel policies and, 140–41
Trojan horse threats, 50

Disjoint access class, 122
Distributed secure systems, 24, 216–18. See

also Network and distributed systems
DMA (direct memory access) input/output,

99
Domain machines, 96, 157
Domains. See Execution domains
Dominates relationship, 53, 122, 183–84
Drongowski, P. J., 131
Dynamic linking, 86

Eavesdropping, 205
Eckmann, S. T., 189
Economy of mechanism, 38
Effective address, 78
Electronic codebook, 202
Emulation, operating system, 145–47
Encryption, 10, 200–12

end-to-end, 204
fundamentals, 200–4
integrating into protocol architecture,

209–10
key management, 210–12
packet, 204, 223
security services, 205–9

Ericksen, R. W., 167
Evaluated products list, 4–5
Evaluation criteria, 4–6
Execution domains, 27, 86–96

argument passing across, 91–96
hierarchical, 28, 86
hierarchical memory access, 87
nonhierarchical, 95–96
transfer of control across, 89–91

Executive mode, 27
External security, 15–16

Feiertag, R. G., 189
File(s)

attributes, 68–69
mapping, with virtual memory, 84–86
passwords for, 47–48
secure file systems, 157–60
used as covert storage channel, 68–70

File servers, 222
File systems, 157–60
Firmware, 25
Flat file systems, 157
Flow. See Information flow analysis;

Information flow model
Flow table generators, 188–89
Floyd, R., 189
Formal Development Methodology (FDM),

167, 168, 189
Formal development path, 30, 31–32
Formal models. See Security Models

 232

Formal specifications. See specification and
verification

Fraim, L. J., 9, 76, 131
Frames, 204
Functions

atomic, 115
operating system, 152
transition (see Transition functions)
trusted, 132, 139–40

Gasser, M., 28, 46, 131
Gate segment, 90
GEMSOS operating system, 9, 131
Gligor, V. D., 125, 189
Goguen, J. A., 110
Gold, B. D., 131
Good, D. L., 167
Guardian security project, 131
Gypsy Verification Environment (GVE),

167–68, 189, 190, 191

Haigh, J. T., 110, 189
Hardware, 75–103

in computer systems, 25, 25–26
execution domains, 86–96
input/output access control, 96–102
memory protection, 78–86
multiprocessor support, 102–3
process support, 77
vs. software, for security features, 76–77

Harrison, M. A., 109
Heckman, M., 9, 132
Hierarchical Development Methodology

(HDM), 167, 168, 189
Hierarchical file system, 158
Hoare, C. A., 189

IBM System/38, 96, 157, 162
Identification, 18–19, 45
Implementation verification, 30
Ina J. See Formal Development

Methodology
Incomparable access class, 122
Inference threats, protection from, 207–8
Informal development model, 30, 31–32
Information, 3

controls on, 119–21
integrity of, 3–4, 56–57
military classification of, 51–54

Information flow analysis, 125, 182–89
examples, 186
flow rules, 184–88
process of, 188–89

Information flow model, 110, 125–26
Initial state, 112

define and prove, 116–17
Initiation of segments, 85
Input/output access control, 96–102

access paths, 98
fully mapped I/O, 101–2
premapped I/O, 101
programmed I/O, 99–100
unmapped I/O, 100

Integrity of information, 3–4, 56–57, 141,
205–7

Intel 80286 microprocessor, 75, 131
Intel iAPX 432, 96, 157, 162
Internal security, 15. See also Computer

security
International Computers Limited (ICL), 87
Isolation principle, 38–39, 133, 134
ISO Reference Model, 196, 197

Karger, P. A., 62, 65, 71, 134, 162, 207
Kemmerer, R. A., 189
Kent, S. L., 201
Kernel. See Security kernel
Kernel mode, 27
Key. See Private key; Public key

(asymmetric) cipher; Secret key
(symmetric) cipher

Key distribution center, 210–11
KSOS security kernel, 158

Lampson, B. W., 67, 182
Landwehr, C. E., 109, 136
La Padula, Leonard J., 53, 121, 124
Lattice, 123
Layered architecture, 40
Leakage paths, 67, 182. See also Covert

channels
Least privilege concept, 39–41

 233

Linear order, 53
Link encryption, 204, 223
Lipner, S., 9, 51, 58, 67
Local area network (LAN), 200
Loop invariant, 192
Lynch, K., 9, 51

MAC. See Mandatory access control;

Message authentication code
McCauley, E. J., 131
Mandatory access control, 50–51

limiting Trojan horses with, 63–64, 66–
67

Master mode, 27
Matyas, S. M., 201
Memory access, hierarchical domain, 87
Memory protection, 78–86

access control with, 83–86
demand paging, 79–80
segmentation, 80–83
virtual address space, 78
virtual memory mapping, 78–79

Meseguer, J., 110
Message(s)

handling, 38–39
nested protocol headers on, 197
randomized/prewhitened, 205–6

Message authentication code (MAC), 206,
208, 212 n.5

Meyer, C. H., 201
Microcode, 25
Military security policy, 51–52
Millen, J. K., 109
Minimization principle, 38–39
MLS (Special flow tool), 167 n.1
Models. See Security models
Monitor, 132

virtual machine, 143–45
Multics operating system, 9, 28, 39, 40, 43,

51, 75, 131
access control list, 50
Bell and La Padula model and, 124
execution domains, 86
memory management and access control,

84, 85, 86, 97
Multilevel security (MLS), 51–55, 121–122

mathematical relationships of, 53
military security policy, 51–52
rules of, 53–55
terminology of, 52

Multiprocessor support, 102–3
Mutually suspicious subsystems, 156, 218–

20

Name server, 221–22
National Bureau of Standards, 46, 201
National Computer Security Center, xii, 4–5,

46
Network and distributed systems, 24, 195–

225
encryption, 200–12
future of, 224
network servers, 220–22
protocols, 195–99
security architecture, 212–20
security kernel on a network, 222–23
topologies/components, 199–200

Neumann, P. G., 162
Nondeterminism, 171, 187
Non-interference model, 110
NOS operating system, 9

Object-oriented architecture, 96
Objects in a system, 21–23, 112

attributes of, and covert storage channels,
67–70

existence of, and covert storage channels,
68–69

hardware implemented, 95–96
mapping, with virtual memory, 83–86
network, 213, 214, 214–15

Operating system, 24, 25, 26, 132
kernel implementation and, 141–48
layering, 151–53
security mechanisms, 39
trap doors in, 71–72
trustworthiness of, 20

Orange Book. See Trusted Computer System
Evaluation Criteria

Organick, E. I., 9, 28, 76
Owner/group/other controls, 48–49
Owner of system objects, 21–22

 234

Packet-switched network, 199, 200
Padlipsky, M. A., 207
Page

demand paging, 79–80
mapping in virtual memory, 78–79

Page descriptor, 79
Parker, T., 87
Partial ordering, of access classes, 53, 122
Password(s)

as authentication, 19
for file access, 47–48
management principles, 45–46
use with call-back modems, 10–11

Path name, 158
PDP-11, 28, 131
Personnel security, 15
Physical security, 15
Pointers, 78, 153

validation, 92–94
Policies for computer security, xi-xii, 23

information flow, 182–84
network, 213–15
planning, 37–38
security kernel, 140–41

Popek, G. J., 131
Premapped input/output, 99, 101
Private key, 201
Privileged mode, 27
Procedural abstraction, 181–82
Procedural security, 11–12, 16

limiting Trojan horses with, 64–65, 141
Programmed input/output, 99–100
Programming, controls on, 64, 65–66
Protected subsystems, 154–57

in an active process, 154
Protection rings, 86–87
Protocol(s)

characteristics of, 198–99
hierarchies/ models, 195–98
integrating packet encryption into

architecture of, 209–10
kernel, 222–23
nested headers on messages, 198
subjects/objects in protocol layers, 214

Public key (asymmetric) cipher, 201–2

distribution, 211–12

RACF (software), 9
Rajunas, S. A., 162
Reference monitor, 28–29, 132–33
Replay security threat, 206–7
Rewind tape operation, 97, 98
Rings and ring brackets, 28, 88–89
Rivest, R. L., 202
Ruzzo, W. L., 109

Saltzer, J. H., 38, 76
Scheid, J., 167
Schell, R. R., 9, 28, 62, 71, 131, 134

on computer security, xi-xii
Schiller, W. L., 132
Schroeder, M. D., 38, 76, 95, 156
SCOMP, 9, 76, 85, 101, 131, 148
Secrecy, 3–4

avoiding dependence on, 43
Secret key (symmetric) cipher, 201

management/distribution center, 210–11
Secure Ada Target project, 110
Secure attention, 138
Secure file systems, 157–60

naming structures, 157–59
unique identifiers, 159–60

Secure state, 111
defined, 114, 117–18
mapping of, in formal specifications, 176
networks and distributed systems, 213–

18
Security administrator, 45

least privilege and, 40
Security architecture, 31, 35–44, 151–64.

See also Hardware
anticipating future needs, 36–38
asynchronous attacks and argument

validation, 153–54
capability-based, 162
least privilege concept, 39–41
minimizing/isolating controls, 38–39
network, 212–20
operating system layering, 151–53
protected subsystems, 154–57
secrecy and, 43

 235

secure file systems, 157–60
security guards, 160–62
structuring security-relevant functions, 41
user-friendliness, 41–43

Security domains, 210, 219
Security guard, 160–62
Security kernel, 131–50

completeness, isolation, and verifiability
principles, 133–36

in computer systems, 28–29
implementation strategies, 141–48
network, 222–23
reference monitor, 132–33
security policies, 140–41
trusted functions, 139–40
trusted path, 137–39
virtualization/sharing, 136–37

Security labels, 198
Security level, 51, 52

mathematical relationships, 53
Security models, 105–30

Bell and La Padula, 53–54, 118 n.2, 125
Biba integrity, 56, 57 n. 3
characteristics of, 110–11
formal specification of, 169, 170
informal model-to-system

correspondence, 127–28
information-flow, 125–26
practical applications of, 108–9
role of, 105–8
state machine, 110–25
types of, 109–10
verifiability of, 134–36

Security perimeter, 16, 17, 18
network, 215–16
and system structure, 24–25

Segmentation of virtual memory, 80–81, 82,
83

Server systems, 220–22
SES/VMS (software), 9, 51
Shamir, A., 202
Shared Resource Matrix (SRM), 189
Shared resources, and covert storage

channels, 69–70
Simple security, 54, 55, 123
Smith, L. M., 167

Snow, D. W., 207
Software

vs. hardware, for security features, 75–77
scrutinizing vendor, for Trojan horses, 66

Specification and verification, formal, 30,
31–32, 134–36, 165–94

code correspondence proofs, 189–92
decomposition methods, 177–82
information-flow analysis, 182–89
proving specifications, 175–76
security model as specification, 108
specification example, 172–74
specification layers, 167
specification properties, 168–71
specification techniques, 168–72
specification-to-model correspondence,

174
State-machine security model, 109, 111–25

adding constraints to, 117–21
Bell and La Padula model (see Bell and

La Padula security model)
example, 112–17

State variables, 109, 111
defined, 113
mapping, 128
unmapped, 128

Storage channel, 68–70
Stream cipher, 202
Subjects in a system, 21–23, 112

controls on, 119
network, 213, 214, 214–15
trusted, 124, 139–40

Supervisor mode, 27
Symmetric key. See Secret key (symmetric)

cipher
System(s)

defined, 16
design (see Computer system design for

security; Security architecture)
security (see Computer security)
subjects and objects in, 21–23

System boundary, 16, 17, 18
and system structure, 24–25

System calls, 26
SYSTEM HIGH/SYSTEM LOW access class, 123,

148

 236

System memory space, 80
System mode, 27

Tagged memory, 96
Tao, T. F., 9, 131
Termination of segments, 85
Testing, 134–35
Theorem provers, 175
Thompson, D. H., 167

“Tiger teams,” xi, 10, 60

Timing channel, 68, 70–71
TOP SECRET (software), 9
Traffic analysis, 205
Tranquility constraint, 118 n.2, 124
Transaction processing system, 46
Transfer instructions, 89
Transition functions, 109, 111

defined, 114–16
examples, 114
mapping, 127–28
nonsecure, 118
proof, 116
unmapped, 128

Transitive closure, 189
Transport layer, 199
Trap doors, 71–72
Trojan horses, 21, 60–72, 207

covert channels and, 67–71
discretionary access controls, 50
examples, 61–63
limiting/preventing, 63–67, 141
trap doors, 71–72
viruses and, 61

Trusted Computer System Evaluation
Criteria, xii, 4–6

Trusted function, 132, 139–40
Trusted Network Interpretation, 5
Trusted path, to security kernels, 137–39
Trusted subjects, 124, 139
Trusted systems, 19–20
Tsai, C. R., 125, 189

Uccel Corporation, 8
Ullman, J. D., 109

Unique identifier (UID), 18–19, 159–60
Unisys 1100 operating system, 9, 51
Unix system, 37, 40, 42, 131, 155
Unmapped input/output, 99, 100
Unprivileged mode, 27
Untrusted systems, 20
User memory space, 80
User mode, 27
Users of computer systems

classes of, 48–49
identification and authentication, 18–19
least privilege, 39–40
programming by (see Programming,

controls on)
protecting from self-betrayal, 18
security friendliness to, 41–43
trusting, 18

Verifiability principle, 133, 134–36
Verification, See Specification and

verification, formal
Virtual address space, 78

segmentation of, 80–86
Virtual circuit, 199
Virtual I/O. See Premapped input/output
Virtualization of resources, 136–37
Virtual machine monitor, 143–45
Virtual memory, 78–80
Viruses, and Trojan horses, 61–67
VME/B operating system, 87
VMS operating system, 9, 43, 85

access control list, 50
Voydock, V. L., 201

Walter, K. G., 59, 121
Ware, W., xi, 59
Whitmore, J., 9, 39, 51
Wide-area networks, 199
Wilson, D. R., 52
Wiretapping, 205
Woodward, J. P. L., 162
Write-down, 54

Young, W. D., 110

 GLOSS

Permission to reproduce this text for the use of classes at the University of Nebraska at Omaha
has been obtained from Morrie Gasser, who holds the copyright now that the book is out of print.
The copyright information on page ii is reproduced from the original version, and is no longer
correct.

Each of the figures in the text has been redrawn using a modification of pic (a troff preprocessor;
see www.troff.org) that produces rich text format drawings.

Page numbers in this reproduction differ from those in the original text, but the table of contents
and index have each been carefully reconstructed so this should not present any difficulties to
readers.

A few very minor errors in the original text have been corrected in this reproduction. It will be
appreciated if readers would report any remaining errors to stanw@unomaha.edu.

