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Abstract. Two classical problems in economics, the existence of a market

equilibrium and the existence of social choice functions, are formalized here by

the properties of a family of cones associated with the economy. It was recently

established that a necessary and sufficient condition for solving the former is

the nonempty intersection of the family of cones, and one such condition for

solving the latter is the acyclicity of the unions of its subfamilies. We show

an unexpected but clear connection between the two problems by establishing

a duality property of the homology groups of the nerve defined by the family

of cones. In particular, we prove that the intersection of the family of cones

is nonempty if and only if every subfamily has acyclic unions, thus identifying

the two conditions that solve the two economic problems. In addition to their

applications to economics, the results are shown to extend significantly sev-

eral classical theorems, providing unified and simple proofs: Helly's theorem,

Caratheodory's representation theorem, the Knaster-Kuratowski-Marzukiewicz

theorem, Brouwer's fixed point theorem, and Leray's theorem on acyclic covers.
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1. Introduction

A classic problem in economics is the existence of a market equilibrium (Von

Neumann [37], Nash [32]). This can be viewed as a zero of a nonlinear map

¥ : RN —> RN representing market excess demand and embodying optimal

behavior of the traders (Arrow and Debreu [3]). The zero can be located by

homotopy methods (Eaves [23], Hirsch and Smale [30]).  Smale [34, 35] has
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reexamined an intuitively appealing dynamical system which is compatible with

a field of cones of directions of improvement for the economy. Along its solution

paths all traders gain and proceed until no more gains can be attained and an

equilibrium is reached. However, unless the economy satisfies strong boundary

conditions, this process may not converge and the market equilibrium may fail

to exist.

Another classic problem in economics is the existence of social choice func-

tions, (Arrow [5]). These can be viewed (Chichilnisky [8]) as maps which assign

to each vector of individual preferences a social preference, O : Pk —> P,

where P is the space of preferences and k is the number of individuals. <I>

must satisfy certain properties which derive from ethical considerations such

as symmetry, an equal treatment condition. The problem has a clear topolog-

ical structure. A map í> exists for a given k only when a certain topological

obstruction disappears. It exists for all k if and only if the space P is topo-

logically trivial (Chichilnisky and Heal [15]). In general, the space P is infinite

dimensional and has nontrivial homology, so a social choice rule may fail to
exist [8, 14].

Both problems are fundamental to the organization of society. Their solu-

tions model social agreements about how to allocate the resources of the econ-

omy among competing individuals, the market solution providing an allocation

which is efficient (Arrow [2]) and the social choice solution one which satis-

fies certain ethical properties. The solutions represent different types of "social

contracts".

While these two problems appear to be quite different and have been consid-

ered separately until now, we show that, in a well-defined sense, they are the

same. We provide here a topological formulation of these problems which al-

lows us to identify each with apparently different properties of a family of cones

which is naturally associated with the economy. It was recently shown that the

existence of a competitive equilibrium requires the family of cones to intersect;

the existence of social choice functions requires that all subfamilies have acyclic

unions (Chichilnisky [12, 13]). Looking at the problem in its simplest and most

general form, we obtain a topological characterization of a family of finitely
many sets in a general topological space that is necessary and sufficient for the

family to have a nonempty intersection '. One main result is that an acyclic

or convex family has nonempty intersection if and only if every subfamily has

acyclic union (Theorem 6 and Corollary 2), but the results extend to nonacyclic,

nonconvex families as well (Theorems 9 and 10). As a by-product, we establish

the identity between the two classical problems in economics, namely, the ex-

istence of a social choice function and of a competitive equilibrium (Theorem
11).

The topology of our family of cones contains crucial information about the

economy. The homology of its nerve defines a topological invariant for the econ-

omy which provides answers to global problems such as, for example, whether

a market equilibrium exists (Theorems 1, Corollary 2, and Theorem 11). Fur-

thermore, this invariant allows us to decide whether every subeconomy has a

'This result was first established in Chichilnisky [9].
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competitive equilibrium (Theorem 11(b)). The homology of this nerve also con-

tains information about the global convergence of the classic price adjustment
process in Smale [34, 35] (see Chichilnisky [18])—it determines whether this

process converges.

The homology of the nerve of a family of sets also provides valuable in-

formation in a number of other applications in fields other than economics,

which appear as additional by-products of the results in this paper. These in-

clude substantial extensions and unified proofs for classical theorems which

have until now been considered disparate: Helly's theorem on n + k convex

sets in R", k > 1 ([27, 28, 1]), which is used extensively in game theory,

for example, Guesnerie and Oudu [25]; Caratheodory's theorem and its relative

the Krein-Milman theorem, both of which are used in representation theory to

characterize the extreme elements of the cone of positive harmonic functions on

the interior of the disk (Choquet [20]); the Knaster-Kuratowski-Marzukiewicz

(KKM) theorem (Berge [6]), which is frequently used to prove the existence of

the core of a game (Scarf [33]); the Brouwer fixed point theorem, which is the

nonretractability of a cell onto its boundary and is used to prove existence of

solutions of simultaneous equations (Hirsch [29], Arrow and Hahn [4]); and

Leray's theorem on the isomorphism between the homology groups of a space

and those of the nerves of an acyclic cover (Leray [31], Dowker [22], Cartan [7]).

These classical theorems of Helly, Caratheodory, Leray, and KKM are extended

here to simple and regular families of arbitrary finite cardinality, consisting of

sets which need not be open nor acyclic or even connected and which are con-

tained in general topological spaces, including infinite-dimensional spaces; our
results generalize also the Brouwer's fixed point theorem which appears as an

immediate corollary. In addition, our topological approach allows us to obtain

conditions which are simultaneously necessary and sufficient for nonempty in-

tersection of a general family of sets (Chichilnisky [9]), a result which we find

here very useful and which was not available before.

Here is a summary of the paper. In §§2-4 we set out the context and de-

scribe the problems of existence of a market equilibrium and of a social choice

function. A necessary and sufficient condition for the existence of a market

equilibrium—called limited arbitrage—is defined as the nonempty intersection

of a family of cones. A necessary and sufficient condition for the existence of so-

cial choice functions—called limited social diversity—is defined as the acyclicity

of the unions of subfamilies of the same family of cones. Our task is to prove

that the two conditions are in fact identical. This identity (Theorem 11 ) is a
corollary of the results in §5.

Section 5 studies the problem in a general form. First we prove a duality

result which relates the reduced singular homology groups of the union and

the intersection of a subfamily in dimensions which are complementary with

respect to its cardinality [9]. This analysis is used to prove that all subfamilies

up to a certain cardinality have acyclic unions if and only if they have acyclic

intersections. Then we establish that the whole family has a nonempty acyclic

intersection if and only if all the reduced homology groups of the union of its

subfamilies up to a certain cardinality vanish.

We further extend the results to families of sets which need not be open,
acyclic, or even connected in order to obtain a condition for the nonempty
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intersection of the family, whether or not this intersection is acyclic. The re-

sults thus provide a topological characterization of families of sets which have
a nonempty intersection. In particular, this characterization shows that a con-

vex family has a nonempty intersection if and only if all its subfamilies have

acyclic unions. Therefore, limited arbitrage is identical to limited diversity, and

the problems of existence of a competitive equilibrium and of social choice

functions are the same.

Sections 6 and 7 apply the results in §5 to extend a number of classical the-

orems and to provide simple, unified proofs to such disparate results as Helly's

theorem, Caratheodory's representation theorem, the Knaster-Kuratowski-

Marzukiewicz theorem, Brouwer's fixed point theorem, and Leray's theorem

on acyclic covers. Our extensions of these classical results include families of

sets in arbitrary topological spaces to which the earlier results do not apply, sets

which need not be open, convex, acyclic, or even connected. The families may,

in addition, be of arbitrary finite cardinality. Section 7 establishes the identity

between the problem of existence of a competitive equilibrium and the problem

of existence of social choice functions.

2. Definitions

We consider collections of finitely many sets in a topological space X, de-

noted {Ua}a€s, with set of indices S. Such a collection is called a cover of

X when X — \Ja€S Ua ; it is an open cover when each set is open in X. The

term family will be used to describe a collection of finitely many sets {Ua}aes

in X whose union \Ja€S Ua may or may not cover X. An open family in X

is a family consisting of sets which are open in X, A subset of indices in S

will be indicated by 6 c S ; each subset 0 c S defines a subfamily {Ua}a€e of

the family {Ua}aes • We shall use the notation Ue for the intersection of the

subfamily indexed by 6 , Ue = f\aee Ua , and Ue for its union IIe = \Jaee Ua .

H* will be used to denote reduced singular homology, and Hq(Y) to de-

note the ^-singular reduced homology group of the space Y ; reduced singular

homology is defined by replacing the usual chain complex

• • • C2 -> C, - C0 - 0

by

• • • Cj —* C\ —► Co —► Z —> 0,

where Z are the integers and Co —> Z takes each 0-simplex to 1. The corre-

sponding reduced singular homology groups denoted Hq{Y) are defined for all

q > -1. The standard O-singular homology of Y is the direct sum H0(Y) e Z .

Note that with this notation if Y is a nonempty connected space, then H0(Y) =

0 and i/_i ( y) = 0 ; and if Y has two connected components, then H0(Y) — Z .

If Y is empty, H0(Y) = 0 and H-\{Y) = Z . It is immediate that with this
definition the Mayer-Vietoris sequence (Spanier [36, §6, Chapter 4]) extended

to reduced singular homology

■■■Hq+MnB)^Hq+i(A)@Hq+x{B)^Hq+x{AUB)^Hq{AnB)-+...

is exact.

We say that a space Y is acyclic if and only if H*(Y) — 0. Since by definition

the space Y is nonempty if and only if //_i (Y) = 0, in our notation Y is called
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acyclic when Y is not empty and is acyclic in the standard singular homology.

When the space X is contained in a linear space, a family is called convex if

it consists of convex sets. A family {Ua}aes is called acyclic if, for all 6 c S,

the set Ue is either empty or acyclic.

For any k > 0 we say that the family {Ua}aes satisfies condition A^ if the

intersection Ue is acyclic for every 6 c S having at most k + 1 elements.

For any k > 0 we say that the family {Ua}a€s satisfies condition B^ if the

union U6 is acyclic for every 6 having at most k + 1 elements.

If X c R" , then the family {Ua}aes is called a family in R" and is called
a family of k sets if S has cardinality k .

If X is a simplicial complex with set of vertices S, then a simple cover of X is

an open cover {Ua}a€s of X satisfying cl(c7a) c star(a) for all a £ S , where

cl(T) is the closure of Y and star(a) is the interior in X of the union of all

closed simplices in X having a as a vertex.

The sets in a simple family need not be convex nor acyclic or even connected.

A subcomplex L of a simplicial complex A" is a subset of K (that is, if s e

L => s e K) ; a subcomplex L is called full if each simplex of K having all its

vertices in L belongs to L (Spanier [36]). The symbol [a]a€6 denotes the full

subcomplex of X with set of vertices {a}aea.

A cover of the simplicial complex X by finitely many closed sets {Ca}a€s is

called regular if V0 c S, [a]a€e c \Ja€d Ca .

A regular cover {Ca}aes of a simplicial complex X therefore satisfies: for

every subset 6 c S and every simplex A of X whose vertices lie in IJaee Ca,

we have A c \Jaee Ca. The sets in a regular cover need not be convex, acyclic,
or even connected.

Given a set X and a collection {Ua}a<ES of subsets of X, the nerve of

{Ua}a€S is the simplicial complex having as vertices the nonempty elements

of {Ua}a€s and whose Simplexes are finite nonempty subsets of {Ua}aes with

nonempty intersection (Spanier [36]).

3. Market equilibrium

3.1. A market economy. A market economy is described by its goods and its

traders. There are « > 1 goods and H > 1 traders. Traders derive utility

from vectors (called trades or bundles of goods) in Rn , which is called the con-

sumption or trade space. Each trader is identified by a vector describing his/her

initial endowments of goods £lh € R" - {0} and by a real-valued smooth (C2)

function Uj : R" —> R which describes the utility derived from the different
consumption vectors. The space of allocations is RnH ; its elements describe

the assignment of one consumption vector in R" for each trader. The util-
ities u¡ are increasing: Vx,y e Rn, if x > y, then w,(jc) > u¡(y), and

3 6> 0 : Duj(x) >G, where Du¡{x) is the gradient vector of «, at x. If for

some r e R the set u~l(r, oo) is not bounded below in R", then we as-

sume that the set of directions of gradients of the corresponding hypersurface,

{v = Dui{x)l\\Dui(x)\\ :   u¡(x) = r}, is closed in R". This assumption is to
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control the behavior at infinity of the leaves of the foliation of R" induced by

the hypersurfaces of the function «, ; geometrically, one rules out "asymptotic

directions" for the gradients on those hypersurfaces which are not bounded be-

low. A market economy E is therefore defined by its trade space and its traders:

E = {R",Çli,ui,i=\,... ,H}.

3.2. Market equilibrium. Our next tasks are to motivate and then to define the

notion of a competitive equilibrium for the market E. A competitive equilib-

rium represents a rest point of the trading activity of the economy E. Trading
requires prices. A price is a rule which assigns a real number called value to
each bundle of goods in a way that depends linearly on the bundles. There-

fore, prices are vectors in the dual space of the space of trades, Rn. Each price

p e R" determines the budget set of a trader B(p, £2,) consisting of those

trades which are affordable at the traders' initial endowment ß,-. Therefore,

B(p, Q,) = {x G Rn : (p, x) — {p, Í2,-)}, where (., .) is the inner product in

Rn. Traders trade within their budgets in order to increase, ideally to optimize,

their utility.
Trading comes to a rest when a price p* G R" is found at which the corre-

sponding set of all optimal trades {.x*}¡=i,... ,# is compatible with the resources

of the economy, i.e., the supply of each of the n goods equals the demand. A

competitive equilibrium of the market economy E is therefore defined as a vec-

tor of prices and of trades, (p* ,.*,*••• x„) G Rn x RnH, satisfying the following

conditions:

(1) «/(*;)=     Max     Uj(Xj)
x¡eB(p' ,n,)

for B(p*, Q,) = {xeR":(p*,x) = (p*, Q,)}

and

(2) £(*; - n,) = oer
i=i

The vector x*(p*) is the demand of trader / at prices p* ; a solution x¡(p)
to problem (1) for all p G R" is the demand function x¡(p) : R" —> Rn of

trader i. ED{p) = Y^=\(xí{p) ~ Q/) is the aggregate excess demand function1

of the economy E. Condition (2) means that at the equilibrium allocation all

markets clear, i.e., total demand for each good equals total supply, and therefore
ED{p*) = 0.

3.3. Market cones. Consider a market economy E = {Rn, Q,, u¡, i — 1,

... , H}. The asymptotic preferred cone A¡ is the cone of all directions which

intersect every hypersurface of w, of values exceeding u¡(Sl¡) :

(3) A¡ = {v g R" :   sup    w,-(fl; + kv) = sup Ui(x)}.
A6(0,oo) x€RN

The market cone D¡ is

(4) D, = {peRn:VveAit{p,v)>0}.

2The demand and the aggregate excess demand functions may not be well defined for some

prices which are not equilibrium prices.
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If the utility u¡ is a concave function, then both cones A¡ and £>,- are open

convex sets, which we now assume. The condition of limited arbitrage (LA) is

that all market cones in (4) intersect:

H

(5) (LA)    f)Di¿t
1=1

This means that there exists a price p G R" at which only limited increases

in utility can be achieved by all traders from trades which are affordable from

their initial endowments.

The following has been established:

Theorem 1. Limited arbitrage (5) is necessary and sufficient for the existence of
a competitive equilibrium in the market E.

For a proof see Chichilnisky [12].
The condition for existence of a competitive equilibrium is therefore the

nonempty intersection (5) of a family of cones in R" which are naturally associ-

ated with the economy E, namely, of the family of market cones {£>, }¡=i,...,//

defined in (4). The market cones {X>/}/=i,... ,H contain global information about

the economy, since they establish directions of utility increases along which all

utility levels are eventually reached. As established in Theorem 1, the mar-

ket cones {A}í=i ,... ,h determine whether or not the market has a competitive

equilibrium. They also determine whether or not the dynamical process revis-

ited in [34, 35] converges globally; it converges if and only if limited arbitrage

holds, i.e., if and only if the family of cones has nonempty intersection (see
Chichilnisky [18]).

The family of market cones {A'}/=i,... ,h also contains information about

the existence of social choice functions. In the next section we shall see that

a condition for existence of a social choice function is that every subfamily of

the family of market cones, {A}/=i.h, has an acyclic union.

4. Social choice functions

4.1. Individual and social preferences. In this section we consider a connected

and simply connected CW complex P (Spanier [36]) representing a space of

preferences on R". The explicit cell structure on P is not needed, only the

general topological properties of CW complexes. For example, P could be a

polyhedron or a smooth manifold.   Pk denotes the product of P with itself
k times

k times, Pk =P x • • • x P, and AP is the "diagonal" of Pk = {{pi ■ ■ -pk) g

Pk : Vi, j = 1, ... , k, Pi - pj}. Examples of spaces of preferences P are
provided in §7.

4.2. Social choice functions. A social choice function for the space of prefer-
ences P and for k individuals, is a continuous map <S> : Pk —> P assigning to

each vector of k individual preferences in Pk a social preference in P satisfy-
ing:

1. O is symmetric; i.e., 3> is invariant under the action of the group of
permutations of k letters acting naturally on Pk.
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This condition means that all k individuals are treated equally and is called

anonymity.

2. The map induced by the restriction of O on A(Pk) at the homotopy level,
(O | A(Pk))* : 7Cj(A(Pk)) - 7tj(P), is onto V; .

This condition arises from several applications [14, 16]. For example, it is

implied by the Pareto condition [10], which requires that when all individuals

prefer one choice x to another y, so does society. It is also implied by the
assumption that <ï> | A(Pk) = id(A(Pk)) ; i.e., when O is restricted to the

"diagonal" of Pk , APk = {(pi ■ ■ ■ pk) G Pk s.t. V/', ; , p, = pj}, it is the

identity map. This latter condition means that when all individuals have the

same preference, society adopts that common preference, and it is called respect

of unanimity [8].
An allocation is an assignment of a bundle of goods in R" to each trader, and

the space of allocations is RnH . Each trader has a preference over allocations.

A smooth preference over the space of allocations RnH is a smooth ( C2) unit

vector field p : RnH -* SnH~x satisfying: 3u : RnH -» R with Vx G RnH,

p(x) = X(x)Du(x) for some A(x) > 0 (Debreu [21]). The space of all smooth

preferences on allocations in RnH is denoted T(RnH). The space of preferences

P{Ee) similar to those of a subset 6 c {I, ... , H} of traders in E is

(6) P(Ee) = \pe T(R"H) : Vx G RnH and V; ,  ¿(x) G |J D.1 ,

where p-*(x) is the projection of p(x) on the jth copy of R" in the product

space RnH. The interpretation is that P(Ee) consists of all preferences which

are similar to those of some trader i G 6 in some position j in the sense

that they increase in the directions of large utility increases for i in position

j and only in those directions. This is discussed further in §7. Note that the

notion of similarity of preferences depends on the same family of market cones

{A}(=i,... ,h defined in equation (4) in §3.

4.3. Social choice and the topology of preferences. In its most general form the

problem of existence of social choice functions has no solution; for the space
r = Y(Rm) of all smooth preferences on Rm,   m > 2 :

Theorem 2. There exists no map <I> : Tk —> Y satisfying 4.2.1 and 4.2.2 Vfc > 1.

A proof is in Chichilnisky [8, 10].
A natural question is what spaces of preferences P admit a social choice

function. The following is known:

Theorem 3. There exists a social choice map G> : Pk —* P satisfying 4.2.1 and

4.2.2 VA: > 1,  if and only if P is acyclic.

This was proved in Chichilnisky [8] and Chichilnisky and Heal [15].
When a social choice function $ : Pk —* P exists, then by Whitehead's

theorem (Spanier [36]) P is contractible, since the space P is acyclic and by

assumption tc\(P) = 0. Therefore, there exists a continuous deformation of

the space of preferences P into one preference. For this reason, in this context

the acyclicity of a space of preferences establishes a limit on social diversity

(Heal [26]).   For any given subset 6 of traders in E,   8 c {1, ... , H},   a
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social choice function O : (P{Ee))k -> P{Ee) exists satisfying the required

conditions VA: > 1 if and only if P{Ee) is acyclic. This in turn means that

the space of gradients of the preferences in P(Ee), namely, U¿€eA, must

be acyclic. We say the market E has limited social diversity or simply limited

diversity   (LS), when:

(7) (LS)   V 6 c {1, ... , H},     6 ¿ 0=>   IJ A is acyclic.
tee

A consequence of Theorem 3 is:

Theorem 4. There exists a social choice function <I> : P(Eg)k -+ P(Ee) satisfying

4.2.1 and 4.2.2, V0 c {1, ... , H) and VA > 1, if and only if the market E
has limited social diversity (LS).

This follows from Chichilnisky [8] and Chichilnisky and Heal [15].

4.4.    Social choice and the nerve of market cones. For a social choice function <I>

to exist, the union of every nonempty subfamily of market cones {£/,},=].h

must be acyclic. We saw in §3 that the existence of a competitive equilib-

rium requires the nonempty intersection of the same family of market cones,

D^iiA'} # 0- To identify the two economic problems, we must exhibit the

connection between two properties of the family of cones. One is that the fam-

ily has nonempty intersection—i.e., limited arbitrage (5). The second is that the
union of every subfamily is acyclic—i.e., limited diversity (7). This is achieved

in Theorem 11 in §7 and motivates the results in the following section.

5. Duality and intersecting families

Having established the importance in economics of the topology of the nerve

of the market cones {A}/=i,... ,h > we turn now to the mathematical problem.

In their simplest and most general form the questions are: when does the family

of market cones {A'}/=i,...,// have a nonempty intersection, and how does
this relate to the acyclicity of the unions of its subfamilies? The nonempty

intersection of this family of cones is the condition of limited arbitrage (5),

and the acyclicity of the unions of its (nonempty) subfamilies is the condition

of limited diversity (7). We saw in §3 that the former (5) is necessary and

sufficient for the existence of a market equilibrium and in §4 that the latter

(7) is necessary and sufficient for the existence of social choice functions. This

section will establish inter alia that the two mathematical conditions (5) and (7)
are identical.

Here is a summary of the section.3 Theorem 5 proves the equivalence be-

tween two topological conditions of the nerve of a family of sets of a general

topological space X—these are conditions Ak and Bk defined in §2, the former

requiring that all subfamilies with at most k + 1 elements have acyclic intersec-

tion and the latter requiring that all such subfamilies have acyclic unions. This

identity is simple and geometrically appealing. It has many implications, as we

show below. Because it is close to the foundations of homology theory, there

is a subtle point in its proof, which ensures an excision property for singular

The results in this section were first established in Chichilnisky (1981).
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reduced homology (see, e.g., Spanier [36, p. 189]) so that the Mayer-Vietoris
sequence for reduced singular homology—a sequence which is rarely used for

families where the sets may have empty intersection—is exact. A discussion of

this exactness for reduced homology for families which includes empty sets is
in §2, and the excision property is discussed in this section after condition (6).

The exactness of the Mayer-Vietoris sequence is used in our proof of a duality
property of the singular reduced homology of a family of sets in Proposition 1.

This proposition establishes a simple isomorphism between the singular reduced
homology groups of the union and those of the intersection of a subfamily in

dimensions complementary with its cardinality. This duality property allows us

to prove the following somewhat surprising result in Proposition 2: For families

in RN the conditions Ak and Bk need only be required for subfamilies with

at most N + 1 sets; they are automatically satisfied otherwise. The geometric
implications of these results are shown in Corollary 1, which shows that, if the

family is acyclic and every subfamily with at most N + 1 sets has a nonempty

intersection, then the whole family has a nonempty intersection.

Building on this, Theorem 6 gives a necessary and sufficient condition for

the acyclic (and therefore nonempty) intersection of every subfamily of a fam-

ily of finitely many sets in a general topological space X ; the union of every

subfamily must be acyclic. Furthermore, if the family of sets is in RN, the

acyclicity is required only for subfamilies with no more than N + 1 sets. For

acyclic families, Corollary 2 gives a simple, necessary, and sufficient condition

for the nonempty intersection of the whole family; particularly, the family has

nonempty intersection if and only if every subfamily has an acyclic union. This

result is just what is needed for the economic applications presented in §§3 and
4, as seen in Theorem 11 in §7.

So far we have considered families which have either empty or acyclic inter-

section and have excluded those where the sets have nonempty intersection, but

this intersection is not acyclic. In several applications, for example, for non-

convex economies it is necessary to consider the condition of limited arbitrage

(5) which requires nonempty intersection, even when this intersection fails to

be acyclic. Here Mayer-Vietoris is no longer useful, and other arguments are

needed. The rest of this section extends the results to families which may have

nonacyclic as well as nonempty intersection. This is achieved as follows: The-

orems 7 and 8 establish an isomorphism between the homology of a space X

and that of the nerve of a simple and of a regular cover respectively, as defined

in §2. These include covers by sets which may be neither open, convex, acyclic,

or even connected. Using this isomorphism, Theorems 9 and 10 prove neces-

sary and sufficient conditions for nonempty intersection; these are similar to

Theorem 6, but they are valid for simple and for regular families respectively.

Unless otherwise stated, the following results apply to a general topological

space X,  and the family {Ua}aes satisfies

(8) \JU°=U (int^ (f/«)) •
a€S a€S

where mtys(Ua) denotes the interior of the set Ua relative to the set Us =

Ußes(Uß) ■ A- íanúly satisfying this property (8) is called an excisive family.

Since we can take X = \Ja€S Ua,   (8) is a rather general specification.   For
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example, (8) is satisfied when the family consists of sets U, c X, each of which

is open in X. Note, however, that condition (8) does not require that the sets

U¡ be open in \Ja€S{Ua). ^n ^act' W is strictly weaker than the requirement

that the sets U¡ be open in X ; it includes, for example, families consisting of

two closed sets C, and C2 in R" with C\ c C2. The role of (8) is to ensure

the union and the intersection of any subfamily of {Ua}a€s define an excisive

couple so that the Mayer-Vietoris sequence of reduced singular theory is exact

(see Spanier [36, Theorems 3, 4 and Corollary 5, pp. 188-189]). An example in

[36, p. 188] exhibits two closed path-connected sets Y\ and Y2 in R2 suchthat

Y\ U Y2 = R2 which do not satisfy (8) and for which the corresponding singular

Mayer-Vietoris sequence is not exact. Condition (8) prevents such pathologies.

Theorem 5. An excisive family {Ua}alEs in X satisfies Ak if and only if it

satisfies Bk.

Proof. The first step in the proof is to establish the following duality result:

Proposition 1. Consider an excisive family of sets in X, {Ua}aes, satisfying

Ak_ 1, for k > 1. Then if 8 c S has k + 1 elements, for all q

(9) Hq{Ue) ~ Hq_k(Ue).

Proof. We proceed by induction. When k — 1, the family has two sets, and this

is the Mayer-Vietoris sequence for reduced singular homology as defined in §2.

Assume the result is true for every family {i/a}Q€e where 8 has k elements.

Consider now a family {Ua}a€r of k + 1 elements satisfying Ak_\ . Define 8

so that T = {0} U 8, and Va - U0 U Ua , a£ 8 . The new family {Va}aeg has

k elements, and it satisfies Ak_2 because the family {Ua}a€T satisfies Ak^\
and by Mayer-Vietoris. Then

Hq(Ur) = Hq(Vd) = .//„_(*-i)(Ffl)   by the induction hypothesis

= Hq_k+l(U0u[Uln---nuk])

= Hq_k(U0 n [Ui n • • • n Uk])   by Mayer-Vietoris

= Hq_k(Ut),

completing the proof of the proposition. The rest of the proof of Theorem 5
follows from Proposition 1 by induction on k .   n

Proposition 2. Let {Ua}aes be an excisive family in Rn satisfying A„ . Then

{Ua} also satisfies Ak and Bk for all k > n . In particular, the intersection of
this family is always nonempty.

Proof. This follows from Theorem 5 and Mayer-Vietoris, because H¡(U) = 0
for i > n for an open set U c R" .   n

Corollary 1. Let {Ua}aes be an acyclic excisive family in R" with at least n+ 1

elements. If every subfamily with n + 1 elements has nonempty intersection, then
the whole family has a nonempty intersection.

Proof. This follows from Proposition 2 because An is satisfied by acyclicity.   D

Example 1. The conditions of Proposition 2 and Corollary 1 cannot be relaxed.

In general, the family must have finite cardinality. Consider, for example, the
infinite family in Rl{Ut}i=i,2,..., Ü¡ = (i, 00). Every subfamily of {£/,},=!>2>...
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Figure 1 Figure 2

has acyclic union, but the whole family has empty intersection. Figure 1 shows

that Corollary 1 does not hold for nonacyclic families; each three of these four
sets in Figure 1 intersect, but the whole family has an empty intersection. Figure

2 also shows that Proposition 2 is not true when A„ is not satisfied. Here n = 2,

and A2 is not satisfied because the union of two of the sets is not acyclic.

Theorem 6. Let {Ua}a€s be an excisive family of k > 2 sets. Then the inter-

section of every subfamily f]aee Ug ,V8 c S, is acyclic (and hence nonempty)

if and only if the union of every subfamily \JeUa , V9 c S, is acyclic; i.e.,

the family satisfies Bk_x. If the family {Ua}aes is in Rn , then its intersec-

tion is acyclic if and only if its union \JaeS ^a " acyclic and it satisfies B¡ for

j = min(«, k - 2).

Proof The first statement follows from Theorem 5. For the second statement,

first let j = k — 2. Assume that \Ja€S Ua is acyclic and {Ua}a£s satisfies Bk_2.

Then Bk_{ is satisfied. By Theorem 5 so is Ak_x so that the intersection of

the family is acyclic and thus nonempty. Reciprocally, if the intersection of the

whole family is not empty, then Ak_l is satisfied and by Theorem 5 so is Bk_x

so that the union of the family is acyclic. Now let j = n . By assumption and

Theorem 5, A„ is satisfied. By Proposition 2 this implies that the whole family

has nonempty intersection and that Am is satisfied for all m > 0. Therefore

by Theorem 5, Bm is satisfied for all m , and the family's union is acyclic.   D

Example 2. Figures 2 and 3 show that the conditions of Theorem 6 cannot

be relaxed. Figure 2 shows that "acyclic intersection" cannot be replaced by

"nonempty intersection"; it depicts two sets which do intersect but have a

nonacyclic union. Figure 3 shows that Theorem 6 is not true if we replace

"acyclic union" by "contractible union" in its statement; it depicts two "comb"

spaces having an acyclic (and hence nonempty) intersection, the point {x}.

The union of the two comb spaces is acyclic, confirming Theorem 6, but it is

not contractible.

Corollary 2. An acyclic excisive family {Ua}a€s has nonempty intersection if

and only if VÖ c S, the union of the subfamily {U¡}a€e , U«€5 ̂ » >  /5 acyclic.

Proof. This follows from Theorem 6 and the definition of acyclic families.   D
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Figure 3 Figure 4

Example 3. The conditions of Corollary 2 cannot be relaxed. Figure 4 depicts a

family of k = 4 sets in R2 which does not satisfy B2 (or A2) because three of

them do not intersect. The union of the family is acyclic, but the intersection

is empty.

Until now we considered families which had either empty or acyclic inter-

section. The following results apply to simple and regular families, as defined

in §2. These may consist, for example, of sets in R" which are neither open

nor acyclic or even connected. The families may have nonacyclic, nonempty

intersection. Mayer-Vietoris is not useful in this context, and we must adopt a

different approach.

If X is a simplicial complex, the expression X — nerve {Ua}a^s is used

to indicate that X and nerve {Ua}a€s have the same combinatorial structure.

Theorem 7. Let {Ua}a€s be a simple cover of a simplicial complex X with set

of vertices equal to S. Then X  =   {Ua}aes ■

' Proof. The proof follows by induction on the number of sets k. Let the set

of vertices S consist of k = 2 elements. Then X is either a segment or

a set of two points; assume X is a segment. Consider x G dU¡ . Since

x i U\ , x G U2. Therefore, 3y G Ux n U2 . Now let X = {xi} U {x2} .

Since Ua c star(a), U\ il U2 is empty. Consider now the following inductive

assumption for a set of vertices S of k + 1 elements: the nerve {Ua} = X,

and if the A sets {Ua}\<a<k intersect, then 3 a simple family {Wa}x<a<k+X

covering X with Wa c E/QVa and an x G dWx n • • -n dWk . Now" let S

have k + 2 sets. Assume X is a k + 1 simplex. By the inductive hypothesis

every subfamily of k + 1 sets in {Ua} intersects, and in particular, 3 a simple

family {Wa}x<a<k+X with x G Ç\x<a<kdWa . Let Zk+X = Wk+X - Ix, where

Ix is a closed segment in Wx n • • • n Wk , and x G dlx . Take Zk+X to be

an element of the simple family {Za}x<a<k+2 defined otherwise by Za = Wa

for a < k and Z^+2 = £4+2. Then Va, Za c Ua, {Za}x<a<k+2 covers X,

and x G dZx n ••• ndZk+x , so x G Z¿.+2. Therefore, x eni<aa+2Zac

fli<a<A:+2í7« ̂  0- Finally, if X is not a simplex, fli<Q<A:+2 u<*~= 0. since
£/a C star(a) for all a G S.   n

The following result uses the definition of regular covers given in §2.

Theorem 8. Let {Ca}aes be a regular cover of a simplicial complex X. Then

nerve {Ca}a€S = X .
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Proof First we prove that Theorem 7 implies that if {Ca}a6s is a regular cover

of X, then f]a€S Ca ¿ 0. Let Da = Ca n star(a) ; then \JaeS Da = X. Now by
Theorem 7

(10)
if {Ua}aes is a simple family covering X with Ua D Da for all a, f^| t/Q ̂  0.

aes

We now use (10) to prove f\aeSDa ^ 0 , by induction on k .

Case A: = 1. If f|a=i 2 A* = 0 »tnen =^1 > ̂ 2 defining a simple family with

f|Q=1 2 ̂ 4 = 0» contradicting (10). Now let S have k + 1 elements: by the

inductive assumption, f}x<a<kCk ¿ 0. If [Di<Q<fc CQ] n Q+1 = 0, then 3 a

simple family {£4} s.t. [fTi<Q<A: ^«l n £4+1 = î>, contradicting (10). Thus

na6iA,/0 so that na65Ca#0.
Having established the result for the case where X is a simplex, the rest of

the proof follows the proof of Theorem 7 by considering the family defined by

the complements of the sets {Ca}a€s in X.   0

The two following theorems extend the results of Theorem 6 to the cases of

simple and regular families as defined in §2; here we are concerned with the

nonempty intersection of the family, whether or not this intersection is acyclic.

Theorem 9. Let {£4}a€S be a simple family of k sets, such that every subfamily

with k - 1 elements has a nonempty intersection. Then the whole family has

a nonempty intersection if and only if its union \JaeS £4 is acyclic. If k >

n + 1, we need to require only that every family of n + 1 sets has a nonempty

intersection.

Proof. By assumption the (k - 2)-skeleton of nerve {£4}aes is tne boundary

of a k—\ simplex. Let X — {Ua}a€s ■ By Theorem 7 nerve {Ua}a€S = X.

Therefore, all sets in the family {£4} intersect if and only if its union X =

Ua€5 U<* is acyclic-   n

Theorem 10. Let {Ca}a€s be a family of k closed sets with [a]a€a c \Ja€a Ca,

and f]aea Ca £ 0 for every subset a of S with k - 1 elements. Then

C\a€o Ca ¿ ® if and only if (Ja€(J Ca is acyclic. If k > n + 1, we need to

require only that every family of n+ 1 sets has a nonempty intersection.

Proof. This follows from the proof of Theorem 9, replacing Theorem 7 in the
proof by Theorem 8.   0

6. Extensions of theorems of Helly, Caratheodory, KKM,
Brouwer, and Leray

The question of when sets intersect was studied in the classic theorems of

Helly [27, 28] and of Knaster-Kuratowski-Marzukiewicz in [6]. They provided

conditions which are sufficient for a family of sets in R" to have a nonempty

intersection, but their results are restricted to families with n + 1 or more sets

in the case of Helly's theorem and to families with exactly n + 1 sets in the

case of KKM's theorem, in both cases having either a convex structure or other

particular characteristics. These two results are quite specific to the problems
they study and appear to be different from each other. However, the problem

of nonempty intersection in its general form has a clear geometrical structure
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and can be dealt with by using topological tools. We showed in §5 that no

restrictions on the number of sets is required, nor is convexity, acyclicity, or

even connectedness of the sets. Furthermore, the families need not be in R" or

in any linear space. Once this is understood, the two classic results of Helly and

KKM appear as special cases of our results. Brouwer's theorem is also a special
case of our results, since it is known to be implied by the KKM theorem, as is

Caratheodoty's theorem, which follows from the Helly's theorem.

Helly's theorem is connected here to the Brouwer's fixed point theorem and to

an extension provided here of Leray's theorem on acyclic covers. Our extension

of Leray's theorem (Leray [31], Dowker [22], Cártan [7]) is in Theorems 7

and 8 of §5; while Leray's theorem applies to acyclic covers and proves the

isomorphism of the homology of the nerve of the cover and that of the union

of the family, our Theorems 7 and 8 significantly extend this result for covers

consisting of sets which may not be acyclic nor open or even connected.

This section therefore exhibits how the results in §5 extend and unify several

classical theorems. Proposition 2 in §5 extends Helly's striking theorem on the

nonempty intersection of families in R" having more than n + 1 sets (Helly

[27], Alexandroff and Hopf [1]) to possibly nonconvex and nonacyclic families

with any number of sets in a general topological space X. Corollary 3 below is

Helly's theorem. Since Helly's theorem implies Caratheodory's representation

theorem (Eggleston [24]), Proposition 2 in §5 extends also Caratheodory's theo-

rem to the same wide range of families. Corollary 4 is the Knaster-Kuratowski-

Marzukiewicz theorem (Berge [6, p. 173], which follows immediately as a very

special case of our Theorem 7 in §5. KKM's theorem is restricted to families
of sets in Rn which cover an «-simplex, while our Theorem 7 applies to fami-

lies in a general topological space of any cardinality, which cover any simplicial

complex. An additional extension of the KKM is Corollary 5, which applies

to simple families. Corollary 6 is the Brouwer fixed point theorem (Hirsch

[29]). These results exhibit a common topological root for these classical and
somewhat disparate results.

Corollary 3 (Helly's theorem). Let {Ua}aeS be a family of convex sets in Rn

with at least n + 1 elements. Then if every subfamily with n + 1 sets has a
nonempty intersection, the whole family has a nonempty intersection.

Proof. This follows directly from Proposition 2 in §5, which is valid in much

more generality for any number of sets in a general topological space, because
convex sets define an excisive family.   D

The following corollary requires no convexity:

Corollary 4 (KKM Theorem). Let {Ca}a€S be a regular cover of a k-simplex

X as defined in §2. Then f]a€S Ca £ 0.

Proof. This follows directly from Theorem 8, which is valid more generally for

any simplicial complex. Since nerve {Ca}a65 and X have the same combina-

torial structure, it follows, in particular, that f]a€S Ca^$.   □

In addition, the following result extends the KKM theorem to a different

class of covers, simple covers, as defined in §2, which need not satisfy any of the
conditions of KKM theorem:
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Corollary 5 (Extension of KKM to simple families). Let {£4}aes be a simple

cover of a k-dimensional simplex X. Then flags £4 is not empty.

Proof. This follows directly from Theorem 7, which is also valid for covers of

any complex X.   o

Since the KKM theorem follows directly from Theorem 8 as shown in Corol-

lary 4, by presenting for completeness a well-known argument, we show that

Brouwer's fixed point theorem also follows as an immediate corollary of our

Theorem 8.

Corollary 6 (Brouwer's fixed point theorem). Let X be a k-simplex, and f :

X —> X a continuous function. Then 3x G X : f(x) = x.

Proof. The proof follows by contradiction. If / : X —► X has no fixed point,

then it defines a retraction r : X -* dX. Let dX = \JtXi, where X¡ is the

z'th face of X, a k - 1 simplex. Now define the closed sets Q = {r~l(X¡)},

i = 1, ... , k + 1. Then {C,};=1 ... k+\ is a closed cover of X satisfying the
conditions of Corollary 4, so f|( C, p 0. But if p G fl, Q , then r(p) ef|^ =
0,  a contradiction.   D

7. Market equilibrium and social choice

Our final task is to establish the equivalence of the two economic problems,

namely, the existence of a competitive equilibrium and the existence of a so-

cial choice function. A good way to start is to provide examples of spaces

of preferences in order to illustrate the topological problem involved in social

choice. By Theorem 3 in §4, this problem can be solved only for acyclic spaces

of preferences.

A preference p is an ordering of the choice space Rn which is induced by

a utility function u : R" -> R, where we indicate x^)/» u(x) > u(y). A

smooth preference on Rn is defined by a smooth (C2) unit vector field p : R" —»

S71-1, with the property that 3 a function u : Rn -> R such that Vx G R",

3A(x) > 0 such that p(x) = X(x)Du(x) ; i.e., there exists a function u such

that Vx,   p(x) is collinear with the gradient of u (see Debreu [21]).

One example of a space of preferences P is the space of all smooth pref-

erences on Rn, denoted T(R"), endowed with the sup norm, \\p - k\\ =

suPxe«" \\p(x) - k(x)\\ . Another example of a space of preferences is the space

Pl of all linear preferences on R" , which are those preferences induced by
linear utility functions on R", n > 2. The space Pl is the sphere Sn~l. If

the zero preference is also included, we have the space Pln of all linear pref-
erences on Rn—this space is Sn~l UW- Different preference spaces arise in

different applications (for examples, see, e.g., Heal [26]). Typically, preference

spaces are not linear nor convex or acyclic; for example, the space of smooth
preferences T(Rn) is not acyclic [8].

Our last task is to establish the connection between the existence of a mar-

ket equilibrium and the existence of a social choice function. Both problems

depend on the characteristics of the traders' preferences, but they do so in two
different ways. The market E has a finite set of preferences, one for each

trader, {px, ... , ph}- The set of preferences in the economy is therefore a

discrete finite set of points in the space of smooth preferences T(Rn) defined

above. The social choice function, by contrast, is generally defined on large
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spaces describing a universe of all possible preferences, typically a connected

subset P of the space of all smooth preferences in T{R"), which is not a finite
set.

In order to exhibit the connection between the two problems—the existence

of market equilibrium and that of a social choice function—we define a space

consisting of preferences which are naturally "close" to those of the preferences

of the traders in the economy E. The space of preferences Pe consists of a

large number of preferences, assumed to be a connected subspace of T(R"), all

of which are, in a well-defined sense, similar to the preferences in the market

E. We therefore need to define what is meant by a smooth preference which is

similar to the preferences of the traders in the market E.

A smooth preference p e P defined over allocations in RnH is called similar

to the preference of trader / G E in position j when Vx G RnH, the projection

of p(x) on the jth copy of Rn is in the market cone of trader i ; i.e., Vx G

RnH, pi(x) G A. The interpretation of this condition is that the preference

p increases in the direction of that of the trader i in position j for large

utility values. The space P(Ee) of preferences similar to those of a subset

8 c {1, ... , H} of traders in E was already defined in §4; it consists of all
those smooth preferences p G T(RnH) such that Vx G RnH, pJ(x) G \Ji€gD¡.

If we consider the problem of finding a social choice function for the space of

preferences P{Eg) which are similar to those of some subset 8 of traders in

the economy E, 8 c {1, ... , H}, then by Theorem 4 in §4 the necessary

and sufficient condition is the acyclicity of (J¡€8 D¡. The existence of a social

choice function for every such space of preferences P(Eg), VÖ C {1, ... , H]
therefore requires

V0c{l, ... ,//},    8 ¿ 0 =*■ (J A-is acyclic.
¡ee

Note that in order to solve the social choice problem we must go back to

the properties of the family of market cones {A}/e{i,...,//} 0I"tne economy E

defined in (4)—the same family of cones which define the condition of limited
arbitrage (5).

Theorem 11 exhibits the identity between the problems of existence of a

competitive equilibrium for a market E and the existence of a social choice

function. Let £ be a market as defined in §3. A subeconomy Eg of E is

the market consisting of the those traders in E who belong to the set 8 c
{!,... ,H},i.c,

Eg = {R",Çli,Ui,ie8}.

Theorem 11. The following properties of the economy E = {R" , Í2,, p¡, i =
I, ... , H} are equivalent:

(a) E has a competitive equilibrium.

(b) Every subeconomy Ee of E has a competitive equilibrium.

(c) Every subeconomy Ee of E with at most n + 1 traders has a competitive
equilibrium.

(d) There exists a social choice function C> : P(Ee)k -* P{E6) satisfying

conditions 4.2.1 and 4.2.2, for every space P(E9) of preferences similar to those
of the traders in a nonempty set 8,   V0 c {1, ... , H},  and VA > 1.
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Proof The equivalence between (a) and (b) follows immediately from Theorem

1 in §3 and from the definition of limited arbitrage (LA) in (5). We establish

next the equivalence of the statements (a) and (c). By Theorem 1, E has a

competitive equilibrium if and only if E has limited arbitrage (LA) as defined

in (5), i.e., if and only if the family of dual cones {A}/=i.... ,h has a nonempty

intersection. Since {A}i=i,... ,h is an acyclic excisive family in R" , by Corol-

lary 1, (5) is true if and only if every subfamily of {A}/=i,... ,h with indices in a

set 8 c {1, ... , H} of at most n + 1 elements has nonempty intersection, i.e.,

if and only if the corresponding subeconomy Ee satisfies limited arbitrage (5),

and therefore by Theorem 1 if and only if Eg has a competitive equilibrium.

The equivalence between statements (a) and (d) follows from Theorem 4

in §4 and from Theorem 6 and Corollary 2 in §5, because {A};=i,... ,h is an

acyclic excisive family, so

H

P| A■ ¿ 0 <* V nonempty 8 c {1, ... , H) ,   (J A is acyclic.   □
¡'=1 iee
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