non-convexity. Since non-convexity is just the negation of
convexity, it will be useful to begin by reviewing the
justifications for the latter.

1. CONVEXITY

On the importance of the convexity hypothesis, see the entries:
EXISTENCE OF GENERAL EQUILIBRIUM, CONVEX PROGRAMMING,
CONVEXITY, DUALITY.

The standard convexity hypotheses can be justified in a
variety of ways. Three approaches will be reviewed here. The
first is relevant mainly (but not exclustvely) to consumption,
the second to production and the third to both.
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(i) Diversification. We assume that the consumption set is
always convex. The approach to be considered now has no
bearing on this convexity hypothesis.

The classical justification of the convexity of preferences
views it as the mathematical expression of a fundamentaf
tendency of economic choice; namely, the propensity to
diversify consumption.

Within a traditional cardinalist context (as in, for example,
Jevons, Menger and Walras) diversification is the natural
consequence of the principle of decreasing marginal utility:
successive units of a consumption good yield increasingly
smaller amounts of utility. In turn, if decreasing marginal
utility is postulated from any origin and for any (simple of
composite) commodity what we get, in modern language, is
precisely the hypothesis of concavity of the utility function
(proof in the differential case: the second derivative matrix of
the utility function is negative semi-definite everywhere).
Within an ordinalist context, the principle of decreasing
marginal utility should be replaced (as was done by Pareto) by
the principle of decreasing marginal rate of substitution:
keeping utility constant it is increasingly more difficult, ie.
more expensive, to replace units of a consumption good by
units of another. Equivalently, indifference hypersurfaces
bound convex sets. In other words: preferences are convex.

It should be clear that as an interpretation (but perhaps with
less force as a justification), the above applies also to
production. Suppose that inputs and outputs are perfectly
divisible. Then the convexity hypothesis on the production set
simply says that from any initial point at its boundary and for
any definition of (simple or composite) input and output
commodity, it takes an increasingly large amount of input to
produce successive additional units of output.

While the propensity to diversify is plausible enough as a
descriptive feature of economic choice (indeed if this were not
so much of economics would be seriously out of tune with
economic reality) it is by no means a universal principle. A
familiar example to illustrate this is the gin and tonic choice
situation. One may well like both gin and tonic but hate its
mixture (Exercise: do some introspection and come up with a
similar example that applies to you, the reader).

The modern theory of choice under risk, i.e., the expected
utility theory of von Neumann and Morgenstern (see EXPECTED
UTILITY HYPOTHESIS) has provided, in the form of the theory of
risk aversion, a powerful reinforcement to the diversification
principle. Suppose that preferences over lotteries (with
commodity bundles as outcomes and with objective probabil-
ities) are expressible by taking the expectation of a utility
function defined on commodity bundles (this is what the
Expected Utility Theory yields). Then the concavity hypothesis
on this utility function is equivalent, as a matter of the
definition of concavity, to the assumption (called risk aversion)
that the decision maker would never lose by getting, instead of
a risky lottery with commodities or outcomes, the non-risky
commodity bundle where the amount of each commodity is
precisely the expected amount of that commodity under the
given lottery (i.e., the mean of the random variable). To the
extent that risk aversion seems more prevalent than its
opposite, we thus get additional support for the convexity
hypothesis.

(ii) Divisibility and additivity. A production set Y < R” satisfies
the non-increasing returns property if any feasible technology
y € Ycan be scaled down, thatis ay € ¥ for any 0 <« < 1. The
condition can be derived from a more basic requirement,
namely, the perfect divisibility of all the inputs used in pro-
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T
duction. Note: the list of inputs should be exhaustjye /
inclusive of the non-marketed inputs.

A production set Y < R" satisfies the additivity
»+ y,€ Y whenever y|, y,e ¥, or Y+ Y <Y The econ
interpretation of this condition is straightforward: pmdu;%
activities do not interfere with each other: If activities y ,
technically feasible, then it is also feasible, say, to Set_‘{!gz e
plants producing, respectively, y; and y, (if y; = y, thep m:fzg
what is called free entry). Note that for this interpretagiwg%
make sense we must again have an exhaustive listing of inpy
In fact, it can be argued that additivity is a test for {;i
exhaustiveness of the listing. In this view a lack of additivijy
indicative of an input unaccounted for and available ip 5 ﬁx&%
amount.

The combination of the two properties above implies that
is convex. Indeed if p,, y, are feasible and 0 <o <1 they
non-increasing returns, ay,, (1 —a)y, are feasible, and thire.
fore, by additivity, ay, 4 (1 — a)y, is also feasible. Although %
are not now emphasizing this, we should point out that ¥ is zi,
a cone, i.e., satisfies the constant returns property: if y ¢ ¥ then
ay € Y for an o > 0. To see this note that for an integer Sy
we have any my e Y by additivity and then

pr Operyy

o
oy =—myeY
m
by non-increasing returns,
See Koopmans (1951) for more on this.

(iii) Averaging. In economics we are typically more interested
in average than in total magnitudes, e.g., income per capita 1
a more important concept than total income. It is therefors
great significance that, as we shall now see, the meas
behaviour of a collection of economic agents tends to be mow
regular, more convex-like, than its individual behaviour;

For definiteness the remarks of this subsection will be made
in terms of producers. They apply as well to the aggregation of
consumers’ upper sets (a construct of key importance in
welfare economics) or to the aggregation of individual demand
correspondences.

Consider first the limit situation where there is literally

continuum of firms. Every firm r [0, 1] has a productios s
Y,— R7 c Y, (free disposal). The dependence of Y, fulfills the
technical condition of measurability. Assume further,. ang
the technical condition of measurability, Assume further; and
this is very important, that the Y, are uniformly bounded abuve,
i.e., there is z > 0 such that y, < z for any y, ¢ Y, and ¢, Note thaf
the Y, need not be convex. :

The mean (per firm) production set Y is defined in

obvious ways as the collection of mean vectors f§y{ride
obtained by letting y(r) take values in ¥,. It is denoted by
Y ={§} Y,de. It is then a simple consequence of Lyapunov's
theorem on the range of a vector measure (seec LYAPUNOY
THEOREM) that Y is convex. Thus even if the individual supply.
correspondences are not convex valued the aggregate one will
be.

The common sense of this result is illustrated in Figure 1.‘111' :
it we have a continuum of identical firms. The mean productien:
set is then the convex hull of the common technology.

The limit theory (due to Aumann, 1964, and Vind, 1964)-i

elegant and conclusive but often one is more interested in
obtaining bounds for given, finite situations. In fact;: the
convexifying effects of averaging were first noted in- this-
context by Farrell (1959) and Rothenberg (1966) i}ﬂd
systematically studied by Starr (1969). The key mathematicit-
theorem used by the latter, the Shapley—Folkman theorem (56



non-convexity

(b)

Figure 1

the entry under that heading), was prompted by the economic
application.

The Shapley-Folkman Theorem allows us to assert that every
vector in the convex hull of the sum of a finite number of
production sets ¥, R", j = 1,...,mcan be obtained as a sum
of vectors from the individual convex hulls with at most n of
the individual vectors not belonging to the individual sets
themselves. Suppose now that the Y; are uniformly bounded
above. It follows that there is a uniform (on j) bound r on the
diameters of balls which are contained in the convex hull of ¥,
_ +hut do not intersect Y; itself. This r constitutes a measure of the
degree of nonconvexity of the family of individual production
sets. The Shapley—Folkman theorem implies then that any ball
which is contained in the convex hull of 7., ¥; but does not
intersect 7L, Y, itself must have diameter at most Ir. Hence, the
degree of non-convexity of 27, ¥;is bounded independently of

J .
“the number of firms. So, if m is large the mean production set

1 m
Y =— Y.
mjg] /

is almost convex. This is illustrated in Figure 2. In many cases
of economic interest, e.g., if each production set has a smooth
boundary, it is possible to do even better: the degree of
nonconvexity may actually go to zero. See Mas-Colell (1985)
for more on this.

The averaging theory presented so far is entirely modern.
The classics, who lacked the concept of supply correspon-

dence, had no inkling of it. They had, however, a very clear
_ conception of the regularizing effects of aggregation. As an
_example among many we quote from Walras (1954, p. 95,

eémphasis in the original):

There is nothing to indicate that the individual demand
curves are continuous, in other words ‘that an
infinitesimally small increase in p, produces an infinitesi-
mally small decrease in d,. On the contrary, these functions
are often discontinuous. In the case of oats, for example,
surely our first holder of wheat will not reduce his demand

(a)

Figure 2

Figure3

gradually as the price rises, but he will do it in some
intermittent way every time he decides to keep one horse
less in his stable. His demand curve will, in reality, take the
form of a step curve ... All the other individual demand
curves will take the same general form. And yet, the
aggregate demand curve can, for all practical purposes, be
considered as continuous by virtue of the so-called law of
large numbers. In fact, whenever a very small increase in
price takes place, at least one of the holders of wheat, our
of a large number of them, will then reach the point of
being compelled to keep one horse less, and thus a very
small diminution in the total demand for oats will result,

What this says is that if there is enough variation on firms’
individual production sets, then, whatever the price system
most firms will maximize profits at a single production vector.
Therefore, in the limit, supply jumps are smoothed out and
aggregation will yield a supply function, ie., it is as if mean
supply was generated from a strictly convex production set.
Consider the following example. For every ¢ €[0, 1] the pro-
duction set it Y, = {(0,0), (— 1, )} — R}, i.e., one unit of input
produces ¢ units of output. The corresponding supply corre-
spondence is

©,0) for pifpy>1t
£i(p)=4{0,0,(-1,0)} for p//p,=1t
(-1, for p//p,<t

Hence (normalizing to p, = 1) mean supply is given by the
function F(p,) = [/.(p)) dt = (p,— 1,5(1 ~p})) for p, <1 and
F(p)=(0,0) for p, > . Figure 3 describes the dispersed family
of individual production sets and the corresponding (strictly
convex) mean production set.

Prompted by a suggestion of Debreu (1972) this ‘smoothing
by aggregation’ problem, which as we have seen can be viewed
as an alternative line of attack to the analysis of the
convexifying effects of aggregation, has been extensively
studied in the last decade. We refer to the excellent survey
monograph by Trockel (1984). A conclusion of the research
reported in it is that as long as we are interested in the
continuity of mean supply and demand then the smoothing
intuition can be substantiated by using natural (and weak)
concepts of dispersion. Establishing differentiability, however,
turns out to be quite a different matter. The theory becomes
delicate and powerful mathematical techniques have to be
invoked.

II. CAUSES OF NON-CONVEXITIES

We shall concentrate on the production side. As for
consumption, recall the gin and tonic example, or the
possibility of risk-loving preferences, or the indivisibilities of
many consumption goods. Nonetheless, many of these
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Figure 4

non-convexities, although individually significant, are small
from the aggregate point of view and they may well be
averaged out in the manner just mentioned. Of course, this can
also happen for many production non-convexities. Thus our
interest from now on will be on production non-convexities
which matter economy-wide.

In L(ii) we saw that non-increasing returns and additivity
jointly yield convexity. As indicated there the violation of
either of those two properties can always be formally traced
to, respectively, the indivisibility or the fixity of some input.
However, it will be useful now to be rather more concrete.

We begin by retaining additivity and examining violations of
the non-increasing returns property. Four common instances
are:

(a) There is a single input and a single output. The nature of
the output, or the input, is such that it can only be produced,
or used, in lumps of a fixed size; see Figure 4.

(b) The familiar technology set with set-up cost represented
in Figure 5(a) (or, in a smoothed out variation, in Figure 5(b)).
Here the production set is a reduced technology giving the
total output optimally obtainable from some total cost or
labour input. The non-convexity reflects sizeable indivisibilities
in some of the physical inputs required in the production
process.

Output

Output

Set-up
cost

Dollars Dollars

(a) (b)

(c) The cause of the increasing returns need not by g
indivisibility of a physical input. They could also originate >
learning and organizational advantages in the imern'z
structure of production. A classical example is Adam Spy;
idea of labour productivity being determined, througs,
specialization and the division of labour, by the extent of b
market. Smith’s idea can be viewed as a brilliant trick 1o
obtain increasing returns on a scale significantly higher thay
the individual labourer for a world where labour is the Qn}?
input and where, therefore, there is no capital good whps
indivisibility could be appealed to. In Smith’s the indivisibililieg
are present, so to speak, at the level of the performance of
individual tasks by individual labourers. Hence, the fower
tasks the latter perform the more productive they will be; g
Vassilakis (1986).

(d) Marshallian external economies provide another interes;.
ing example. Suppose that the output of an industry is a gogg
proxy for a public positive input (e.g. quality of labour foree
to the industry itself. Then the production set of the indugiry
may well be as in Figure 5(b) (with free entry this will be the
typical shape). We point out that an indivisibility interpregs.
tion, while not impossible, would be here rather constraing,

The four previous examples are compatible with additivity-of -
production sets. It is an interesting fact that if increasing '
returns prevail then the preservation of additivity does. not
mitigate the non-convexities. Rather the contrary, it only helps
to spread them around. For example, if an output can f»
produced by means of two elementary technologies each.of
them using a different single input but both of them exhibiting
increasing returns then the isoquants of the produgtipp
function will be as in Figure 6(a) (see, e.g., Debreu and
Koopmans, 1982). Figure 6(b) represents the situation for 4
finite number of nonlinear elementary activities. Thus we sg -
that a necessary condition for a convex isoquant {an
hypothesis very often made in theoretical work) is. the
availability of an infinite number of elementary activities.
Similarly, Figure 6(c) represents the production possibility. set
for two outputs producible (each of them separately) from.a
single input with increasing returns. Again, it is non-convex;
What all this tells us is that while a fully convex world can be
supported by a very parsimonious set of microeconomic
hypotheses a conveniently ‘semiconvex’ world is not so easy 1o
Justify.

Let us now retain non-increasing returns but drop additivity.
It is very easy to see how the (negative) interference of .two
activities can cause non-convexities. The theory of externaj
dis-economies provides classical examples (see Baumol and
Oates, 1975, or Starret, 1972). Suppose that any of two
activities (producing, respectively, laundry and smoke produg~
ing output) uses labour under constant returns. Then any

Input 1 Input | Output |

I Input 2
() (b) ©)

Input 2 Output 2

Figure 5
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Laundry

Smoke

Figure 7

degree of interference will generate a non-convex production
possibility set. See Figure 7.

Observe that while Figure 7 and Figure 6(c) are identical, the
underlying reasons for the non-convexity are very different.
Here the technology is of constant returns but additivity
breaks down while there the technology is of increasing returns
and it is additivity that makes the convexity unavoidable. We
may also note that both external economies and external
diseconomies are sources of non-convexities. But again the
reasons are not the same in the two cases.

IIl. THE NON-CONVEXITY PROBLEM

Significant non-convexities create great difficulties both for
equilibrium and for welfare theory. We comment on them in
turn.

It is obvious, in the first place, that the existence of
Walrasian price-taking equilibria is not.to be expected. For
example, in Figure 5, only the no production outcome can be
sustained by prices. Technically, the convex valuedness and
continuity (more precisely: upper hemicontinuity) of supply,
required for existence proofs, will fail.

In itself, the above would not be very destructive. It is not
clear after all that in a world with large non-convexities the
conditions for perfect competition would be met. Walrasian
equilibria may not be therefore the most sensible solution
concept to look at. The point is, however, that delicate
existence problems are present in any of the many, arguably
more appropriate, solution concepts proposed in the literature
(some will be reviewed in the next subsections). There is a way
to see that the difficulty is intrinsic to the non-convex physical
environment. Consider a collection Y,,..., Y, = R' of prod-
uction sets and define the feasible set

F={(}’|v-'-v}’m)5 H YJ-:Z}{,->O}.
=t ;

If every Y; is convex, the F is convex, ie., it has a simple
structure. However, if the ¥; may not be convex then, even if
they are otherwise quite nice (e.g., they have smooth boundary
and satisfy free disposal), the set F may be far from simple, it
may even be formed by several disconnected pieces (e.g., one
piece could be the no production point, another a high pro-
duction region that, so to speak, becomes feasible only due to
substantial increasing returns). Directly or indirectly the com-

plexity of the set F bears on the likelihood of existence for any
solution concept we may consider.

To obtain, through an equilibrium or an explicitly
optimizing process, economic outcomes with good welfare
properties (say, Pareto optimality) is also no mean feat in a
non-convex world. So much so that most equilibrium
approaches simply do not get it. See Calsamiglia (1977) for an
impossibility theorem which, in essence, asserts that any
decentralized equilibrium notion which guarantees optimality
with non-convexities must include as one of its steps the
solution of an infinite dimensional programming problem.

The previous remarks should perhaps come as no surprise.
The global maximum of an arbitrary function is not
characterized by any sort of local conditions. Without some
type of structural restriction finding it is a programming
problem of intractable complexity. A restriction that proves
useful is to limit the permissible non-convexities to those that
arise from the indivisibility of explicit inputs or outputs (as in
Figure 4). Then the methods of integer programming can be
appealed to. Although those are still complex when compared
to convex or linear programming (also, Figure 4 is misleading
as to the higher dimensional possibilities), there is nonetheless
an extensive body of technical literature and the field is
undergoing rapid progress (e.g. Scarf, 1981, 1984). In
particular, Scarf (1984) shows that for integer programming
problems there is a way to associate to every feasible point a
finite system of neighbourhoods in such a way that to test for
global optimality it suffices to test every neighbourhood set.

1V. EXTERNALITIES

An approach which to a large extent salvages the equilibrium
part of Walrasian theory is based on the observation that if all
non-convexities in aggregate technologies are external to the
single production unit then the decision problem of the
individual firm is conventionally looking and, therefore, price
taking behaviour is not doomed from the start. The existence
of a price taking equilibrium has in fact been proved in
considerable generality (see, e.g., Shafer and Sonnenschein,
1976; the problem alluded to in section III remains but it can
be handled by means of survival hypotheses).

Recently this externality approach has been successfully
exploited for the study, by means of dynamic competitive
methods, of increasing returns effects in the process of capital
accumulation and growth (see Romer, 1986).

Because of the presence of externalities the above type of
price taking equilibria will typically fail to be Pareto optimal.
The other side of the coin is that if external effects are
internalized or, simply, priced out, then any Walrasian
equilibrium will automatically be Pareto optimal but, because
of the non-convexities, it is now the existence of equilibria
which will be in serious difficulty (see Starret, 1972).

V. IMPERFECT COMPETITION

If increasing returns prevail then either the economic
equilibrium is very inefficient or individual firms will end up
being large. If so, they will be endowed with market power
which suggests imperfect competition theory as a proper
analytical framework. Interestingly, to this conceptual argu-
ment a technical one can be added. The nonlinearity of profit
functions will increase the likelihood that firms’ optimal
productions react continuously to market parameters. This is
illustrated in Figure 8 for an output-setting monopolist facing
a linear demand function (and maximizing profits in terms of
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input). It follows that an existence theory for imperfectly
competitive equilibria with increasing returns may be
available. This is indeed so. It has been developed both for the
perceived and the objective demand approach to imperfect
competition. The perceived demand case is somewhat easier
since the hypotheses of no joint production plus linearity of
perceived demand will automatically imply the concavity of
profit functions; see Arrow and Hahn (1971), Silvestre (1978)
and the survey article by Hart (1985). Altogether, imperfect
competition is one of the most promising approaches to
increasing returns.

Let us consider a particularly simple example (see Fraysse-
Moreau, 1981, and Dasgupta-Ushio, 1981). A certain good can
be produced with zero marginal cost but there is a (non-sunk)
set-up cost of ¢. There is free entry and the inverse demand
functionis p = 1 — (1/N)Q, where N is a market size parameter.
Such a market will always have a Cournot quantity-setting
equilibrium with free entry. The number of active firms will be
| ?N f4c — | (more precisely, the integer closest from above to
this number) while the production per active firm is 2\/27\/ and
the equilibrium price is 2,/¢/N. It is instructive to evaluate the
welfare loss. Adopting total surplus as a welfare measure the
full optimum would have a single firm producing N at zero price
for a total welfare of (N/2) — c. In the imperfectly competitive
equilibria total welfare would be (approximately)

E—3c—£\/ﬁ.

2 2

Hence the welfare loss is 2¢ + (\/E 2) \/N . This is of order \/Xl,
a non-negligible number if N is large (although \/Kf /N =0 as
N — ). Is this loss due to the unbounded increasing returns
or to the imperfect competition? One way to answer this is to
compare it with the situation which is in every way identical
except that individual firms have a capacity limit &. Then the
welfare loss at the imperfect competition equilibrium can be
computed to be of order k2/2N, which is a small number if N
is large. Hence increasing returns seem to make quite a
difference. Alternatively one could say that the unlimited
increasing returns model is inherently much less competitive
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than the case with bounded non-convexities which, for y|

. - arpe
is almost Walrasian. &%

V1. WELFARE THEORY

A Pareto optimal allocation in a non-convex environmeny
satisfies the same first-order necessary conditions as ip the
convexity case. There must be a price system such that at eye
production (resp. at every consumption) the price hyperplan;,
must be ‘tangent’ to the corresponding production set (resp,
indifference surfaces). Here tangent means that the firm (res ,
the consumer) satisfies the first order necessary conditions fm:
profit (resp. utility) maximization. This is the classicy
marginal cost pricing principle, so cailed because for 4
technology characterized by a single output and a single inpyy
it leads to the equality of output price to marginal cog:
(Warning: With more than one input cost maximization is nyt
a necessary condition for optimality.) A modern and rig()mug
analysis of this theory is contained in Bonnisseau and Corpes
(1986b). Surprisingly, by using the mathematical techniques of
non-smooth optimization it is possible to relax considerably
the differentiability hypotheses.

A glance at part A in Figure 9 suffices to see that the fiys;
order necessary conditions are not sufficient for optimality:
For (local) sufficiency one has to check second order
conditions. Roughly speaking if preferences are convex ihe
second order conditions require that the curvature of the
indifference surface by larger than the curvature of ihe
production set, e.g., as in points B and C in Figure 9. Nowe
that point B is only a local optimum.

It is possible to obtain necessary and sufficient conditions for
Pareto optimality by appealing to some form of non-lingar
prices. Observe, for example, that in Figure 9 one may
separate the production set and the indifference surface at
point C by a non-linear ‘price’ surface (dotted line) relative tg
which the firm maximizes ‘profits’ and the consumer utility.
Note that no such non-linear prices exist for point B; sce
Brown and Heal (1978). Non-linear prices belong to an
inherently infinite dimensional price space. Hence . the
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impossibility of reaching a global optimum by using them is
not in conflict with the theorem of Calsamiglia mentioned in
Section III. For iterative procedures leading to a local
optimum see Heal (1973).

Typically if the productions at an optimum are evaluated at
the corresponding optimality prices the firms with significant
. non-convexities will be making losses (marginal cost will be
lower than average cost); see point A in Figure 10. The
accounting identities will be taken care of by the lump sum
transfers inherent to an optimum (in other words, losses will
be covered by receipts from non distortionary taxes). But
suppose this is politically infeasible i.e., prices and productions
must be such that total profits are non-negative, although they
can be limited to be non-positive. Then if we retain the
hypothesis that consumers maximize utility given prices
(suppose that preferences are convex) Pareto optimality will
typically not be reachable. In the one output-one input case,
the requirement that profits be zero (i.e., that average and
marginal cost by the same) determines the outcome; see point
B in Figure 10. Not so in the multiproduct case. The
‘regulatory constraint’ of zero profit is compatible with a range
of choice of prices and production. This leads to a classical
second best problem studied by Boiteux (see Guesnerie, 1981,
for a modern point of view).

V11, OTHER EQUILIBRIUM APPROACHES

Imperfect competition is not the only equilibrium approach
compatible (to some extent) with non-convexities. A variety of
others, more influenced by a planning outlook, have been
proposed. Among them are:

(a) Generalized marginal cost pricing equilibrium where
firms are assumed to follow the principles described in the
previous section, consumers are price takers and distribution
rules (including tax subsidies) are given. See Guesnerie (1975),
Mantel (1979), Beato (1982) and the recent synthesis by
Bonnisseau and Cornet (1986a).

(b) Models where, in contrast to (a), firms do act as profit
maximizing price takers but where prices are supplemented by

quantity constraints, e.g. perceptions of possible sales. A good
example is Dehez and Dréze (1986).

(c) A more abstract approach has been taken by, among
others, Dierker, Guesneric and Neuefeind (1985), Kamiya
(1986), Vohra (1986), and Bonnisseau and Cornet (1986a).
Their idea is to analyse the equilibria of systems where firms’
behaviour is described by pricing rules (given a priori), which
specify the prices acceptable at different production decisions;
(a) and (b) are included but so are other rules, e.g., average
cost pricing.

As could be expected, none of the above approaches yields
equilibria with good first best properties (or, for that matter,
second best ones; but this has been less studied). This is true
even for the notion of marginal cost pricing equilibrium, which
is directly inspired by welfare considerations (see Guesnerie,
1975; Beato and Mas-Colell, 1985). There is, however, an
exception: if there is a single production set (i.e., the entire
production sector is under a single management) and the
curvature of the indifference surfaces is larger than the
curvature of the production surface then the marginal cost
pricing equilibrium will be Pareto optimal (see Quinzii, 1986).

(d) An approach based on (non-linear) Lindhalian prices is
pursued in Mas-Colell and Silvestre (1986). The equilibrium is
always Pareto optimum (in the one output—one input case it
picks the Pareto optima compatible with average cost pricing)
but with non-convexities it may not exist (curvature conditions
will guarantee existence).

VII1. SUSTAINABILITY

As it is well known there is a close relationship in a convex
world between the notion of Walrasian equilibrium and the
cooperative game theory concept of the core (see CORES). With
significant non-convexities Walrasian equilibria can easily fail
to exist. This is not so clear for the core. In fact the basic
intuition of increasing returns seems to suggest that it is
difficult for small coalitions to improve their positions by
themselves, thus making the core a prime candidate for the
analysis of increasing returns economies,

Let Y= R be a production technology freely available to any
agent in the economy. A final allocation of goods is in the core
if there is no coalition of agents that can guarantee each of its
members a preferred outcome by using only their endowments
and the technology Y. Note that a core allocation is
automatically Pareto optimal. A more general approach would
let coalitions have their own technologies; these are the
so-called coalition production economies (see, e.g., Oddou,
1976). By constructing coalition specific inputs it is possible to
view them as a limiting case of the common technology
framework.

In the above setting the core has been studied by Scarf
(1986). It turns out that the ‘basic intuition’ described above is
not easily substantiated. Indeed, if Y is not a convex cone then
it is always possible to find a collection of agents yielding an
empty core. This is disappointing. There are, however, some
special cases for which the core will be non-empty.

(a) There is one output, one input, the technology exhibits
decreasing average cost, and consumers own no output,

(b) Consumers derive no utility from input goods and the
technology satisfies the property of distributivity. By using
prices the latter can be described thus: for any efficient
production y there is a price system psuch that0=p -y 2p -z
for any z € Y such that z~ € y~, i.e., z should use at most as
much input as y.

(c) A particular case of distributive production sets is when
there is a single input, average cost decreases radially and the
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non-convexity

set of output productions attainable from any fixed input is
convex (see Sharkey, 1979). Recall that this property is not
additive. Neither is distributivity.

(d) As with marginal cost pricing relative curvature
conditions can also be applied to guarantee a non-empty core
(see Quinzii, 1986).

There is an intimate connection between the core approach
and the sustainability problem in the theory of natural
monopoly (see Sharkey, [979; Baumol, Panzar and Willig,
1975). Suppose our production set Y is additive. This is often
described as a natural monopoly situation on the ground that
the combined productions of two firms can always be taken
care of at least as efficiently by a single firm. The sustainability
problem consists in designing a production and compensating
(1.e.,, pricing) system which is immune to (necessarily
inefficient) entry. By viewing an entrant as the coalition of its
customers the link to core theory becomes clear and it helps to
explain the ‘paradox’ of the existence of unsustainable natural
monopolies (i.e., the additivity of Y is far from guaranteeing
the non-emptiness of the core).

In the theory of natural monopoly a particularly important
role is played by the hypothesis that a Walrasian equilibrium
exists (e.g., in the one-input, one-output case this says that the
demand forthcoming at the minimum average cost is an exact
multiple of a minimum efficiency scale). Of course, this implies
that the core is non-empty and a sustainable arrangement
exists. But more is true. Under weak conditions the Walrasian
equilibrium is the only point in the core (a related result,
emphasizing the possibility of big players more than
non-convexities, is in Shitovitz, 1973). Finally, we note that
there is a close link between this result and many
non-cooperative models of competition ‘4 la Bertrand’.
Indeed, it is often possible to understand the latter as core
models in which there are restrictions on which coalitions can
form (e.g. they include only one firm) and on the way they can
split gains (e.g. only through a uniform price system). The
theme that under conditions of free entry (i.e., additivity of the
aggregate production set) the existence of a Walrasian
equilibrium will imply the non-emptiness and efficiency of the
set of non-cooperative equilibria is also common in the latter
theory (see Baumol, Panzer and Willig 1982, Grossmann 1981,
or Mas-Colell 1985).

A. Mas-CoLELL

See also CONSUMPTION SET; CONVEX PROGRAMMING; CONVEXITY; CORES;
DUALITY; EXISTENCE OF GENERAL EQUILIBRIUM; EXTERNALITY, GENERAL
EQUILIBRIUM; INCREASING RETURNS; LYAPUNOV THEOREM; PLANNING,
SHAPLEY-FOLKMAN THEOREM.
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