

Astrophysical Best Practices & Intelligence Analysis

Dr. Joe Pesce, Ph.D.

Omnis, Inc.

My Background

- □ Ph.D. Astrophysicist
 - Cambridge University & the International School for Advanced Studies, Trieste, Italy
 - Space Telescope Science Institute
 - The Pennsylvania State University, State College
 - Adjunct Professor, George Mason University [current]
- Government Analyst
 - World-wide space programs
- □ Founder & CEO, Omnis, Inc.
 - Critical Thinking and Analytic Methodology training; mentoring
 - Science & Technology Consulting

- Similarity to Intelligence Analysis
 - 1. Indirect study
 - 2. "Noisy" datasets
 - 3. Limited (holey) data
 - 4. Information: Over-abundance of general, paucity of specific
 - 5. Observational science
 - 6. Repeatability of experiment (repeatability of observation

- Why does it work and how can it inform intelligence analysis?
 - 1. Critical thinking
 - 2. Interdisciplinary approach
 - 3. Open to new ideas
 - 4. Open to multiple perspectives
 - 5. Acceptance of (embraces) failure (risk taking)
 - 6. <u>Collaboration & peer review</u>
 - 7. Objectivity
 - 8. Scepticism (and willingness to abandon ideas that don't work)
 - 9. <u>Scientific method</u>

- Why is Methodology Important?
 - 1. Establishes a framework that makes the process explicit
 - A common language shared by all practitioners
 - 2. Creates a path for analysis
 - Allows repeatability
 - Facilitates feedback mechanism
 - Forces adherence to path
 - 3. Aides in making thinking explicit
 - 4. Counters bad elements of human cognition
 - Mitigates our faulty short-term memory
 - Helps ID and mitigate biases

The Scientific Method

- 0. Make Initial Observation
- 1. Create Hypothesis
- 2. Make Prediction
- 3. Make Observation Info gathering
- 4. Draw conclusions

- 1. Already employed in general problem solving
- 2. Long history of success
- 3. Feedback mechanisms
- 4. Self correcting
- 5. Makes thinking explicit
- 6. Forces:
 - Elimination of hypotheses
 - Making assumptions explicit (and constant re-examination)
 - Assessment of logic, argumentation, explanation & conclusions
- 7. Requires critique, collaboration, and peer review
- 8. Requires repeatability of results
- 9. Minimizes and helps mitigate errors in human cognition

Summary of Best Practices - I

- Employ critical thinking
 - Constantly look for better approaches
 - Be objective
 - Employ an interdisciplinary approach (multiple perspectives)
 - Be open to new perspectives & ideas
 - Make assumptions explicit
 - Practice Intellectual humility, courage, and integrity
- Use a methodology & related techniques
 - Analogies
 - Models
 - Statistics

Summary of Best Practices - II

- Collaborate
 - Perform peer review
 - Communicate (with individuals, attend conferences, etc.)
- Question
 - Be skeptical
 - Always look for alternatives
 - Always question assumptions
- Be ever-vigilant of confirmation bias:
 - Don't prove hypotheses
 - Jettison ideas that don't work, etc.

Summary of Best Practices - III

- Risk Taking
 - Be open to taking risks
 - Don't punish failure

Issue	Practice
Indirect nature of target	Corroboration; statistics; multiple perspectives; analogies
Noisy data	Multiple perspectives; statistics; objectivity; peer review
Limited data	Collaboration; statistics; peer review
Lots of general, limited specific data	data filtering mechanism (structuring); statistics
Understanding	Generate multiple hypotheses
Alternatives	Multiple scenario generation; collaboration; multiple perspectives; peer review

Issues in Science & Intelligence Analysis

- Knowing when enough information to start analysis
- □ Knowing when enough analysis to start writing

jpesce@omnisinc.com

www.omnisinc.com

